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A SUBSPACE ITERATION FOR SYMPLECTIC MATRICES *
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Dedicated to Lothar Reichel on the occasion of his 60th dimh

Abstract. We study the convergence behavior of an orthogonal subsfaegion for matrices whose spec-
trum is partitioned into three groups: the eigenvaluegdmsoutside, and on the unit circle. The main focus is on
symplectic matrices. Numerical experiments are providedustiiate the theory.
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1. Introduction. Every square matri¥¥ € CN*N can be block-factorized into the
form

Woo
(1.2) W=[Xe X1 Xo W, [Xoo X1 Xo] ',
Wo

where one or two matrices amom..,, W1, and W, may be empty. The spectrum of
consists of at most three groups: (i) eigenvalyes. .., Ay of W, outside the unit cir-
cle, (ii) eigenvalues\ny__11,...,An_+n, Of Wi on the unit circle, and (iii) eigenvalues
AN+ N1 +15 - - - s ANo+N; +N, Of Wy inside the unit circle. The corresponding invariant sub-
spaces, which we denote Bs,, = rangé X.), X1 = rangé X, ), and X, = rangé X,), are
of particular importance in applications such as optimadtaa [6, Chapter 14], §, Chap-
ter 15], and the theory of parametric resonarice f.

Many applications including those mentioned above dedh wisymplectic structure.
Recall that a matrif¥ € CV*V is called.J-symplectic if W*JW = .J, whereJ € CV*¥
is an invertible skew-Hermitian matrix, i.el;; = —.J. A standard choice foJ is

(1.2) J= [Om IW?} ,

—Ins2 Ony2
where N is even and)y,, and Iy, are respectively the zero and identity matrices of or-
der N/2. WhenJ is given by (.2), the J-symplecticity of W yields the representation
W~ = —JW=*J. Moreover, ifiW is partitioned as

Wi Wi N/2x N/2
W = , Wi eC )
{Wzl WQJ j

then

(13) W71 — |: W2*2 Wl*Q:l

Wy Wi
and this formula can be used for an inexpensive computafid¥i o' ; see Algorithm.
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The symplectic structure df” implies thatN., = Ny = N — N, — Ny, and the
eigenvalues ofV, andW in (1.1) are symmetric with respect to the unit circle. When all
the blocksX ., X7, and X, are nonempty, they satisfy the followinfrorthogonalization
properties:

(1.4) X:iJXew=0, X;JXo=0, X:1JX;=0, X;JX;=0.
Furthermore, the matrices;J X, and X{.JX; are nonsingular, and the matrix
(1.5) P =X (X;JX) X T

is the projector ontadt; alongX, + X... More details are found irL].

A quadratically convergent algorithm was proposedZhfr computing the invariant
subspaces’,,, X1, and X, of a symplectic matriX¥¥’. However, this algorithm necessitates
the solution of 8V x 3N linear system at each iteration. In the present paper weopea
cheaper algorithm based on a variant of a subspace itetitable for symplectic matrices.
It is widely known that (orthogonal) subspace iterationagBable P, 10, 11] even though
its convergence rate is only linear. In our context, a ctadsiariant of subspace iteration
is formally implemented as follows: starting fro@y = I, wherel denotes the identity
matrix, compute iteratively)), by means of the QR factorization¥ Q1 = QrRi. If

Qi = ]<€°°> Q;ﬂ” QECO) is partitioned such the(t),(fo) € CNXNeo, QS) e CN>*N1 and

cho) € CNxNo then the convergence properties of the subspace iteraidinod (see, e.g.,
[10, Chapter 5]) guarantee that for large the subspaces ra ff")), rangQQg)), and
rangQfoO)) approximatet,,, X7, and Xj, respectively. However, the detection of conver-
gence can be nontrivial.
We propose another variant of subspace iteration:
ALGORITHM 1.
1. SetQ(),l = QO,Q =1.

