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A MOVING ASYMPTOTES ALGORITHM USING NEW LOCAL CONVEX
APPROXIMATION METHODS WITH EXPLICIT SOLUTIONS  *

MOSTAFA BACHART, THIERRY ESTEBENET, AND ALLAL GUESSAB?

Abstract. In this paper we propose new local convex approximations ébrirey unconstrained non-linear
optimization problems based on a moving asymptotes algorithiis.fi&thod incorporates second-order information
for the moving asymptotes location. As a consequence, at @apho$ the iterative process, a strictly convex
approximation subproblem is generated and solved. All saliipms have explicit global optima. This considerably
reduces the computational cost of our optimization method anémtes an iteration sequence. For this method,
we prove convergence of the optimization algorithm undeictessumptions. In addition, we present an industrial
problem to illustrate a practical application and a numétiest of our method.

Key words. geometric convergence, nonlinear programming, method of m@asymptotes, multivariate con-
vex approximation
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1. Motivation and theoretical justification. The so-called method of moving asymp-
totes (MMA) was introduced, without any global convergeacalysis, by Svanberd@§]
in 1987. This method can be seen as a generalization of thev&ONNearization method
(CONLIN); see [L4], for instance. Later on, Svanbergj] proposed a globally—but in reality
slowly—convergent new method. Since then many differensiges have been suggested.
For more details on this topic see the referen@41], 12, 13, 18, 24, 25, 26, 30, 33, 34).
For reasons of simplicity, we consider the following undosised optimization problem:

find @, = (2.1, %42,...,2.4) € R?such that
(1.1) f (x,) = min f (x),
xcRd
wherex = (z1,x2,. .. ,xd)T € R% and f is a given non-linear, real-valued objective func-

tion, typically twice continuously differentiable. In aedto introduce our extension of the
original method more clearly, we will first present the masportant facet of this approach.
The MMA generates a sequence of convex and separable slgpsylwhich can be solved
by any available algorithm taking into account their splestiaictures. The idea behind MMA
is the segmentation of thedimensional space int@!)-one-dimensional (1D) spaces.

Given the iteration points %) = (xgk), x(zk), ... ,J:El’“))T € R at the iteratiork, thenL§k)

andUJ(k) are the lower and upper asymptotes that are adapted at egatioit step such that
forj=1,...,d,

(k) (k)
Lj <z; < Uj .
During the MMA process, the objective functighis iteratively approximated at thie-th
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iteration as follows:
k) (k)

T S S
le Lj J_L§)

The parameters(k),p andq(k) are adjusted such that a first-order approximation is satis-

fied, i.e.,

3

FO(x®) = fzh),
ViE(@®) = v fa®),

whereV f(x) is the gradient of the objective functighat . The parametepgk) is set to
zero when%f—g(m(’“)) < 0,andq\" is set to zero wher%’:)(w(’“)) > 0 such thatf*) is

a monotonically increasing or decreasing function:of The coeﬁicientg)gk’) andq](.k) are
then given respectively by

k k ©)) 2 ofe
p; ) — (U( ) § )) max{O, o () 4

J

k k £\ 2 of®
qj(, ) — <x§ ) —Lg )> max{O, oz, (x®)) 5.

These parameters are strictly positive such that all afmating functionsf(*) are strictly
convex, and hence each subproblem has a single global aptimu

By this technique, the form of each approximated functiospscified by the selected
values of the parameteis andU which are chosen according to the specific MMA
procedure. Several rules for selectlng these values areddied in detail in4, 28]. Svanberg
also shows how the paramete[r%) and UJ('“) can be used to control the general process. If
the convergence process tends to oscillate, it may be igedbiby moving the asymptotes
closer to the current iteration point, and if the convergepmcess is slow and monotonic,
it may be relaxed by moving the asymptotes a limited distaveay from their position in
the current iteration. Several heuristic rules were alsergifor an adaptation process for
automatic adjustment of these asymptotes at each iteyagerp7, 28]. The most important
features of MMA can be summarized as follows.

e The MMA approximation is a first-order approximatiorugt), i.e.,

B ™) = fa®),
Vf(k) (m(k)) _ Vf(a:(’“)).

e Itis an explicitrational, strictly convex function for ali: such thatL§k) <z < U}k

)

With poles (asymptotes inL(k) or in U; k) and it is monotonic (increasing if
2L (™) > 0and decreasmg |§— (k) ) <0).
° The MMA approximation is separable which means that the@pmation function
F :R? — R can be expressed as a sum of functions of the individualblasai.e.,
there exist real function8’, F», - - - , F; such that

F(m) = Fl(.”El) + FQ(iL’Q) + ...+ Fd(CEd).

Such a property is crucial in practice because the Hessiarcesof the approxi-
mations will be diagonal, and this allows us to address lagge problems.
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e It is smooth, i.e., functiong®) are twice continuously differentiable in the inter-
vaILg.k) <z < U;k),j =1,...,d.

e At each outer iteration, given the current paitit), a subproblem is generated and
solved, and its solution defines the next iteratiefit!), so only a single inner
iteration is performed.

However, it should be mentioned that this method does ndbperwell in some cases and
can even fail when the curvature of the approximation is notectly assignedZ3]. Indeed,

it is important to realize that all convex approximationsliding MMA, which are based on

first-order approximations, do not provide any informatédout the curvature. The second
derivative information is contained in the Hessian matrixhe objective functionH[f],

whose(4, j)-component isi%(m). Updating the moving asymptotes remains a difficult
problem. One possible approach is to use the diagonal setmmditives of the objective
function in order to define the ideal values of these paramm@tehe MMA.

In fact, MMA was extended in order to include the first- andogetorder derivatives of
the objective function. For instance, a simple example efNtMA that uses a second-order

approximation at iterate*) was proposed by Fleury.f]:

fP(@) = f@®)

(1.2) d 1 1 ® 0\ Of &
+ - zi) —ai)) o (x®),
; x;k) _ a;k) 2 — a;k) ( J J ) oz,
where, foreachi = 1,. .., d, the moving asymptoteg.k) determined from the first and second

derivatives is defined by

a;k) = xgk) +2

Several versions have been suggested in the recent litetatobtain a practical implemen-
tation of MMA that takes full advantage of the second-ordéoiimation, e.g., Bletzingef],
Chickermane et al.5], Smaoui et al. 23], and the papers cited therein provide additional
reading on this topic. The limitations of the asymptote wsial method for first-order con-
vex approximations are discussed by Smaoui et2d], where an approximation based on
second-order information is compared with one based onfislyorder. The second-order
approximation is shown to achieve the best compromise legtwabustness and accuracy.

