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Abstract. We study the convergence behavior of an orthogonal subspaceiteration for matrices whose spec-
trum is partitioned into three groups: the eigenvalues inside, outside, and on the unit circle. The main focus is on
symplectic matrices. Numerical experiments are provided to illustrate the theory.
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1. Introduction. Every square matrixW ∈ C
N×N can be block-factorized into the

form

(1.1) W =
[
X∞ X1 X0

]


W∞

W1

W0


 [

X∞ X1 X0

]−1
,

where one or two matrices amongW∞, W1, andW0 may be empty. The spectrum ofW
consists of at most three groups: (i) eigenvaluesλ1, . . . , λN∞

of W∞ outside the unit cir-
cle, (ii) eigenvaluesλN∞+1, . . . , λN∞+N1

of W1 on the unit circle, and (iii) eigenvalues
λN∞+N1+1, . . . , λN∞+N1+N0

of W0 inside the unit circle. The corresponding invariant sub-
spaces, which we denote byX∞ = range(X∞), X1 = range(X1), andX0 = range(X0), are
of particular importance in applications such as optimal control [6, Chapter 14], [8, Chap-
ter 15], and the theory of parametric resonance [5, 14].

Many applications including those mentioned above deal with a symplectic structure.
Recall that a matrixW ∈ C

N×N is calledJ-symplectic ifW ∗JW = J , whereJ ∈ C
N×N

is an invertible skew-Hermitian matrix, i.e.,J∗ = −J . A standard choice forJ is

(1.2) J =

[
0N/2 IN/2

−IN/2 0N/2

]
,

whereN is even and0N/2 andIN/2 are respectively the zero and identity matrices of or-
der N/2. WhenJ is given by (1.2), the J-symplecticity ofW yields the representation
W−1 = −JW ∗J . Moreover, ifW is partitioned as

W =

[
W11 W12

W21 W22

]
, Wij ∈ C

N/2×N/2,

then

(1.3) W−1 =

[
W ∗

22 −W ∗
12

−W ∗
21 W ∗

11

]
,

and this formula can be used for an inexpensive computation of W−1; see Algorithm1.
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The symplectic structure ofW implies thatN∞ = N0 = N − N∞ − N1, and the
eigenvalues ofW∞ andW0 in (1.1) are symmetric with respect to the unit circle. When all
the blocksX∞, X1, andX0 are nonempty, they satisfy the followingJ-orthogonalization
properties:

(1.4) X∗
∞JX∞ = 0, X∗

0JX0 = 0, X∗
∞JX1 = 0, X∗

0JX1 = 0.

Furthermore, the matricesX∗
0JX∞ andX∗

1JX1 are nonsingular, and the matrix

(1.5) P1 = X1(X
∗
1JX1)

−1X∗
1J

is the projector ontoX1 alongX0 + X∞. More details are found in [14].
A quadratically convergent algorithm was proposed in [2] for computing the invariant

subspacesX∞, X1, andX0 of a symplectic matrixW . However, this algorithm necessitates
the solution of a3N × 3N linear system at each iteration. In the present paper we propose a
cheaper algorithm based on a variant of a subspace iterationsuitable for symplectic matrices.
It is widely known that (orthogonal) subspace iteration is reliable [9, 10, 11] even though
its convergence rate is only linear. In our context, a classical variant of subspace iteration
is formally implemented as follows: starting fromQ0 = I, whereI denotes the identity
matrix, compute iterativelyQk by means of the QR factorizationsWQk−1 = QkRk. If

Qk =
[
Q

(∞)
k Q

(1)
k Q

(0)
k

]
is partitioned such thatQ(∞)

k ∈ C
N×N∞ , Q(1)

k ∈ C
N×N1 , and

Q
(0)
k ∈ C

N×N0 , then the convergence properties of the subspace iterationmethod (see, e.g.,

[10, Chapter 5]) guarantee that for largek, the subspaces range(Q
(∞)
k ), range(Q(1)

k ), and

range(Q(0)
k ) approximateX∞, X1, andX0, respectively. However, the detection of conver-

gence can be nontrivial.
We propose another variant of subspace iteration:
ALGORITHM 1.
1. SetQ0,1 = Q0,2 = I.

