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ON THE LOCATION OF THE RITZ VALUES IN THE ARNOLDI PROCESS *

GERARD MEURANT!

Abstract. In this paper we give a necessary and sufficient conditioa feet of complex valued, . . . , 0 to
be the Arnoldi Ritz values at iteratiodnfor a general diagonalizable matrik. Then we consider normal matrices
and, in particular, real normal matrices with a real startiegter. We study in detail the cage= 2, for which
we characterize the boundary of the region in the complexeplamere pairs of complex conjugate Ritz values are
located. Several examples with computations of the boundahedeasible region are given. Finally we formulate
some conjectures and open problems for the location of theldrRitz values in the cask > 2 for real normal
matrices.
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1. Introduction. Approximations to (a few of) the eigenvalues (and eigeromsgtof
large sparse non-Hermitian matrices are often computdd (wériants of) the Arnoldi pro-
cess. One of the most popular software packages is ARPAGK [t is used, for instance,
in the Matlab functiorei gs. It uses the Implicitly Restarted Arnoldi Method. In thisgea
we are concerned with the standard Arnoldi process, whata fnatrixA of ordern and a
starting vectow (assumed to be of unit norm), computes a unitary mafrixith columnsu;,,
wherev; = Ve, = v, and an upper Hessenberg matfixwith positive real subdiagonal
entriesh;1 5, j =1,...,n — 1, such that

AV = VH,

if it does not stop before iteration a situation that we assume throughout this paper. The ap-
proximations of the eigenvalues df(called the Ritz values) at stépare the eigenvalue;é,k)

of Hy, the leading principal submatrix of ordérof H. The approximate eigenvectors are
T; = Vn,kzgk), wherezi(k) is the eigenvector associated V\Mfllf) andV, ;. is the matrix of the
first k£ columns ofV. In the sequel we will mainly consider the stepso we will sometimes
drop the superscrigdtc). The relation satisfied by, j is

T
AV ke = Voo Hi 4 R gVk4165, 5

whereey, is the last column of the identity matrix of ordér This equation indicates how
to compute the next columwy, ., of the matrixV and thekth column of H. When A is
symmetric or Hermitian, the Arnoldi process reduces to tAedzos algorithm, in which the
matrix H is a symmetric tridiagonal matrix. There are many resultshenconvergence of
the Lanczos Ritz values in the literature; see, for instaficé 18, 19, 21]. Most of them are
based on the Cauchy interlacing theorem, which stateshba&itz values satisfy

o < o) < o0t <o) <. < o) < gAY,
and they are related to the eigenvaluedy

)‘j < Gj(k), H(k) < )\n+17j7 1< < k.

k+1—j
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It is generally admitted that convergence of the Lanczosgs®e for Hermitian matrices is
well understood. Unfortunately in the non-Hermitian casajcerning the convergence of
the Ritz values, this is not the case in general. Howevergs@sults are known about the
eigenvectors; see, for instancg, 2]. In fact, the Arnoldi process may even not converge at all
before the very last iteration. One can construct matridés avgiven spectrum and starting
vectors such that the Ritz values at all iterations are pitestt at an arbitrary location in the
complex plane; sed]. It means that we can construct examples for which the Rilzesdo
not converge to the eigenvalues dfbefore the last step.

However, the matrices that can be built using this resulefgenerally poor mathemat-
ical properties. In particular, they are not normal. In mangctical cases, wdo observe
convergence of the Ritz values toward the eigenvalues. Roenstanding the convergence
when it occurs, an interesting problem is to know where tleation of the Ritz values is for
a given matrix, in particular, for matrices with special peaties like (real) normal matrices.
Of course, it is well known that they are inside the field ofues ofA, which is defined as

W(A) = {010 = v* Av, v € C", o] = 1}.

If the matrix A is normal, the field of values is the convex hull of the eigéumes, and if the
matrix is real, it is symmetric with respect to the real axis.

The inverse problem described in Carden’s the¢jspd the paper] is, given a ma-
trix A and complex value8,, ..., 0, to know if there is a subspace of dimensibrsuch
that the value®, are the corresponding Ritz values. If we restrict oursetodsrylov sub-
spaces and the Arnoldi algorithm, this amounts to know iféhis a unit vectow such that
the valued); are Ritz values for the Krylov subspace

Kir(A,v) = spar{v, Av, ..., Ak_lv} )

A closely related problem has been considered for normaticeatby Bujanowi [3]. He
was interested in knowing what the location of the other Réues is if one fixes some of
the Ritz values in the field of values df. He gave a necessary and sufficient condition that
characterize the set & complex values occurring as Ritz values of a given normatimat
Carden and HansefT][also gave a condition that is equivalent to Bujar@s:i For normal
matrices and: = n — 1, see [L4], and for general matrices, sed.[

In this paper we first give a necessary and sufficient condftio a set of complex val-
uesfy, ..., 0 to be the Arnoldi Ritz values at iteratignfor a given general diagonalizable
matrix A. This generalizes Bujand¥s condition. Then we restrict ourselves to real normal
matrices and real starting vectors. We particularly stiydase: = 2, for which we char-
acterize the boundary of the region in the complex planeaioned inTV (A), where pairs of
complex conjugate Ritz values are located. We give sevaeahples with computations of
the boundary for real normal matrices of order up to 8. Fpalfter describing some nu-
merical experiments with real random starting vectors, t@éessome conjectures and open
problems fork > 2 for real normal matrices in Sectioh The aim of this section, which
provides only numerical results, is to motivate other reg®ars to look at these problems.