WQ1,k-1 Q1k
2. Fork=1,2,... ’ = 1 Ry.
U {WIQZ,kl} |:Q2,IJ ¥

Here the matrice§); x, Qa1 € CV*¥ satisfy the identityQ} ,Q1x + Q3 Qo = I,
and the matrixk, € CV*¥ is upper triangular. Step 2 uses formulad for a symplectic
matrix W. This variant has been used in the context of spectral dichptfor a general
matrix [1, 3], where the identity matrix was used in step 2 insteadof'. In such a case,
Algorithm 1 is twice as slow; see the numerical experiments in Seetion

We will show that for larget, the subspaces ran@e; ;) and rangéQ)- ) approximate
Xoo + X1 and Xy + Ay, respectively, and that the intersection raf@ey) N rangeQ- )
approximatest;. An orthogonalization process is then applied to extPact and X, from
X + Xy and Xy + A7

The convergence behavior of Algorithinis studied in Sectior2. Roughly speaking,
convergence is fast if the spectra of the blotKs, and1¥;, are well separated from the unit
circle, W, is diagonalizable, and the condition number[!?:ff00 X XO] is not large.

The following notation and assumptions are used througtheytaper. The matri¥/; is
assumed to be diagonalizable and hence diagonal ddeljo The identity and null matrices
of orderp are denoted by, and0,, or just/ and0 when the order is clear from the context.
The 2-norm and Frobenius norm of a matrare denoted bijA||» and|| A . The transpose
conjugate ofA is denoted byA*. A calligraphic letterA denotes the subspace rafdée
corresponding to a matrid. The singular values of a matrif are labeled in decreasing
order, i.e..0max(A) = 01(4) > 02(A) > ... > omin(A). If Ais nonsingular, its condition
nuMberoyax(A)/omin (A) with respect to the 2-norm is denoted by cof).
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2. Convergence theory for Algorithm 1. The columns of the matri{gl”“} form an
2,k
k

orthonormal basis of the linear space spanned by the colafiiiie matrix [wvyk] This

fact follows from the following proposition.
PROPOSITION2.1. For the matrices in Algorithni, we have

WE] Qi -
e = (3] 7

whereR;, = R, Ry ... Ry is upper triangular, and

Q7 xQix + Q5 Qap = 1.

Proof. Apply induction as follows:

wk Wwk-1 w _ _ —
l:W—k:| = |:W—1w—k+1:| = [W_?Cljskij Ry, = [81,1@} RyRy—1. a

Let us choose the block diagonal factorization

Wee
W=X wWh X!
Wo
Wee
= [Xe X1 X0 W, [Xoo X1 Xo]™'
Wo

2.1)

so that the columns ok, are eigenvectors of unit length corresponding to the eigiees
of W on the unit circle and the orthonormality conditions

(2.2) X:Xoo=1 XiXo=1I

hold. Then the norm oK satisfies the bounilX||> < /2 + N;.
By Proposition2.1, the linear space spanned by the columns of

I
X wk
k&
Wo;2k
X Wik

|18
(2.3)

I
coincides with the linear space spanned by the columns oh#tex A, + E%, where
I | [ o
X Wk X 0

0 Wk

(2.4) Ay = Ep =
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Convergence of Algorithr is based on the following result from the perturbation tlydor
the @ R factorization.

THEOREM 2.2 (Sun [L3]). Consider QR factorizations = QR and A + £ = @ﬁ

with the upper triangular factors having positive diaganiébr matricesA and A + F of full
column rank. Ifj A||o|| E||2 < 1, whereA' is the Moore-Penrose pseudoinversedothen

VI Al Bl
VI=TAT[: B>

To apply this theorem, we need the following lemmas.
LEMMA 2.3.For all £ > 0, we have

