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BLOCK GRAM-SCHMIDT DOWNDATING *

JESSE L. BARLOW

Abstract. Given positive integers:, n, andp, wherem > n + p andp < n. A method is proposed to modify
the QR decomposition ok € R™*"™ to produce a QR decomposition &f with p rows deleted. The algorithm
is based upon the classical block Gram-Schmidt method, reqaireapproximation of the norm of the inverse of
a triangular matrix, ha® (mnp) operations, and achieves an accuracy in the matrix 2-nortiistitamparable to
similar bounds for related procedures for= 1 in the vector 2-norm. Since the algorithm is based upon matrix-
matrix operations, it is appropriate for modern cache orgéntamputer architectures.

Key words. QR decomposition, singular value decomposition, orthodgnaiowndating, matrix-matrix oper-
ations.
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1. Introduction. Given a matrixX € R™*" and an integep, wherem > n + p and
p < n. Suppose that we have the orthogonal decomposition (iR d€zomposition)

(1.1) X =UR,

whereU € R™*" is left orthogonal and? € R™*™ is upper triangular. LeX be partitioned
as

(1.2) X = [))i?] %j’n_p ,

and suppose that we wish to produce the QR decomposition
(1.3) X=UR,

wherelU € R(m—P)*7 js |eft orthogonal R € R™*™ is upper trapezoidal, ard < n. Obtain-

ing (1.3) inexpensively from 1.1), called theblock downdatingroblem, is important in the
context of solving recursive least squares problems whigsergations are added or deleted
over time. It also arises as an intermediate computationr@cant null space algorithm by
Overton et al. 18]. In (1.2), the firstp observations are deleted, but, by simply applying a
row permutation taX, anyp observations can be deleted. Without changing the algorith
we could assume that € R™*" andR € R™*" is upper trapezoidal, where, < n, but,

for simplicity, we assumey = n.

For p = 1, the block downdating problem (or simply tli®wndatingproblem) has
an extensive literatured] 9, 20]. A block downdating algorithm for the Cholesky decom-
position based upon hyperbolic transformations was desdrby Q. Liu [L7]. Our block
CGS algorithm, closely related to the BCGS2 algorithm 3h dnd the CGS2 algorithm
in [1, 12], has matrix-matrix operations substituted for the matéxtor operations, orthog-
onal decompositions—either the QR or the singular value meosition—substituted for
normalizations along with inverse norm estimates and $amgialues used in orthogonality
tests instead of the size of vector norms. This leads to a BRAB)] or matrix-matrix oper-
ation oriented algorithm, which is more suited to modern potar architectures as it makes
more effective use of caching. It requir@$mnp) operations.
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The downdating problem fgr = 1 is solved by adding the colunmin = e, the first col-
umn of the identity, taX in (1.1), updating its QR factorization, and obtaining the masice
andR in (1.3) as “by-products” of that updating process.

Forp > 1 we substitute fob = e; the left orthogonal matrix3 € R™*P given by

(1.4) B= m %:z e

whereV € RP*? is orthogonal.

Following a script in B] for adding a block of column$3, we seek an integer < p,
a left orthogonal matrixQz € R™**, an upper trapezoidal matrikz € R**P, and a
matrix Sp € R™**P such that

(1.5) B=USp+QpRg,
(1.6) UtQs =o.

Once the probleml(5—(1.6) is solved, we have the decomposition
V X R 0
o ¥t v

We then letZ € R("tF)x(n+k) e an orthogonal matrix such that

T RB 0 o RV g) p
1.7) Z l:SB A=l0 ElL
N~~~
p n

wheren = n — p + k andR € R™™ remains upper trapezoidal. Applyirigto [QB U],
we obtain

(1.8) U=1[Qs U]Z= [171 ﬁz],
~
P n

where we note that
V Xo| ~|Rv Yo

ws) R
Thus,

VvV ~

|:O:| = UIRV7
requiring that the matri¥/; in (1.8) has the form
(1.10) A L I

0 }mfp

and implying that/y, Ry € RP*P must be orthogonal.
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SinceU is left orthogonalﬁg € R™*™ has the form

(1.11) Uy = B] {”_p

so thatU in (1.11) and R in (1.9) satisfy (L.3). Once@g, Sp, and Rp are obtained, the
decomposition1.7) can be constructed efficiently as the produc of 2 orthogonal trans-
formations.

Unfortunately, if the matrix

(1.12) C=[B U

is rank deficient, the problem of obtainirdg, Rp, and S in (1.5—(1.6) is ill-posed; the
left orthogonal matrixQ g is not unique R is rank deficient, and the resulting factorization
in (1.3) is rank deficient. Froml(5—(1.6), C in (1.12) can be factored into

c=fas V][5 G

Since [QB U] is left orthogonal and the matrix on the right is quasi-uppi@ngular,C' is
rank deficient (ill-conditioned) only iR 5 is.

There is little difficulty in obtaining? 5, R, andSg that satisfy {.5) with a small resid-
ual, i.e., wherg|B — USg — Qs Rgl|, is small. However, ifC' is (near) rank deficient, the
ill-conditioning in R5 can make it difficult to obtai) 5 such that|U” Q|| is small, i.e.,
such that {.6) has a small residual. Understanding this issue and cantistguan algorithm
that addresses it are the main themes of the text below.

To develop block CGS downdating, we relax the assumptiohlthes left orthogonal
and instead assume that

(1.13) |, —UTU|, < ¢ <1

for some small and unknown valge In some contexts (as in, say]], we may assume
that¢ < f(m,n)ey whereey, is machine precision andl(m, n) is a modestly growing
function, but, in our discussion, we simply assume that fisigall.” It is possible thatt
depends on the condition number Bf for example, when it is the result of a modified
Gram-Schmidt QR factorizatior6]. Using the assumptionl(13), in Section2 we design
our algorithm with the goal of computingz € R™**, Rg € R**P upper trapezoidal, and
Sp € R"*P k < p, such that

(1.14) |B—USp — QpRp|l, < V5 +0(£%),
(1.15) |UTQs||, < 0.5 +O(£2).

