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MATRIX DECOMPOSITIONS FOR TIKHONOV REGULARIZATION  *

LOTHAR REICHEL' AND XUEBO YU'

Abstract. Tikhonov regularization is a popular method for solving &neliscrete ill-posed problems with
error-contaminated data. This method replaces the givearlidiscrete ill-posed problem by a penalized least-
squares problem. The choice of the regularization matrix énpibnalty term is important. We are concerned with
the situation when this matrix is of fairly general form. Thengkzed least-squares problem can be conveniently
solved with the aid of the generalized singular value decaitipa, provided that the size of the problem is not too
large. However, it is impractical to use this decompositionldoge-scale penalized least-squares problems. This
paper describes new matrix decompositions that are wellcstdtehe solution of large-scale penalized least-square
problems that arise in Tikhonov regularization with a regaktion matrix of general form.
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1. Introduction. We are concerned with the solution of large-scale lineastisguares
problems

1.1 in || Az —
(1.1) in || Az — b,

with a matrix A € R™*" that has many singular values of different orders of mageitu
close to the origin. In particula# is severely ill-conditioned. The vectére R™ represents
measured data and is assumed to be contaminated by aneegoR™ that stems from
measurement inaccuracies. Throughout this papéirdenotes the Euclidean vector norm or
the associated induced matrix norm.

We can express the data vector as

(1.2) b=>b+e,

whereb denotes the unknown error-free vector associated witthe linear system of equa-
tions with the unknown right-hand side,

(1.3) Az = b,

is assumed to be consistent and we denote its solution ofrmalrituclidean norm bg. We
would like to determine an accurate approximatiofdify computing a suitable approximate
solution of (L.1).

Least-squares problems.{) with a matrix whose singular values “cluster” at zero are
commonly referred to as linear discrete ill-posed problefftsey arise in image deblurring
problems as well as from the discretization of linear ilspd problems such as Fredholm
integral equations of the first kind with a continuous kermale to the ill-conditioning ofd
and the erroe in b, straightforward solution ofl( 1) generally does not give a meaningful
approximation ofz.

A common approach to determine a useful approximate solafdl.1) is to employ
Tikhonov regularization, i.e., to replacé.{) by a penalized least-squares problem of the
form

(1.4) min{HAw—b||2+u||Ba:||2},
xeR"”
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where the matribx3 € RP*" is a regularization matrix and the scajap 0 is a regularization
parameter. Whem is the identity matrix, the Tikhonov minimization probleh.4) is said
to be instandard formotherwise it is ingeneral form We assume tha® is such that

(15) N(4)NN(B) = {0},

whereN (M) denotes the null space of the matfix.
The normal equations associated with4f are given by

(1.6) (A*A+ uB*B)x = A™b,

whereA* and B* denote the adjoints of and B, respectively. It follows from.5) and (L.6)
that (L.4) has the unique solution

x, = (A*A+uB*B)"'A*b

for any i > 0. The value ofu determines how sensitive,, is to the errore in b and to
round-off errors introduced during the computations and blesex, is toz; see, e.g., Engl
et al. [6], Groetsch 8], and Hansend] for discussions on Tikhonov regularization.

We would like to determine a suitable value of the reguldigraparametep, > 0 and
an approximation of the associated solutiopn of (1.4). The determination of a suitabje
generally requires that the Tikhonov minimization probléh) be solved for several-
values. For instance, the discrepancy principle, the hwriterion, and the generalized
cross validation method are popular approaches to deteranguitable value gf, and all of
them require thatl(4) be solved for several values pf> 0 in order to find an appropriate
value; see, e.g.0[ 9, 14, 15, 17] and the references therein for discussions on these nmethod
for determiningu. The repeated solution ofl (4) for different u-values can be expensive
when the matricegl and B are large and do not possess a structure that makes a fasrsolu
possible.

When the matricegl and B are of small to moderate sizes, the Tikhonov minimization
problem (L.4) is typically simplified by first computing the Generalizeth@ular Value De-
composition (GSVD) of the matrix paifA, B} or a related decomposition; se& §, 9].
When one of the latter decompositions is available, the mugation problem {.4) can be
solved quite inexpensively for several differentalues.

In this paper, we are interested in developing solution wuthat can be applied when
the matricesA and B are too large to compute the GSVD or a related decomposifitimeo
matrix pair{A4, B}. Moreover,B is not assumed to have a particular structure that makes
the transformation of the problert.d) to standard form with the aid of thé-weighted gen-
eralized inverse oB3 feasible; see Ekh [5] for details on this transformation. We describe
decomposition methods for the matricdsand B that are well suited for the approximate
solution of large-scale Tikhonov minimization problemis4 in general form. These meth-
ods reduce a pair of large matricéd, B} to a pair of small matrices and, thereby, reduce
the large-scale problenml () to a small one. The GSVD or the decomposition described
in [3] can be applied to solve the latter for several values of¢égelarization parameter. The
reduction methods considered in this paper are modificatibilecomposition schemes de-
scribed in [L2, 20]. The decomposition discussed it?] is a generalization of Golub—Kahan
bidiagonalization to matrix pairs. We describe a variaiat tlows the generation of more
general solution subspaces than those considerédd@jnComputed examples illustrate that
this extension may be beneficial. We also discuss an extens$ite decomposition method
described in 20], which is based on the flexible Arnoldi process introducgdSaad P1].
This decomposition method is designed for square matricasd B of the same size. We
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consider an extension that allowsto be rectangular. This extension is briefly commented
on in the last computed example @0]. The present paper discusses its implementation and
illustrates its performance in two computed examples.