The paper is organized as follows. In Sectibwe study the matrice#l;, and charac-
terize the coefficients of their characteristic polynomiéction3 gives expressions for the
entries of the matrix{/ = K* K, whereK is the Krylov matrix, as a function of the eigen-
values and eigenvectors df for diagonalizable matrices. This is used in Sectipnvhere
we give a necessary and sufficient condition for a sét@mplex numbers to be the Arnoldi
Ritz values at iteratiok for diagonalizable matrices. The particular case of nommatrices
is studied in Sectiob. The case ofd being real normal anil = 2 is considered in Sectio
in which we characterize the boundary of the region wherespaicomplex conjugate Ritz
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values are located. Open problems and conjecturek for2 and real normal matrices are
described in Section. Finally we give some conclusions.

2. The matrix H;, and the Ritz values. In this section, since the Ritz values are the
eigenvalues of{, we are interested in characterizing the matfiix and the coefficients of
its characteristic polynomial. It is well known (se€& [L5]) that the matrixH can be written
asH = UCU™!, whereU is a nonsingular upper triangular matrix such that= VU
with K = [v Av --- A" 'v] andC is the companion matrix corresponding to the
eigenvalues ofd. We have the following theorem which characteriZzés as a function of
the entries of/.

THEOREM 2.1 ([10]). For k < n, the Hessenberg matri¥{; can be written as
Hy, = UkC(’@Uk‘l, with Uy, the principal submatrix of ordek of U, being upper triangular
andC®) = B, + [O U,;lU[lszkH], a companion matrix whergy, is a square down-shift
matrix of orderk,

0
10
by, =
10
10
Moreover, the subdiagonal entries Bfare hj 1 ; = %, j=1,...,n—1

Clearly the Ritz values at step are the eigenvalues @f*). We see that they only
depend on the matrik/ and its inverse. They are also the roots of the monic polyabmi
defined below. By considering the inverse of an upper triéarguatrix, we note that the last
column ofC*) can be written as

Ui Uik et = —Uktt b1 (Ul ) g ier = —Unkgtie 1 (U7 kg o1 -

Hence, up to a multiplying coefficient, the last column@f) is obtained from thé first
components of thék + 1)st column of the inverse df. The last column of?(*) gives the
coefficients of the characteristic polynomial &f;. Let

(k)
0

bl = U Ui et
(k)
k—1

. . — k)yq k

The Ritz values are the roots of the polynomigi(\) = \* + 3470 8% x =TT+ (A—6").

Since the entries aff andU ! are intricate functions of the eigenvalues and eigenvsctor

of A, the following theorem provides a simpler characterizaid the coefficients of the

characteristic polynomial off},.

THEOREM2.2. Let M = K*K, whereK is the Krylov matrix. The vector of the coef-
ficients of the characteristic polynomial &f;,, denoted as{ﬂé’“), ..., B™ | ,is the solution
of the linear system,

(k)
0

(2.1) My | ¢ | = =Mpgrsr,
(k)
k-1

whereM;, = U} Uy,.
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Proof. From what we have seen above, the proof is straightforw&edhave

(k)
0
Ue | + | = U ht1-
(k)
k—1
Multiplying by U;¢, we obtain
B
M, : = _U;U[lzk],k-t,-k
(k)
k—1
Clearly Uy Upi:x) k41 = M1:k) ks1- 0

Therefore it is interesting to consider the mathik = K*K = U*U and its principal
submatrices. This is done in the next section.

3. The matrix M. In this section we characterize the entries\of= U*U = K*K as
functions of the eigenvalues and eigenvectorsl@ind of the starting vectar for diagonal-
izable matricesA.

THEOREM3.1. Let the spectral decomposition dfbe A = XA X ~! with the eigenval-
ues);, i =1,...,n. The entries of\f = U*U are given by

Mz’m:ZZ(X*X)i’j (_fiCj S\f_lA?L_l, E,m: 1,...,n,

i=1 j=1

with ¢ = X ~'v and \; denoting the complex conjugate of If the matrix A is normal, we
have the simpler expression,

n
Mem = Z e 2NN m =1, .,
i=1
with ¢ = X*v.
Proof. Since we assumed that the matrixis diagonalizable with eigenvalues, we
have

K=X[c Ac - A""I],

wherec = X ~'v. Let D.. be the diagonal matrix with diagonal entrigsj = 1,...,n. The
matrix K is

K=XD_/V
with the Vandermonde matrix
1A - At
[P VEEEERIND Vi
V=|. . .
J D P

We note that this factorization of the Krylov matrix has beeed in [L1]; see also 22].
ThereforeM = K*K = V*D:X*XD.V. If Aisnorma, X*X = I andM = V*D,V
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with w; = |¢;|%. The entries ofM can be obtained as functions of the eigenvalues and
eigenvectors ol by

My = el Me,, = e} V*DeX*XDVe,,
At
=X o NS DXTXDe | | =)0 (XTX)ae AT

)\m—l i=1 j=1
n

If Aisnormal, we hav&X*X = I and
Mg = e XA
=1

This last result is already known fror(]]. 0

4. The inverse problem for diagonalizable matrices.For the first Arnoldi iteration
(that is, & = 1) the inverse problem is always solvable. We hajg = v*Av. For
61 ¢ W(A), there exists a vectar such that9") = v*Av. Algorithms for computing
such vectors are given ib[8, 16]. We note that ifA andv are real, the first Ritz valueﬁl)
is real.

For the inverse problem at the Arnoldi iteratian> 1, we assume that we have a set
of k given complex numberg,, ..., 0, belonging tolV (A), and we would like to find (if
possible) a vector of unit norm such that the valugs are the Ritz values at iteratidn
when running the Arnoldi algorithm with4, v).