_1\k
[Ekll2 < Vw (1 -w™h)",
wherew = max { || 3272 W (W5) ||, [| 22720 W (WF) (2} > 1.
Proof. The norms of the matrix powei&?* andW 2%, k > 0, decay as follows (see,

e.g. F:
1 \* 1 k
Wkl < Tl (1 ) Wl < T (1 ) ,

[ Holl2 [Hooll2

1Q-Qllr <

whereHy = Y02 WEWE)* and Hoo = Y07, W R (W F)*. Furthermore, fromZ.2)

o0

and @.4) we obtain|| Ej |3 = max {||Wg* |3, [|[W2(3}. O
LEMMA 2.4. The Moore-Penrose pseudoinversedgfsatisfies the bound
1AL < 11X l2-
Proof. From the properties of the singular valuég][and the matrixi}’;, we have

1

Umin(Ak) > Omin 0 Umin(X) = Omin (X)7
w*
1

which yields the desired bound. 0O
Lemmas2.3 and2.4 show thatA4,, has full rank and4, + E} has full rank for largek.
To apply Theoren?.2for sufficiently largek, consider th&) R decompositions

(2.5) Ay = QrBy, Ar+Ep= QrRy.

From 2.3) and @.4) we know thatQ,, = {8%] LetQr = [glk} Then with the help of
2.k ~ 2,k

Lemmas2.3, 2.4, and Theoren2.2, we arrive at the following convergence estimate
= V2VN | X 2v/(1 —w )t
2( > .

VI [ X lov/a(l — o hF

From this estimate and the fact th@{ ;, = X + &} and Q. = X + Ap, we obtain the
following result.

(2.6) maX{”Ql,k = Qi kll2, Q26 — Q2%
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PROPOSITION2.5. Algorithm 1 is linearly convergent, and
lim Q= X0+ &1, lim Q= A1 + &p.
k—o0 k—o00

The above convergence analysis shows that convergencdyrdajends on the condition
number of the matriXX’ from the block-diagonalizatior2(1) and on the decay of the powers
of Wy andW !,

The next theorem characterizes the singular vaIue@ng andgm. For largek, this
theorem and the estimat.¢) characterize the singular values @f , and()s ;. Such a
characterization will be useful mainly for numerical pusps; see Sectich

THEOREM2.6.The matrixQL,C hasN, singular values equal to 1y, singular values

equal to 0, andV; singular values in the intervdk, v/1 — s2], wheres = . The
singular valuesr; (@2 1) equal \/1 — 0% i1 (Quk)-

Proof. SinceQ; ,Q1.x + Q5 Q2.1 = I, itis clear thav? (Q1 k) + 0% ;1 (Q2) = 1.
Also, since from 2.4) and @.5) if follows that

1
V2 condh (X)

I 0
Qi =X Wt R, Qar=X Wik R,

0 I

it is clear thata,;(gl,k,) =0fori > Noo + NV andai(gw) = 0fori > Ny + Ny, and
thereforeai(Ql,k) =1forl <i< N4 andai(szk) =1for1l <i< Ng.

From 2.4) and @.5),

* *

I I 0 0
RiRy = WE XX Wk + wk XX wk 7
0 0 I I

which yields||Ry|[> < v2||X 2.
Now, fori < N + Ny,

I
l=o; | WY < ai( QU)X l2l|Brll2 < 0i(Q1.1) V2 condy (X).
0

Hence,0:(Q1.x) > m for i < N + Ny. Similarly, 04(Q2,x) for

1 < No+ Nj. a

1
> V2 conds (X)

3. Algorithmic aspects. In this section we discuss some important issues that arise
when implementing Algorithni, namely the approximation of the invariant subspates
Xp, and X, from the matrices); , and(@)s, ; and the stopping criterion.

3.1. Computation of X, Xp, and X.,. The subspace; is the intersection of the
subspaced’, + X1 andX; + X,. From Propositior2.5, the natural way to obtain such an in-
tersection, once the iteration has been stopped, is to dertipeiintersection of the subspaces
Q1 and Qs ;. This can be obtained from the SVDs@f , andQ-  [7, Chapter 12]. Let
Q1,1 andQ2 i, be matrices whose columns form orthonormal base3,0f andQ, ;. Then
the intersection can be obtained as the left or right simgudetors associated with the singu-
lar values of; . Q1,,; that are equal ta.
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Let X, be the matrix whose columns are formed by these singulaorgectrhen we
haveX; ~ X, andP; = X;(X;JX;) !X J is an approximation of the projectd?;
given in (L.5). The J-orthogonalization propertied (4) allow us to conclude that

X = range(([ — 151)Q17k) ~ X, and /’?0 = range(([ — ﬁl)QM) ~ Xp.