In contrast to the traditional approach, our method remldbe implicit problem 1.1)
with a sequence of convex explicit subproblems having a lgirajgebraic form that can be
solvedexplicitly. More precisely, in our method, an outer iteration stantsnfithe current
iteratex®) and ends up with a new iterate*+1). At each inner iteration, within aex-
plicit outer iteration, a convex subproblem is generated and dolvethis subproblem, the
original objective function is replaced kyy linear function plusa rational functionwhich
approximates the original functions arous&). The optimal solution of the subproblem
becomese*t1) | and the outer iteration is completed. As in MMA, we will shefvat our
approximation schemes share all the features listed abbo\addition, our explicit iteration
method is extremely simple to implement and is easy to useth&umore, MMA is very
convenient to use in practice, but its theoretical conuerggroperties have not been stud-
ied exhaustively. This paper presents a detailed studyeottimvergence properties of the
proposed method.
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The major motivation of this paper was to propose an appration scheme which—as
will be shown— meets all well-known properties of convexatyd separability of the MMA.
In particular, our proposed scheme provides the followirggomadvantages:

1. Animportant aspect of our approximation scheme is thatisehssociated subprob-
lems haveexplicit solutions.

2. It generates an iteration sequence that is bounded andrgas to a stationary point
of the objective function.

3. It converges geometrically.

The rest of the paper is organized as follows. For clarityhef discussion, the one-di-
mensional case is considered first. To this end, due to treraeifity of the approximations
that we will consider later for the multivariate setting, present our methodology for a sin-
gle real variable in Sectiof. In the following we show that the formulation extends to the
multidimensional case. Indeed, Secti®udescribes the extensions to more general settings
than the univariate approach, where an explicit descriptiothe proposed method will be
derived and the corresponding algorithm will be present®d.also show that the proposed
method has some favorable convergence properties. In tr@eoid the evaluation of sec-
ond derivatives, we will use a sequence of diagonal Hessimations, where only first-
and zeroth-order information is accumulated during theiptes iterations. We conclude
Section3 by giving a simple one-dimensional example which illustsathe performance of
our method by showing that it has a wider convergence donhain the classical Newton'’s
method. As an illustration, a realistic industrial invepgeblem of multistage turbines using
a through-flow code will be presented in SectionFinally, concluding remarks are offered
in Sectionb.

2. Univariate objective function. Since the simplicity of the one-dimensional case al-
lows to detail all the necessary steps by very simple contiputs let us first consider the
general optimization problemi(l) of a single real variable. To this end, we first list the
necessary notation and terminology.

Letd := 1 andQ2 C R be an open subset arfd: Q2 — R be a given twice differentiable
function in Q. Throughout, we assume th#t does not vanish at a given suitable initial
pointz(9) € Q, that is f'(z(*)) # 0, since if this is not the case, we have nothing to solve.
Starting from the initial design point(?), the iteratest(*) are computed successively by
solving subproblems of the form: find**1) such that

k+1)y s r(k
J@*) = min f (),
where the approximating functiofi*) of the objective functiorf at thek-th iteration has the
following form

f(k)(m) =pk) 4 c(k)(x _ x(k))

(2.1) 1 (2™ — a(k))S 1
(k) [ = Z (k) _ (k) _ 9,(k) (k)
+d 5 o +2(x a )(m 22\ +a )
with
22 " L® if /(™) < 0andL®) < z(F),
. a =
Uk if f(z®) > 0andU® > z*)

where the asymptotd$*) and L(*) are adjusted heuristically as the optimization progresses
or are guided by a proposed given function whose first andnskderivative are evaluated at
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the current iteration point(*). Also, the approximate parameté$), ¢(*), andd®) will be
determined for each iterations. To evaluate them, we uselijeetive function value, its first
derivatives, as well as its second derivativegs@l. The parameters®), ¢(*) andd*) are
determined in such a way that the following set of intergolatonditions are satisfied

FE@®) = f(z),
(2.3) (Y (@) = (),
(F5Y" (@ ™)) = f7(a®).

Therefore, it is easy to verify that®), ¢(*) andd*) are explicitly given by

o = 1),
(2.4) ) = (20,
d(k) _ f”(:r:(k)).

Throughout this section we will assume that
@™y >0,  Vk>o0.
Let us now define the notion of feasibility for a sequence ofyngstotes
{a™} := {a®} , which we shall need in the following discussion.

DEFINITION 2.1. A sequence of asymptotés(®) } is called feasible if for all > 0,
there exist two real numbeis*) and U (%) satisfying the following condition:

(k)
L® if f (z™) <0 andL®) < 2*) 4 2fu(( <k>))
a® = (=)

k
U (a09) > 0 andU®) > 20 oL LT
Itis clear from the above definition that every feasible seme of asymptote§a*) } auto-
matically satisfies all the constraints of tyged).

The following proposition, which is easily obtained by a plmalgebraic manipulation,
shows that the difference between the asymptotes and trentiterater(*) can be estimated
from below as in2.5).

PROPOSITION2.2. Let{a(’“)} be a sequence of asymptotes and let the assumpfdis (
be valid. Ther{a(¥)} is feasible if and only if

2|f/@®)|
f//( (k)

It is interesting to note that our approximation scheme caisden as an extension of
Fleury’s method 10]. Indeed, we have the following remark.
REMARK 2.3. Considering the approximatiofi§”) given in ©.1), if we write

; 2f'(™)
(k) — (k)
N L F)

using the values of the parameters givendnl), the approximating functiong®) can also
be rewritten as

(2.5) ‘ (k) _ <k>‘ .

(@) = fa®) + Jt”(%(k)) (8% = a®) (2 - )

/@)y m)w
+T(x —a )7’ (z),

(2.6)
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with

1 1
) () = _
rie) = <x “a® T ) a(k)) '

If we choosei*) = a(¥), then the approximating functions become

- 1 1 _ 2,
ﬂ“uﬂzfuw»+(ﬂm_awy—x_am)(ﬂ“—a“ﬁ.fu%»

This is exactly the one-dimensional version of the appratiom functions of Fleury given
in equation {.2). Hence, our approximation can be seen as a natural exteokigleury’s
method [LQ].