This paper is organized as follows. Secti¢ghand3 describe the new decomposition
methods and discuss some of their properties. Numericaljgbes are presented in Sectihn
and concluding remarks can be found in Secfion

We conclude this section with a few comments on some availatgthods for the so-
lution of large-scale Tikhonov minimization problems inngeal form. Kilmer et al. 13]
describe an inner-outer iterative method. This method seta@n the partial GSVD method
described by ZzhaZ4]. The latter method may require a fairly large number of imatector
product evaluations. We therefore are interested in dpugdoalternative methods. A reduc-
tion method that forms a solution subspace that is indepdrafehe matrixB is proposed
in [11]. This approach is simple and works well for many problems, s is illustrated
in [20], it may be beneficial to use a solution subspace that incatps information from
both the matricesl and B. A generalization of the Arnoldi process that can be appbettie
reduction of a pair of square matrices of the same sizes lasdiscussed by Li and Y&,
and applications to Tikhonov regularization are describgd6, 18]. This reduction method
requires the matriced and B to be square.

We will use the following notation throughout the papér;, , denotes a matrix of size
kx¢, its entries aren, ;. We use MATLAB-type notationl/. ; is thejth column andV/; . the
ith row of the matrix\/ = M, ,. The submatrix consisting of rowghroughj and columns
k throught is denoted by\/;.; ... Sometimes the number of rows of a matrix is suppressed,
i.e., we writeM, = [my,mao, ..., my| for a matrix with¢ columns. Boldface letters stand
for column vectors. The range of the matfix is denoted byR (M ). The condition number
of the matrix}, denoted by:(M), is the quotient of the largest and smallest singular values
of the matrix. Moreover(u,v) = u*v stands for the standard inner product between the
vectorsu andwv.

2. Golub—Kahan-type decomposition methodsThe application of a few steps of Go-
lub—Kahan bidiagonalization (also known as Lanczos buliadjzation) is a popular ap-
proach to reduce a large matrix to a small bidiagonal onee®f6 Hochstenbach et all]
described an extension of Golub—Kahan bidiagonalizatiahdan be applied to reduce a pair
of large matriced 4, B} with the same number of columns to a pair of small matricess Th
extension builds up a solution subspace that is construmtedvoking matrix-vector prod-
ucts withA and A* in essentially the same manner as matrix-vector produdtsvand B*.
Algorithm 2.1 below describes a modification of the method presentetidithat allows the
construction of more general solution subspaces. Commxaaples presented in Sectibn
illustrate that the method of this paper may determine apprations ofz of higher quality
than the method described ih7].

We first discuss the standard Golub—Kahan method for pénitighgonalization of one
matrix A € R™*™, An outline of the bidiagonalization process is providedha proof of
Proposition2.1 because related constructions are employed below. Wedinteonotation
that is convenient for our subsequent generalization. il2etaiscussions of Golub—Kahan
bidiagonalization can be found in, e., [].

PROPOSITION2.1.LetA € R™*™andu; € R™ be a unitvector. Theh < min{m,n}
steps of Golub—Kahan bidiagonalization applied4avith initial vectoru yield the decom-
positions

(2.1) AV = Ugp1 Hg 41,55
(2.2) A U1 = Vi1 Kig1,k11,
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where the columns of the matricd$, ., = [ug,u2,...,up1] € R™XEHD and
Vis1 = [v1,02,...,v511) € R+ are orthonormal, the matrixiy,, ; , € REFDxE

is lower bidiagonal, and the leading x (k + 1) submatrix of(; 41 1 € REHDx(k+D)
satisfies

(2.3) Ky k1= Hipq -

The initial columnw, of Vj; is determined by2.2) with £ = 0 so thatk; ; > 0. Gener-
ically, the diagonal and subdiagonal entries Hf..; , can be chosen to be positive. The
decomposition§2.1) and (2.2) then are uniquely determined.

Proof. The columnsus, vo, us, vs, ... , of Uy andVy 1 are generated, in order, by
alternatingly using equation&.(l) and @.2) for increasing values of. Thus, the columnu,
is determined by requiring. to be of unit length, to be orthogonaltq, and to satisfyZ.1)
for k = 1 for a positive subdiagonal enty, ; of H, 1, where we note thalt; ; = £y 1.
This determines both, andhs ;. The columnv, of V5 is now defined by equatior2 (2) for
k = 2. The column is uniquely determined by the requirementsdhdte orthogonal ta,
of unit length, and such that the last diagonal entrjtef, is positive. This entry equals; 5.
The next vector to be evaluateddg. Generically, the computations can be continued in
the manner indicated until the decompositiogsl and .2 have been computed for some
k < min{m,n}.

In rare situations, the computations cannot be completettssribed because the first,
say j, generated columns;, v, ..., v, of V41 span an invariant subspace 4f A. This
situation is referred to as breakdown. The computationdeacontinued by letting the next
column, v, 1, be an arbitrary unit vector that is orthogonalstgn{vi,vs,...,v;}. The
situation when the first generated columns &f;; span an invariant subspace4fl* can
be handled analogously and is also referred to as breakdovease of breakdown, suitable
entries ofHy, 41, and K11 ;41 are setto zero so that the decompositichd)(and @.2) are
valid. These decompositions are not unique when breakdoaurs. a

In applications of partial Golub—Kahan bidiagonalizatiorthe solution of least-squares
problems {.1), one generally chooses the initial vecior = b/||b||. Available descriptions
of Golub—Kahan bidiagonalization exploit th&j, ;. can be expressed in terms 8,41 1,
see .3), and do not explicitly use the matrik 1. It is convenient for our discussion
below to distinguish between the matrides,1 , and K, j41.

We now turn to a modification of Golub—Kahan bidiagonaliaatihat allows the choice
of a fairly arbitrary columrmv; ; in addition to the columm,. The matriced/;,; andVj 1
generated will have orthonormal columns, similarly as emdiecompositions2(1) and @.2),
but the structure of the matrices analogou&fia. 1 » and Kj41 ,+1 in (2.1) and @.2) will be
different. We assume for notational simplicity the gensitaation that no breakdown takes
place.