Whenk < p, i.e., whenRp is strictly upper trapezoidal, the algorithm produces adow
bound estimaté. . for £ in (1.13).

The algorithm we develop and the bounds associated with.k4¢—(1.15, assume the
reliability of anO(p? log p) operation heuristic that, for an upper triangular mateix finds
the largest integek such that, for a prescribed constaitey, || 25 (1: k, 1: k)|, < Bortn-

The outline of this paper is as follows. The algorithm for gutingQ s, Rz, andSp
that satisfy {.14—(1.19 is assembled in Sectioh It is based firmly upon the function
bl ock_CGS2_st ep from [3, Function 2.2], which we restate as Functidd. Our modi-
fication, given adl ock _CGS2 _down (Function2.2), is justified by Theorem&.1and2.2,
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FuNcTION 2.1 (Functiorbl ock _CGS2 _st ep from [3]).
function[Qp,SE, Rg]=bl ock_CGS2_st ep(U, B)
%

% First block Gram-Schmidt step

% Produces’; = (I - UUT)B

% Left orthogonal; satisfiesSRange(Q;) = Range(Y:) = Range((I,, — UUT)B)
% if R, nonsingular

%

(1) S = UTB;

@Y1 =B-US,

B)Q1Ry = Y7, % QR decomposition of;

%

% Second block Gram-Schmidt step

% Produces, = (I — UUT)Q,

% Left orthogonal 5 satisfiesRange(Q 5) = Range(Ys) = Range((I,,, — UUT)2B)
% if Ry and Ry nonsingular

%

(4) Sz = UTQli

(B) Y2 = Q1 —USy;

(6) QpRs = Yo; % QR decomposition oY,

%

% AssembleR g andSp to satisfy (L.5)

%

(7) Sp =51+ SR, Rp = RyRq;

end bl ock_CGS2_st ep

requires a condition number estimate to determine the gpipte valuet for the dimensions
of @ g andRp and leads to the functidnl ock_downdat e_i nf o (Function2.4). We forgo
a backward error analysis df ock_downdat e_i nf o, but this could also be established
from the backward error analysis of ock _CGS2 _st ep in [3, Section 3.2].

In Section3.1, we perform a sequence of Givens rotations to prodaige (1.7) that re-
sults in the factorizationl(3). In Section3.2, we give an analysis of the relationship between

In — ﬁTUHF and||I,, — UTUHF and show how, in practicé]; andU- deviate from struc-

tural orthogonality in {.10—(1.17). Numerical tests are presented in Sectiadong with a
Householder-based algorithm for adding a block of rows ictiSe 4.1. Proofs of important
theorems are given in SectiGnand we summarize with a brief conclusion in Section

2. A block Gram-Schmidt algorithm for downdating.

2.1. The functionsbl ock _CGS2 st ep and bl ock_CGS2_down. We begin our de-
velopment by examining the functidil ock _CGS2_st ep from [3, Function 2.2] (given as
Function2.1 here) applied to a general matrix € R™*P with the intention of producing
matricesQ) g, Rp, andSp to solve (.5—(1.6). The function performs two classical Gram-
Schmidt (BCGS) steps oB. The resulting matrice® g and Rz satisfy

QpRp = (I, —UUT)?B,

and@p, S, and Rp satisfy (L.5). The remaining issue is the extent to whidhgj or at
least (L.15 can be satisfied. Ir8], Function2.1is part of a QR factorization of a larger ma-
trix, and the conditions on that QR factorization impligitmpose conditions o relative
to the loss of orthogonality ify.
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AssumingU satisfies {.13 and thatR z is nonsingular, we have that
U'Qp = (1, —U"U)*UTBRy',
U], < (142
A crude norm bound is
U7 Qsll, < |10 = UT U3 11, 1B, | R5 ],
<&+ |Bll, [R5, -
If

(2.1) Bl [R5 [, < cortn

for some constant,,;,, then

(22) HUTQBH2 < corthg + 0(52)

The inequality 2.1) poses two problems: we cannot always guaranteeias nonsingular
much less that it satisfie2.(l), and¢ is not necessarily known. The relationship1)—(2.2)
can be made columnwise in that for any positive intéget p,

(2.3) 0T Qs (: ,1: k)|, < corené + O(£?)

if

(2.9) E|IB(: 1 B)||, [R5 (1t k1t B)||, < cortn-
Unfortunately, 2.3—(2.4) does not lead to such a bound asiri{).

The downdating probleni(3) demands that we chooggof the form (L.4), but our ideas
for choosing? 5, R, andSp apply to the situation ing] where B is more general, provided
that we normalize it a§B||, = 1. For the downdating probleni?z andSp are discarded
once the decompositiod () is computed, whereas for the application3h fhese quantities

are needed in subsequent computations.
To delete the firsp rows from the QR decompositioi.(), we let

— IP
m= g
and look at the application of the Functi@rito B,. Steps (1)—(2) of Functio®.1read

S; =U"By=U(1:p,: )7,

Yy, = By — USs.
Instead of computing the QR decomposition in step (3), weptdmthe singular value de-
composition (SVD) oft;. Thus, we have
(2.5) Yi=Q1 R V7T,

Q1 € R™*?_ left orthogonal
V € RP*P_ orthogonal

(26) Rl :diag(p17'~'7pp)a £1 2 pr 20
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REMARK 2.1. In 2.5, the matrixR; in the statement (3) of Functidhlis replaced by
the diagonal matrix o¥;’s singular values rather than its upper triangular fadfée. use the
same notation for it since it is the matri¥, obtained by Functio2.1with B given by (L.4)
andV being the right singular vector matrix i2.6). Moreover,R; is used in the same way
in the algorithm described below as it is in Functi®i. We substitute the SVD because it
sets us up to extract useful information for solving the pob(1.14—(1.15.

To obtain a matridx@ g that is near orthogonal t@, the second BCGS step, steps (4)—(5)
in Function2.1, reads

Sy =U"Qu,
5/2 = Ql - USQ?
(2.7) QpRs =Y, QR decomposition

@B € R™*P left orthogonal
Ry € RP*P | upper triangular.

