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ON COMPUTING MAXIMUM/MINIMUM SINGULAR VALUES OF A
GENERALIZED TENSOR SUM∗

ASUKA OHASHI† AND TOMOHIRO SOGABE‡

Abstract. We consider the efficient computation of the maximum/minimum singular values of a generalized tensor
sum T . The computation is based on two approaches: first, the Lanczos bidiagonalization method is reconstructed
over tensor space, which leads to a memory-efficient algorithm with a simple implementation, and second, a promising
initial guess given in Tucker decomposition form is proposed. From the results of numerical experiments, we observe
that our computation is useful for matrices being near symmetric, and it has the potential of becoming a method of
choice for other cases if a suitable core tensor can be given.
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1. Introduction. We consider computing the maximum/minimum singular values of a
generalized tensor sum

T := In ⊗ Im ⊗A+ In ⊗B ⊗ I` + C ⊗ Im ⊗ I` ∈ R`mn×`mn,(1.1)

where A ∈ R`×`, B ∈ Rm×m, C ∈ Rn×n, Im is the m × m identity matrix, the symbol
“⊗" denotes the Kronecker product, and the matrix T is assumed to be large, sparse, and
nonsingular. Such matrices T arise in a finite-difference discretization of three-dimensional
constant-coefficient partial differential equations, such as[

−a ·
(
∇ ∗∇

)
+ b · ∇+ c

]
u(x, y, z) = g(x, y, z) in Ω,

u(x, y, z) = 0 on ∂Ω,
(1.2)

where Ω = (0, 1) × (0, 1) × (0, 1), a, b ∈ R3, c ∈ R, and the symbol “∗" denotes the
elementwise product. If a = (1, 1, 1), then a · (∇ ∗ ∇) = ∆. With regard to efficient
numerical methods for linear systems of the form Tx = f , see [3, 9].

The Lanczos bidiagonalization method is widely known as an efficient method to compute
the maximum/minimum singular values of a large and sparse matrix. For its recent successful
variants, see, e.g., [2, 6, 7, 10, 12], and for other successful methods, see, e.g., [5]. The
Lanczos bidiagonalization method does not require T and T T themselves but only the results
of the matrix-vector multiplications Tv and T Tv. Even though one stores, as usual, only the
non-zero entries of T, the storage required grows cubically with n under the assumption that
` = m = n and, as it is often the case, that the number of non-zero entries of A, B, and C
grows linearly with n.

In order to avoid large memory usage, we consider the Lanczos bidiagonalization method
over tensor space. Advantages of this approach are a low memory requirement and a very
simple implementation. In fact, the required memory for storing T grows only linearly under
the above assumptions.

Using the tensor structure, we present a promising initial guess in order to improve the
speed of convergence of the Lanczos bidiagonalization method over tensor space, which is a
major contribution of this paper.
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This paper is organized as follows. In Section 2, the Lanczos bidiagonalization method is
introduced, and an algorithm is presented. In Section 3, some basic operations on tensors are
described. In Section 4, we consider the Lanczos bidiagonalization method over tensor space
and propose a promising initial guess using the tensor structure of the matrix T . Numerical
experiments and concluding remarks are given in Sections 5 and 6, respectively.

2. The Lanczos bidiagonalization method. The Lanczos bidiagonalization method,
which is due to Golub and Kahan [4], is suitable for computing maximum/minimum singular
values. In particular, the method is widely used for large and sparse matrices. It employs
sequences of projections of a matrix onto judiciously chosen low-dimensional subspaces and
computes the singular values of the obtained matrix. By means of the projections, computing
these singular values is more efficient than for the original matrix since the obtained matrix is
smaller and has a simpler structure.

For a matrix M ∈ R`×n(` ≥ n), the Lanczos bidiagonalization method displayed in
Algorithm 1 calculates a sequence of vectors pi ∈ Rn and qi ∈ R` and scalars αi and βi,
where i = 1, 2, . . . , k. Here, k represents the number of bidiagonalization steps and is typically
much smaller than either one of the matrix dimensions ` and n.