Let the decomposition2(1) and @.2) be available fok =i — 1, i.e., we have

(2.4) AVioy =UiH; -1,
(2.5) A*U; = VK, 4,

with K;_,; = H . Determine the columm;,, of U1 from (2.1) with £ = 4. This

defines the entryt;; ; > 0 of H;1 ;. Now let the columr;, of V},4, be an arbitrary unit
vector such that

(2.6) v;+1 L span{vy,va,..., v}

We proceed to compute the coluran, » of Uy by using @.1) with k£ = i 4+ 1. This deter-
mines the last column a5 ;11. We will show below that all entries above the diagonal in
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the columnf. ;;, vanish. The columm; ., of V. is chosen to be of unit length, orthogonal
to the columns o¥/;, 1, and such that the relation

A*UiJrl = Vvi+2Ki+2,i+1

holds. We then compute the columas, s, v;i3, ..., uk+1,Vir1, IN Order, from decompo-
sitions of the form

2.7) AV =Uj1Hjqa,,

(2.8) AU; = Vi Kjia,

forj =i+ 2,9+ 3,...,k. The following theorem describes the structure of the roari
Hyq1p and Ky -

THEOREM 2.2. Let the decomposition®.7) and (2.8) for j = k be generated as de-
scribed above and assume that no breakdown occurs. Thenltlrars ol ; € R x (k+1)
andVi 1, € R™*(*+1) are orthonormal, and the matri&y, ;1 , € R(**1** has the structure

hia o 1
hoi  hoo
LED
Piv1ie1 Pit1it2
Hyy1 1 =
hivoiv1 hit2iq2
Rigsiv2 - hr—1k
ol
| O P,k |

Thus, the leading principali + 2) x (i 4+ 1) submatrix is lower bidiagonal and the matrix
Hj.y1 is tridiagonal. Furthermore, ,, = H} .

Proof. Let the decompositiong(4) and Q 5) be available. The matritl; ;_ in (2.4)
is lower bidiagonal by Propositich.1. The next step in the Golub—Kahan bldlagonallzatlon
method is to replac®;_; by V; in (2.4) and define the matrik/;, ; by appending a suitable
columnu;41 to U;. Append a zero row téf; ;_; and the columnhy ;, ha i, ..., hit14]* tO
the matrix so obtained. This gives a decomposition of thenf(a.4) with ¢ replaced by + 1.
The entriesh; ; are defined by

it1
(29) A’Ui = Zhj,iuj,

j=1
where we choosg; ;1 ,; > 0 so thatu, is a unit vector that is orthogonal i, us, . . . , u;.
It follows from (2.5) and the fact thal; ; is upper triangular that
(2.10) A*u; € span{vy,vs,...,v;}, i=1,2,...,i.
Therefore,

hjyi:u;Avi:vz‘(A*uj):O, j:1,2,...,i71.
The last diagonal entry dff;;; ; is determined by4.5), i.e., by
hi,z‘ = U:(A’UZ = kz,z
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Thus, we have obtained the desired decomposition
AV, = Ui+1Hi+1,i,

where the columns d¥,; are orthonormal and/;, ; is lower bidiagonal.

Letw,.1 be a unit vector that satisfie®.(). We proceed as above to determine a new unit
vectoru,; o that we append t0/;,; to determine the matrik/; , » with orthonormal columns.
Append a zero row tdi; ; and the columhy i1, hoiy1, .., hit2,i+1]"* to the matrix so
obtained. Our aim is to determine a decomposition of the f@) with i replaced by + 1.
Therefore, analogously t@ ©), we let

1+2
Avi1 =) iy
j=1
and choosé; 12 ;+1 > 0 so thatu,, 5 iS a unit vector that is orthogonal to the vectors
Uy, Ug, ..., u;y1. It follows from (2.10 that

hj7i+1 = u;AviH = ’U;‘kJrl (A*u]) =0, j =1,2,...,1.

The remaining entry of the last column &f ; ; ; is defined byh; 1 ;41 = uj, ; Av; 1. Thus,
we have determined the decomposition

(2.11) AVigr = UipaHito 141,
where the columns d¥,, andV;,, are orthonormal andl; - ;1 is lower bidiagonal.
To proceed, lev; 2 be a unit vector that is orthogonal $pan{vy,vs,...,v;41} and
satisfies
42
A*ui+1 = Z kj,i+1vj
j=1

with k; 2 ;41 > 0. It follows from (2.11) and the structure off; 2 ;4 thatk; ;1 = 0 for
j=1,2,...,i— 1. We first append two zero rows to the mathi% and then the column
[k1i+1, k2641, -, kiyo41]" to the matrix so obtained. This defines the mafkix. 2 ;1.
By construction, it satisfies

(2.12) AUipr = Vi K241

Hence, the matri¥; o has orthonormal columns, the last columnfof,» ;1 has at most
three nonvanishing entries, and the submaffjx, ;1 is upper bidiagonal.

We continue to define the column_ 3 of the matrixU; 3 with the aim of obtaining a
decomposition of the form

AV;’—&-Q = Ui+3Hi+3,i+2-
Specifically, we letu;, 3 be of unit length, orthogonal ta;, us, . .., u; 2, and such that
i+3
A'Ui+2 = Z hj,i+2uj
=1
with h; 13 ;42 > 0. It follows from (2.12) and the structure ok; 2 ;11 that

hjiva =ujAvia =0,  j=1,2,...,i
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Hence, only the last three entries of the vedtar; 2, ko it2,. .., hitsit2]*, Which is the
last column of the matri¥{, 5 ; 2, may be nonvanishing.
We proceed by defining new columns of the matridgs; andVj 1 in this manner until

the decomposition2(7) and @.8) have been determined fgr= k. d
Results analogous to Theoréh2 can be obtained by letting the coluran,; of Uy be
an arbitrary unit vector that is orthogonal to the precediolgmnsu, us, . .., u;. We will

not dwell on this situation since it is of little interest four numerical method for Tikhonov
regularization.