The following lemma summarizes the basic properties ofiltdasequences of asymp-
totes. In what follows, we denote by sighthe usual sign function.

LEmMMA 2.4.1f {a(®} is a feasible sequence of asymptotes, then fat tike following
statements are true:

i) sign(f' (=) _ 1
z(F) —a(F) [k —a (k)| *
. (k)
k k), 28" (2(R)) k w2l @)
ii) SN 77 s W A w7 %
z(k) —q (k) - ‘ﬁ(k)—a(k”

iii) At each iteration, the first derivative of the approxitimay functionf*) is given by

. 11 (k) (k) _ q(k)\ 2
@7) wwﬂmzfﬂg’@w—d%<4mﬂ%—())

x — ak)
with
10..(k)
‘x(k) _ a(k)| _ 2|f” (= - )|
(k) . f7 (x(®))
e[f}(m ) T |{L‘(k) _ a(k)\

Proof. The proof ofi) is straightforward since it is an immediate consequenckeofdct
that the sequence of asymptofes*) } is feasible. We will only give a sketch of the proof of
partsii) andiii). By ¢) and the obvious fact that

7@ ®) =sign( /")) |/ @®)],
we have
2f (™) .
#® —a® S0 2] )] sign(f/(+9))
(k) — (k) o f”(x(k)) x(k) — q(k)
2] 1

f”(x(k)) |1’(k) — a(k)|

2|f" (™)
o0 = | = St
‘x(k’) —ak)

Finally, partiii) is a consequence of paif and the expression gf®) given in @.6). a
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By defining the suitable index set

209 _ |L®), +oo] if f () <0,
| oo, Ui f () > 0,

we now are able to define our iterative seque{lmék)} . We still assume thaf is a twice
differentiable function i satisfyingf” (z*)) > 0, Vk > 0.

THEOREM 2.5. Using the above notation, €2 C R be an open subset of the real
line, zo € Q, andz*) be the initial and the current point of the sequence®)}. Let
the choice of the sequence of asymptqteg")} be feasible. Then, for each > 0, the
approximated functiorf*) defined by(2.1) is a strictly convex function ii®). Furthermore,
for eachk > 0, the functionf(*) attains its minimum at

(2.8) 2D = ¢®) _ sign <f/(x(k)) ol
where
3
S |2 — o(®)|
' 2| f7 (0]
69 - o] - 2]

Proof. An important characteristic of our approximate problertaoted via the approxi-
mation functionf(*) is its strict convexity irZ(*). To prove strict convexity, we have to show
that(f(*))" is non-negative if(*). Indeed, by a simple calculation of the second derivatives
of f*), we have

(79 o) = ) (2

x —ak)
Hence, to prove convexity of*), we have to show that

3
® ) >0, VzerI®.
r—a

)

But £/ (2*)) > 0 and so, according to the definition of the ¢, it follows thatz(¥) — a(*)
andz — a®) have the same sign in the inten&*). Hence, we immediately obtain strict
convexity of f*) onZ(®). Furthermore, according t& (7), if /) attains its minimum at{"’,

then it is easy to see that") is a solution of the equation

k k 2| (=)
29 28 —a®W\? [z —a®| - =5
' x — ak) |x(k) —a®

Note that Propositior2.2 ensures that the numerator of the term on the right-handiside
strictly positive. Now by taking the square root and usingrapte transformation, we see
that the unique solution'®) belonging taZ(*) is given by @.8). This completes the proof of
the theorem. a

REMARK 2.6. At this point, we should remark that the notion of fedisjbfor a se-
quence of moving asymptotes, as defined in Definifidh plays an important role for the
existence of thexplicit minimum given by 2.8) of the approximate functiofi*) related to



ETNA
Kent State University
http://etna.math.kent.edu

28 M. BACHAR, T. ESTEBENET, AND A. GUESSAB

each subproblem belonging I8%). More precisely, it guarantees the positivity of the nu-
merator of the fraction on the right-hand side &f9) and, hence, ensures the existence of a
single global optimum for the approximate function at edekaiion.

We now give a short discussion about an extension of the alppeoach. Our study
in this section has been in a framework that at each iterati@nsecond derivative needs to
be evaluated exactly. We will now focus our analysis on ex&miwhat happens when the
second derivative of the objective functighmay not be known or is expensive to evaluate.
Thus, in order to reduce the computational effort, we sugigegpproximate at each iteration
the second derivativg” (z(*)) by some positive real valug®). In this situation, we shall
propose the following procedure for selecting moving asyigs:

e
oy aw [ PP G) <oandit) <o o )
. a = ()

U®x if 1! (x(k)) > 0andU®) > z(k) 4 2f EW )

Itis clear that all the previous results easily carry ovethcase when in the interpola-
tion conditions 2.3), the second derivativg” (+(*)) is replaced by an approximate (strictly)
positive values(*) according to the constraint8.(.0). Indeed, the statements of Theor&r
apply with straightforward changes.

In Section3 for the multivariate case, we will discuss a strategy to itheitee at each
iteration a reasonably good numerical approximation tostmond derivative. We will also
establish a multivariate version of Theor@m and show in this setting a general convergence
result.

3. The multivariate setting. To develop our methods for the multivariate case, we need
to replace the approximating functiorz.J) of the univariate objective function by suitable
strictly convex multivariate approximating functions. e€lpractical implementation of this
method is considerably more complex than in the univariaiee due to the fact that, at
each iteration, the approximating function in the multiste setting generates a sequence of
diagonal Hessian estimates.

In this section, as well as in the case of univariate objectipproximating function
presented in SectioB, the function valuef (x(*)), the first-order derivativegfé,:;i%, for
j=1...d,as well as the second-order information and the moving ptytes at the design
point z(*) are used to build up our approximation. To reduce the cortipu& cost, the
Hessian of the objective function at each iteration will bplaced by a sequence of diagonal
Hessian estimates. These approximate matrices use omwlthzand first-order information
accumulated during the previous iterations. However, éawof practical difficulties of eval-
uating the second-order derivatives, a fitting algorithetsiceme is proposed in order to adjust
the curvature of the approximation.