2. Fork = 1, 2, . . . ,

[
WQ1,k−1

W−1Q2,k−1

]
=

[
Q1,k

Q2,k

]
Rk.

Here the matricesQ1,k, Q2,k ∈ C
N×N satisfy the identityQ∗

1,kQ1,k + Q∗
2,kQ2,k = I,

and the matrixRk ∈ C
N×N is upper triangular. Step 2 uses formula (1.3) for a symplectic

matrix W . This variant has been used in the context of spectral dichotomy for a general
matrix [1, 3], where the identity matrix was used in step 2 instead ofW−1. In such a case,
Algorithm 1 is twice as slow; see the numerical experiments in Section4.

We will show that for largek, the subspaces range(Q1,k) and range(Q2,k) approximate
X∞ + X1 andX0 + X1, respectively, and that the intersection range(Q1,k) ∩ range(Q2,k)
approximatesX1. An orthogonalization process is then applied to extractX∞ andX0 from
X∞ + X1 andX0 + X1.

The convergence behavior of Algorithm1 is studied in Section2. Roughly speaking,
convergence is fast if the spectra of the blocksW∞ andW0 are well separated from the unit
circle,W1 is diagonalizable, and the condition number of

[
X∞ X1 X0

]
is not large.

The following notation and assumptions are used throughoutthe paper. The matrixW1 is
assumed to be diagonalizable and hence diagonal due to (1.1). The identity and null matrices
of orderp are denoted byIp and0p or justI and0 when the order is clear from the context.
The 2-norm and Frobenius norm of a matrixA are denoted by‖A‖2 and‖A‖F . The transpose
conjugate ofA is denoted byA∗. A calligraphic letterA denotes the subspace range(A)
corresponding to a matrixA. The singular values of a matrixA are labeled in decreasing
order, i.e.,σmax(A) = σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(A). If A is nonsingular, its condition
numberσmax(A)/σmin(A) with respect to the 2-norm is denoted by cond2(A).
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2. Convergence theory for Algorithm 1. The columns of the matrix

[
Q1,k

Q2,k

]
form an

orthonormal basis of the linear space spanned by the columnsof the matrix

[
W k

W−k

]
. This

fact follows from the following proposition.
PROPOSITION2.1. For the matrices in Algorithm1, we have

[
W k

W−k

]
=

[
Q1,k

Q2,k

]
R̄k,

whereR̄k = RkRk−1 . . . R1 is upper triangular, and

Q∗
1,kQ1,k +Q∗

2,kQ2,k = I.

Proof. Apply induction as follows:

[
W k

W−k

]
=

[
WW k−1

W−1W−k+1

]
=

[
WQ1,k−1

W−1Q2,k−1

]
R̄k−1 =

[
Q1,k

Q2,k

]
RkR̄k−1.

Let us choose the block diagonal factorization

W = X



W∞

W1

W0


X−1

=
[
X∞ X1 X0

]


W∞

W1

W0


 [

X∞ X1 X0

]−1

(2.1)

so that the columns ofX1 are eigenvectors of unit length corresponding to the eigenvalues
of W on the unit circle and the orthonormality conditions

(2.2) X∗
∞X∞ = I, X∗

0X0 = I

hold. Then the norm ofX satisfies the bound‖X‖2 ≤
√
2 +N1.

By Proposition2.1, the linear space spanned by the columns of

(2.3)

[
W k

W−k

]
=




X



I

W k
1

W 2k
0




X



W−2k

∞
W−k

1

I









W k

∞
I

W−k
0


X−1

coincides with the linear space spanned by the columns of thematrixAk + Ek, where

(2.4) Ak =




X



I

W k
1

0




X



0

W−k
1

I







, Ek =




X



0

0
W 2k

0




X



W−2k

∞
0

0







.
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Convergence of Algorithm1 is based on the following result from the perturbation theory for
theQR factorization.