Algorithm 1 The Lanczos bidiagonalization method [4].
1: Choose an initial vector p1 ∈ Rn such that ‖p1‖2 = 1.
2: q1 := Mp1;
3: α1 := ‖q1‖2;
4: q1 := q1/α1;
5: for i = 1, 2, . . . , k do
6: ri := MTqi − αipi;
7: βi := ‖ri‖2;
8: pi+1 := ri/βi;
9: qi+1 := Mpi+1 − βiqi;

10: αi+1 := ‖qi+1‖2;
11: qi+1 := qi+1/αi+1;
12: end for

After k steps, Algorithm 1 yields the following decompositions:

MPk = QkDk,

MTQk = PkD
T
k + rke

T
k,

(2.1)

where the vectors ek and rk denote the k-th canonical and the k-th residual vector in Algo-
rithm 1, respectively, and the matrices Dk, Pk, and Qk are given as

Dk =


α1 β1

α2 β2
. . . . . .

αk−1 βk−1

αk

 ∈ Rk×k,(2.2)

Pk = (p1,p2, . . . ,pk) ∈ Rn×k, Qk = (q1, q2, . . . , qk) ∈ R`×k.

Here, Pk and Qk are column orthogonal matrices, i.e., P T
kPk = QT

kQk = Ik.
Now, the singular triplets of the matricesM andD are explained. Let σ(M)

1 , σ
(M)
2 , . . . ,σ

(M)
n

be the singular values of M such that σ(M)
1 ≥ σ(M)

2 ≥ · · · ≥ σ(M)
n . Moreover, let u(M)

i ∈ R`
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and v
(M)
i ∈ Rn, where i = 1, 2, . . . , n, be the left and right singular vectors corresponding to

the singular values σ(M)
i , respectively. Then, {σ(M)

i ,u
(M)
i ,v

(M)
i } is referred to as a singular

triplet of M , and the relations between M and its singular triplets are given as

Mv
(M)
i = σ

(M)
i u

(M)
i , MTu

(M)
i = σ

(M)
i v

(M)
i ,

where i = 1, 2, . . . , n.
Similarly, with regard to Dk in (2.2), let {σ(Dk)

i ,u
(Dk)
i ,v

(Dk)
i } be the singular triplets of

Dk. Then, the relations between Dk and its singular triplets are

Dkv
(Dk)
i = σ

(Dk)
i u

(Dk)
i , DT

ku
(Dk)
i = σ

(Dk)
i v

(Dk)
i ,(2.3)

where i = 1, 2, . . . , k. Moreover, {σ̃(M)
i , ũ

(M)
i , ṽ

(M)
i } denotes the approximate singular

triplet of M . They are determined from the singular triplet of Dk as follows:

σ̃
(M)
i := σ

(Dk)
i , ũ

(M)
i := Qku

(Dk)
i , ṽ

(M)
i := Pkv

(Dk)
i .(2.4)

Then, it follows from (2.1), (2.3), and (2.4) that

M ṽ
(M)
i = σ̃

(M)
i ũ

(M)
i ,

MTũ
(M)
i = σ̃

(M)
i ṽ

(M)
i + rke

T
ku

(Dk)
i ,

(2.5)

where i = 1, 2, . . . , k. Equations (2.5) imply that the approximate singular triplet
{σ̃(M)

i , ũ
(M)
i , ṽ

(M)
i } is acceptable for the singular triplet {σ(M)

i ,u
(M)
i ,v

(M)
i } if the value of

‖rk‖2|eT
ku

(Dk)
i | is sufficiently small.

3. Some basic operations on tensors. This section provides a brief explanation of
tensors. For further details, see, e.g., [1, 8, 11].

A tensor is a multidimensional array. In particular, a first-order tensor is a vector, a second-
order tensor is a matrix, and a third-order tensor, which is mainly used in this paper, has three
indices. Third-order tensors are denoted by X , Y , P , Q, R, and S. An element (i, j, k) of a
third-order tensor X is denoted by xijk. When the size of a tensor X is I × J ×K, the ranges
of i, j, and k are i = 1, 2, . . . , I , j = 1, 2, . . . , J , and k = 1, 2, . . . ,K, respectively.

We describe the definitions of some basic operations on tensors. Let xijk and yijk
be elements of the tensors X , Y ∈ RI×J×K . Then, addition is defined by elementwise
summation of X and Y :

(X + Y)ijk := xijk + yijk,

scalar tensor multiplication is defined by the product of the scalar λ and each element of X :

(λX )ijk := λxijk,

and the dot product is defined by the summation of elementwise products of X and Y :

(X ,Y) :=

I∑
i=1

J∑
j=1

K∑
k=1

(X ∗Y)ijk,

where the symbol “∗" denotes the elementwise product. Then, the norm is defined as

‖X‖ :=
√

(X ,X ).
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Let us define some tensor multiplications: an n-mode product, which is denoted by
the symbol “×n", is a products of a matrix M and a tensor X . The n-mode product for a
third-order tensor has three different types.