If needed, the approximate projectors ortQ andX; can be constructed as follows: since
by construction, the matriced — P1)Q1,, and (I — P1)Q2 have onlyN,, = N, non-
negligible singular values, the SVDs of — P;)Q, , and(I — P,)Q,., yield matricesX
and X, of No, = N, orthonormal columns (left singular vectors associateth Wit larger
singular values) which form an approximate basistgf andx,. The desired projectors are
then given byP., = X (X3JXo) X J and Py = Xo(XZJX0) "1 X2 J.

3.2. Stopping criterion. An important and difficult task is the choice of an effective ¢
terion to stop the iteration of Algorithrh We have seen in Secti@that the subspacég,
and Q; ;, converge tot,, + &} and A} + AXp, respectively. In particular, for large, the
matricesQ; , and Qs , become singular, th&/y = N, smallest singular values @, ;,
and@). ;, converge td), the N, = N largest singular values convergeltoand the remain-
ing N, singular values oscillate in the open inter¢@l1). This fact can be used as a stopping
criterion.

For example, if the eigenvalues @f are all on the unit circle (i.,eNo, = Ny = 0),
thenQ; ;, andQ, ; converge toY;. Actually, in this case,1(.1) reduces tdV = X1W1X1_1.

It can easily be shown that the®, , = Q2 = &) for all & > 1. In other words, Algo-
rithm 1 converges at the first iteration. In practice, if the singwalues ofQ; j or Q2 1
oscillate in(0,1), we may conclude that the eigenvaluesitfare all on the unit circle.
ThenX, = X.. = 0, andX; can be computed as explained above.

If W has no eigenvalue on the unit circle, i.8,, = Ny = N/2, thenQ; ; converges
to X, andQ, ;, converges taty. For largek, @, , andQs ;, haveN/2 singular values close
to 0 and N/2 singular values close tb. A stopping criterion is obtained by monitoring the
decrease t0 of the (§ + 1)-st largest singular value @, ;. Another stopping criterion
can be derived from the propetiyn;_,~, 0;(Q1,xQ% ;) = 0 for all ¢, and thus, the stopping
criterion consists of checking if the norﬂx&,kQS’kH’z is less than some fixed threshald.

In the general case when there are eigenvalues inside, duside the unit circle, for
largek, @1, hasN., singular values close tb, Ny = N, singular values close 10, and
N; = N — 2N, singular values that oscillate in the open inter{@l1). The numerical
experiments show that in general the convergence aad0 is fast when there is a suffi-
ciently large gap between the eigenvalues on the unit cinetbthose outside or inside of it.
A stopping criteria is obtained by monitoring the largergsilar values ofy); 5, (which must
converge tol). The iterations are stopped when the number of ones stebito a value,
say,Noo, andoy _5 1 (Quk) <tol <oy_z (Q1k), Wheretol is some prescribed toler-

ance. Then we se¥,, = N... To keep the cost as small as possible, the computation of the
singular values is carried out periodically, for examplegrg 10th iteration. Once the itera-
tion is stopped, the matrices,,, X;, and X, can be computed as explained in Sectioh

Note that these matrices must satisfy approximately thpesties (.4) and (L.5), which can

be used as an a posteriori verification of the accuracy ofdhgpated matrices.