From @.1) we have an equation relating the coefficients of the chariatic polynomial
of Hj, and the entries of a submatrix 8f. Since the Ritz values are zeros of the polynomial
N Z?;& Bj(k))\j = H’“ (A —0,), the coefficientsS'J(.k) are (up to the sign) elementary

i=1
symmetric functions of the numbefis. Therefore,

(4.1) B = (—1) ey (01,...,0k), j=0,... k-1,
with

e(y(01,...,0k) = Z Oj, -0, i=1,... k.

1<j1<g2 < <j; <k

Thus, we have the following characterization of the exis¢eof a starting vector.

THEOREM4.1. There exists a starting vector= X ¢ of unit norm such that, ..., 0
are the Arnoldi Ritz values at iteratioh if and only if the nonlinear systefi2.1) with the
unknownsz;, j = 1,...,n, (where the coefficientsj(.k) are defined by4.1)), to which we
add the equation

n

(4.2) > (X X)i; =1,

ij=1

has at least one solution vector

Proof. Let us assume that there exists a veat@uch that,, ..., 0, are the Arnoldi
Ritz values at iteratior. They are the roots of the characteristic polynomial whaseffe
cientsﬂgk) are given by 4.1). Hence, by Theorefi.2, the coefficients are solution of the
linear systemZ.1) and the vector is a solution of the nonlinear system defined Byl)
plus @.2) because the vectaris of unit norm.
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Conversely, if there is a solutianto the nonlinear systen?(1)—(4.2), then there exists

a solution of the linear syster2.() with the unknown$6’](.k), which, by Theoren?.2, are the
coefficients of the characteristic polynomial Bf,, and the complex numbers defined as the
roots of the polynomial are the Ritz values at Arnoldi itevat:. a

To make things clear, let us consider the case 2 with 0, = 0{*, 6, = 0% given. Let
p = 60160, ands = 61 + 05 be known. We note thal/, is an Hermitian matrix. Ther2(1) is

M, Lps} = —Mi1.9),3-
Therefore, we have the two equations,
p—sMio=—M3, sMyy= Mys+pMps.

The equations to be satisfied are

p—s Z Gici (X" X)i i\ Z Gicj(X™ X)”)\2

7,7=1 Jj=1
SZCZCJXX ZCTCJXX),]AA +chchXX)”)\
i,j=1 ©,j=1 i,j=1

Since we need to find a vectosr of unit norm, we have to add the condition
| Xc||? = c*X*Xc = 1, which yields the equation

n

Z EiCj(X*X)i,j =1.

ij=1

Becauses andp are known, these are three nonlinear complex equationscomplex un-
knownsc;, i = 1,...,n. Whether or not this system has solutions determinés &nd 6.
are feasible values since, if a solutioexists, we can then find a vectorsuch that the two
given valued); andf, are Ritz values foiC2 (A, v).

We remark that this is in general not a polynomial system bseaf the conjugacy
in the expressiom;c;. However, we can convert this system into a polynomial spsty
considering the real and imaginary partsepfas unknowns. We have then a polynomial
system of six equations v unknowns with complex coefficients that can be converted to a
polynomial system with real coefficients by taking the real anaginary parts. The trouble
then is that we have to know if there are real solutions. Unfately there are not many
results about this problem in algebraic geometry litegtdrhe situation is much simpler if
we assume that the matrikis normal. This case is considered in the next section.

5. The inverse problem for normal matrices. For a normal matrix and assuming that

we know the coeﬁicientﬁék), cee 1(gk_)1 we obtain gk + 1) x n linear system for the moduli
squaredyw; = |¢;|%. It yields a linear system
ch = fc.

Putting the normalizing equation;_, w; = 1 first, the entries of’¢ are all1 in the first
row. The entries of the second row are

k)
CC 2m ZBZ( A:,L‘F)\k m=1,....,n,
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and the other entries are

k-1
(Cc)e,m = Zﬂfk)m’z)\fn AN =3, k+1l,m=1,...,n.
=0

The right-hand side is all zero except for the first two congrs,(fo)1 =1, (fo)2= —Bék).

We can also turn this linear system bf+ 1 complex equations im real unknowns
into a real linear system by taking the real and imaginaryspaf rows 2 tok. It gives
a(2k+1) x n matrix Cg, and the right-hand side is zero except for the first three corapts
(fr)1 =1, (fr)2 = —ReB;"), (fr)s = —Im[B")].

Compared to the case of a general diagonalizable matrixestinl the previous section,
there are good and bad things. The good thing is that we hawvear Isystem for the un-
knownsw; instead of a nonlinear one. The bad thing is that we need tafswution which
is real and positive. Obtaining (if possible) a real solnii® easy by solving’'rw = fg, but
we still need a positive solution. The characterizatiof0f . . , §;, being feasible is given in
the following theorem.

THEOREMb.1. Let A be a normal matrix. There exists a starting vector X ¢ of unit
norm such that, ..., 0, are the Arnoldi Ritz values at iteratioh if and only if the linear
systenCrw = fr, Where the coefficientsj(.k) are defined by4.1), has at least one solution
vectorw withw; > 0, i = 1,...,n. Thencis any vector such that;|? = w;.

Proof. The proof is similar to that of Theorem1 0

The condition given in Theorerd.1 must be equivalent to the condition recently pro-
posed by Bujano¥i ([3, Theorem 4]).