The purpose of the first part of this section is to give a cotepiiiscussion on the the-
oretical aspects concerning the multivariate setting efabnvergence result established in
Theorem3.4 and to expose the computational difficulties that may beriecl We will first
describe the setup and notation for our approach. Below,am@tent on the relationships
between the new method and several of the most closely deldéas. Our approximation
scheme leaves, as in the one-dimensional case, all welkkmpooperties of convexity and
separability of the MMA unchanged with the following majahantages:

1. All our subproblems havexplicit solutions.
2. It generates an iteration sequence that is bounded andrgas to a local solution.
3. It converges geometrically.
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To simplify the notation, for every = 1,...,d, we usef ; to denote the first-order
partial derivative off with respect to each variable;. We also use the notatiofy ;; for
the second-order partial derivatives with respecttdirst and thenz;. For anyz,y € RY,
we will denote the standard inner productefandy by (z,y) and||z|| := /(x, ) the
Euclidean vector norm af € R<.

3.1. The convex approximation inf2 ¢ R<. To build up the approximate optimization
subproblemsP[k], taking into account the approximate optimization probksra solution
strategy of the optimization probler.(), we will seek to construct a successive sequence
of subproblems”[k], k € N, at successive iteration point$*). That is, at each iteratioh,
we shall seek a suitable explicit rational approximatingction f(*), strictly convex and

relatively easy to implement. The solution of the subprotdé’[k] is denoted byz:,(f), and
will be obtained explicitly. The optlmum* ) of the subproblem#®[k] will be considered as

the starting poin(**t1) .= z*) for the next subsequent approximate subprobl&fis+ 1].
Therefore, for a given suitable initial approximatief®) € €, the approximate opti-
mization subproblem#[k],k € N, of the successive iteration poini*) ¢ R can be

written as: finohcik) such that

F® (@) = min O (2),

xe
where the approximating function is defined by

o[, (),

k k
(3.1) j=1 \ Tj — L§ ) U]( )~ Ly
<ﬁ<k> L >+<ﬂ$>,U<k> _$>+7<k>7

and the coefficients'”, ﬁff), L®) U®) are given by

0= ((5), o (0,
3= (),
)

andy®) € R. They represent the unknown parameters that need to be tedhpased on
the available information. In order to ensure that the fiemst f(*) have suitable properties
discussed earlier, we will assume that the following caod# 3.2) are satisfied for alk:

() = (89) =0 if f52) >0,
J o
(3.2) (a(f))j. (/3(1“))]-:0 fra®y <o, T

Our approximation can be viewed as a generalization of tiertiate approximation to the
multivariate case since the approximation functigfd are of the form of a linear function



ETNA
Kent State University
http://etna.math.kent.edu

30 M. BACHAR, T. ESTEBENET, AND A. GUESSAB

plus a rational function. It can easily be checked that theg-fand second-order derivatives
of %) have the following form

NG (k)
(3:3) f} (@) = ) + ), s+ (80) - (8Y),, i=1..a

(- L_§’“))2 (" - )
(o

2 (a® 2 (P
<O‘ <2>j 3t (k) ) 3
(o2 ()

Now, making use of3.2), these observations imply thatff; (")) > 0, then

(3.4) ) (@) =

j=1,....d.

(3.5) f,,jj(w) =

andif f ;(z®) < 0, then

(3.6) F¥ (@) =

Since the approximationg*) are separable functions, all the mixed second derivatif/gs o
are identically zero. Therefore,if£ j, we have

(3.7) @)y =0, ij=1....d

Also, the approximating functiong®) need to be identically equal to the first-order approx-
imations of the objective functiongat the current iteration point = (¥, i.e.,

f(k) (x(k)) — f(w(k))7
FP@®) = f;@@®), vi=1,...d

In addition to the above first-order approximations, therapimating functionf*) should
include the information on the second-order derivatifetndeed, the proposed approxima-
tion will be improved if we impose that

(3.8) ff’;g( <k>) i (x<k>),w=1,...,d.

Since the second derivatives of the original functighsiay not be known or is expensive
to evaluate, the above interpolation conditioBs3) are not satisfied in general. However, it
makes sense to use second-order derivative informatiompoolve the convergence speed.
The strategy of employing second-order information withexcessive effort consists of ap-
proximating at each iteration the Hessiein®)[f] := [f, ;; (z*))] by a simple-structured
and easily calculated matrix.

Our choice for approximating the derivatives is based orspeetral parameters as de-
tailed in [L6], where the Hessian of the functighis approximated by the diagonal ma-

trix S](.f)l (i.e.,n™™Iin[15, 16]), with I thed-by-d identity matrix, and the coefficienﬁj(.f)
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are simply chosen such that

(k)
3:9) % k) — =) L.s (w ) ’
where

(3.10) d® = (Vf(x®) — v f(x®D), e® — 2Dy >0,

The last conditions3.10) ensure that the approximatiofi§®) are strictly convex for all iter-
atesz(¥) since the paramete@? are chosen as strictly positive.

Thus, if we use the three identitie3.9), (3.6), (3.7), and the above approximation con-
ditions, we get after some manipulations that

3 .
(3.11) (a@) _ ] sy ($§k) - L§'k)) if £, (z®) <0,
J 0 otherwise,
3
L (U =) it g (a®) >0,
0 otherwise,

™) .
(3.13) (5£k))j _ { I (m(k)) + (z(<’”>L<>"J>)2 if f; (m(k)) <0,

3.12 a®) =

i (o),
J J

0 otherwise,

(=)
fi (@) - i it £y (28) >0,

(F)) _ AT el
(3.14) (ﬁ+ )j = (U;k)_wg_k ) |
0 otherwise
and
4 (k) (F)
MO (m(k)) B E@ )jk N (5+ )jk
=\ - v -

_ <5<_k>7m<k> _ L(k)> _ <5f>, Uk _ :c(k)> .

Our strategy will be to update the lower and upper moving :pipms,L;k) and Uj(k),
at each iteration based on second-order information byrgérieg Definition2.1from Sec-
tion 2. Since the approximation functions are separable, onlyitbieorder derivatives and
the approximate second-order diagonal Hessian terms qu@ed in the process. Smaoui et
al. [23] also use such a second-order strategy, but !ﬁgyp(w“‘“)) is replaced by the esti-

mated vaIueSJ(.?) given in (3.9 as follows:

2R
L® i £, (2®) < 0andL®) < o) 42220

| _) S
F) = )
(3.15) ’ u® it £y (2®) > 0andu® > 2P 4 2‘“53) ),

JJ

AW — (AP AP AT
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Note that, as it was done in the univariate case, see Prapo&i2, we have the following
result.