To guarantee thap, and@B are left orthogonal to near machine accuracy, that is,
(2.8) 11, - Q" Q|| < emL(m,p) <& Q€ {Q1,Qn},

where L(m,p) = O(mp*/?), ) is the machine unit, and is defined in (.13, we rec-
ommend thatZ.5) is computed with either the Golub-Kahan-Householder (3EMD [13]
or the Lawson-Hanson-Chan (LHC) SV, Section 18.5],§] and that the QR factoriza-
tion (2.7) may be computed using the Householder QR factorizafipn [

Step (6) of Functior2.1 becomes

(2.9) Sp =28V +S5R), Rp=RyR,.
Equations 2.7) and @.9) yield Q 5, R, andSp such that
(2.10) B=USgp+QpRp.

We write @ 5 and R because we are not yet ready to accept these matrices am®lut
to (1.14—(1.15, however,Sp will not be further modified by our algorithms. The only
difference betweer2(9) and step (6) of Functiof.1is the presence df in the computation
of Sg.

The modificationsZ.5) and @.9) to bl ock _CGS2 st ep producebl ock _CGS2_down
given in Function2.2. This function produces the sanigs, R, andSg as Functior2.1
applied toU and B in (1.4). Note that it also output®,, the diagonal matrix of singular
values from the SVD in4.5—(2.6), and the upper triangular matri,.

REMARK 2.2. Functior2.2requires three matrix multiplications with, one SVD ofY;
using the GKH or LHC SVD, one QR decompositionsf, two matrix multiplications and
one matrix addition to forndz, and one multiplication of a triangular matrix by a diagonal
matrix to formR . This totals t&smnp+ 10mp? + (20/3)p> + 2np? + O(m+n) operations.
The dominant cost is the matrix multiplication with

Although equation .10 guarantees tha@Qp, Rp, and Sp satisfy (1.9 (and thus
also (L.14), we cannot guarantee th@ts = (p satisfies {.19. However, we are able
to identify a subset of the columns @fp that are sufficiently orthogonal td. More pre-
cisely, for a given constant,,;;, such thatd < ¢,;, < 1, we intend to find the largest
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FUNCTION 2.2 (The functiorbl ock_CGS2_down).
function [Qp,Sg, Rp, R, R1]=bl 0ck_CGS2_down(U, p)
%
% First orthogonalization oB, against/
%

I
Wsi=v" [§] =utp

(amzﬁﬂ—U&;

R)QiRVT =Y1; %SVDofYy;

%

% Second orthogonalization

%

(4) Sz = UTQu; Yo = Q1 — USs;

(5) @Ry = Ya; % QR decomposition of;
(6) Sp = S1V + SoR1; Rp = RaRy;

end bl ock_CGS2_down

integerk such that
@11)  [UTQs(: 1: B < corn + O(E),
212) U7 Qs(: 1 k)| | < cornr + O, €r = max{|[L, ~UTU]| .. &}

In this paper, we default tq,.;;, = 0.5 as it was used ir] for the case = 1. Daniel etal. §]
usede,,¢r, = 1 for the case = 1 since it maintains roughly the same level of orthogonality.
Values ofc,,+, > 1 are not desirable since that would make the boun@ihlf larger than
the bound in {.13. On the other hand, we do not want the restrictidri{) to be too harsh,
thus we recommend,,.;;, to be bounded away from zero.

To assure the bound (15, we need two theorems both of which require the definition

(2.13) B; =Ry (1: 4,11 j)|

and both of which are proved in Sectibri. Equation .13 defines the norms of the inverses
of the leading principal submatrices & in (2.7). The first theorem relates the valugs
in (2.13 to the singular values in the diagonal matfx in (2.5).

THEOREM2.1. Assume thal/ satisfieg1.13). Let@, in (2.5) be left orthogonal ang;,
Jj=1,...,p, begivenby2.13. Letp;, j = 1,...,p, be the singular values df; in (2.5).
If, for a given constant,,.;, With 0 < c,,+» < 1, k is the largest integer such that

(214) Bk < 5orth = (1 + Cgrth)
andk < p, then

2 jzla"'7pa ﬁOZO

1/2

14 ¢2 1/2
(2.15) p; < Qorné +O(E2),  Qorn = %

Corth

forj=k+1,....p.
Usingcorq¢r, = 0.5, the two constants in Theorednlaref,,., = v/5/2 andag,tr, = V5.
If & < p, then the inequality

Prt1 < aorin€ + O(€2)
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yields the lower bound estimate hiven by

(216) gest = pk+1/0407'th~

This estimate may be useful in determininglif has become too far off from being left
orthogonal after a sequence of modifications to the QR feetihon.

A second theorem, which follows from Theoréi, shows that establishingin (2.14)
leads to an algorithm to produ€gs, Sp, andRp satisfying (.14—(1.15).

THEOREM 2.2. Assume the hypothesis and terminology of ThedZenincluding the
assumption thak satisfieq2.14). LetQ g, Rp, and Sp be the output of Functio.2 Then,
we haveg2.1)—2.12 and

(2.17) B=USp+Qp(:,1: k)Rg(1: k,: ) + Dy,

whereD, = 0, xp,

(2.18) Dk:@B(:,k+1:p)]§3(k+l:p,k+1:p), k <p,
and

0 k =np,
(2.19) [Dell, <

Pr+1 Kk <p.

Thus, using the bound fagr, 1 in (2.15), for ¢y, = 0.5, we have that) p = @B(: J1: k),
Rp = }ABB(l: k,:),andSp satisfy(1.14—1.19.

In the next section, to find the integérthat satisfiesd.14), we give anO(p? log p)
operation algorithm.

2.2. Finding the largestk such that@B(: ,1: k) is near orthogonal toU. To pro-
duce an algorithm to find the largéssatisfying @.14), for the upper triangular matrik, in
step (5) of Functior2.2, we need an algorithm to compuiéz; ' (1: j,1: j)||, with reason-
able accuracy for a givejy and we need a binary search.