The 1-mode product of X ∈ RI×J×K and M ∈ RP×I is defined as

(X ×1 M)pjk :=

I∑
i=1

xijkmpi,

the 2-mode product of X ∈ RI×J×K and M ∈ RP×J is defined as

(X ×2 M)ipk :=

J∑
j=1

xijkmpj ,

and the 3-mode product of X ∈ RI×J×K and M ∈ RP×K is defined as

(X ×3 M)ijp :=

K∑
k=1

xijkmpk,

where i = 1, 2, . . . , I , j = 1, 2, . . . , J , k = 1, 2, . . . ,K, and p = 1, 2, . . . , P .
Finally, the operator ”vec“ vectorizes a tensor by combining all column vectors of the

tensor into one long vector:

vec : RI×J×K → RIJK ,

and the operator ”vec−1“ reshapes a tensor from one long vector:

vec−1 : RIJK → RI×J×K .

We will see that the vec−1-operator plays an important role in reconstructing the Lanczos
bidiagonalization method over tensor space.

4. The Lanczos bidiagonalization method over tensor space with a promising initial
guess.

4.1. The Lanczos bidiagonalization method over tensor space. If the Lanczos bidi-
agonalization method is applied to the generalized tensor sum T in (1.1), the following
matrix-vector multiplications are required:

Tp = (In ⊗ Im ⊗A+ In ⊗B ⊗ I` + C ⊗ Im ⊗ I`)p,
T Tp =

(
In ⊗ Im ⊗AT + In ⊗BT ⊗ I` + CT ⊗ Im ⊗ I`

)
p,

(4.1)

where p ∈ R`mn. In an implementation, however, computing the multiplications (4.1) becomes
complicated since it requires the non-zero structure of a large matrix T . Here, the relations
between the vec-operator and the Kronecker product are represented by

(In ⊗ Im ⊗A) vec(P) = vec(P ×1 A),

(In ⊗B ⊗ I`) vec(P) = vec(P ×2 B),

(C ⊗ Im ⊗ I`) vec(P) = vec(P ×3 C),

where P ∈ R`×m×n is such that vec(P) = p. Using these relations, the multiplications (4.1)
can be described by

Tp = vec (P ×1 A+ P ×2 B + P ×3 C) ,

T Tp = vec
(
P ×1 A

T + P ×2 B
T + P ×3 C

T) .(4.2)
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Then, an implementation based on (4.2) only requires the non-zero structures of the matrices
A, B, and C being much smaller than of T , and thus it is simplified.

We now consider the Lanczos bidiagonalization method over tensor space. Applying the
vec−1-operator to (4.2) yields

vec−1 (Tp) = P ×1 A+ P ×2 B + P ×3 C,

vec−1
(
T Tp

)
= P ×1 A

T + P ×2 B
T + P ×3 C

T.

Then, the Lanczos bidiagonalization method over tensor space for T is obtained and summa-
rized in Algorithm 2.

Algorithm 2 The Lanczos bidiagonalization method over tensor space.
1: Choose an initial tensor P1 ∈ R`×m×n such that ‖P1‖ = 1.
2: Q1 := P1 ×1 A+ P1 ×2 B + P1 ×3 C;
3: α1 := ‖Q1‖;
4: Q1 := Q1/α1;
5: for i = 1, 2, . . . , k do
6: Ri := Qi ×1 A

T + Qi ×2 B
T + Qi ×3 C

T − αiPi;
7: βi := ‖Ri‖;
8: Pi+1 := Ri/βi;
9: Qi+1 := Pi+1 ×1 A+ Pi+1 ×2 B + Pi+1 ×3 C − βiQi;

10: αi+1 := ‖Qi+1‖;
11: Qi+1 := Qi+1/αi+1;
12: end for

The maximum/minimum singular values of T are computed by a singular value decompo-
sition of the matrix Dk in (2.2), whose entries αi and βi are obtained from Algorithm 2. The
convergence of Algorithm 2 can be monitored by

‖Rk‖
∣∣∣eT

ku
(Dk)
i

∣∣∣ ,(4.3)

where u
(Dk)
i is computed by the singular value decomposition for Dk in (2.2).