THEOREM 2.2 (Sun [13]). Consider QR factorizationsA = Q
˜
R
˜

andA + E = Q̃R̃

with the upper triangular factors having positive diagonals for matricesA andA+E of full
column rank. If‖A†‖2‖E‖2 < 1, whereA† is the Moore-Penrose pseudoinverse ofA, then

‖Q̃−Q
˜
‖F ≤

√
2‖A†‖2‖E‖F√
1− ‖A†‖2‖E‖2

.

To apply this theorem, we need the following lemmas.
LEMMA 2.3. For all k ≥ 0, we have

‖Ek‖2 ≤
√
ω
(
1− ω−1

)k
,

whereω = max
{
‖∑∞

k=0 W
k
0 (W

k
0 )

∗‖2, ‖
∑∞

k=0 W
−k
∞ (W−k

∞ )∗‖2
}
> 1.

Proof. The norms of the matrix powersW 2k
0 andW−2k

∞ , k ≥ 0, decay as follows (see,
e.g., [4]):

‖W 2k
0 ‖2 ≤

√
‖H0‖2

(
1− 1

‖H0‖2

)k

, ‖W−2k
∞ ‖2 ≤

√
‖H∞‖2

(
1− 1

‖H∞‖2

)k

,

whereH0 =
∑∞

k=0 W
k
0 (W

k
0 )

∗ andH∞ =
∑∞

k=0 W
−k
∞ (W−k

∞ )∗. Furthermore, from (2.2)

and (2.4) we obtain‖Ek‖22 = max
{
‖W 2k

0 ‖22, ‖W−2k
∞ ‖22

}
.

LEMMA 2.4. The Moore-Penrose pseudoinverse ofAk satisfies the bound

‖A†
k‖2 ≤ ‖X−1‖2.

Proof. From the properties of the singular values [12] and the matrixW1, we have

σmin(Ak) ≥ σmin







I
W k

1

0
0

W−k
1

I







σmin(X) = σmin(X),

which yields the desired bound.
Lemmas2.3 and2.4 show thatAk has full rank andAk + Ek has full rank for largek.

To apply Theorem2.2for sufficiently largek, consider theQR decompositions

(2.5) Ak = Q
˜
kR˜k, Ak + Ek = Q̃kR̃k.

From (2.3) and (2.4) we know thatQ̃k =

[
Q1,k

Q2,k

]
. LetQ

˜
k =

[
Q
˜
1,k

Q
˜
2,k

]
. Then with the help of

Lemmas2.3, 2.4, and Theorem2.2, we arrive at the following convergence estimate

(2.6) max
{
‖Q1,k −Q

˜
1,k‖2, ‖Q2,k −Q

˜
2,k‖2

}
≤

√
2
√
N‖X−1‖2

√
ω(1− ω−1)k√

1− ‖X−1‖2
√
ω(1− ω−1)k

.

From this estimate and the fact thatQ
˜
1,k = X∞ + X1 andQ

˜
2,k = X1 + X0, we obtain the

following result.
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PROPOSITION2.5. Algorithm1 is linearly convergent, and

lim
k→∞

Q1,k = X∞ + X1, lim
k→∞

Q2,k = X1 + X0.

The above convergence analysis shows that convergence mainly depends on the condition
number of the matrixX from the block-diagonalization (2.1) and on the decay of the powers
of W0 andW−1

∞ .
The next theorem characterizes the singular values ofQ

˜
1,k andQ

˜
2,k. For largek, this

theorem and the estimate (2.6) characterize the singular values ofQ1,k andQ2,k. Such a
characterization will be useful mainly for numerical purposes; see Section4.

THEOREM 2.6. The matrixQ
˜
1,k hasN∞ singular values equal to 1,N0 singular values

equal to 0, andN1 singular values in the interval[s,
√
1− s2], wheres = 1√

2 cond2(X)
. The

singular valuesσi(Q
˜
2,k) equal

√
1− σ2

N−i+1(Q
˜
1,k).