The special case of TheoreP2 when both the initial columns df,; and V., are
chosen to be arbitrary unit vectors is described by thevielig corollary. It has previously
been discussed i1, 22].

COROLLARY 2.3. Let the initial columns of the matricds;,; € R™*(*+1) and
Vip1 € R»<(+1) pe arbitrary unit vectors. Determine the remaining colunsirgilarly
as in Theoren2.2and assume that no breakdown occurs. Then the mattiges and V.,
satisfy the relations

AVk = Uk+1Hk+1,k7
AUy, = Vigr1 Kt 11,

whereH,, 1 5, € R*+1D)>F s tridiagonal andK, , = Hy .

Proof. The result is a consequence of Theorgr Breakdown of the recursions is
discussed in19]. a

We can extend Theorer.2 to allow the inclusion of several arbitrary orthonormal
columns in the matri®j, ;.

THEOREM 2.4. Let the indices; be ordered so that < i; < iy < ... < iy < k,
and letv;, , v,,, ..., v;, be arbitrary unit vectors such that;, is orthogonal to all preceding
columnsvy,vs,...,v;,—1 Of Vi1 for £ = 1,2, ..., s. Introducing these columns similarly
as the columm;; in Theoren®.2yields the decompositions

AV = Upr1Hiq1k,
A Upqi—s = Vi1 K1 kg 1—s,
whereUp, € R™ D and V,,; € R™**+1 have orthonormal columns. The ma-

trices Hyy1p € REFDXF and Kjy g g0y € REFDX(E+1-9) gre panded and satisfy
(Hpt1-sk)" = Ki k4+1—5. Moreover,Hy 1 1, is upper Hessenberg and such that

o all entries except possibly; 1 ; andh; ; of the column. ; vanish forj < i,

o all entries except possibly;i1 ;,hj;,...,hj—; of the columnH. ; vanish for
iy < j <ipy1,Wherel <t <s-—1,
o all entries except possibl; i ;,h;j;,...,hj—s; Of the columnH. ; vanish for
J > s
Proof. Theorem2.2 shows that when introducing an arbitrary unit vectgy that is
orthogonal to the preceding vectows, vo, ..., v;, -1, the upper bandwidth of the matrix

Hj.1 5 increases by one, starting at column+ 1. A slight modification of the proof of
Theorem2.2 shows that if a new arbitrary unit vector, that is orthogonal to the preceding
vectorsvy, vs, . .., v,,—1 IS introduced, then the upper bandwidth/®f ., ; is increased by
one, starting at columi + 1. Repeating this process for all vectars, v;,, . .., v;, shows
the theorem. a

The above theorem forms the basis for our generalized GHlathan reduction method
for matrix pairs{ A, B}. We first present an outline of this method. A detailed athaoniis
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presented in Algorithm2.1 Let A € R™*™ andB € RP*™, and let the first columi, of the
matrixU = [uy,us,... | be an arbitrary unit vector. Define the first column of the iratr
V = [v1,v2,... | byvy = A*u,/||A*u,||. Let the matrixU; consist of the firsj columns

of U, similar notation is used for the matricksand V. Further,Hj(.f)Lj denotes the leading
principal (j 4+ 1) x j submatrix of the matri¥ () defined below. We use the same notation
for the matrices (%), K(), and K(®) also defined below. Let thel, 1)-entries of H (4
and K(4) be given byn?) = ki’f‘f = ||A*u,|. The index set®, andPp keep track of
how new vectors in the solution subspaRéV) are generated; the integers andsp are
associated counters. We generate successive columnsrofthiees/, V, W, H(A), H(B),
K@ andK (%) in the manner described in the Algorithm Outlingd.

ALGORITHM OUTLINE 2.1.

Initialization:
sa = 1;sp = 0; Py = {1}; P = 0; define the vectors,; andv; as described
above.

Iteration:
forj=1,2,3,...:

e Determine the new; + 1)st andjth columnsu;; andw;, respectively, of
the matriced/ andW by equating

A
AV, = U HEY ),

BV; = W,;H!®

753 7

so that the matricesU;;; and W; have orthonormal columns,

Hj(f:)lj e RU+DXJ js upper Hessenberg, anH](.f.) € R/*J is upper

triangular.

e Determine the new; + 1)st columnv;; of the matrixV" by equating one
of the following formulas that define decompositions and asrying out the
other required computations

; * A . . . .

(i): A*Ujp1—sp, = ‘/j+1KJ('+)17j+1,sBa sa=sa+1,Pa=PaU{j+1};

(II) B*Wj-i—l—sA = j+1K§fi,j+1fsA; Sp = SB+1; PB ZPB U {j + 1};
so that V;;; has orthonormal columns. Here, the matrices

A j j+1—s B ) j+1—s
Kj('+)1,j+1755 c R(Hl)x(ﬁl sp) and Kg(#i,jﬂf_s/;. c RUHDX(+1-54)
have zero entries below the diagonal. The indisgsand sz count the
number of columns of” that have been determined by equating (i) and (ii),
respectively. Thusss + sg = j. The index set®, andPg are used in
Theorem2.5below.
endj-loop

THEOREM2.5.Let A € R™*", B € RP*", and let the first columns of the matric€s
andV be defined as in the Algorithm Outligel. Then, assuming that no breakdown occurs,
k iteration steps described by Algorithm Outligel yield the decompositions

(2.13) AVi = Up il HYY, 4
(2.14) BV, = Wi.H"),

(2.15) A Upt1-s, = Vk+1Kz(ci)1,k+1fst
(2.16) B*Wit1-5, = Vk+1K£i)1,k-+1—5A-
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Assume that the vectots, , v;,, ..., v;, , are generated by using equation (ii). Tharn> 1,

and H“) has the structure described by Theor@m with the indicesi; < iy < ... < i,
defined byPp = {i;}5_;.
Let the indices:; < ko < ... < k; be defined bfP4 = {k:j};:l. Thenk, = 1, and the

matrix H(P) is upper triangular and such that the Colunﬂy(? has at most + ¢ nonzero

entrieshﬁ),hﬁ)l’jw..,hﬁz,j forig < j <igti.