4.2. A promising initial guess. We consider utilizing the eigenvectors of the small
matrices A, B, and C for determining a promising initial guess for Algorithm 2. We propose
the initial guess P1 that is given in Tucker decomposition form:

P1 := S ×1 PA ×2 PB ×3 PC ,(4.4)

where S ∈ R2×2×2 is the core tensor such that
∑2

i=1

∑2
j=1

∑2
k=1 sijk = 1 and sijk ≥ 0,

PA = [x
(A)
iM
,x

(A)
im ], PB = [x

(B)
jM

,x
(B)
jm ], and PC = [x

(C)
kM
,x

(C)
km ]. The rest of this section

defines the vectors x(A)
iM

, x(B)
jM

, x(C)
kM

, x(A)
im , x(B)

jm , and x
(C)
km .

Let {λ(A)
i ,x

(A)
i }, {λ

(B)
j ,x

(B)
j }, and {λ(C)

k ,x
(C)
k } be eigenpairs of the matrices A, B,

and C, respectively. Then, x(A)
iM

, x(B)
jM

, and x
(C)
kM

are the eigenvectors corresponding to the

eigenvalues λ(A)
iM

, λ(B)
jM

, and λ(C)
kM

of A, B, and C, where

(iM, jM, kM) = argmax
(i,j,k)

{∣∣∣λ(A)
i + λ

(B)
j + λ

(C)
k

∣∣∣} .
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Similarly, x(A)
im , x(B)

jm , and x
(C)
km are the eigenvectors corresponding to the eigenvalues λ(A)

im ,

λ
(B)
jm , and λ(C)

km of A, B, and C, where

(im, jm, km) = argmin
(i,j,k)

{∣∣∣λ(A)
i + λ

(B)
j + λ

(C)
k

∣∣∣} .
Here, we note that the eigenvector corresponding to the maximum absolute eigenvalue of T is
given by x

(C)
kM
⊗x

(B)
jM
⊗x

(A)
iM

and that the eigenvector corresponding to the minimum absolute

eigenvalue of T is given by x
(C)
km ⊗ x

(B)
jm ⊗ x

(A)
im .

5. Numerical examples. In this section, we report the results of numerical experiments
using test matrices given below. All computations were carried out using MATLAB version
R2011b on a HP Z800 workstation with two 2.66 GHz Xeon processors and 24GB of memory
running under a Windows 7 operating system.

The maximum/minimum singular values were computed by Algorithm 2 with random
initial guesses and with the proposed initial guess (4.4). From (4.3), the stopping crite-
ria we used were ‖Rk‖|eT

ku
(Dk)
M | < 10−10 for the maximum singular value σ(Dk)

M and
‖Rk‖|eT

ku
(Dk)
m | < 10−10 for the minimum singular value σ(Dk)

m . Algorithm 2 was stopped
when both criteria were satisfied.

5.1. Test matrices. The test matrices T arise from a 7-point central difference discretiza-
tion of the PDE (1.2) over an (n + 1) × (n + 1) × (n + 1) grid, and they are written as a
generalized tensor sum of the form

T = In ⊗ In ⊗A+ In ⊗B ⊗ In + C ⊗ In ⊗ In ∈ Rn3×n3

,

where A,B,C ∈ Rn×n. To be specific, the matrices A, B, and C are given by

A =
1

h2
a1M1 +

1

2h
b1M2 + cIn,(5.1)

B =
1

h2
a2M1 +

1

2h
b2M2,(5.2)

C =
1

h2
a3M1 +

1

2h
b3M2,(5.3)

where ai and bi (i = 1, 2, 3) correspond to the i-th elements of a and b in (1.2), respectively,
and h, M1, and M2 are given as

h =
1

n+ 1
,

M1 =


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

 ∈ Rn×n,(5.4)

M2 =


0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

 ∈ Rn×n.(5.5)

As can be seen from (5.1)–(5.5), the matrix T has high symmetry when ‖a‖2 is much
larger than ‖b‖2 and low symmetry else.
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5.2. Initial guesses used in the numerical examples. In our numerical experiments,
we set S in (4.4) to be a diagonal tensor, i.e., sijk = 0 except for i = j = k = 1 and
i = j = k = 2. Then, the proposed initial guess (4.4) is represented by the following convex
combination of rank-one tensors:

P1 = s111

(
x
(A)
iM
◦ x(B)

jM
◦ x(C)

kM

)
+ s222

(
x
(A)
im ◦ x

(B)
jm ◦ x

(C)
km

)
,(5.6)

where the symbol “◦" denotes the outer product and s111 + s222 = 1 with s111, s222 ≥ 0.
As seen in Section 4.2, the vectors x(A)

iM
, x(B)

jM
, x(C)

kM
, x(A)

im , x(B)
jm , and x

(C)
km are determined

by specific eigenvectors of the matrices A, B, and C. Since these matrices are tridiagonal
Toeplitz matrices, it is widely known that the eigenvalues and eigenvectors are given in
analytical form as follows: let D be a tridiagonal Toeplitz matrix