Proof. SinceQ
˜
∗
1,kQ

˜
1,k +Q

˜
∗
2,kQ

˜
2,k = I, it is clear thatσ2

i (Q
˜
1,k) + σ2

N−i+1(Q
˜
2,k) = 1.

Also, since from (2.4) and (2.5) if follows that

Q
˜
1,k = X



I

W k
1

0


R
˜
−1
k , Q

˜
2,k = X



0

W−k
1

I


R
˜
−1
k ,

it is clear thatσi(Q
˜
1,k) = 0 for i > N∞ + N1 andσi(Q

˜
2,k) = 0 for i > N0 + N1, and

therefore,σi(Q
˜
1,k) = 1 for 1 ≤ i ≤ N∞ andσi(Q

˜
2,k) = 1 for 1 ≤ i ≤ N0.

From (2.4) and (2.5),

R
˜
∗
kR˜k =



I

W k
1

0



∗

X∗X



I

W k
1

0


+



0

W−k
1

I



∗

X∗X



0

W−k
1

I


 ,

which yields‖Rk‖2 ≤
√
2‖X‖2.

Now, for i ≤ N∞ +N1,

1 = σi



I

W k
1

0


 ≤ σi(Q

˜
1,k)‖X−1‖2‖Rk‖2 ≤ σi(Q

˜
1,k)

√
2 cond2(X).

Hence,σi(Q
˜
1,k) ≥ 1√

2 cond2(X)
for i ≤ N∞ + N1. Similarly, σi(Q

˜
2,k) ≥ 1√

2 cond2(X)
for

i ≤ N0 +N1.

3. Algorithmic aspects. In this section we discuss some important issues that arise
when implementing Algorithm1, namely the approximation of the invariant subspacesX∞,
X0, andX∞ from the matricesQ1,k andQ2,k and the stopping criterion.

3.1. Computation ofX∞, X0, and X∞. The subspaceX1 is the intersection of the
subspacesX∞+X1 andX1+X0. From Proposition2.5, the natural way to obtain such an in-
tersection, once the iteration has been stopped, is to compute the intersection of the subspaces
Q1,k andQ2,k. This can be obtained from the SVDs ofQ1,k andQ2,k [7, Chapter 12]. Let
Q1,k andQ2,k be matrices whose columns form orthonormal bases ofQ1,k andQ2,k. Then
the intersection can be obtained as the left or right singular vectors associated with the singu-
lar values ofQ∗

2,kQ1,k that are equal to1.
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Let X̃1 be the matrix whose columns are formed by these singular vectors. Then we
haveX̃1 ≈ X1, and P̃1 = X̃1(X̃

∗
1JX̃1)

−1X̃H
1 J is an approximation of the projectorP1

given in (1.5). TheJ-orthogonalization properties (1.4) allow us to conclude that

X̃∞ ≡ range
(
(I − P̃1)Q1,k

)
≈ X∞ and X̃0 ≡ range

(
(I − P̃1)Q2,k

)
≈ X0.

If needed, the approximate projectors ontoX∞ andX0 can be constructed as follows: since
by construction, the matrices(I − P̃1)Q1,k and (I − P̃1)Q2,k have onlyN∞ = N0 non-
negligible singular values, the SVDs of(I − P̃1)Q1,k and(I − P̃1)Q2,k yield matricesX̃∞
andX̃0 of N∞ = N0 orthonormal columns (left singular vectors associated with the larger
singular values) which form an approximate basis ofX∞ andX0. The desired projectors are
then given byP̃∞ = X̃∞(X̃∗

0JX̃∞)−1X̃H
0 J andP̃0 = X̃0(X̃

H
∞JX̃0)

−1X̃H
∞J .