ProPOSITION3.1.LetA®) = (A% Al A®)T c R be the moving asymptotes
with components given K{$.15. Then, forallj = 1,...,d, and for all k, we have

AU |y ]
gtk J J
JJ

To define our multivariate iterative scheme, we start froormesa@jiven suitable initial
approximationz(® € Q and let{z®} := {z®} be the iterative sequence defined

by 2(-+D) = (1 2UTT forallk > 0andj = 1...,d, with

(3.16) 20 = 40 —sign (1 (2)) Vo, G=1,...,d),

where

OIENOE it £ (™) <0,
317)  ¢© - =3 - 4] _) ) e
' G T w2 o)
‘x. — A ’ — % + J f (k)
j j s 7(59)). it f;(xz™)>0

It should be pointed out that the sequeree*)} is well-defined for allk since the
denominators of3.16) never vanish, and it is straightforward to see that theesagl)éjk) in
(3.17) are positive real numbers.

It would be more precise to use the set notation and wite" = I{k) xIék) X xIék),
with

|20, 4oo[ it £ (2) <o,

j=1,....d.
}—oo,U](k){ it f; (w(k)) >0,

(k) _
1,7 =

Now we are in a position to present one main result of this pape

THEOREM 3.2. Let ) be a given open subset & and f : @ — R be a twice-
differentiable objective function if2. We assume that the moving asympto® < R?
are defined by equation®.15, whereSJ(f) >0,k >0,j =1,....d, and let{z®} be
the iterative sequence defined (8/16). Then the objective functioi*) defined by equa-
tion (3.1) with the coefficient63.11)—3.14) is a first-order strictly convex approximation $f
that satisfies

(k) k) _ o(k) o
fﬂjj(w( )—Sjj, j=1,...,d.

Furthermore,f(*) attains its minimum ag**1.

Proof. By construction, the approximatiofi*) is a first-order approximation of
atz = z*) and satisfies

i (a®) =5, vi=1,..d

As (a(f“))j (respectively(af))j) has the same sign as, — Lg.k) (respectivelyU}k) —x;)
in Z®), we can easily deduce fron3.6) that the approximation is strictly convex #H*).
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In addition, by using¥.3), we may verify thate(*+1) given by 8.16) is the unique solution
in Z() of the equations

fP@y=0, Vvi=1,...4d

which completes the proof of the theorem. O
The sequence of subproblems generatedhi is computed by Algorithn3.3.

ALGORITHM 3.3. Method of the moving asymptotes with spectral updating.
Step 1.Initialization

Definex(®)
Setk + 0

Step 2.Stopping criterion

If (*) satisfies the convergence conditions of the problér),(then
stop and take:(*) as the solution.

Step 3.Computation of the spectral parametei‘j‘s,f), the moving asymptoteé;;k), and the
intermediate parametagj(.k):

Compute
d®) = (Vf(x®) = VfxF-D) zk) — k-1,
Forj =0,1,....,d

(k) _ a™)
Sjj - wa)_w(k—l)”z’
®) _ (k) £ (=™
AV = + 20 75(1;,;)),0(>1,
. Ly |3
o9 = oM -4
i 7 (=) "
‘x;m_A;m‘_J 'Jﬁ )|

Step 4.Computation of the solution of the subproblem

25 = A% _sign(f, (@®)) /g forj=0,1,...4,

Setk+ k+1
Go toStep 2.

3.2. A multivariate convergence result. This subsection aims to show that the pro-
posed method is convergent in the sense that the optiMimsequencéx(’c)} generated
by Algorithm 3.3 converges geometrically te,. That is, there exists@c |0, 1[ such that

k
Hm(/f) —x,] < an(l) _ w(O)” )
1-¢
To this end, the following assumptions are required. Letuppsese that there exist positive
constants:, M, C, and¢ < 1 such that the following assumptions hold.
Assumption M1:

B.={zeR:|z—z@|<r}c

Assumption M2: We assume that the sequence of moving asymp{oé® } defined by 8.15
satisfies

(3.18) sup | — AW || < C,
k>0
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andforallj =1,....,d,

20Vd _ 1wy _ 4| _ 2114 (@)
Jj

J
Ji

Assumption M3: We require thatforalk > 0 andforallj € {1,...,d} with azg.k_l) # xg-k),

f7,,(w(k—1)) .
Vix) - mem
x - l‘j

'J

(3.20) sup sup
k>0 xeB

whereel) is the vector ofR? with the j-th component equal té and all other
components equal t@
Assumption M4: Forallj = 1,...,d, the initial iteratex® satisfies

0<f5(a") < 57 (1-4).

Let us briefly comment on these assumptions.
e First, in order to control the feasibility of the moving agytotes, we need to find a
(strictly) positive lower bound of

2f;(="))]

k k
(3.21) o — 4P| - 2L
gl
27

)

which needs to be large according to some predeterminedhimle; see Proposi-
tion 3.1 So when the inequalitie3(19 hold, then the sequence of the moving
asymptotes{ A*)} is automatically feasible. Also note that, when we evaluate
the approximate functiorf®) and if the difference between the asymptotes and
the current iteration point is small enough, then imposiagdition 3.19 avoids
the possibility of 8.21) to become negative or close to zero. In Assumption M2,
inequality 3.18 enforces the quite natural condition that at each itematiothe
distance between(*) and the asymptotd (%) is bounded above by some constant.

. . .. (k—1) .
e Assumption M3 ensures th&f ;(z) is sufficiently close t%em.

e Assumption M4, as we will see, is only used to obtain u]niqseréa‘ the limit of
the iteration sequence generated by TheoBen The convergence result is estab-
lished without this assumption. It also requires tffat(z")| to be small enough and
that f ; (") is not equal td). This assumption will also play an important role when
showing thatV f has a unique zero iB,..

Assumptions M2 and M3 will be used in conjunction with Assuimp M4 to prove that
the sequence of iteration poin{s::(’@} defined by 8.16 has various nice properties and
converges geometrically to the unique zerdgf in B,.. In addition, note that the constafit
ensures that the distances between the current psifitsand the moving asymptotes are
finite, and the constarnit/ ensures that the process starts reasonably close to thi®solu

We are now prepared to state and to show our main convergesak.r

THEOREM 3.4. Given Assumptions M1-M4, the sequetiaé®) } defined in(3.16) is
completely contained in the closed bal]. and converges geometrically to the unique sta-
tionary point of f belonging to the balB,..
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Before we prove Theorerd.4, we present some preparatory lemmas. The first key in-
gredient is the following simple observation.