D =


d1 d3
d2 d1 d3

. . . . . . . . .
d2 d1 d3

d2 d1

 ∈ Rn×n,

where d2 6= 0 and d3 6= 0. Then, the eigenvalues λ(D)
i are computed by

λ
(D)
i = d1 + 2dcos

(
iπ

n+ 1

)
, i = 1, 2, . . . , n,

where d = sign(d2)
√
d2d3, and the corresponding eigenvectors x(D)

i are given by

x
(D)
i =

√
2

n+ 1



(
d3
d2

)− 0
2

sin

(
iπ

n+ 1

)
(
d3
d2

)− 1
2

sin

(
2iπ

n+ 1

)
...(

d3
d2

)−n−1
2

sin

(
niπ

n+ 1

)


, i = 1, 2, . . . , n.

5.3. Numerical results. First, we use the matrix T with the parameters a = (1, 1, 1),
b = (1, 1, 1), and c = 1 in (5.1)–(5.3).

The convergence history of Algorithm 2 with the proposed initial guess (5.6) using
s111 = s222 = 0.5 is displayed in Figure 5.1 with the number of iterations required by
Algorithm 2 on the horizontal axis and the log10 of the residual norms on the vertical axis.
Here, the i-th residual norms are computed by ‖Ri‖|eT

iu
(Di)
M | for the maximum singular value

and ‖Ri‖|eT
iu

(Di)
m | for the minimum singular value, and the size of the tensor in Algorithm 2

is 20× 20× 20.
As illustrated in Figure 5.1, Algorithm 2 with the proposed initial guess required 68

iterations for the maximum singular value and 460 iterations for the minimum singular value.
From Figure 5.1, we observe a smooth convergence behavior and faster convergence for the
maximum singular value.

Next, using the matrix T with the same parameters as for Figure 5.1, the variation in
the number of iterations is displayed in Figure 5.2, where the dependence of the number
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FIG. 5.1. The convergence history for Algorithm 2 with the proposed initial guess.

of iterations on the value s111 in the proposed initial guess is given in Figure 5.2(a), and
the dependence on the tensor size is given in Figure 5.2(b). For comparison, the numbers
of iterations required by Algorithm 2 with initial guesses being random numbers are also
displayed in Figure 5.2(b). In Figure 5.2(a), the horizontal axis denotes the value of s111,
varying from 0 to 1 incrementally with a stepsize of 0.1, and the vertical axis denotes the
number of iterations required by Algorithm 2 with the proposed initial guess. Here, the
value of s222 is computed by s222 = 1 − s111, and the matrix T used for Figure 5.2(a) is
obtained from the discretization of the PDE (1.2) over a 21× 21× 21 grid. On the other hand,
in Figure 5.2(b), the horizontal axis denotes the value of n, where the size of the tensor is
n× n× n (n = 5, 10, . . . , 35), and the vertical axis denotes the number of iterations required
by Algorithm 2 with the proposed initial guess using s111 = s222 = 0.5. Here, this initial
guess is referred to as the typical case.
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(a) Number of iteration versus the value of s111.
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(b) Number of iteration versus the tensor size.

FIG. 5.2. The variation in the number of iterations for the matrix T with a = b = (1, 1, 1), c = 1.

In Figure 5.2(a), the number of iterations hardly depends on the value of s111, but there
is a big difference in this number between the cases s111 = 0.9 and s111 = 1. We therefore
ran Algorithm 2 with the proposed initial guess using the values s111 = 0.90, 0.91, . . . , 0.99.
As a result, we confirm that the numbers of iterations are almost the same as those for
the cases s111 = 0, 0.1, . . . , 0.9. From these results, we find almost no dependency of the
number of iterations on the choice of the parameter s111, and this implies the robustness of
the proposed initial guess. It seems that the high number of iterations required for the case
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s111 = 1 is due to that the given initial guess only has a very small component of the singular
vector corresponding to the minimum singular value. In fact, for a symmetric matrix, such
a choice means that the proposed initial guess includes no component of the singular vector
corresponding to the minimum singular value. In Figure 5.2(b) we observe that Algorithm 2 in
the typical case requires fewer iterations than with an initial guess of random numbers, and the
gap grows as n increases.