3.2. Stopping criterion. An important and difficult task is the choice of an effective cri-
terion to stop the iteration of Algorithm1. We have seen in Section2 that the subspacesQ1,k

andQ2,k converge toX∞ + X1 andX1 + X0, respectively. In particular, for largek, the
matricesQ1,k andQ2,k become singular, theN0 = N∞ smallest singular values ofQ1,k

andQ2,k converge to0, theN∞ = N0 largest singular values converge to1, and the remain-
ingN1 singular values oscillate in the open interval(0, 1). This fact can be used as a stopping
criterion.

For example, if the eigenvalues ofW are all on the unit circle (i.e.,N∞ = N0 = 0),
thenQ1,k andQ2,k converge toX1. Actually, in this case, (1.1) reduces toW = X1W1X

−1
1 .

It can easily be shown that thenQ1,k = Q2,k = X1 for all k ≥ 1. In other words, Algo-
rithm 1 converges at the first iteration. In practice, if the singular values ofQ1,k or Q2,k

oscillate in(0, 1), we may conclude that the eigenvalues ofW are all on the unit circle.
ThenX̃0 = X̃∞ = 0, andX̃1 can be computed as explained above.

If W has no eigenvalue on the unit circle, i.e.,N∞ = N0 = N/2, thenQ1,k converges
toX∞ andQ2,k converges toX0. For largek, Q1,k andQ2,k haveN/2 singular values close
to 0 andN/2 singular values close to1. A stopping criterion is obtained by monitoring the
decrease to0 of the (N2 + 1)-st largest singular value ofQ1,k. Another stopping criterion
can be derived from the propertylimk→∞ σi(Q1,kQ

∗
2,k) = 0 for all i, and thus, the stopping

criterion consists of checking if the norm‖Q1,kQ
∗
2,k‖2 is less than some fixed thresholdtol.

In the general case when there are eigenvalues inside, on, and outside the unit circle, for
largek, Q1,k hasN∞ singular values close to1, N0 = N∞ singular values close to0, and
N1 = N − 2N∞ singular values that oscillate in the open interval(0, 1). The numerical
experiments show that in general the convergence to1 and0 is fast when there is a suffi-
ciently large gap between the eigenvalues on the unit circleand those outside or inside of it.
A stopping criteria is obtained by monitoring the larger singular values ofQ1,k (which must
converge to1). The iterations are stopped when the number of ones stabilizes to a value,
say,Ñ∞, andσN−Ñ∞+1(Q1,k) < tol < σN−Ñ∞

(Q1,k), wheretol is some prescribed toler-

ance. Then we setN∞ = Ñ∞. To keep the cost as small as possible, the computation of the
singular values is carried out periodically, for example, every 10th iteration. Once the itera-
tion is stopped, the matrices̃X∞, X̃1, andX̃0 can be computed as explained in Section3.1.
Note that these matrices must satisfy approximately the properties (1.4) and (1.5), which can
be used as an a posteriori verification of the accuracy of the computed matrices.

4. Numerical experiments. In this section we report some numerical experiments illus-
trating the convergence behavior of Algorithm1. In all tests, the matrixJ has the form (1.2).
We also present comparisons with Algorithm 2 which consistsof replacing, in step 2 of Al-
gorithm1, the matrixW−1 by the identity matrix.
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Algorithm 1
Algorithm 2

FIG. 4.1. Convergence behavior of Algo-
rithms1 and2 (Example4.2).

TABLE 4.1
Singular values ofQ1,k (Example4.2).

iterationk

1 50 100 150 190

σ1(Q1,k) 9.983 10−1 1 1 1 1
σ10(Q1,k) 7.794 10−1 1 1 1 1

σ11(Q1,k) 7.002 10−1 1.356 10−3 9.844 10−8 7.142 10−12 2.400 10−15

σ20(Q1,k) 5.805 10−2 4.770 10−21 3.741 10−39 2.814 10−60 3.659 10−78

EXAMPLE 4.1. This example shows that Algorithm1 converges at the first iteration
when the eigenvalues ofW are all on the unit circle. The matrixW is chosen block diagonal
asW = blockdiag (Q,Q), whereQ is a10 × 10 orthogonal matrix constructed with the
MATLAB function orthog.