LEMMA 3.5. Let k be a fixed positive integer. Assume that there exists an index
je{l,...,d} such thatf,j(:c(’f—”) # 0. Then thej-th components of the two successive
iteratesz*) andz(*~1) are distinct.

Proof. Indeed, assume the contrary, thaﬂ@ = xg.k_l). Then from equation3(16),
we have

2 2

(k—1) k=D\" _ (.(® (k—1)

(acj — Aj ) = (xj - Aj )
k—

(h=1) _ k=)

Zj j

(k—1) k=1)| _ 2[fi(=*-D)|’
Y e R TP

or equivalentlyf ; (az("'*l)) = 0, which leads to a contradiction and proves the lemma.
d

REMARK 3.6. The previous lemma states that if fhth partial derivative off does not
vanish at the iterate(*—1), then the required condition in Assumption M4 is satisfied.

We will also need to prove a useful lemma, which bounds thtadée between two
consecutive iterates*—1) anda*).

LEMMA 3.7. Let Assumptions M2-M4 be satisfied, and let the sequémte } be
defined as in equatiof8.16). Then, the following inequalities hold for all positiveegersk
andj =1,...,d,

#) _ k-| o M
=7 == < 7

)

FRIC

k) _ k=D < ’ . <k71>’
[ =0 < 01 s [ 25

(k) _ ng_l) can be

Proof. Let us fix an integek such that > 0. Then using §.16), z;
written in the form

(3.22) xg'k) - xﬁ-k’” = A;-k*l) - Sign(f,j(w(k—1>)) g](_lcfl) _ (k=)
= (a’:;kil) _ A‘gk*l)) (_1 + A)7

where, in the last equality, we have denoted

_ =sign(f,; (%) o
A= L) _ (D) 95 -
J

J

Now, as in one dimension, see Lemid, it is easy to verify that

sign(f,; (")) 1

k—1 k—1 o N
AT e

Consequenth\ also can be expressed in fraction form

Vg1

‘xg-k*l) _ A;kfl)‘
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Since
(k=1) (k-3
g "= <k1>‘xj (k=1) - 2f"(w“"”)l ’
’xj —A; ’_“;%E:TT"
it follows from (3.22) that
(3.23) o =2l ] < oD - A (V50D - 1)

with

(k=1) _ 4(k=1)
S(k—1) ._ ’xj 4 ’
' k-1 k-1 2|f,; (e®E=0)|
'zg ) Al )’_ | S((.H) )|
73

Taking into account thaj*~) > 1 and using the square root property, we get

VA < D,

Therefore, by 8.23), we conclude that

(k=1) 4 (k=1) -
7 _ (k=D o ’mi 4 ’ 2| £ (@*Y)]
Tjo — T k=1 k=) 2fs(=¢D)] gih=D
\xj — 4 \ B R

Ji
We now obtain the desired conclusion by using Assumption Wi2e second inequality in
Lemma3.7is an immediate consequence of the definition of the Euaticheasm.
O

Now, we are ready to prove Theore&l.

Proof of Theoren3.4. Given a fixed positive integé, let us pick any integej betweent
andd. We start by showing the following inequality

k) k-0] o €| g k-2

(3.24) 2 — o \SﬁHw< ) _ )H
To see this, we may distinguish two cases.

Case I:xg.k’l) #* xg-k). Let us set

@2 e () g ),

2 17 J
and let us introduce the auxiliary functign: B, — R as

(p(k—=1)
1 (k—{f(aém )(k—n h(;),
39 (& =z )

J

where

1 . _ i -
h(x;) == 75554? 1 (xj - x§k) - (xik b Agk D)) — [ (x(k 1)) - ﬂ;k 2
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Using equationd.25), it is easy to verify that

=1y _ Lok-1), (k) _ (k-1)

h(xj )= 55]»]- (zj - ),
h(z) = 0.

Consequently satisfies

p*V)y=0,  o@a®)=f;@™).

Also, it is easy to see that

£y (@*Y)

_Li\E ) )
TR L

Ve(z) =V, (@)

Hence, taking into account Assumption M3 and the mean-\thleerem applied tp, we get

£ (29| = [e@®) = o)
< sup [Ve(@)] [+® - 21|
rxEB

(3.26) i (D) 0
e

x;k—l) — wgk)

= sup sup
k>1 z€B

V(@) - [

<o)

Finally, the above inequality3(26) together with Lemma&.7imply that 3.24) holds true for

the caser!* " # &),
Case Il:x§k_1) = :ry“) Then inequality 8.24) obviously holds true in this case as well.
Now, combining inequality3.24) and employing Lemma.7 again we immediately de-

duce that
R

Consequently, we have

o - -

k k
S (wm _ w(l—l)) <y me — gD H
l=1 =1
u 1
<251_1> me _ ""(O)H < 17§Hm(1> _ ‘”(O)H‘

=1

(3.27)

IN

Applying Lemma3.7with £ = 1 and using Assumption M4, we conclude that
Hw(l) - as(O)H <r(l-¢).
Combining this with the previous inequality leads to:

(3.28) Hw“f) - x(O)H <r



ETNA
Kent State University
http://etna.math.kent.edu

38 M. BACHAR, T. ESTEBENET, AND A. GUESSAB

which shows that each iterat€®) belongs to the balB,. Next, we prove tha{z*)} is a
Cauchy sequence, and singé is complete, it has a limit, say., in B,.. Indeed, for any
integerk > 0 andl > 0, we have

[—1 -1
Hw(k—&-l) _ w(k)H _ HZ (m(k‘+i+1) _ m(k+i)) < Z H$(k+i+1) _ U

(3.29) L
R
2851
As goes to infinity in 8.29, we can get more precise estimates than those obtaindin),(

Hﬁm_m 21 _ 20

el

thus proving thafz(*)} converges geometrically to a limit,. Recalling equation3 29,
we obviously haver, € B,. Now, if the sequencéx(*)} is convergent to a limitc, and
passing to the limit in equatior8(26), we immediately deduce from the continuity off
that Vf(x.) = 0. To complete the proof we show that, under Assumption M3,s the
unique stationary point of in B,.. To this end, assume that there is another p@iat B,. with
& # x, and which solve&/ f(x) = 0. We will show that this leads to a contradiction. Since

by Assumption M4 we havg; (o) # 0, Lemma3.5with k = 1 ensures that” # 2",

forallj =1,...,d. Hence, we may define for eagh= 1, ..., d, the auxiliary function
(1) (0)
R oy Jalwe) o
Aj(@) = ,(@0) (f] () RORNE) (zj —x4j) | -
’ J J