In what follows, we use matrices T with higher or lower symmetry than for the matrices
used in Figures 5.1 and 5.2. A matrix T with higher symmetry is created from the parameters
a = (100, 100, 100), b = (1, 1, 1), and c = 1, and a matrix T with lower symmetry from the
parameters a = (1, 1, 1), b = (100, 100, 100), and c = 1.

The variation in the number of iterations by the value of s111 in the proposed initial guess
is presented in Figure 5.3. Here, the matrices T arise from the discretization of the PDE (1.2)
with the above parameters over a 21× 21× 21 grid.
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(a) T with higher symmetry.
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(b) T with lower symmetry.

FIG. 5.3. The variation in the number of iterations versus the value of s111.

In Figure 5.3, the variation in the number of iterations for the matrices with high and low
symmetry showed similar tendencies as in Figure 5.2(a). Furthermore, the variation in the
number of iterations required by Algorithm 2 with the proposed initial guess using the values
s111 = 0.90, 0.91, . . . , 0.99 in Figure 5.3 has the same behavior as that in Figure 5.2(a). For
the low-symmetry case, the choice s111 = 1 was optimal unlike the other cases.

In the following example, the variation in the number of iterations versus the tensor size
is displayed in Figure 5.4. For comparison, we ran Algorithm 2 with several initial guesses:
random numbers and the proposed one with the typical case s111 = 0.5.

According to Figure 5.4(a), Algorithm 2 in the typical case required fewer iterations than
for the initial guesses using random numbers when T had higher symmetry. On the other hand,
Figure 5.4(b) indicates that Algorithm 2 in the typical case required as many iterations as for a
random initial guess when T had lower symmetry. From Figures 5.2(b) and 5.4, we observe
that the initial guess using 0 ≤ s111 < 1 improves the speed of convergence of Algorithm 2
except for the case where T has lower symmetry.

As can be observed in Figure 5.4(b), the typical case shows no advantage over the random
initial guess for the low-symmetry matrix. On the other hand, for some cases the proposed
initial guess could still become a method of choice, for instance, for the case s111 = 1
displayed in Figure 5.5.

It is likely, though it requiring further investigation, that the result in Figure 5.5 indicates
a potential for improvement of the proposed initial guess (4.4) even for the low-symmetry case.
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(a) T with higher symmetry.
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(b) T with lower symmetry.

FIG. 5.4. The variation in the number of iterations versus the tensor size.
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FIG. 5.5. The variation in the number of iterations required by Algorithm 2 in the suitable case versus the
tensor size when T has lower symmetry.

In fact, we only used a diagonal tensor as initial guess, which is a subtensor of the core tensor.
For low-symmetry matrices, an experimental investigation of the optimal choice of a full core
tensor will be considered in future work.

6. Concluding remarks. In this paper, first, we derived the Lanczos bidiagonalization
method over tensor space from the conventional Lanczos bidiagonalization method using the
vec−1-operator in order to compute the maximum/minimum singular values of a generalized
tensor sum T . The resulting method achieved a low memory requirement and a very simple
implementation since it only required the non-zero structure of the matrices A,B, and C.

Next, we proposed an initial guess given in Tucker decomposition form using eigenvectors
corresponding to the maximum/minimum eigenvalues of T . Computing the eigenvectors of T
was easy since the eigenpairs of T were obtained from the eigenpairs of A,B, and C.

Finally, from the results of the numerical experiments, we showed that the maximum/mi-
nimum singular values of T were successfully computed by the Lanczos bidiagonalization
method over tensor space with some of the proposed initial guesses. We see that the proposed
initial guesses improved the speed of convergence of the Lanczos bidiagonalization method
over tensor space for the high-symmetry case and that it could become a method of choice for
other cases if a suitable core tensor can be found.

Future work is devoted to an experimental investigations using the full core tensor in the
proposed initial guess in order to choose an optimal initial guess for low-symmetry matrices.
If the generalized tensor sum (1.1) is sufficiently close to a symmetric matrix, our initial guess
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works very well, but in general, restarting techniques are important for a further improvement
of the speed of convergence to the minimum singular value. In this case, restarting techniques
should be combined not in vector- but in tensor space. Thus, constructing a general framework
in tensor space and combining Algorithm 2 with successful restarting techniques, e.g., [2, 6, 7]
are topics of future work. With regards to other methods, the presented approach may be
applied to other successful variants of the Lanczos bidiagonalization method, e.g., [10] and to
Jacobi-Davidson-type singular value decomposition methods, e.g., [5].
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