Proof. The structure off () is obtained from Theorer.4 by replacings by sz and
by letting the vectorw;, , v;,, ..., v; of Theorem2.4bewv; , v;,,...,v;  of the present
theorem.

The structure off (?) can be shown similarly as the structureff4) as follows. Con-
sider the two-part iteratior2(14) and @.16) to generate the firgt— 1 columns ofl/. This
is Golub—Kahan bidiagonalization with the initial vector. The matrix (?) determined is
upper bidiagonal. Now let,; be determined byX 15 fori = ¢4, ¢s, ..., ¢, ,. We apply The-
orem2.2repeatedly, similarly as in the proof of Theor@m, to show the structure off (%),

a

Algorithm 2.1 below describes a particular implementation of the AldgomtOutline2.1,
in which a parametep > 0 determines whether step (i) or step (ii) should be execwded t
determine a new column &f. The value ofy affects the solution subspa®y V") generated
by the algorithm. This is illustrated below. Algoriththl generalizes]2, Algorithm 2.2]
by allowing step (i) to be executed a different number of srttean step (ii). The algorithm
in [12] corresponds to the cage= 1.

The countersV(u) and N (w) in Algorithm 2.1 are indices used when generating the
next column ofV/.

EXAMPLE 2.6. Letp = 1. Then/ steps with Algorithnm?2.1generates the matri, with
range

R(V;) = span{A*b, B* BA*b, A* AA*b, (B* B)2A*b, A* AB* BA*b,
B*BA*AA*b, (A*A)2A*D, ... }.

This space also is determined by the generalized Golub-+Kedthuction method described
by [12, Algorithm 2.2].

ExXAMPLE 2.7. Letp = 1/2. Then each application of step (i) is followed by two
applications of step (ii). This yields a subspace of the form

R(V;) = span{A*b, B* BA*b, (B*B)2A*b, A*AA*b, (B*B)3A*b,
B*BA*AA*b, A*AB*BA*b, ... }.

The computation of the matrik; in this example requires more matrix-vector product eval-
uations with the matrix3* than the determination of the corresponding malkfi>of Exam-
ple 2.6. In many applications of Tikhonov regularizatiaBi; represents a discretization of a
differential operator and is sparse. Typically, the evaduraof matrix-vector products with
B*is cheaper than witi*. Therefore, the computation of a solution subspace of daioer
generally is cheaper whgn= 1/2 than wher¢ = 1. Moreover, computed examples of Sec-
tion 4 show thatp < 1 may yield more accurate approximations of the desired isolut
thanp = 1.

Algorithm 2.1is said to break down if an entiy; ; ;, r; ;, Or o in lines 10, 16, or 26
vanishes. Breakdown is very unusual in our application kind@inov regularization. If break-
down occurs in lines 10 or 16, then we may terminate the coatipuis with the algorithm
and solve the available reduced problem. When breakdows fakee in line 26, we ignore
the computed vectas and generate a new vectowia either line 18 or line 20. Breakdown
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ALGORITHM 2.1 (Extension of Golub—Kahan-type reduction to matrixgai, B}).

Input: matricesA € R™*" B € RP*", unit vectoru, € R",
ratiop > 0, and number of steps

2 V= A*Ul, hl,l = ||il\||, vy = ii\/hl’l;

3. N(u):=1;, Nw):=1

4. forj=1,2,...,4do

5. u = Av; newwu-vector

6

7

8

9

=

fori=1,2,...,j5do
hij =uju; u:=u—u;h;,

end for

hisi; = [l
10. Ujt1 1= ﬂ/hj+17j if hj+17j =0 : see text
11. w = Bv, neww-vector
12. fori=1,2,...,7—1do
13. T = wfﬁ), W =W — w;T; 4
14. end for
R
16. w; = ’I/I)/T‘j_’j if Tij = 0 : see text
17. if N(w)/N(u)>1/p
18. N(u):= N(u)+1; v:= A uyn(y)
19. else
20. v 1= B'Wy(w); N(w):=N(w)+1
21. end
22. fori=1,2,...,5do
23. v:i=v— (viv)v;
24. end for
25. a; = ||v;
26. vl = v/aj; neww-vector, ifh;,, ; = 0 : see text
27. end for

also could be handled in other ways. The occurrence of boeakadnay affect the structure
of the matrices? (Y and H(#),

Let u; = b/||b|| in Algorithm 2.1 and assume that no breakdown occurs during the
execution of the algorithm. Execution 6&teps of Algorithn2.1then yields the decompo-
sitions .13 and @.14) for k£ = ¢. These decompositions determine the reduced Tikhonov
minimization problem

2.17 i Az — bl Be|[2} = min{||H"Y) y — e, ||b]| ||? HB) 121,
( )mé?zl&){” x — b||* + p| Bz} ynglge{ll si1.ey —ellbll |17+ ull Hy yl*}

It follows from (1.5) that
N(HES ) ON(HE) = {0},

and therefore the reduced Tikhonov minimization problenthenright-hand side of(17)
has a unique solutiog, , for all z > 0. The corresponding approximate solution o is
given byz, , = Vy, ,. Since

A
(2.18) | Az, — bl = 1H g, — eallb] |,

we can evaluate the norm of the residual ertdat, , — b by computing the norm of the
residual error of the reduced problem on the right-hand sfd@.18). This is helpful when



ETNA
Kent State University
http://etna.math.kent.edu

MATRIX DECOMPOSITIONS FOR TIKHONOV REGULARIZATION 233

determining a suitable value of the regularization parametby the discrepancy principle
or L-curve criterion; see, e.g.9] for the latter. In the computed examples of Sectionve
assume that an estimate of the norm of the egrior b is known. Theru can be determined
by the discrepancy principle, i.e., we chogsso that

A
1H yye, — eallbll || = Jell.