Obviously\; simultaneously satisfies; (z..) = 0 and\; (&) = z.;—Z;. Therefore, applying
again Lemma.7for k = 1, we get from the mean value theorem aB(),

|aj — 5] = [Aj(@.) = A;(2)] < sup V(@) |2 — .||

1 (0 )
Ty — T [ (@) il s
= V ) i) B )
(z©) neh 1 (@) 365-0) — xg_l)e & — .||

Then, we immediately obtain that
0 <z —a.| <&z — .

with ¢ € (0,1), and therefore the last inequality holds only#f= x., which is clearly
a contradiction. Hence, we can conclude tlidhas a unique stationary point. Thus, the
theorem is proved. a

We conclude this section by giving a simple one-dimensierample, which illustrates
the performance of our method by showing that it has a wideve@ence domain than the
classical Newton’s method.

ExamMpLE 3.8. Consider the functiofi : R — R defined by

f(x)=—e"".
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TABLE 3.1

2

The MMA convergencef(z) = —e~ %"

Iteration | x I ()
0 7.07171 | 857871
1 9.2507° | 1.8507*
2 5.3417° | 1.0687*
3 3.08375 | 6.1677°
4 1.7807° | 3.5617°
5 1.0287° | 2.0567°
6 5.9347% | 1.1877°
7 3.42676 | 6.85276
8 1.97876 | 3.9567°
9 1.14276 | 228476
10 6.59477 | 1.31976

Its first and second derivatives are given, respectively, by

f(x) = 22e™",

f(z) =2 (1 —22%) e

Since the second derivative s positive in the interva}— Lo { Newton’s method shall

converge to the minimum of.

V2 V2

Let us recall that the famous Newton’s method for finding uses the iterative

scheme{z(*)} defined by

L) (k)

1 (=)

f// (x(k)) ’

Vk > 0,

starting from some initial value(®). It converges quadratically in some neighborhood: of
for a simple rootr,.. In our example, the Newton iteration becomes

1
(k+1) _ .(K) _
x =z (1 1—2(3:(k))2>’ k> 0.
Starting from the initial approximation® = 1 (respectivelyz(® = —1), the New-
ton iterates are given by®) = 1(—1)" (respectivelyz®) = 1(~1)**"), and hence

the sequencéz(®)} does not converge. Also for initial values belonging to thteival

1 1 1 1 H ¢ i H H 1 1
|- 75 —5Ul3, ﬁ[, after some iteration, the sequence lies outside the |r1t§apvaﬁ, ﬁ[
and diverges. The domain of convergence of Newton’s methodly the interva] — %, %[.

Differently from the Newton’s method, it is observed that MIMA method converges

for any initial value taken in the larger intervat- %

in Table3.1

vl
V3

. Convergence results are reported

4. A multistage turbine using a through-flow code. The investigation of through-flow

have been used for many years in the analysis and the destgrbomachineries by many
authors, especially in the seventies; see for exanileéd, 31]. The main ideas in these in-
vestigations are based on the numerical analysis of tharstliee curvatures and the matrix
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G i)

i Tip contour
! \

x

Tip contour

Streamlines
(38, 19)

(%6, 16)

(5 15)

Hub contour

R
(PRI

(3, 13) Hub contowr

% Machine axis 4 e L5
I Y G : e wad) N
\ 7, CGerr) Gt Quasi-orthogonal planes

FiG. 4.1.Meridional view of the flow path (left panel), and Steam pagkign geometry (right panel).

through-flow. More details can be found if,[7, 9, 17, 20, 21]. The stream line curva-
ture method offers a flexible way of determining an Euler 8ofuof an axisymmetric flow
through a turbomachine. The theory of stream line curvatu@ugh-flow calculations has
been described by many authors, particularly by John DefforFrom the assumption of
axial symmetry, it is possible to define a series of meridiatr@am surfaces, a surface of
revolution along which particles are assumed to move thHrdhig machine. The principle of
stream line curvature is to express the equation of motiongalines roughly perpendicular
to these stream surfaces (quasi-orthogonal lines) in tefrtise curvature of the surfaces in
the meridional plane, as shown in the left panel of Figufie The two unknowns indicate that
we are interested in the meridional fluid component of theaigt V;,, (m/s) in the direction
of the stream lines and the mass flow ratgks/s).

The mass flow rate is evaluated at each location point at teesictions of the stream
lines and the quasi-orthogonal lines, and it also dependb@nariation of the meridional
fluid velocity V,,,. The continuity equation takes the form

(4.1) m= 277/ ’ rpVm (¢, m)sina (1 —b) dg,

Thub

where0 < b < 1 is the blade blockage factar,the radius of the rotating machine axisa),
andp the fluid density ¥s/m®). The inlet mass flow rate is the mass flow rate calculatedyalon
the first quasi-orthogonal line.

Knowing the geometrical lean angle of the blades, i.e., tickriation of the blades in
the tangential direction (rad), the total enthalpy? (N.m), the static temperatur€ (K),
and the entropy (//x) as input data functions evaluated by empirical rules, wefral the
variation of the meridional fluid velocity;,, as a function of the distaneg(m) along the
guasi-orthogonal lines and the meridional direction byisgj the equilibrium equation

1dV;2 2 1 d(r*V§ (q,
7de (qam) _ Vm (Q7m) SiIlOz-l—Vmavm (qvm) cosa — —— (7” (4 (q m))
2 dq Te om 27, dq
L AH (gm) S (q.m)
dq dq
Vi 0 (1V
—tane— (T 9)

r  Om ’
whered represents the direction of rotation, and the valueslgfare specified while oper-

ating the design mode. The anglidgrad) between the quasi-orthogonal lines and the stream
surface, and the radius of curvaturg(m) are updated with respect to the mass flow rate
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distributions (ke/s) . The enthalpy is updated according to the IAPWS-IF97 staamo-f
tion as described ir2B]. The entropy is calculated by fundamental thermodynaseiations
between the internal energy of the system and external deasn(e.g., friction losses).