To produce the first, we computg, w; € R’ such that

RyY(1: 4,1: j)w; = Bz,
Ry (1:4,1: j)z; = Byw; + £,

thus yielding the approximate leading singular triflg}, z;, w;) of Ry'(1:4,1: ). The
vectorf; is a residual that satisfies

wif; =0, |[f]l, < tolxp;

for some toleranceol. This can easily be done with a few steps of a Golub-Kaharctas
(GKL) bidiagonal reduction followed by an algorithm to finldet largest singular triplet of

a bidiagonal matrix. This approach is related to ideas im§eGolub, and Plemmon4]]

and ideas that have been used in ULV decompositians]| If we are seeking the leading
singular value ofR, ' (1: j,1: j), such a procedure is akin to finding the leading eigenvalue
of a symmetric, positive definite matrix by the Lanczos aitfpon, and no reorthogonaliza-
tion is necessary in this circumstand®]. Since the details of GKL bidiagonal reduction
and the process of extracting the leading singular trigleixplored in detail elsewhere (see,
for instance, 14, Chapters 8 and 9]), we skip these here and simply assuméhthéiplet
(Bj,2j,w;) can be delivered by the “black box” call

[Bj. 2, w;] = GKL_i nv_nor m(Ry(1: j,1: 7)).
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FuNcTION 2.3 (Lanczos-based routine for findikgatisfying @.14).

functionk=max_col _orth(Rs,Bortn)
n=l engt h(R3);
if ﬂorth‘R2(171)| <1
%
% All of R is too small, no columns are guaranteed orthogonal
%
k=0;
el se
(8,2, w]=CKL_i nv_nor mRy);
if ﬁ <= Bortn
%
%||Ry" ||2 < Boren, all columns are guarantee orthogonal
%
k = p;
el se
%
% Do binary search
%
first =1;last =p
%
% At any given point in this loop
% first < k < last
%
whi | e last — first > 1
middle = |(first + last)/2];
cols = 1: middle;
(8,2, w] = GKL_i nv_nor m Ry(cols, cols));

if ﬁ > ﬁorth
last = middle;
el se
first = middle;
end;
end;
k = first;
end;

end;
end max_col _orth

CouplingGKL_i nv_nor mwith a binary search that successively brackeits the interval
first <k <last

that starts withfirst = 1 andlast = p and converges whel = first = last — 1, yields
the functionmax_col _ort h (Function2.3) that produces: in (2.14).

2.3. The necessary information for a block downdate The following function, Func-
tion 2.4, usesbl ock_CGS2_down (Function2.2) to produceQB, S, andRB and then
usesnax_col _ort h (Function2.3) to find k£ such thatQg = QB( k), Sp, and
Rp = EB(: ,1: k) satisfy (L.14—(1.15 as shown by Theore.2



ETNA
Kent State University
http://etna.math.kent.edu

172 J. L. BARLOW

FUNCTION 2.4 (Block Downdate Information).
function[Qp,SBs, R, k,&st)]=bl ock_downdat e_i nf o (U, p)

%

% Produces information for a Block Downdate Operation foetial the firstp rows
% from a QR decomposition wheté is a near left orthogonal matrix.

% Functionmax _or t h_col s from Section2.2is called to find the largest integér
% such that| Ry ' (1: k,1: k)||, < Bopen for 1 < j < p.

%

% Define constants used in the function. Speeijfy;, = 0.5 to get

% the bounds1.14—(1.15.

%

1/2
(1) C(/)\Tth - 0/5\1 Bm'ﬁh = (1 + C(Z;Tth) / y Qorth = ﬁorth/cm'th;
(2) (@B, SB, Rp, R2, R1]=bl ock_CGS2_down (U, p);
%
% Determine “rank =k”, the number of columns @fB guaranteed orthogonal t6.
%
(3) k=max_or t h_col s(Ra, Bortn)
%
% Give lower bound estimaté,; in (2.16), for €.
% Note thatpg+1 = Ri(k+ 1,k + 1).
%

@ifk<p

(5) fest - Rl (k + 17 k + 1)/aorth;
(6) el se

(7) gest - 0;

(8) end;

%

% Produce rank solution to satisfy {.14—(1.15.
%

(9) RB = ﬁf(l k, : );

(10)Qp = Qp(:,1: k);

end bl ock_downdat e_i nf o

REMARK 2.3. Except folO(p? log p) operations fomax _or t h_col s, almost all of the
operations for Functio.4are frombl ock _CGS2_down, thus it require$mnp + 10mp? +
(20/3)p? + 2np® + O(m + n + p? log p) operations.

3. Producing a new QR factorization.

3.1. The algorithm to produce a new QR factorization. The remaining step in per-
forming the block downdate is to find an orthogonal ma#isuch that

R 0]k Ry Yy |i»p _
(3.1) ZT{SB RHn {0 Ran n=n—-p+k,
"~ ~—~
p n P n
whereR remains upper trapezoidal. First, permute the rows of tiee@matrix so that
R 0
R 0 |}k B
PT{Si R:|%n = |Sg(h+1:n,:) R(A+1:n,:)
~— Sp(l:n,:) R(1:n,:)

P n
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We then letZ, be a product of Householder transformations such that

T Rp 5
Z [SB(ﬁJrl:n,:)} = s,

whereR is upper triangular. Letting, = {ZOO 0} , we have

I
B 0 Ry Vi
zE [Sp(+1:n,:) R(+1:n,:)| = e R
- i Sg R |in
Sp(l:7n,:) R(1:7,:) NGNS,
» n
Note thatR is upper trapezoidal and, is nonzero only in the columns—+1, ..., n.

The remaining orthogonal transformations4nare either Givens rotations or House-
holder transformations applied to only two rows. For simipfi we just refer to both kinds
as “Givens rotations”.