For further use let us write down the equationsiot 2. We have

n n
p— SZ lei* A = — Z |ei 227,
i=1 i=1

n n n _
SZ leil” [Xil* = Z e [INilP A +PZ leil® A,
i=1 i=1 i=1
n

> lal =1

i=1

The problem can be further simplified if the matrikand the starting vector are real. To
the best of our knowledge, this case has not been considgrethbr authors. Then the
eigenvalues ofd are real or occur in complex conjugate pairs. If the startiectorv is real,

all computed results are real in the Arnoldi algorithm (imtjgaular the matrix/) and the Ritz
values are real or appear as complex conjugate pairs whedharoots of a polynomial with
real coefficients’p’](.’“). The two eigenvectors ol corresponding to a complex conjugate pair
are conjugate, and the eigenvectors corresponding to igeaivalues are real. Then, with
being real, ifc = X*v and)\; = 5\]-, we havec; = ¢;. This means that when the Ritz values
are known, we have only one unknowyfor each pair of complex conjugate eigenvalues. Let
us assume that the matrikhaspq pairs of complex conjugate eigenvalues (Wil < n)
that are listed first and — 2pc real eigenvalues denoted bya(. +1,...,A,). Then, we
have onlyn — pc unknowns that, to avoid some confusion, we denote by thiialimdices
ranging from 1 ton as usual for eigenvalues. That is, the unknowns are the coemp® of
the vector

~ T
(5.1) @=[leal® Jesl oo eape—1l® lezpesil?s leapetal® o enl?]
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Then, in the equations derived from the matkik we have to group the terms containing
and)\;. Since only real numbers are involved, we denote the masriX;aeven though it is
different from the matrix described above. The first row @& thatrixC'r is now

(CR)l,m :27 m = 1a"'7pCa

(5.2)
(CrR)i;m =1, m=pc+1,....,n—pc.

The second row is

k—1
(CR)Q-,m =2 Z Bz(k) Re()‘ém,—l) + QRe()‘IQCm—l)’ m = 17 - PO,

=1
(5.3) -

k)\i
(CR)2m = D BN + A5 s m=pc+1,...,n—pc,
=1

and the other entries are

k—1
(Cr)em =2 B ReNS,2 A, 1)+ 2Re(NG, 2 A, ),

i=0
(5.4) {=3,....k+1, m=1,....,pc,
' k—1
(CR)Z,m = Z /Bl(k)/\f;;it,i + /\ﬁgi—tjfa
i=0

(=3,....k+1, m=pc+1,...,n—pc.

The right-hand side is all zero except for the first two comgus,(fr)1 =1, (fr)2= —ﬁék).
Therefore, the real matri€'r is only of size(k + 1) x (n — pc), and we haven — pe
unknowns. Fok = 2 and withs = 6, + 65, p = 6,65, the second row is

(CR)27m' = 728R€()\2m_1) + 2Re()‘§m—1)? m = 17 -y PO,

(CR)Q,m:_S)‘Pc+m+)‘1270+m’ m=pc+1,....,n—pc,

and the other entries are

(CR)3,m = 2PRE(A2m—1) — 28| A2m—1|? + 2REA2m—1A3,,,_1),
m=1,... yPC,

(CR)S,m = DN\petm —S)\12,0+m+)\20+m, m=pc+1,....,n—pc.

To find out if there exist a positive solution, we have to cdesthe cases + 1 >n — po
(overdetermined system)+ 1 = n — p¢ (square system), arict- 1 < n — pe (underdeter-
mined system). When we have a positive solution, we can findlaveztorc by expanding
the solution and taking square roots and finally obtain a stating vecton = Xc¢. The
previous discussion is summarized in the following thearem
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THEOREM 5.2. Let A be a real normal matrix. There exists a real starting vector
v = Xc of unit norm such tha#, ..., #0,, where these values are real or occur in com-
plex conjugate pairs, are the Arnoldi Ritz values at itevatk if and only if the linear
systemCro = fr, where the coeﬁicient@ﬁk) are defined by4.1), the matrixC’y is de-
fined by(5.2—5.4), and @ by (5.1), has at least one solution vectar with @; > 0, for
i =1,...,n — pc. Thenc is any real vector such that;|?> = w; wherew is given by the
expansion of.

Let us now consider the problem of finding a positive solutiothe case that the linear
systemCrw = fris underdetermined, that ig;+1 < n—p¢. Solutions of a system like this
can be found by using the Singular Value Decomposition (S\/B) us consider the generic
case wher€'r has full rankk + 1. The matrix can be factorized as

Cr=U[D 0]V*,  Ddiagona U*U=1I, V'V =1I.

The orthonormal matriX/ is of orderk + 1 as well asD, andV is of ordern — pc. The
diagonal ofD contains the singular values. Since all the singular vadweson-zero, we can
find solutions to

1
U[D 0]V*& = |(fr):
0
Lety = V*&J,
1 hn 1
UD 0ly=|(fr)2| = 9= : | =D'U" |(fr)2
0 0
Yk+1

The solutions are given by

where the symbok denotes an arbitrary real number. Let us decompose thexmatais
V= [V1 V2] with Vl havingk + 1 columns. Then, we have a positive solution if and only if
there exists a vectar such that

(5.5) ~Vaz < Vij)

o]

To check if there is a solution to the system of inequalite$)( we use the algorithm de-
scribed in [L2] that was intended to convert a system of linear inequaliti® a representation
using the vertices of the polyhedron defined by the inedaslitlt relies on computing the
rank of submatrices and tells us if the system is feasibletr n

and
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6. The caseA real normal and k = 2. In this section we further simplify the problem
and concentrate on the cdse- 2 for a real normal matrix and a real starting vector. The ma-
trix Hy is real and has either two real eigenvalues or a pair of cotgaejugate eigenvalues.
We are interested in the latter case for which we Have: 6,. Hence, it is enough to look for
the location of the complex Ritz valug and this considerably simplifies the problem. We
call the set of all the complex valués in the field of values yielding a positive solutitime
feasible region To obtain a graphical representation of the feasible regie can proceed
as in Bujanowi’s paper B]. We set up a regular Cartesian mesh over the field of values (i
fact over the smallest rectangle containing the upper paxt,0, of the field of values) ofd
for the values of;, and we check if there are positive solutions to $he (n — p¢) linear
systemCrw = fr for each value of); = (z, y) in the mesh by considering the system of
inequalities $.5. When the system is feasible for a given valug)pbn the mesh, we flag
this location. Hence, for eadh in the marked area, we can find a real veatmuch that
6,,6, = 6, are the Ritz values at iteration 2. This gives an approxiomatif the feasible
region. Forf, outside of the feasible region, there does not exist a rezdbwve that yields
(6,,6,) as Arnoldi Ritz values at iteration 2. Of course this way ofedting the feasible
location of¢; by discretizing the field of values has some drawbacks sioiceginy feasible
parts may be missing if the discretization is not fine enough.