The computational parameters of the stream lines are dravenmeridional view of
the flow path in the left panel of Figure 1 with one of the quasi-normal stations that are
strategically located in the flow between the tip and hub @ars. Several stations are gen-
erally placed in the inlet duct upstream of the turbomacHine minimum number of quasi-
orthogonal stations between the adjacent pair of blade isisply one, which characterizes
both outlet conditions from the previous row and inlet coiodis to the next. In our stream
line curvature calculation tool, there is one quasi-orthw station at each edge of each blade
row. Given these equations and a step-by-step procedurebiae a solution as described
in [22].

In the left panel of Figurd.2, the contour of the turbomachine is limited on the top by
the line that follows the tip contour at the casing and on thigdon by a line that follows the
geometry of the hub contour at the rotor. Intermediate laresadditional stream lines, dis-
tributed according to the mass flow rate that goes througbtteam tubes. Vertical inclined
lines are the quasi-orthogonal stations mainly locatethairilet and outlet of moving and
fixed blade rows.

The possibility to impose a target mass flow rate at the infehe turbomachine is
very important for its final design as it is driven by downatreconditions. Equatiord(1)
shows that the mass flow rate depends explicitly on the shiafie durbomachine through
the position of the extreme pointg,,;, andr;;, of the quasi-orthogonal lines. The purpose of
our inverse problem is to identify both hub and tip contourghe turbomachine to achieve
an expected mass flow rate at the inlet of the turbomachine.

The geometry of the contours of the turbomachine is definedunivariate interpolation
of n points along the-axis. The interpolation is based on the improved methoeldged
by Hiroshi Akima [1]. In this method, the interpolating function is a piecewigdynomial
function composed of a set of polynomials defined at suceegsiervals of the given data
points. We use the third-degree polynomial default opti®it & not required to reduce any
undulations in the resulting curves.

In this realistic example, we use five points on each curverd#sg, respectively, the
hub and the tip contours; see the right panel of Figu& The initial ten data points are
extracted from an existing geometry and are chosen arpiéguidistant along the axial di-
rection. Their radial position is linearly interpolatedngsthe two closest points. The uncon-

strained optimization will be to find.. = (r. 1,742, ..., r*yw)T € R0 such that
(4.2) f(rs) = min f(r),
. . 2
wheref (r) := E_Tm(”) , m (r) is the mass flow rate that depends on the design parame-

ters andn is the im&)sed inlet mass flow rate.

In our example, the target inlet mass flow rateris= 200 kg/s, and the initial realistic
practical geometry gives an initial mass flow rateiaf = 161.20 ks/s with

ro = (0.828,0.836,0.853,0.853,0.853,0.962, 1.05,1.337,1.701,2.124) ",
The difference between the target and the initial inlet nflagg value is about 20% which is

considered to be very significant in practice. The initiadshis shown in the left panel of
Figure4.2
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FIG. 4.2.nitial steam path contour (left panel), and Initial and aptzed steam path contours (right panel).

The moving asymptotes are chosen such that the condiids) (s automatically satis-
fied, and their numerical implementation is defined by

X (R i
L® = r® 4 4fu(:* )it g, (r®) <o,

k)
AP = ’ Slj(k)
J u® =M +47f*j§§’,?> )it £ (r®) > 0.

It is important to note the simple form which is used here f@ selection of the moving
asymptotes. The first-order partial derivatives are nuradyi calculated using a two-point
formula that computes the slope

f(ri,...,rj+hy..,ro)— f(ri,...,r5 —h,...,T10)

=1,...,10
2h ) J ) ) 9

with an error of ordeh?. For our numerical study; has been chosen equalie 10~* that
corresponds to about- 10~2 % of the size of the design parameters, which gives an ap-
proximation accurate enough. To avoid computing secodératterivatives of the objective
function f, we use the spectral parameter as defined.i¥).(We observe a good convergence
to the target inlet mass flow rate displayed in Tabl& The final stream path geometry is
compared with the initial geometry in the right panel of Figd.2, where the optimized hub
and tip contour values are

r, = (0.824,0.821,0.857,0.851, 0.853,0.966, 1.074, 1.331, 1.703, 2.124)” .

It appears that the hub contour of the optimized shape is nef@med than the tip contour,
and the shape is more sensitive to the design parameters béiththan the tip contours.

5. Concluding remarks. In this paper we develop and analyze new local convex ap-
proximation methods with explicit solutions of non-linganoblems for unconstrained op-
timization for large-scale systems and in the frameworkhef $tructural mechanical opti-
mization of multi-scale models based on the moving asyreptalgorithm (MMA).We show
that the problem leads us to use second derivative infoomaii order to solve more effi-
ciently structural optimization problems without congtta. The basic idea of our MMA
methods can be interpreted as a technique that approximatésri the curvature of the ob-
ject function. In order to avoid second derivative evaluadiin our algorithm, a sequence
of diagonal Hessian estimates, where only the first- andtzenaer information is accumu-
lated during the previous iterations, is used. As a consempjeat each step of the iterative
process, a strictly convex approximation subproblem iegaed and solved. A convergence
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TABLE 4.1
The convergence of inlet mass flow rat@: (kg/s) in the optimization problen¥(2) to the target inlet mass
flow i = 200 ke/s.

Iteration | Inlet mass flow rateri (kg/s) | Objective function:f (r)

0 162.10 0.359010~*
1 170.42 0.21881271
2 178.54 0.115096!
3 186.51 0.455025 2
4 194.32 0.806159~3
5 201.74 0.752755~4
6 199.50 0.6361897°
7 200.26 0.16733175
8 199.97 0.170603~7
9 200.10 0.232201°6
10 199.99 0.3669628

result under fairly mild assumptions, which takes into actdhe second-order derivatives
information for our optimization algorithm, is presentedietail.

Itis shown that the approximation scheme meets all wellknproperties of the MMA
such as convexity and separability. In particular, we haegollowing major advantages:

e All subproblems havexplicit solutions. This considerably reduces the computa-
tional cost of the proposed method.

e The method generates an iteration sequence, that, undkteiinical assumptions,
is bounded and converges geometrically to a stationaryt pbithe objective func-
tion with one or several variables from any "good” staringnpo

The numerical results and the theoretical analysis of timgergence are very promising
and indicate that the MMA method may be further developeaéiving general large-scale
optimization problems. The methods proposed here also eaxtended to more realistic
problems with constraints. We are now working to extend quor@ach to constrained op-
timization problems and investigate the stability of thgagithm for some reference cases
described in32].
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