This value ofy is the solution of a nonlinear equation, which can be soh@weniently by
using the GSVD of the matrix pa{rH,vSﬂj, Hﬁ)}. An efficient method for computing the
GSVD is described in4]; see also§].

3. A decomposition method based on flexible Arnoldi reductio. Many commonly
used regularization matricds € RP*™ are rectangular with either < n orp > n. The
reduction method for the matrix paifsl, B} described in20], which is based on the flexible
Arnoldi process due to Saad]], requires the matriX3 to be square. This section describes
a simple modification of the method i&(] that allowsB to be rectangular. Differently from
the method in20], the method of the present paper requires the evaluatiomafix-vector
products withB*. The matrixA is required to be square.

We first outline the flexible Arnoldi decomposition for a niapair { A, B} in the Algo-
rithmic Outline3.1 A detailed algorithm is presented below.

ALGORITHM OUTLINE 3.1.
Input: A € R™*", B € RP*"™, b € R™, ratiop > 0, and number of steps

Initialization:
hiy = ||bll; w1 :=b/h11; v1 = uy;
Iteration:
forj=1,2,...,¢:
e Determine the new columns;; andw; of the matriced/ and W, respec-
tively, by equating the right-hand sides and left-hand siofehe expressions

AV =Uj1Hj 5,
BV; = W;R;;,

in a such a manner that the matriéés., andW; have orthonormal columns,
H;,1; € RUTDXJ js upper Hessenberg, aft} ; € R7*7 is upper triangular.

e Determine the new columa; ., of the matrixV'. This column should be
linearly independent of the already available colurensvs, ..., v;. In Al-
gorithm 3.1 below, we will letv;,; be a unit vector that is orthogonal to the
columnsvy,vs, ..., v;. Itis constructed by matrix-vector product evaluations
Aw; or B* Bv; depending on the input parameger

endj-loop

The Algorithm Outline3.1 generates the decompositions

(3.1) AV =Upy1Heg1 0,
(3.2) BVy = WyRy,,

which we apply to solve the Tikhonov minimization problefn4j. Details of the outlined
computations are described in AlgorittgriL.
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ALGORITHM 3.1 (Reduction of matrix pair{A,B}; A square, B rectangular).

1. Input:A € R"™*" B e RP*" b e R", ratiop > 0, and number of steps
2 hl,l = ||b||, U = b/hl,l; V1 = Uq,
3. N(u):=1; Nw):=1
4, forj=1,2,...,4do
5. u = Av; newwu-vector
6 fori=1,2,...,5do
7 hi,j = u;"ﬁ, uU:=u-— ’U,ihiJ‘
8 end for
9. Myt = |ull
10. Uit 1= a/hj+17j if hj+17j =0 :see text
11. W := B, neww-vector
12. fori=1,2,...,5—1do
13. Tij = wffv, w ::ﬁ)—wirm
14. end for
15. Ty, = ||’l/l\)||
16. w; = ’l/.l\]/T’j’j if Tij = 0 : see text
17. if N(w)/N(u)>1/p
18. N(u):= N(u) +1; v:=un(,
19. else
20. v = B*Wy(w); N(w):=N(w)+1
21. end
22. fori=1,2,...,j5do
23. v :=v— (viv)v;
24, end for
25. a; = ||v;
26. v = v/aj; neww-vector
27. end for

The elements:; ; andr; ; in Algorithm 3.1 are the nontrivial entries of the matrices
H,110 andR, , determined by the algorithm. Algorith@ 1 differs from the flexible Arnoldi
reduction algorithm presented ia{, Algorithm 2.1] only insofar as line 20 in this algorithm
has been changed from := wy () 10 v := B*wy(,). Most of the properties of20,
Algorithm 2.1] carry over to Algorithn8.1 The structure of the matri® determined by
Algorithm 3.1 is similar to the structure of the matri& (®) computed by Algorithn2.1
of the present paper. Moreover, if the matdxin Algorithm 3.1 is symmetric, then the
structure of the computed matri is similar to the structure of the matri (Y determined
by Algorithm 2.1. The structure off and R can be shown similarly to the analogous results
for the matrices? () andH(?) in Section2.

Assume for the moment the generic situation that no breakdmweurs during the exe-
cution of Algorithm3.1 Then the algorithm yields the decompositioisl) and @.2) and
we obtain

(3.3)  min {||Az = b||* + ul|Bz||*} = min {||Her1,ey — exl|b] |* + ull Re,eyl*}-
zeR(Vy) yeR?

It follows from (1.5 that the reduced minimization problem on the right-harde dhas
the unique solutiory, ,, for any . > 0, from which we obtain the approximate solutions
xo,u = Vey,,, of (1.4). Similarly to 2.18, we have

Az — bl = | Het1,09e,, — ellbll ],
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and this allows us to determine with the aid of the discrepancy principle by solving a
nonlinear equation that depends on the matrix paiy, ¢, Re}. We proceed analogously
as outlined at the end of Secti@n

4. Numerical examples.We present a few examples that illustrate the application of
decompositions computed by Algorithrdsl and 3.1 to Tikhonov regularization. We com-
pare with results obtained by using decompositions detexchihe GSVD and by2D, Algo-
rithm 2.1]. In all examples, the error vectehas normally distributed pseudorandom entries
with mean zero; cf.1.2). The vector is scaled to correspond to a chosen noise level

_ el
1]l

We assume the noise level to be known and therefore may applyiscrepancy principle to
determine the regularization parameter- 0; see the discussions at the end of Sectibns
and3. The methods of this paper, of course, also can be appliedrijuection with other
schemes for determining the regularization parameter asithe L-curve criterion.

We tabulate the relative errdtc, ,, — Z||/||z||, wherez is the desired solution of the
unknown error-free linear system of equatiods3). All computations are carried out in
MATLAB with about 15 significant decimal digits.