Figures6.1and6.2display an example (Example 1) of a matrix of order 4 with tealr
eigenvalues on each side of the real part of a pair of compejugate eigenvalues. More
precisely, in Example 1 the matrix is

—0.446075 0.358311 —0.605655  1.12896

—0.512738 —0.263009 —1.09795 0.285
1.15846 0.636041  —0.72035  0.0184702

—0.405993 —1.00831 —0.417846 —0.456834

A—

The eigenvalues ofl are
[A1, A1, Az, Ag] = [—0.432565 + 1.66558i, —0.432565 — 1.66558i,0.187377, —1.20852] .

In this example the matri€'z is square of order 3 sinee—pc = 4—1 = 3 and nonsingular.
The field of values is shown in red and the eigenvalued afe the red circles. The feasible
values off; (respectivelyd,) are marked with blue (respectively red) crosses. In thésrgle
the feasible region is a surface in the complex plane. Inciise it is connected and convex (if
we add the real values inside the region), but we will see thtd this is not always the case.
Of course, we can also have two real Ritz values outsidedhisn. In this example it seems
that the real Ritz values can be anywhere in the interval éefiry the two real eigenvalues of
A. Figure6.2was obtained by using 700 random real starting vectors amdmg the Arnoldi
algorithm. We see that we obtain approximately the samesstoaihe feasible region.

Since we may miss some parts of the feasible region due to eotse discretization,
it is interesting to characterize its boundary. This candeedby explicitly writing down the
inverse of the matrixXCr and looking at the inequalities given by the positivity coasits
for w;. It corresponds to the elimination of the components f the equations. For sim-
plicity let us denote

IS V]
o =
—

Cr =

S
QU
- o
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FIG. 6.2.Location off; = A5 for Example 15 = 4, k = 2, A normal real, Arnoldi with random real vectors

The inverse is given by

1 cf—ed d—f e—c
6’1;1:5 eb—af 2f—b a—2e|, D=ald—f)+c(2f —b)+e(b—2d).
ad—cb b—2d 2c—a

We apply the inverse to the right-hand side (which, afterangle of signs, i§1 P O]T,
p = |01]?), and we get

cf —ed+ (d— f)p
w=—|eb—af+ (2f —b)p| .
ad — cb+ (b—2d)p

We are interested in the componentswlbeing positive. The outside region of the feasible
region is characterized by the fact that at least one conmoneis negative. Therefore the
boundary must be given by some of the components of the splbiing zero. Hence, we
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FiG. 6.3.Location ofg; = 6, and the boundary of the feasible region for Example % 4, k = 2, A normal
real.

have to look at the three equations

cf —ed+(d—fp=0,
eb—af+(2f—bp=0,
ad —cb+ (b—2d)p = 0.

The coefficients:, b, ¢, d, e, f are functions of the unknowns quantities= 2z = 2Re(6;)
andp = 2% + y? = |0,|%. These equations define three curves in(the/) complex plane.
Some (parts) of these curves yield the boundary of the feasgigion forf;. However, we
note that one component can be zero on one of the curves withanging sign. Therefore,
not all the curves might be relevant for the boundary. We lunstw that the boundary is
contained in the union of the curves. Moreover, we are ortigrésted in the parts of the
curves contained in the convex hull of the eigenvaluesiofFor completeness, remember
that we have

a = 2sRe(\;) — 2Re(\?), b=2s/\1|% = 2|\ |*’Re(\1) — 2pRe()y),
c=5\3 — A3, d=s\3— )3 —pls,
e= s\ — A%, f=s)\ =\ —p\y.

The first curve involves only the real eigenvaluesiofThe two other curves pass through
and);.

Figure 6.3 displays the boundary curves that we obtain for Example 1 ebkas the
approximation of the feasible region using a smaller nundfedtiscretization points than
before. These curves were obtained using a contour ploedétkel O for the three functions
of x andy. We see that we do get the boundary of the feasible regioé; fovWe have only
two curves since the one which depends only on the real esyggw (corresponding to the
first equation) does not have points in the window we are ésted in (that is, the field of
values).

Let us now considen = 5. The matrixA has either two pairs of complex conjugate
eigenvalueg), A1), (A3, A3) and a real eigenvalug, (that can be on the boundary or inside
the field of values) or one pair of complex conjugate eigaresland three real eigenvalues
(there is at least one inside the field of values, eventuadby.tin the first case the matriXz
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FIG. 6.5.Location off; = s for Example 25 = 5, k = 2, A normal real, Arnoldi with random real vectors

is of size3 x 3 as it was for the previous example with= 4. Then, we can apply the same
techniques by eliminating the components.ao obtain the boundary of the feasible region
for 6;. The only differences are th&f'z); » = 2 and the values of the coefficients. We have

a=2sRe(\y) —
c=2sRe(\3) —

628)\4—/\421,

The equations are

2Re(\]),
2Re(A3),

f =8\ =X} —pAy.

cf —ed+ (d—2f)p=0,
eb—af+(2f —b)p=0,
ad —bc+2(b—d)p=0.

b=2s/\|* = 2|\ |*Re(\;) — 2pRe(\1),
d = 2s|\3]* — 2| \3>Re(\3) — 2pRe(\3),

These equations only differ slightly from those above by dtiplicative factor of2 at some
terms. Figures.4 displays the feasible region and the boundary for a casetwittpairs of
complex conjugate eigenvalues and a real eigenvalue itisédeld of values (Example 2).
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FIG. 6.6.Location ofd; = A5 for Example 3n = 5, k = 2, A normal real.