SinceRR is upper triangular, we let

(3.2) Z=2 -7,
where eacl¥;,j = 1,...,p, is given by
Zj = Gjptn- Gjp

andG;, is a Givens rotation rotating rowsand/ and inserting a zero in positiaf, ¢) so

that
> RB Rv
ZT|P | = :
5. - [0]
In terms of data movement3.Q) is a poor Givens ordering. A better one is to let

v

Z:21...2}771217...2”...27#1771_
Here we have

Gj,ﬂ—i—p T Gl,n-{—p—j-{-l j <p,
Zi =< Gpntop—j - Grarpjr1 p<j=<n,
Gpivop—j Gj—ntipyr N <k <n+p.

On its set of “active rows,” each of thegg has the form
~ r. A. 5 5
J J
wherel'; andA; are diagonal. The orthogonal factdrin the operation above is given by
Z=PZyZy ... Znsp1.

REMARK 3.1. Ignoring terms of)(mn), the algorithm described in this section requires
2mp?+(10/3)p* —2kp? operations to calculate and apgly and6miip+ 3nnp+3np? oper-
ations to calculate and appk, with a total of6miip+3nnp+3np?+2mp?+(10/3)p> —2kp?
operations. The dominant cost in this algorithm is the djp@maof updating the orthogonal
factor as in (..9).
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3.2. Properties of the new QR factorization.In our new QR factorization, we havé
given in (1.8) with

~ Uy AU |lp
(33) U= |:AUV U :|%m—p ’
~
P n

where, if§ = 0, AU = 0,x5 andAUy = O(m—p)xp- IN practice, this will not necessarily be
the case. Given the QR factorizatidn 1), our downdate algorithm has produced

VX Rp 0
o X|=les i[5 B+ipe o
=[Qp U]zZ" {?Bf Ig} + [Dy 0]
:[7 |:R0V };):| + [Dk O]
(3.4) = [AU(‘J/V Aﬂ [ROV ﬂ +[Dy 0] .
Blockwise that is
o] = [agi) e o
Xo=UyYy + (AU)R,
(3.5) X = (AUy)Yy + U R.

We accepl/ above to producel(3). Thus we need bounds for

(3.6) |X -UR|,
and
(3.7) In —UTUHF.

For the quantity in§.6), we could use an identical argument to obtain a bound in-therg,
but for the quantity in$.7), the Frobenius norm yields a more meaningful bound.

Bounds for|| AU||, and||AUy ||, are also desirable. Theorerdsl and3.3are proved
in Section5.2. The short proof of Corollar.2 following from TheorenB.1is given in this
section.

THEOREM3.1. LetU be the result of the matrix defined to perform the operatigf.7)
using@p, Ry, and Sp produced by Functior2.4 with input U_satisfying(1.13 and Q5
satisfying(2.8). Assume thaf) is exactly left orthogonal. 1t/ is partitioned according
to (3.3, then

(38) ||AUV||2 < aorthg + 0(62)5
(3.9) | AT, < (@orth +Yortn)€ + O(£3),
(310) In+k - ijTﬁH2 S ’Y()Tthg + 0(52)3

where

Yorth = 1+ cortn-
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COROLLARY 3.2. Assume the terminology and hypothesis of The@dniThen

(3.11) |X —UR|, <|AUv|, | X] g
(3.12) < dorn | X || g+ O(E%).

Proof. From @.5), we have

X TUR=X-UR=(Ah)Y,,

where
Yo=2(:,1:p)T {O] .
R
Thus,
|X = UR||, = (AUV)Yo |l < [|AUY |15 1Yol -
Since

0
ol = |26 107 [3]| <120,
F

we have 8.11). The bound 8.8) gives us 8.12. a
We now let
~ Uv |}» ~ AU }p
U, = Us = | —=
1 |:AUV:| }mfp ’ 2 |: U }’HL7p
and present a theorem bounding the quantityBif)(

THEOREM 3.3. Assume the terminology and hypothesis of Thed@emlLet Qg sat-
isfy (2.8), and defing » = max{||I,, — UTU|| ., £}. Then

~ e~ [[2 Al
0 - 07 G, < ¢ +2(Jlur sl - |07 )

o~ |12
(3.13) [l — QB Qe — |- T T .
7T7 ~ ~ — —

@14 |, -T UHF < |- T+ (AT AD))|
(315) S Iﬁ - [72T 172 s + \/ﬁ(aorth + 70rth>2§2 + O(f%‘)
Thus,

e P =77 || == |2 3
(3.16) I, -T UHF <&t 2|07 UQHF - UlHF T O(EL).

Theorem3.3 establishes that a loss of grthogonalitﬁnNill not be significantly worse
than that in. Moreover, it is possible thdt is closer to a left orthogonal matrix thdn

sinceHIp — ﬁlT [71HF andHﬁlTﬁgHF may contain a significant portion of the loss of orthog-

onality in U while |1, — QL Q|| will be near machine accuracy and our implied bound

from (1.19 for [|[UTQ3||,, could be quite pessimistic. In the next section, our nuragric
tests on a sliding window problem bear out this observation.
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4. Numerical tests. We consider a classic “sliding window” problem from statist
Here, we compute the QR decomposition of a malik) € R™*™ which is a slice of a
large matrixX,;, € RM*". The results displayed are faf = 4000, m = 300, n = 250.
At stept,

X(t)=Xpig(p*x(t—1)+1:plt—1)+m,:),

where, in the example showp, = 40. The matrix X;, is constructed by generating a
randomM x n matrix using MATLAB’s r andn function that simulates a standard normal
distribution and then multiplying the rows at random by éastof1, 10~7, 10~ 4, and10—2".
Thus Xy, is a random matrix with rows that have large and small entries

4.1. Adding a block of rows to a QR factorization. For the purposes of our numerical
tests in Sectiod.2, we also need an algorithm that adds a block of rows to a QRriaeation.
Again, supposing that we already have the factorizatlof) @nd we wish to add ax n block
of rows given byX,..,, then we simply compute the QR factorization

R R'ILQ’LU
|:X'n,eu):| - Qnew |: O :l I

whereQ),..., is the product ofi Householder transformations. Thus, the new QR factodnrati
is

X
[Xne“)] - U’I’LE’LUR’REUJ7

where

u o0
Unew - |:0 Ip:| Qnew(- 71' n)'

4.2. The sliding window experiment. Given the QR factorization
X(t) = U@®)R(t)

at stepy, the QR factorization oK (¢+ 1) is produced by adding rows at the bottom oX (¢)
using the algorithm in Sectiof.1to produce its QR factorization, deleting theows at the
top of X (¢), and updating its QR factorization using Functibd followed by the algorithm
in Section3.1to obtain

X(t41) =U(t+ 1)R(t +1).