4. Numerical experiments. In this section we report some numerical experiments illus-
trating the convergence behavior of Algoritlimin all tests, the matrix has the form1.2).
We also present comparisons with Algorithm 2 which consi$teplacing, in step 2 of Al-
gorithm1, the matrixi¥ —! by the identity matrix.
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10°
— Algorithm 1
100
gj
o:
10 3
10 0 200 400 600 800 1000
iteration k
Fic. 4.1. Convergence behavior of Algo-
rithms1and2 (Examples.2).
TABLE 4.1
Singular values of); , (Example4.2).
iterationk
1 50 100 150 190
a1(Q1 k) 9.983 107! 1 1 1 1
O’10(Q17k) 7.794 10_1 1 1 1 1
011(Q1,5) | 7.002 107" | 1.356 1073 | 9.844 1078 | 7.142 10~'2 | 2.400 10 '5
020(Q1x) | 5.805107% | 4.7701072" | 3.741107%° | 2.814107% | 3.659 10778

ExamMpPLE 4.1. This example shows that Algorithinconverges at the first iteration
when the eigenvalues &F are all on the unit circle. The matri¥ is chosen block diagonal
asW = bl ockdi ag (@, @), where@ is a10 x 10 orthogonal matrix constructed with the
MATLAB function or t hog.

At the first iteration of Algorithml (k = 1), the singular values of the matr@®; ; are
all equal t07.0711 10~ and remain the same during all iterations. From the disonssi
Section3.2, we conclude that the eigenvaluesl@fare all on the unit circle. The algorithm

computesX; being of order0 satisfying||W X; — X; ()?fW)?l) | = 1.5504 105 and

P, satisfying|| P, — || = 1.3545 1017
EXAMPLE 4.2. This example shows that wh&n has no eigenvalues on the unit circle
(N = Ny = N), then theN, largest (smallest) singular values@f , andQ; ; converge
to 1 (0). The matrixW is given byW = bl ockdi ag (4, (A7!)*), whereA is a10 x 10
upper triangular matrix whose strictly upper triangulartpgchosen randomly i(0, 1) and
the diagonal elements are such thgk, k) = 1 + k£/10, k = 1,...,10. ThereforelV has
Ny = 10 eigenvalues inside the unit circle and, = 10 eigenvalues outside of it. Following
the discussion in Sectioch2, we show in Figurel.1and Tablet.1 (and especially in line 4 of
this table) the convergence @af the 11-th largest singular value @, ;. With the stopping
criterion discussed in Sectidgh2 andtol = 10~'4, Algorithm 1 necessitate$90 iterations.
The figure also exhibits the results of AlgorititnAt iteration431, o11(Q1,x) computed by
Algorithm 2 stagnates alt.4681 10~ 4.
At iterationk = 190, Algorithm 1 computes matrice§0 and)N(OO each of size20 x 10

whose columns are orthonormal and sati$fy X, — X, (J?SW)N(O) | = 8.3316 10716

and || WX, — Xoo ()?;‘OW)?OC) | = 1.7496 10~'5. The computed projectoi®,, P, sat-
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— Algorithm1
- - Algorithm2

0

10

l.k)

0y

0 200 400 600 800 1000
iteration k

Fic. 4.2. Convergence behavior of Algo-
rithms1and2 (Example4.3).

TABLE 4.2
Singular values of); ;, (Example4.3).

iterationk
1 50 100
o1(Q1,x) 9.991 107! 1 1
o6(Q1.%) 7.268 1071 8.410 107! 9.496 1071
o7(Q1.x) 7.071 1071 7.071 1071 7.071 1071
014(Q1x) | 7.071107" 7.071 1071 7.071 1071
o015(Q1,x) | 6.867 107" | 5410107 " | 3.133 107"
720(Q1.1) 4.101 1072 1.702 10713 1.485 1071
iterationk
150 200 250
o1 (Qlyk) 1 1
o6(Q1,k) 1 1 1
o7(Q1.x) 7.071 1071 7.071 1071 7.071 1071
014(Q1.1) 7.071 107! 7.071 1071 7.071 107!
015(Q1,x) | 6.216 10 | 7.020 107% | 8.380 10~ !
o20(Q1 1) | 5.5181072° | 1.409 10~23 1.638 1071

isfy trace Py) =trace Ps) = 10, ||P§ — Po|| = 9.5835 10718, || P2 — Poo||= 4.1679 1016

and|| Py 4 P — I = 9.5835 10~ 16.