In this example the feasible region is neither connected¢ovex. Figuré.5shows that ran-
dom starting vectors do not always yield a good rendering@féasible region. In Example
2 the matrix is

0.513786  —0.419578 0.156842  0.447046 0.540983
—0.789795  0.767537  —0.451475 0.12333 0.202036
A= 10.0825256 —0.091751  1.31755 0.5561  —0.00409194
0.179105 0.7687 —0.247999  1.31189 0.0474895
—0.174622 —0.329046 —0.185905 0.403025  —0.101738

The eigenvalues ofl are

[ —0.178102 + 0.498599:, —0.178102 — 0.498599¢,
1.5788 + 0.5843917,1.5788 — 0.5843917,1.00762 ] .

Figure 6.6 displays an example with only one pair of complex conjugagermalues
and three real eigenvalues with two of them on the same sitteeakal part of the complex
eigenvalues (Example 3). We see that we have one piece olthie which is inside the
feasible region. It can be considered a “spurious” curverieghough we will see later that
these curves can also have some interest). The matrix of redns

—1.07214  —0.549535  0.809383 —0.0826907  0.345094
—0.779134 1.06039 0.100179 0.621762  —0.184854
A= | -0.33126 —0.0693308 —0.551724 1.39559 1.19566
—0.24838 0.134568  —0.902458 —0.0781342 —1.22051
—0.551853 —0.844358 —1.41854 0.206828  —0.233364

The eigenvalues ofl are
[—0.600433 + 2.063927, —0.600433 — 2.063927, —1.40594, 1.56985,0.161981 ] .

For n larger thans, the problem of computing the boundary is more complicateé. W
generally have more thaunknowns (except for = 6 with three pairs of complex conjugate
eigenvalues) and therefore an underdetermined lineagrsy&ir the unknowns;. When
prescribing a value of, (with #; = 6,), as we have seen before, we can check the feasibility
by using the SVD of the rectangular matfiy = USV7.
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Concerning the boundary of the feasible region, the pie€#seoboundary correspond
to some of the components @fbeing zero. Therefore, we can apply the same elimination
technique as before by considering the matrices of ordem&sponding to all the triples
of eigenvalues, a pair of complex conjugate ones countitg fom one. It corresponds to
considering only three componentswfputting the other components to zero. We have to
consider3 x 3 matrices similar as the ones we had before with the first rangb@, 2, 2),
(2,1,1),0r(1,1,1). The number of curves is three times the number of tripleggefrvalues.

Doing this corresponds to the handling of linear constsaiimiinear programming (LP)
whose solution components must be positive. Let us assuatenin have linear equality
constraintsCx = b defined by a realn x n matrix C of full rank with m < n. This
procedure just amounts to takingindependent columns @f, putting the other components
of the solution to zero, and solving. By possibly permutinfumns, we can writ€' = [B F]
with B nonsingular of ordem. Then

. {Blb]
0

is called a basic solution. It is degenerate if some compsnainB—'b are zero. A basic
feasible solution (BFS) is a basic solution that satisfiesctinstraints of the LP. The feasible
region defined by the constraints is convex, closed, anddemifrom below. The feasible
region is a polyhedron, and it can be shown that the BFS areregt points (vertices or
corners) of the feasible region.

This is similar to what we are doing. We have a polyhedronéntispace defined by the
system with the matrixXCr, consider all the3 x 3 matrices (provided they are nonsingular),
and symbolically compute the basic solutions. The feagibks (withw; > 0) correspond
to some vertices of the polyhedron. Clearly these curvekaeted where components ©f
may change signs as a functionaof= Re(#;) andy = Im(6;). They also give a parametric
description of the vertices of the polyhedron.

Figure6.7 corresponds to an example with= 6 and three pairs of complex conjugate
eigenvalues (Example 4). In this example the matftixis square of order 3, has only three
components, and there is no spurious curve. We see thatdpe sifithe feasible region can
be quite complicated. The matrik of Example 4 is

A=
—0.401151 0.0951597  0.336817  —0.0155421  0.342989 0.059462
0.0435544 —0.711607 —0.0851345 —0.100931 0.19691 —0.0848016
—0.3473  0.0330741  —0.458265 0.338473 0.161655 —0.163792
0.0903354  0.144387  0.0427703  —0.167152 0.14634 —0.661259

—0.309586 —0.118264  0.148041 —0.196687  —0.517635  —0.205145
0.131915  —0.142526  0.380522 0.570822  —0.0924846 —0.165907

The eigenvalues ofl are

[—0.0640196 + 0.7325974, —0.0640196 — 0.7325974,

—0.390646 + 0.4775657, —0.390646 — 0.4775651,

—0.756193 + 0.125533i, —0.756193 — 0.125533i] .
Figure6.8corresponds to an example with two pairs, one real eigeeaiuhe boundary

of the field of values, and one real eigenvalue inside (Examdpl We have two spurious
curves. The matri¥ is
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FIG. 6.8.Location off; = A for Example 55 = 6, k = 2, A normal real.