Fort =1,2,..., rank, changes were frequent because of the wild scalidg,Qf
At t = 1, we produce the QR decomposition

X(1) = U1)R(1)

using the modified Gram-Schmidt algorithm. Sin€¢1) is ill-conditioned, consistent with
the bound in ¢], we expect that

[I-umTu@)l,

will be significantly larger than the IEEE double precision achine unit
em =279~ 1.1102 x 10716,



ETNA
Kent State University
http://etna.math.kent.edu

BLOCK GRAM-SCHMIDT DOWNDATING 177

Orthogonality for Sliding Window Problem

0 ‘ ‘
Orthogonality loss in (4.1)
*  Loss estimate in (2.22)

0
(%]
2 gt |
2
£
c
(e}
(o))
o
S
5]
kS

3
o -10F E
o
-

_15 Il Il Il Il
0 20 40 60 80 100

Window number

FiG. 4.1.Loss of orthogonality for the sliding window example.

We produce two graphs. The first, Figutd, is the graph of
(4.1) E=lI-uvwuel,.

The symbol "+” in the graph indicates the estimate¢odiven by &, in (2.16 from the
functionbl ock_downdat e_i nf o wheneverk < p holds in Theoren2.2. As can see be
observed{. , is a fairly accurate estimate 6f

The second, Figuré.2, is the graph of

1X(#) = U@RDI,
X (@)l

(4.2)

The value of " is graphed whenevér < p hold in Function2.4, which makesk having
smaller rank thaiR.

Note that in Figuret. 1, the value of| T — U (¢)” U (t)||,, improves to near machine preci-
sion after about 10-20 steps, and this improvement pergisisnilar pattern can be observed
for the relative residud| X (t) — U(¢)R(t)|, / | X (¢)||5, that is, it also improves to near ma-
chine precision and remains at this level. If we compute tRefgtorization ofX (1) with
Householder transformations instead of the modified Gralm¥idt method, the loss of or-
thogonality starts out at near machine precision and stef®t The residuals, graphed in
Figure4.2, follow the same pattern.

We have repeated this test with different valued/6fm, n, andp many times. U (1)
satisfied the fundamental assumptidnl@, the result was always similar. However, if the
matrix U (1) in the initial MGS factorization ofX (1) did not satisfy the assumptiof.(3),
meaning that/ (1) could not be considered “near left orthogonal” and thus diimeet a
fundamental assumption of this work, the residuals stiftsarrected, but the loss of orthog-
onality either did not self-correct or took significantlyniger to do so.
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Residuals for Sliding Window Problem

0 ‘
Relative residual in (4.2)
+  rank deficient R
o O 1
©
=)
o
n
o
k]
3
(=)
(o]
-
_10 - i
_15 Il Il Il Il
0 20 40 60 80 100

Window number

FiG. 4.2.Residuals for the sliding window example.

5. Proofs of the key theorems.

5.1. Proofs of Theorem.1and 2.2 Using the form ofR; in (2.6), we have that if for
somel < pithold thatp, = --- = p, =0, then

(I-Uu?) {V(: b& p)} =0,

thus concluding tha] v(: ’ng ) is linearly dependent upon the columnsiofind thereby

allowing us to immediately reduce the dimension of this pgob Therefore, without loss of
generality, we assume that

(5.1) P> >py>0

and thus thaR; is nonsingular.
Using (6.1), we note that

UrQ, =1 -U"U)UTBR; Y,
(5.2) =(I-U"U)F,

whereF; = UTBRl‘l. This allows us to rewrité); as
(5.3) Q1 =BR;'-UF,

leading to the following lemma.
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LEMMA 5.1.LetU € R™*" and¢ satisfy(1.13. Let B, Q; € R™*? be left orthogonal
matrices and be as i(6.3), n + p < m, R; € RP*P be nonsingular, and’; = UTBRl‘l.
Then for any unit vectow € R?,

(5.4) IRT W] = 1+ [|Fw2 (14 6.), [0u] <6,

whered,, depends upomw.
Proof. Using the fact thaf); and B are left orthogonal and computing the normal equa-
tion’s matrix of both sides ofH.3) yields

I=R/"R' - R"BTUF, — FTUTBR;' + FIUTU R,
=R{TR{' —2FTF + FTUTUF,
=R"R{' - FI'r, - FI(1 -UTU)F,.

Thus,
RITRI!Y =1+ F R+ FI (1 -UTU)R,
so that for any unit vectow € R?, |w||, = 1, the use of norm inequalities yields
IR ws =1+ |Fiwl|2 + w' Fl (I - UTU)Fiw

2 2
§ 1+ ||F1WH2 + HI — UvTUH2 ||F1W||2
=14+ (1+8) | Fwl3.

By a similar argument,
_ 2
R W, = 14 (1= &) [ Fiwl;.

Thus, for somed,,| < ¢ that depends upow, we have 5.4). 0

REMARK 5.1. Note that Lemma&.1 does not depend upaR; being diagonal, buf?y
only needs to be nonsingular.

From (.4), using the definition of the 2-norm yields

(IR (s k1 )5 — 1)1/2
(1-¢'" '

From the definition of?; in (2.5—(2.6), i.e., as a diagonal matrix of singular values, we have
that

| Fi(:,1: k)|, <

)1/2

(5.5) (1 k)l < (1;)’%(1 -7,
k

and thus from§.2) it follows that

UTQ1(:,1: k)|, < ||I—UTU||2 | EL (e, 1K),
(1—-p2)"?

2
o +0(&).

<¢
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The following lemma allows us to assume tligtin (2.7) is nonsingular.