EXAMPLE 4.3.

This example reveals the convergence behavior whénhas

eigenvalues inside, on, and outside the unit circle.  Therimatl’ is given by
W = bl ockdi ag (4, (47")*) with A = bl ockdi ag (4o, A;) where 4, is a6 x 6-
Jordan block corresponding to the eigenvaluUeand A, is a4 x 4 orthogonal matrix con-
structed with the MATLAB functioror t hog. ThereforeJ// hasNy = 6 eigenvalues inside
the unit circle,N,, = 6 eigenvalues outside the unit circle, aig = 8 eigenvalues on the

unit circle. The singular valuess, o1, - -

., 090 Should converge t0. The stopping criterion

discussed in Sectioh2is used withtol = 1071, Algorithm 1 required250 iterations while
Algorithm 2 required500 iterations. The convergence behavior of both algorithnsh@vn
in Figure4.2 Table4.2illustrates the convergence of the singular valueg of, computed

by Algorithm 1.
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TABLE 4.3
Singular values of); ,, (Example4.4).
iterationk
1 100 200 400 600

o1(Q1x) | 9.9999 1071 1 1 1 1
o6(Q1x) | 9.1297 1071 1 1 1 1
o7(Q1 k) | 8.9088 1071 1 1 1 1
o8(Q1x) | 8.1080 1071 1 1 1 1
0o(Q1x) | 8.04231071 | 9.9995 107! | 9.9999 10! 1 1
o10(Q1x) | 7.4643 1071 | 9.9995 1071 | 9.9999 10" 1 1
o11(Q1,%) | 6.6546 107 | 1.0148 1072 | 5.0373 1073 | 2.5094 107% | 1.6708 10~*
012(Q11) | 5.94321071 | 9.8486 107 | 4.9623 107° | 2.4906 10~% | 1.6625 103
013(Q1%) | 5.8532107 | 7.6121 1077 | 9.4452107% | 1.1763107% | 3.4809 107°
o14(Q1x) | 45423107 | 7.38721077 | 9.3046 107% | 1.1675107% | 3.4635107°

o15(Q1x) | 4.0802 107" | 4.5589 10~ '* | 4.5589 107'* | 4.5589 10~'* | 4.5589 10~
020(Q1.%) | 3.5487 1072 | 6.7017 107 '® | 6.7017 107'® | 6.7017 107*® | 6.7017 10~ '®

At iterationk = 250, Algorithm 1 computes matriceX,, X;, andX., of sizes20 x 6,
20 x 8, and 20 x 6, respectively, whose columns are orthonormal and whiclsfyati

W Xo — Xo (ngffo) | = 8.9496 10716, [WX, — X, (X;fwf(l) | = 1.4938 1015,

and||W X

~ X (X‘ WX o >||:1.4164 10715,

The computed projectots, Py, P., satisfy tracéP,) = trace{P o) =6, tracg P,) = 8,

175 —

P0|| = 3.2880 10716, | P2 —

Py|| = 3.5060 1016, || P2 —

and||Py 4+ Py + Ps, — || = 5.1514 10716,
EXAMPLE 4.4. This example shows that the diagonalizability conditmposed oy
is necessary for the extraction of the desired invariansgabtes. Without this condition, the
behavior of Algorithm1 is unpredictable. We consider the preceding example wHgris
a4 x 4-Jordan block for the eigenvalde Table4.3displays the singular values f; ;.
It seems that, during the iterations, tResigenvalues on the unit circle moved off the
unit circle preserving the symmetry of the spectrum. Seesthgular valuess;(Q1 1),

i=17,8,...,

circle and4 moved inside of it.

Py |

= 4.6857 10716,

14, in Table 4.3, where we observe thdt eigenvalues moved out of the unit

5. Conclusions. We have studied the behavior of a variant of a subspaceiderstited
for symplectic matrices. The study reveals the paramegsgonsible for the convergence
rate. The algorithm is attractive due to its simplicity ahd tow cost of a single iteration.
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