—0.500411  0.25411 0.499092 —0.15696 1.26376  —0.690147
—0.850536  0.662412 0.12518 0.666057 —0.873974 —0.503358
—0.095158 0.54861 —0.0510311 —0.42028 —0.209823 0.122187
0.307198  0.827682 —0.341422 —0.437352 0.0411078 —0.835649
—1.00153 0.456062 —0.0256999 —0.551469  0.191305 1.01331

0.762756  0.970216  0.404506 0.804347  0.368779  0.630639

A=

The eigenvalues ofl are

[—0.432565 + 1.665587, —0.432565 — 1.665581,
1.19092 + 1.18916%,1.19092 — 1.189167, —1.20852, 0.187377.]

To visualize the feasible region f@y, it is useful to get rid of the “spurious” curves.
This can be done approximately in the following way. We camote points on the curves
by solving an equation im for a given value of; (or vice-versa) for each equation defining
the boundary. When we get a point on a curve, we can check paintsunding it in the
complex plane. If there is at least one of those points whgahot feasible, then our given
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FiG. 6.9.Boundary of the feasible region for Exampleb= 6, k = 2.

point is on the boundary and the piece of the curve on which lib¢ated is a part of the
boundary. This is not always easy because of rounding eamisbecause we could have
some curves which are almost tangent to each other. Of cthissprocess is not foolproof
since the result depends on the choice of the surroundingspaind also on some thresholds.
But in many cases it works fine. Figuged shows what we get for the previous example. The
blue stars are the points computed on the boundary (usingaliab functionf zer o). Note
that we get rid of the two spurious curves since we keep om\ctirves on which there is at
least one boundary point.

There is another way to visualize the boundary of the feagiégion in Matlab. The
cont our function that we use is evaluating the function on a grid dwaah finding the curve
of level 0 by interpolation. Therefore, we can set up a routine thagrgt andy, computes
a solution of the underdetermined system for the pgint- iy, z — iy) using the SVD. If
the point is not feasible, then we return a very small negatalue. However, this process
is very expensive since the evaluation of the function cabeovectorized. An example is
given below in Figurés.11for the next Example 6. Of course we do not have spurious surve
and not even the parts of the curves that are not relevantwBUtave some wiggles in the
curve because we set the values for non-feasible pointsrta# segative value introducing
discontinuities in the function values.

Figure6.10displays an example with two pairs (one inside the field ofi®a) and two
real eigenvalues (Example 6). The feasible region has areisting shape. Figufellshows
the boundary for Example 6 computed using the SVD. The mastrix

A:

0.0433091 1.59759 —0.318964 —0.787924  —1.5765 0.538701
0.222478  —0.276959  0.775185 1.54146 1.8561 0.818277
0.348846 —0.0614769  1.02246  —0.677541 —0.498161  0.193331
1.05979 —1.7532 —0.176368  0.214925  —0.563343 —0.580403
2.01859 —0.900034 0.21777 —1.05788 —0.388673  —1.0512
0.825456  —0.837442  0.298154 —0.554189  0.812614 0.77613

The eigenvalues ofl are

[—1.2413 + 3.27037i, —1.2413 — 3.27037i,
0.566382 + 0.768588i, 0.566382 — 0.768588i, 0.917215, 1.82382].
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FIG. 6.10.Location off; = A for Example 65 = 6, k = 2, A normal real.
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FiIG. 6.11.Boundary obtained with the SVD for Example6= 6, k = 2, A normal real.

Figure 6.12 displays an example with = 8 (Example 7). We can see that (unfortu-
nately) we have many spurious curves that are useless ftotnedary. On the right part of
Figure6.12 we got rid of some of these curves but not all of them. The imafrExample 7
is

A=
0.541379 0.36045 0.724658 —0.835226 —0.882172 0.0513467 —0.231744 —0.316297
—0.454221 0.575524 —0.100099 —0.312607 —0.365987 —0.122991 0.143776 0.447837
0.210676 —0.0931479 0.852157 0.39926 —0.119268 —0.722606 0.199469 0.255216
—0.921745 —0.357353 0.0571532 —0.569208 —1.24529 1.17068 0.120452 —0.304355
—0.719429 —0.137593 0.470774 —1.33238 —0.162772 1.02581 —0.277858 0.154487
0.451727 0.489061 —0.0903518 0.835521 1.06541 0.646274 —0.158683 0.856737
0.00891101 0.0305841 —0.23076 —0.0649839 0.0463489 0.236475 0.810799 —0.356549
0.682085 —0.398763 0.179775 —0.759383 —0.268957 0.158633 —0.112359 1.03084

The eigenvalues oft are

[1.68448 =+ 0.7807097, 1.68448 — 0.7807091,
0.418673 + 0.8882897,0.418673 — 0.8882891,
0.882938 + 0.19178¢,0.882938 — 0.19178¢, —2.9958, 0.748615] .

We remark that, using the same technique as before, we caputerthe boundary of
the feasible region fof; whend, is prescribed fok = 2 and for complex normal matrices.
Here we have to consider basic solutions for the real mathichvis of size5 x n. Hence,
we compute the solutions for dllx 5 matrices extracted from the system farin this case
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FIG. 6.12.Location off; = - for Example 75 = 8, k = 2, A normal real.
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FIG. 6.13. Boundary of the feasible region f@éQ) for the Example in Figure 1(b) of3], n = 6,k = 2,
(2)
0" = —4.

we compute the solutions numerically and not symbolicallyef given poin{z, y). Then we
check that the curves are indeed parts of the boundary Usénggime perturbation technique
as before. We consider the problem of Bujaiedd, Figure 1 (b)]. The eigenvalues df are

[—5,-3+2i,—3—2i,4+i,4—1i,6].