LEMMA 5.2. Assume the hypothesis and terminology of Lerarhal et the left orthog-
onal matrix@)p € R™*P and the upper triangular matrixzo € RP*P be given by(2.7). If
Ro(1: k,1: k) is singular, then

(5.6) pr < E(1+8).

Proof. If pr = 0, the theorem holds trivially, so we assume that> 0. For the left
orthogonal matrix3 in (1.4),

Q1R = (I-UUT)B,
QpRoRy = (I -UUT)?B.

If Ro(1: k,1: k) is singular, there is a vectar # 0 such that
Ro(1: k,1: k)v =0.
Sincep; > -+ > pp > 0andRy(1: k,1: k) = diag(ps,. .., pxr), We can choose so that
v=~Ri(1:k1:Ek)w,
wherew is a unit vector. Thus,
Qu(:,1: k)Ry(1: k,1: )Ry (1: k,1: kyw = (I — UUT)?B(: ,1: k)w = 0.
Since
I-vuh?=1-vvt -Uu(I-UTu)ut,
this implies

Qi(:,1: k)Ri(1: ky1: B)yw = (I —UUT)B(: ,1: k)w
=U(I-UTU)UTB(: ,1: k)w.

Thus, by the definition o, and using the fact thajtw||, = 1,

pe < |Ri(1: k1 k)ywl, < || U - UTtuTB(: ,1: k)w“2
< | UI-UTU)WUTB(: ,1: k)],

SinceB is left orthogonal, we have
<UL [[1-UTO, <€)Ul
From the assumptiori (13,
Ul = |UTU|, <1+ I -UTU||,=1+¢,

thusp;, satisfies.6). 0
AssumingR, is nonsingular, we have that

UTQp=(I—-UTU)F, F,=UTQR;"
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so that

|7 Qs 1:m)| | < €I 12 R,

|vm@et 10, < el B2 m,

Invoking Lemmab. 1, for any unit vectomw € R?, we obtain
1By Wl = 1 | Rawl2 (14 8u), 10wl <&
so that, again from the definition of the matrix 2-norm,
|07 Qs 10 k)| <e(82-1)" +0(),
U7 @s(s 1 )| < e (82 - 1) + OB,

whereg, = ||[Ry ' (1: k,1: k)|,
Proof of Theoren2.1 We note thatt; and I, are related according to
Fy=U"Q Ry = (I -UTU)U'BR;'R;"!
(5.7) = -UTU)FR Ry

We now exploit 6.7) to show an important relationship betwegn= || R; " (1: j,1: j)||,
andp;, thejth singular value of?;. Applying norm inequalities to5.7) and ©.5), we have

1F2(: 12 )l < [ = UT U, 1P 1 )y || B2 (1 5,10 )
1-p2)"? /
< <(;’)> (11861 0E) " + o).

J
which yields
. 1/2
1Bl (=6
o\ 1/2 p;
(1+ 1B 10 )13)

+0(£%).

SinceB; > fBoren implies .15 and sincer/ (1 + x2)1/2 is a strictly increasing function
forz > 0, [|[F2(:,1: )|l < corer, implies that
1/2
Corth < é.( - P?)
(1+ C?)rth)l/z B Pi

+0(&%) <&/p; + 082,

which becomes

Pj S aorthg + 0(52)7
wherea,,, is given in @.15). 0
We note that ifk is the largest integer such that < (1 + cﬁrth)l/g, then the matrix
Qs = Qp(: ,1: k) as defined in Theore 2 satisfies
(5.8) 1UTQ5||, < cortné + O(€?),
HUTQBHF < CorthfF + 0(52)
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Some algebra shows that

B=USp+ @BEB
(5.9) =USp +@Rp + Dy,

whereDy, is given by ¢.18).
Thus, we have that

|B—-USp —QpRgpll, = || Dkll,
= H@B(: Jk+1: p)ﬁB(k—&-l: pk+1: p)H2
(5.10) :H§B(k+1:p,k+1:p)H2.

To prove a bound foHﬁB(k +1:p,k+1: p)H2 and thus to bound the residual B1{0),

we need the following lemma proved ][
LEMMA 5.3 ([3, Lemma 3.2]) If U € R™*" satisfieq1.13, then

| I, — UU™|| < 1.

Proof of Theoren?.2. From (.8), we have thaQp = @B(: ,1: k) satisfies 2.117).
For k = p, we haveD,, = 0, and Q.19 is trivially satisfied. Fort < p, from (5.9), we have
(2.179—(2.18, thus by orthogonal equivalence,

1Dully = Rtk + 1: pok +1:p)| .
Thus, we only need to establish a bound”&B(k +1:pk+1:p) H2 to prove the theorem.
Since
]/%B(k—i— lipk+1:p)=Ro(k+1:p,k+1:p)Ri(k+1:pk+1:p),
by a standard norm inequality and the SVD struct@r&)(2.6), it follows that

HEB(k—I-I: pk+1: p)H2

< |[Ro(k+1:p,k+1:p)lly [Ri(k+1:p,k+1:p)l,
(5.11) = pi+1 [[Ro(k + 1 p.k + 12 p)lly < prgr | Rall, -

A bit of algebra shows that
Ry = QE(I —-UUT)Q,
thus we can use orthogonal equivalence and Lersirdto show
|Rell, < |1 —UUT||, < 1.
Thus, from £.117),
1Dull, = |[Bo(k+1: poke+ 1 p)|| < et [ Raly < prsas

which establishes2(19). d
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5.2. Proofs of Theorems3.1and 3.3, We begin with the proof of Theore@® 1 First,
we need two lemmas.
LEMMA 5.4.LetU and~,,, be as in Theorer3.1. Then

~ ~ de -~
Lk = U € < qoriné + O(€2),
Proof. We have that

g —UTU =27l — [Qs U]" [Qp U))Z
UTQp L, -vtu| ™
Thus using standard norm inequalities, we have
Cerall [ - QE@B QLU
In+k U UH2 — H|: UTQB In—UTU )

15— Q5 Qsll, U7 }
< 2 2
- H{ lUr@sll, |- UTU,

2
Since @ p satisfies 2.8) and since Theorer.2 implies that Functior?.4 produces a ma-
trix @ p satisfying

[UTQ5||, < corné + 0%, |1 —Q5Qn|, <&

and moreovet/ is assumed to satisfyl (13, it follows that

1 Corth
Corth 1

LEMMA 5.5.Let Ry € RP*P pe the upper triangular matrix defined {.1). Using the
terminology in Theorerfi.1and Lemmé&.4 with the convention thas,; = 0, we have

In+k - 6TﬁH2 < ‘

£+ 0(52) = Yorth€ + 0(52)- o
2

[Ry ], < A+ = pryr) ™
(512) S 1 + (aorth + lyorth/2)§ + 0(62)7
(5.13) IR [l < 14 (Coren + Yortn/2)€ + O(£2).