At the first iteration of Algorithm1 (k = 1), the singular values of the matrixQ1,k are
all equal to7.0711 10−1 and remain the same during all iterations. From the discussion in
Section3.2, we conclude that the eigenvalues ofW are all on the unit circle. The algorithm

computesX̃1 being of order20 satisfying‖WX̃1 − X̃1

(
X̃∗

1WX̃1

)
‖ = 1.5504 10−15 and

P̃1 satisfying‖P̃1 − I20‖ = 1.3545 10−15.

EXAMPLE 4.2. This example shows that whenW has no eigenvalues on the unit circle
(N = N0 = N∞), then theN0 largest (smallest) singular values ofQ1,k andQ2,k converge
to 1 (0). The matrixW is given byW = blockdiag

(
A, (A−1)∗

)
, whereA is a10 × 10

upper triangular matrix whose strictly upper triangular part is chosen randomly in(0, 1) and
the diagonal elements are such thatA(k, k) = 1 + k/10, k = 1, . . . , 10. ThereforeW has
N0 = 10 eigenvalues inside the unit circle andN∞ = 10 eigenvalues outside of it. Following
the discussion in Section3.2, we show in Figure4.1and Table4.1(and especially in line 4 of
this table) the convergence to0 of the11-th largest singular value ofQ1,k. With the stopping
criterion discussed in Section3.2 andtol = 10−14, Algorithm 1 necessitates190 iterations.
The figure also exhibits the results of Algorithm2. At iteration431, σ11(Q1,k) computed by
Algorithm 2 stagnates at1.4681 10−14.

At iterationk = 190, Algorithm 1 computes matrices̃X0 andX̃∞ each of size20 × 10

whose columns are orthonormal and satisfy‖WX̃0 − X̃0

(
X̃∗

0WX̃0

)
‖ = 8.3316 10−16

and‖WX̃∞ − X̃∞

(
X̃∗

∞WX̃∞

)
‖ = 1.7496 10−15. The computed projectors̃P0, P̃∞ sat-
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FIG. 4.2. Convergence behavior of Algo-
rithms1 and2 (Example4.3).

TABLE 4.2
Singular values ofQ1,k (Example4.3).

iterationk

1 50 100

σ1(Q1,k) 9.991 10−1 1 1
σ6(Q1,k) 7.268 10−1 8.410 10−1 9.496 10−1

σ7(Q1,k) 7.071 10−1 7.071 10−1 7.071 10−1

σ14(Q1,k) 7.071 10−1 7.071 10−1 7.071 10−1

σ15(Q1,k) 6.867 10−1 5.410 10−1 3.133 10−1

σ20(Q1,k) 4.101 10−2 1.702 10−13 1.485 10−19

iterationk

150 200 250

σ1(Q1,k) 1 1 1
σ6(Q1,k) 1 1 1
σ7(Q1,k) 7.071 10−1 7.071 10−1 7.071 10−1

σ14(Q1,k) 7.071 10−1 7.071 10−1 7.071 10−1

σ15(Q1,k) 6.216 10−4 7.020 10−8 8.380 10−11

σ20(Q1,k) 5.518 10−25 1.409 10−23 1.638 10−19

isfy trace(P̃0)= trace(P̃∞) = 10, ‖P̃ 2
0 − P̃0‖= 9.5835 10−16, ‖P̃ 2

∞− P̃∞‖= 4.1679 10−16,

and‖P̃0 + P̃∞ − I20‖= 9.5835 10−16.

