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A MINIMAL RESIDUAL NORM METHOD FOR LARGE-SCALE
SYLVESTER MATRIX EQUATIONS *

SAID AGOUJILT, ABDESLEM H. BENTBIBE, KHALIDE JBILOUS, AND EL MOSTAFA SADEK#

Abstract. In this paper, we present a new method for solving large-s8gleester matrix equations with a
low-rank right-hand side. The proposed method is an iteratiethod based on a projection onto an extended
block Krylov subspace by minimization of the norm of the resid'he obtained reduced-order problem is solved
via different direct or iterative solvers that exploit tHeusture of the linear operator associated with the obthine
matrix equation. In particular, we use the global LSQR atpami as iterative method for the derived low-order
problem. Then, when convergence is achieved, a low-ranloappate solution is computed given as a product of
two low-rank matrices, and a stopping procedure based on@etcal computation of the norm of the residual
is proposed. Different numerical examples are presentedthangroposed minimal residual approach is compared
with the corresponding Galerkin-type approach.

Key words. extended block Krylov subspaces, low-rank approximatigivester equation, minimal residual
methods
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1. Introduction. In this paper, we consider the large-scale Sylvester matyiration
(1.1) AX +XB+EFT =0,

whereA and B are square matrices of sizex n ands x s, respectively, and’, F' are matrices
of sizen x r ands x r, respectively.

Sylvester equations play a fundamental role in many probleroontrol, communication
theory, image processing, signal processing, filteringjehoeduction problems, decoupling
techniques for ordinary partial differential equationsg ahe implementation of implicit nu-
merical methods for ordinary differential equations; seg,, B, 6, 10, 13] and the references
therein. Sylvester matrix equations have a unique solufiamd only if o« + 5 # 0 for
alla € o(A) andg € o(B), whereo(Z) denotes the spectrum of the matéx For small- to
medium-sized problems, direct methods such as the BéBteisart P] and the Hessenberg-
Schur B] algorithms can be used. These algorithms are based oningddcand B into
triangular or Hessenberg forms.

During the last years, several projection methods basedrglo\Ksubspaces have been
proposed; see, e.g5,[6, 10, 12, 13, 14, 18, 23] and the references therein. The main idea
employed in these methods is to use a block (global or extraldospace and then apply the
block (global or extended block) Arnoldi process to constarthonormal bases. Then, the
original large Sylvester matrix equation is projected dhese Krylov subspaces. The alter-
nating directional implicit (in short ADI) iterations3[ 4, 16] can also be utilized if spectral
information aboutd and B is given. Note that, ADI iterations allow for faster convenge
if optimal shifts to A and B can be effectively computed and linear systems with shifted
coefficient matrices are solved effectively at low cost.
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The approximate solutions produced by Krylov subspace odsthare given as
X =V, Y, WT "whereV,,, andW,,, are orthonormal matrices whose columns form bases
for the Krylov subspack,,, (A, E) andK,,, (BT, F'), respectively. Then, the Sylvester matrix
equation is projected via the following Galerkin condition

VI (AV,. Y, WD 4+ ¥, Y, WL B+ EFT)W,, = 0.

The obtained low-order Sylvester matrix equation is solkgdlirect methods such as the
Hessenberg-Schur method. Instead of using a Galerkin{typjection, in this paper we
consider the minimization of the Frobenius norm of the rnasidssociated with the Sylvester
matrix equation1.1), which leads to the following minimization problem

V= argmin ||AX, +X,,B+EF"|,.
Xmn=Vn Y WL,

The rest of the paper is organized as follows. In the nextiagctve recall the ex-
tended block Arnoldi algorithm with some of its propertiés Section3, we define the min-
imal residual method for Sylvester matrix equations by gsie extended Krylov subspaces
Km(A, E) andK,,, (BT, F). Then, in Sectior, we give some direct and iterative methods
for solving the obtained low-order minimization problemin&lly, Section5 is devoted to
numerical experiments.

Throughout the paper, we use the following notations. Ttabd&mnius inner product of
the matricesY andY is defined by X, Y) » = tr(XTY'), wheretr(Z) denotes the trace of a
square matri¥,. The associated norm is the Frobenius norm denotéld|gy The Kronecker
product of two matrices! and B is defined byA ® B = [a, ; B], whereA = [a; ;]. This
product satisfies the propertied ® B)(C ® D) = (AC® BD) and(A® B)T = AT ® BT.
Finally, if X is a matrix, thenvec(X) is the vector obtained by stacking all the columnsXof

2. The extended block Arnoldi process.In this section, we recall the extended Krylov
subspace and extended block Arnoldi process.ILée a matrix of dimension x r. Then
the block Krylov subspace associated #h V) is defined as

Km(Aa V) = Range ({‘/7 AV, 142{/7 o ;Am_l‘/}) .

Assuming that the matri¥ is nonsingular, the extended block Krylov subspace astsatia
with (A, A=1, V) is given by (seeq, 23))

K¢(A, V) =Range ({V,A”'V,AV,A7?V, A%V,.. . A" 'V, A=V )
=K (A, V) + K, (A7, A7V,

The extended block Arnoldi process allows us to construaréimonormal basis for the ex-
tended block Krylov subspadé:, (A, V); see P, 23).
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ALGORITHM 1. The extended block Arnoldi algorithm (EBA).
Input: A ann x n matrix, V- ann x r matrix, andm an integer.
1. Compute the QR decomposition[df, A=V, i.e., [V, A71V] = V1A.
2. SetVy =].
3. Forj=1,2,...m
(a) Setvj(l) - firstr columns ofV/;, Vj(Q) : second- columns ofV/;.