We fix 9%2) = 0; = —4. The boundary of the feasible region & for this particular value
of 6, is displayed in Figur®.13

One can compare witl8] and see that we indeed find the boundary of the regiofifor
However, such regions do not give a good idea of the locatfahe Ritz values because
we would have to mové; all over the field of values to see where the Ritz values can be
located. Figurés.14displays the location of the Ritz values for= 2 to 5 when running the
Arnoldi method with a complex diagonal matrix with the giveigenvalues and random real
starting vectors. We see that we have Ritz values almosywebere. Things are strikingly
different if we construct a real normal matrix with the giveigenvalues (which are real or
occur in complex conjugate pairs) and run the Arnoldi meti@t real starting vectors. The
Ritz values are shown in Figufe1l5 We see that they are constrained in two regions of the
complex plane and on the real axis. Of course things woulé baen different if we would
have used complex starting vectors. The Ritz values woulé l@oked more like those in
Figure6.14 There is much more structure in the feasible region if elng is real-valued.
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FIG. 6.14.Location of the Ritz values, = 6, all k = 2 : 5, A complex diagonal, Arnoldi with random real
vectorsu.

FiG. 6.15.Location of the Ritz values, = 6, all k = 2 : 5, A normal real, Arnoldi with random real vectors

7. Open problems and conjectures fork > 2 and real normal matrices. In this
section we describe some numerical experiments fwith 2 for real normal matrices. We
also state some open problems and formulate some conjgectlive are interested in the
iterationsk = 3to k = n — 1. We would like to know where the Ritz values are located
when using real starting vectors. Clearly we cannot do theesas fork = 2 because, for
instance, folk = 3, we have either three real Ritz values or a pair of complejugate Ritz
values and a real one. Of course, we can fix the location ofghkRitz values and look for
the region where the pairs of complex conjugate Ritz valuag be located, but this is not
that informative since it is not practical to explore all hessible positions of the real Ritz
values.

Let us do some numerical experiments with random startirgove and first consider
Example 6 of the previous section with= 6. For each value of = 2 ton — 1, we gener-
ate 700 random initial vectors of unit norm, and we run theofdnalgorithm computing the
Ritz values at iteratiort. In Figure7.1we plot the pairs in blue and red and the real eigen-
values in green for all the values &f and we superimpose the boundary curves computed
for k = 2. We observe that all the Ritz values belong to the feasilgiongthat was computed
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FIG. 7.1.Location of the Ritz values for Exampler6= 6, all k = 2 : 5, A normal real, Arnoldi with random
real vectorsuv.

-3+ 4

FIG. 7.2. Location of the Ritz values for Exampler6= 6, k = 4, A normal real, Arnoldi with random real
vectorsu.

for k = 2. We conjecture that this is true for any real normal matriet ameal starting vector.
But there is more than that.

Figure 7.2 displays the Ritz values at iteration 4. We see that someeoRite values
are contained in a region for which one part of the boundaonespiece of a curve that was
considered as “spurious” fér = 2. Figure7.3 shows the Ritz values at iteration 5 (that is,
the next to last one); there is an accumulation of some Riizegaon this spurious curve
as well as close to the other pair of complex conjugate emapg. It seems that some of
the spurious curves look like “attractors” for the Ritz vedy at least for random real starting
vectors. It would be interesting to explain this phenomenon

Figures7.4-7.8illustrate results for Example 7 with = 8. Here again we observe that
the Ritz values are inside the boundary foe= 2 and, at some iterations, Ritz values are
located preferably on or close to some of the spurious curves

Another open question is if there exist real normal matrfoesvhich the feasible region
for k = 2 completely fill the field of values for real starting vectois this paper we concen-
trated on pairs of complex conjugate Ritz values, but arreésteng problem is to locate the
real Ritz values in the intersection of the field of valueshite real axis.
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FiIG. 7.4.Location of the Ritz values for Examplern7= 8, all k = 2 : 7, A normal real, Arnoldi with random
real vectorsu.

FiG. 7.5. Location of the Ritz values for Exampler7 = 8, k = 4, A normal real, Arnoldi with random real
vectorsu.



ETNA
Kent State University
http://etna.math.kent.edu

210 G. MEURANT

FIG. 7.6. Location of the Ritz values for Exampler7 = 8, k = 5, A normal real, Arnoldi with random real
vectorsv.

FIG. 7.7. Location of the Ritz values for Exampler7 = 8, k = 6, A normal real, Arnoldi with random real
vectorsv.

FiG. 7.8. Location of the Ritz values for Exampler7 = 8, k = 7, A normal real, Arnoldi with random real
vectorsu.
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Numerical experiments not reported here seem to show tleaprbperties described
above for the Arnoldi Ritz values are not restricted to th@ddi algorithm. For a real
normal matrix, if one constructs a real orthogonal matrixand definesd? = V7 AV, the
Ritz values, being defined as the eigenvalue& pfthe principal submatrix of ordér of H,
are also constrained in some regions inside the field of sadfiel. This deserves further
studies.

8. Conclusion. In this paper we gave a necessary and sufficient conditioa ket of
complex valued9;, ..., 0; to be the Arnoldi Ritz values at iteratidnfor a general diagonal-
izable matrixA. This generalizes previously known conditions. The caodistated in this
paper simplifies for normal matrices and particularly falneormal matrices and real start-
ing vectors. We studied the cake= 2 in detail, for which we characterized the boundary
of the region in the complex plane containediifi( A), where pairs of complex conjugate
Ritz values are located. Several examples with a computafiche boundary of the feasi-
ble region were given. Finally, after describing some nucatrexperiments with random
real starting vectors, we formulated some conjectures ged problems fok > 2 for real
normal matrices.

Acknowledgments. The author thanks J. Duintjer Tebbens for some interestimg-c
ments and the referees for remarks that helped improve #septation.
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