ExamPLE 4.1. Consider the inverse Laplace transform

1

RN 0< < )
s+1/2 =0

/O " exp(—st) f(t)dt —

with solution f(t) = exp(—t/2). This problem is discussed, e.g., by Var&l][ We use

the functioni _| apl ace from [10] to determine a discretizatiod € R™"*™ of the integral

operator and a discretized scaled solutiore R™ for n = 1000. The error vectoe € R"

has noise level = 10~!. The error-contaminated data vecton (1.1) is defined by {.2).
We will use the regularization matrix

B= [ﬁﬂ :
where
1 -1 O
(4.1) Li=3 . € R(m—bxn
O 14
is a bidiagonal scaled finite difference approximation effihst-derivative operator and

-1 2 -1 @)

—_
—_
N

|
—_

(4.2) Ly=7 o € R(n=2)xn
@) -1 2 -1
is a tridiagonal scaled finite difference approximationhef second-derivative operator. The

matrix B damps finite differences that approximate both the first awdred derivatives in
the computed approximate solution.
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We apply Algorithm2.1with p = 1, p = 0.5, andp = 0.1. The results are reported in
Table4.1. Whenp = 1, the best approximation at is achieved aftef = 20 iterations. If
insteadp = 0.5, then the best approximation &fis obtained after only = 13 iterations,
andp = 0.1 gives the best approximation after= 29 iterations. This example illustrates
that Algorithm2.1may yield approximate solutions of higher quality and regléss storage
and computational work whem< 1.

We do not presently have a complete understanding of hshould be chosen. Ir2(],
we observed that whefBz, ,, || is small, the computed solutiasy ,,, often is of high quality
and that choosing < 1 seems to be beneficial for achieving this. It is also impartiaat the
condition number of the reduced matrix

HA
(4.3) [ ME
Hé,z

is not very large; a very large condition number could makeabcurate numerical solution
of the reduced Tikhonov minimization problerd.{7) problematic. We have found that for
linear discrete ill-posed problems, the condition numbehe matrix @.3) generally, but not
always, is reduced by decreasingfor fixed ¢). Table4.2 displays condition numbers of the
present example, and Figutel provides a graphical illustration.

We also solve the Tikhonov minimization problem of this exdenwith the aid of the
GSVD in the following manner. First we determine the QR faettion B = QR, where
Q € R(=3)x" has orthonormal columns arfél € R™*™ is upper triangular, and then we
compute the GSVD of the matrix paftd, R}. Table4.1 shows this approach to yield the
least accurate approximation @f Thus, it may be appropriate to use Algorithi also
for problems that are small enough to allow the applicatibthe GSVD. Figure4.2 shows
the desired solutio® (black dash-dotted curve) and the approximatigR ,,, computed by
Algorithm 2.1 with p = 0.5 (red solid curve). They are very close. The figure also digpla
the approximate solution determined by the GSVD (blue dasheve).

TABLE 4.1
Example4.1. Relative errors in computed approximate solutions forrthise levell0—1.

Method R |7 VA ||
Algorithm2.1 1 20 3.71-1072
Algorithm2.1 0.5 13 3.16-1072
Algorithm2.1 0.1 29 3.29-1072

GSVD 1.16- 1071

ExaMPLE 4.2. The Fredholm integral equation of the first kind,
/2
(4.4) / k(o,m)x(o)do = b(T), 0<7<m,
0

with k(o,7) = exp(ocos(r)), b(t) = 2sinh(7)/7, and solutionz:(7) = sin(7), is dis-
cussed by Baartl]. We use the MATLAB functiorbaar t from [10] to discretize 4.4) by

a Galerkin method withh = 1000 orthonormal box functions as test and trial functions. The
functionbaart produces the nonsymmetric matrik € R”*" and the scaled discrete ap-
proximationz € R™ of z(7), with which we compute the error-free right-hand Shate= AZ.
The error vectoe € R™ corresponds to the noise leviek= 1-10~2. The data vectab in (1.1)

is obtained from1.2).
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TABLE 4.2
Example4.1 Condition number of the matrid.3) as a function of and p.

l p  condition number of the matrixi(3)

13 1 4.66 - 10
13 0.5 3.77 - 10
13 0.1 1.73 - 10!
20 1 2.18 - 102
20 0.5 1.38 - 102
20 0.1 3.59 - 102
29 1 6.93 - 102
29 0.5 5.81 - 102
20 0.1 3.90 - 102

1200

1000

800 -

600 -

4001 . 7

0 20 40 60 80 100

FiG. 4.1. Example4.1 Condition number of the matricéd.3) as a function of and p. The vertical axis
displays¢ and the horizontal axis the condition number. The red dotswstiie condition number fgr = 1, the blue
stars the condition number fgr = 0.5, and the green circles the condition number for= 0.1.

We seek to determine an approximationaoby using a decomposition determined by
Algorithm 3.1 The regularization matriX is defined by 4.2). This approach is compared
to [20, Algorithm 2.1]. The latter algorithm requires the regidation matrix to be square.
We therefore pad the regularization matrikd) with two zero rows when applied in Algo-
rithm 2.1 of [20]. An approximate solution is also computed by using the GS¥ibe matrix
pair{A, L }.

The results are listed in Tabe3. Both [20, Algorithm 2.1] and Algorithm3.1 of the
present paper with = 0.5 yield better approximations af than the GSVD; the best approx-
imation ofz can be seen to be determined by AlgoritBria with p = 0.5; the relative error
is 6.58 - 10~3. This approximate solution is shown in Figu¥e (red solid curve). The figure
also displaysge (black dash-dotted curve) and the GSVD solution (blue salide).