Proof. Theorem?2.2implies
(5.14) UiRy = m — Dy,

where Dy, is bounded as in219. Through the use of a singular value inequality b,
Problem 7.3.P16], we conclude that

o,(U1)o;(Ry) < 0;(U1Ry) < o1(T1)o;(Ry ).

Thus, using standard norm inequalities,

o) B, 2 o0 g | = 101
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SinceV is orthogonal and
o], = )71, = -+ &2+ 0

we have that within a margin @?(£2),

op(Ry)(148)Y% > 1 || Dy,
Invoking Theoren®.2yields

op(Rv) > (1+€)2(1 = pra).
Thus,

1B, = op(Ry) ™! < (14 V21 = prga) ™!+ O(D).

From the bound fo{~ in Lemmab.4and the bound fopy 1 in Theorem2.1, we have

HR‘_/IHQ S (1 + Qorth + 'Yorth/2)§ + 0(52)

To establish the bound fQ(Ry ||, , simply note that
ne =7t ([o] =)

1Ryl < [T, 1+ peen) < (1= 87721+ prs).

so that

The bound %.13) follows from an argument similar to that fa6.(L2). a

We are now ready to prove Theoreéri

Proof of Theoren8.1. We have already prove® (0. Next we bound| AUy ||,. From
(1.9, (3.1, (3.3), and 6.14), we have

AUy = —Dy(p+1:m, : )R
Thus, from Theoren2.1and Lemmab.5,

AUV Iy < [Dalp+1: my )l | By
S Pk+1(1 + (aorth + ’yorth/Q)g + 0(52)
= aorthg + 0(52)1

which is (3.9).
Now proceed to prove3(9). We have that

Ul'U, = ULAU + (AUY)TT
so that
(5.15) |vFaT], < |07+ (@) T,
To bound the first term in5( 15, note that

Joro,

fos - 78], =
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and thus
(5.16) |UF AT, <&+ AU, [T, -
Sincel is just the lower right block of/,
17, < |7, < a+é
so that 6.16) becomes
|UV AT, < €+ AUV ||, (1+€)Y2.
Again using the singular value result ibg, Problem 7.3.P16], we have
ap(Uv) AT, < (€ + [|AUV ) (1 +€)Y/2.

We note that fromg.4) it follows that

Uy = (V +Di(1: p,: )Ry,
hence

op(Uv) Z 0p(V + Di(1: p, 2 ))op(Ry').

Using the orthogonality of” and the bound fof Dy ||, from Theoren?.2, we have

op(Uv) > (1= prr) [R5
Therefore, usingH.13 yields

ATl < (€ + 1ATV () (1 + )21 = prsa) ™" | Ryl
=+ AUV )1+ )V (1 + pry) (1 — prra) ™
< (aorth + 'Vorth)f + 0(52) O

We now prove Theorer.3.
Proof of Theoren3.3. We note that

~ o~ ~ o~ 2
L-UTG Of0:
Uro,  I,-UL0,

~ o ~ 12
L =070 =
+k s

F

o~ |12 o~ 12 _ o~ |12
(5.17) _ Ip—UlTU1HF+2HU1TU2HF+ I,—L—UQTUQHF

and that by orthogonal equivalence

Lngr — ﬁTﬁHi - HZT(I”‘HV o [QB U]T [QB U])ZHj“

L —[@s U] (@5 U]

(5.18) = |5~ Q5 Q5|5 + 2 |UT Qs[5 + |1 — UT U

~ o~ |2
Equating 6.17) and 6.18 and solving for|| I, — U UQHF obtains 8.13).
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~ AU
U2|:(;|7

In — UL Uy = (AU) (AT + I, — U U.

To obtain 3.15, we note that

thus

Thus,

&—ﬁfug
F

L= TF 0|+ (a0)" (aT)] .
which is (3.14). From the inequalities
AT (AD)||,. < VB [(AT)T (AT), < Vo ||AT],

and the bound3.9), we obtain 8.15. To get 8.16), we note that

(5.19) [l = UM [ = QB Q5| < &7
and that

1
(5.20) 107 Q5] < cornér + OER) = 56 + OER),
thus

T2
I,—L—UTUH <(
F

I’FL - UvQTUéHF + \/]S(aorth + 70rth)2€2)2 + 0(5%)

~p o~ |12
S Iﬁ - UéTU2HF + \/ﬁ(aorth + Vorth)2£2

I, UF @HF L O®ER).
From @3.13 and 6.19—(5.20, we have

~ <12 5 (]2 ~p |2
L L

which is 3.16). a

6. Conclusion. We have taken the 2-norm formulation of the downdating atlyors
in [4, 9, 2Q] for deleting a single row from a QR factorization and fast@d the matrix 2-
norm formulation for a block downdating algorithm designedieletep rows from a matrix.
Similar to results shown ind], if we are asked to delete rows from a QR decomposition
with a near left orthogonal factdr satisfying (L.13, we can obtain a QR decomposition for
the remainingn — p rows that has a new left orthogonal factéwhose loss of orthogonality
can be bounded as in Theorén®. Our numerical tests indicate that repeated block updates
and downdates often have a correcting effect on the losglodgonality.
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