EXAMPLE 4.3. This example reveals the convergence behavior whenW has
eigenvalues inside, on, and outside the unit circle. The matrix W is given by
W = blockdiag

(
A, (A−1)∗

)
with A = blockdiag (A0, A1) whereA0 is a 6 × 6-

Jordan block corresponding to the eigenvalue0.9 andA1 is a4 × 4 orthogonal matrix con-
structed with the MATLAB functionorthog. Therefore,W hasN0 = 6 eigenvalues inside
the unit circle,N∞ = 6 eigenvalues outside the unit circle, andN1 = 8 eigenvalues on the
unit circle. The singular valuesσ15, σ16, . . . , σ20 should converge to0. The stopping criterion
discussed in Section3.2is used withtol = 10−10. Algorithm 1 required250 iterations while
Algorithm 2 required500 iterations. The convergence behavior of both algorithms isshown
in Figure4.2. Table4.2 illustrates the convergence of the singular values ofQ1,k computed
by Algorithm1.
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TABLE 4.3
Singular values ofQ1,k (Example4.4).

iterationk

1 100 200 400 600

σ1(Q1,k) 9.9999 10−1 1 1 1 1
σ6(Q1,k) 9.1297 10−1 1 1 1 1
σ7(Q1,k) 8.9088 10−1 1 1 1 1
σ8(Q1,k) 8.1080 10−1 1 1 1 1
σ9(Q1,k) 8.0423 10−1 9.9995 10−1 9.9999 10−1 1 1
σ10(Q1,k) 7.4643 10−1 9.9995 10−1 9.9999 10−1 1 1
σ11(Q1,k) 6.6546 10−1 1.0148 10−2 5.0373 10−3 2.5094 10−3 1.6708 10−3

σ12(Q1,k) 5.9432 10−1 9.8486 10−3 4.9623 10−3 2.4906 10−3 1.6625 10−3

σ13(Q1,k) 5.8532 10−1 7.6121 10−7 9.4452 10−8 1.1763 10−8 3.4809 10−9

σ14(Q1,k) 4.5423 10−1 7.3872 10−7 9.3046 10−8 1.1675 10−8 3.4635 10−9

σ15(Q1,k) 4.0802 10−1 4.5589 10−14 4.5589 10−14 4.5589 10−14 4.5589 10−14

σ20(Q1,k) 3.5487 10−3 6.7017 10−18 6.7017 10−18 6.7017 10−18 6.7017 10−18

At iterationk = 250, Algorithm 1 computes matrices̃X0, X̃1, andX̃∞ of sizes20× 6,
20 × 8, and 20 × 6, respectively, whose columns are orthonormal and which satisfy

‖WX̃0 − X̃0

(
X̃∗

0WX̃0

)
‖ = 8.9496 10−16, ‖WX̃1 − X̃1

(
X̃∗

1WX̃1

)
‖ = 1.4938 10−15,

and‖WX̃∞ − X̃∞

(
X̃∗

∞WX̃∞

)
‖ = 1.4164 10−15.

The computed projectors̃P0, P̃1, P̃∞ satisfy trace(P̃0) = trace(P̃∞) = 6, trace(P̃1) = 8,
‖P̃ 2

0 − P̃0‖ = 3.2880 10−16, ‖P̃ 2
1 − P̃1‖ = 3.5060 10−16, ‖P̃ 2

∞ − P̃∞‖ = 4.6857 10−16,
and‖P̃0 + P̃1 + P̃∞ − I20‖ = 5.1514 10−16.

EXAMPLE 4.4. This example shows that the diagonalizability condition imposed onW1

is necessary for the extraction of the desired invariant subspaces. Without this condition, the
behavior of Algorithm1 is unpredictable. We consider the preceding example whereA0 is
a4× 4-Jordan block for the eigenvalue1. Table4.3displays the singular values ofQ1,k.

It seems that, during the iterations, the8 eigenvalues on the unit circle moved off the
unit circle preserving the symmetry of the spectrum. See thesingular valuesσi(Q1,k),
i = 7, 8, . . . , 14, in Table4.3, where we observe that4 eigenvalues moved out of the unit
circle and4 moved inside of it.

5. Conclusions.We have studied the behavior of a variant of a subspace iteration suited
for symplectic matrices. The study reveals the parameters responsible for the convergence
rate. The algorithm is attractive due to its simplicity and the low cost of a single iteration.
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