Both Algorithm 3.1 of this paper andq0, Algorithm 2.1] yield approximations ot of
higher quality wherp = 1/2 than wherp = 1. We therefore do not show results for= 1.
We also note that Algorithm3.1 with p = 0.25 andp = 0.20 gives computed approximate
solutions with relative erros.7 - 1072 after/ = 58 and/¢ = 79 iterations, respectively. This
relative error is smaller than the relative error of the GS&tution. We finally remark that
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1
0.5!
o [ —
0% 500 1000

FiG. 4.2. Example4.1 The red solid curve displays the computed approximateisala3,,,,, determined
by Algorithm?2.1 with p = 1/2, the blue dashed curve shows the solution computed via G&wiDthe black
dash-dotted curve depicts the desired solufion

the relative error fop = 0.1 can be reduced tb.46 - 102 by carrying out more thag7
iterations. Hence, Algorithr3.1can determine approximate solutions with a smaller redativ
error than GSVD for many-values smaller than or equal @c.

Similarly as for Examplél.1, we display the condition number of the matrices

49) ]

as a function of andp. This matrix defines the reduced proble&3. Figure4.4 shows
the condition number for severalvalues and increasing The condition number is seen to
decrease ggincreases.

TABLE 4.3
Example4.2. Relative errors in computed approximate solutions forrbése levell0—3. The parametef
denotes the number of steps with AlgoritBriof this paper and withZ0, Algorithm 2.1].

Method p L Nweu, —z||/]1Z]
Algorithm 2.1 fromp0] 0.5 16 9.44-1073
Algorithm 3.1 0.5 26 6.58 - 1073
Algorithm 3.1 0.1 27 3.97-1072
GSVD 2.76 - 1072

ExAMPLE 4.3. Our last example illustrates the performance of Athomi3.1 when
applied to the restoration of a two-dimensional gray-sgakegye that has been contaminated
by blur and noise. The gray-scale imagece from MATLAB’s Image Processing Toolbox
is represented by an array 256 x 256 pixels. Each pixel is stored as &nbit unsigned
integer with a value in the intervdl), 255]. The pixels are ordered row-wise and stored in a
vector of dimensiom = 2562. Letz € R represent the blur- and noise-free image (which
is assumed not to be available). We generate an associateddand noise-free imagE,
by multiplying Z by a blurring matrixA € R™*" that models Gaussian blur. This matrix
is generated by the functidnl ur from [10] with parameterband = 9 andsi gna = 2.
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0.04;

0.02}

-0.02 ‘
0.0 0 500 1000

FiG. 4.3.Examplet.2. Approximate solution:zg, ., determined by Algorithr@. 1of this paper withp = 1/2
with noise level0—3 (red solid curve), approximate solution computed with GgMDe dashed curve), and desired
solutionz (black dash-dotted curve)

x10*

35

0.5

FIG. 4.4. Example4.2. Condition number of the matric€d.5) as a function o¥ and p. The vertical axis
displays? and the horizontal axis the condition number. The red grépdwss the condition number for = 1, the
blue graph forp = 1/3, the green graph fop = 1/5, the magenta graph foy = 1/10, and the cyan graph for
p=1/20.

The parameteband controls the bandwidth of the submatrices that compdsand the
parameteisi gna controls the shape of the Gaussian point spread functioe. blur- and
noise-contaminated imade< R is obtained by adding a “noise vectat"e R™ to b with
noise leveld = 10~2; cf. (1.2). Our task is to restore the image The desired image and
the blur- and noise-contaminated imdgare shown in Figure$.5and4.6, respectively. We
assume the blurring matriX, the contaminated imadge € R”, and the noise level to be
available.
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FIG. 4.5.Example4.3. Exact image.

FIG. 4.6.Example4.3. Blur- and noise-contaminated image.
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The peak signal-to-noise ratio (PSNR) is commonly used tasme the quality of a
restored image. It is defined as

- 255
PSNRz, z) = 201log;, <||:1:—:3> )

where the numeratd55 stems from the fact that each pixel is stored wthits. A larger
PSNR generally indicates that the restoration is of hightity, but in some cases this may
not agree with visual judgment. We therefore also displayréstored image.

Let the regularization matri® be defined by
T ® Ly
(4.6) B= [ Lo I } ,

whereL is given by @.1) with n = 256. The matrixB € R130560x65536 hag almost twice as
many rows as columns. Therefore, we cannot use Algorithnof3[20]. This regularization
matrix also is used in13].

Table 4.4 reports results achieved with Algorithél for several values of the param-
eter p. For eachp, we carry out 30 iterations and select the approximationhi 30-
dimensional solution subspace with the largest PSNR vdalbe.restoration with the largest
PSNR value is determined by AlgorithBrl with p = 0.1 and is displayed by Figu#. 7. We
see that the best restoration is achieved with the smallesbar of iterations.

TABLE 4.4
Example4.3. PSNR-values of restorations computed by Algorithirwith B defined by4.6).

Method p ¢ PSNR
Algorithm 3.1 1 25 28.213
Algorithm 3.1 0.5 27 28.222
Algorithm 3.1 0.2 22 28.223
Algorithm 3.1 0.1 22 28.297

This example illustrates that Algorith®.1 with B given by @.6) can yield quite ac-
curate restorations with only matrix-vector product evaluations with the matex The
development of a black box algorithm requires criteria feciding on how many iteratiorfs
to carry out and how to chooge The discussion inZ0] on the choice o carries over to
Algorithm 3.1

5. Conclusion and extensionWe have described extensions of the generalized Golub—
Kahan reduction method for matrix pairs describedLi#] pnd of the reduction method based
on the generalized Arnoldi process introduced 26]] Computed examples illustrate the
benefits of both these extensions. In particular, Exampleg!l.2show that letting) < p < 1
in Algorithm 2.1 may give a more accurate approximationzothanp = 1. The reduction
methods of this paper can be generalized to mattixplets withg > 3 in a similar fashion
as the methods inLp, 20Q].

Acknowledgement. The authors would like to thank Stefan Kindermann for cdhgfu
reading the manuscript.
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FiG. 4.7. Example4.3. Restored image-2,,,,, obtained by AlgorithnB.1with p = 0.1 and regularization
matrix (4.6).
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