(0) V; = [Vio1, Vil Vir = [4V,D, 471 V2]

(c) OrthogonalizéfjH with respect tov; to getV 1, i.e.,
i. Fori=1,2,...
ii. Hij =V Vin
iii. Vigr=Vjp1—ViH,
iv. End For
(d) Compute the QR decomposition®f, 1, i.e.,Vj41 = Vji1 Hji1;.
4. End For

Since the extended block Arnoldi algorithm involves thei@&chmidt process, the ob-
tained block vectors/,, = [V1,Va,...,V,,] (V; € R™*2") have their columns mutually
orthogonal provided none of the upper triangular matriges; ; are rank deficient. Af-
ter m steps, Algorithml has built an orthonormal basis,, of the extended block Krylov
subspac®ange({V, AV, ..., A" V. A7V, ... (A~1)™ V}) and a block upper Hessen-
berg matrixH,,, whose non zeros blocks are the entiés;. Note that each submatrii{; ;

(1 <i<j<m)isoforder2r.

LetT,, € R?m>x2mr phe the restriction of the matrid to the extended Krylov subspace
Ke, (A V), ie,T,, =VL AV,,. Itis shown in R3] thatT,, is also block upper Hessenberg
with 2r x 2r blocks. Moreover, a recursion is derived to compiijg from H,, without
requiring matrix-vector products with. For more details on how to compuig, from H,,,
we refer to P3]. We note that for large problems, the inverse of the matrig not computed
explicitly, and in this case we can use iterative solver$piteconditioners to solve linear
systems involvingAd. We notice that Algorithml could suffer from a possible breakdown
if for some j the upper triangular matri¥/; ., ; is rank deficient. To avoid this problem,
one may define a sequential extended block Arnoldi with a tieflgprocedure in the same
manner as it was already done for the classical block Arradtghrithm.

PROPOSITION2.1 ([9]). Let T,, = VI, 11 AV,,. Then we have the following relations

AVm = Vm+1’]_rm
- Vm,Tm + Vm—&-le—&-l,mEﬂy

where E,;, = [0g(m—1)rx2r; I5,)T is the matrix of the last 2r columns of the identity ma-
trix Iop,,.

In the next section, we define the minimal residual approachkdlving Sylvester matrix
equations. For this we can use block, global or extendedokirgubspaces. We will focus
only on extended Krylov subspace methods; the other appesamould be used in the same
manner.

3. The minimal residual method for large-scale Sylvester mtaix equations. In the
last years, several projection methods based on Krylovsdes have been proposed to pro-
duce approximations to exact solutions of Lyapunov or Sgtite equations;
see, e.g.,q, 12, 13, 14, 22, 23]. Most of these projection methods use the Galerkin con-
dition to extract the approximate solutions from the prog@tspace.



ETNA
Kent State University
http://etna.math.kent.edu

48 S. AGOUJIL, A. H. BENTBIB, K. JBILOU, AND EL M. SADEK

In this section, we consider approximate solutions of tnfo
XM = v, Y PWE
whereY,ME solves the following low-order minimization problem

yME = argmin ||AX,, + XpmB+ EFT| .,
X =V Y WT,
whereV,, = [Vi, Vo, , V], W,,, = [Wq,Wa,--- ,W,,,] € R"™ ™" are the orthonor-
mal matrices constructed by applying simultaneouslgteps of the extended block Arnoldi
algorithm to the pairg¢A, ) and(B”, F'), respectively. In this case, we have

AVm = VerlTﬁm
BTW'rn = Wm-&-lTﬁ-
We have the following result.
THEOREM 3.1. Let V,,, and W,,, be the orthonormal matrices constructed by applying

simultaneously m steps of the extended block Arnoldi algorithm to the pairs (A4, F) and
(BT, F), respectively. Then the minimization problem

YME - argmin ||AXm+XmB+EFT||F’
Xm=V0 Yy WT

m

can be written as

(3.1) Y MR — argmin

A I — BT RpRL 0

oY [I 0] + M Yo (T2 + [ 0o o],

where E = Vi Rg and F = W1 Rp are the QR-factorizations of £/ and F', respectively.
Proof. We have

min _||AX + XB+ EF"|,
X=Vp, Y WL

m

= min 1AV, Y, WL + BV, Y, WL + ViRgREW] ||

_ _ T
=min || Vg (T Y [I 0] + ! Y, (TE)T + Rpltp 0 W21
Vim 0 0 0 -
_ _ T
=min || TAY,, [I 0] + Lyt | Belie O g
Y, m 0 m 0 0]]| ¢

Notice that the computation of the norm of the residB&K,,) requires only the knowl-
edge of Y, put does not require the approximate soluti&p,, which is computed only
when convergence is achieved. This residual norm can belatdd by

I RpRT o]

(3.2) P = || o Yo [T 0]+[0] Ym<wa>T+{ 0 0

F
Recall that the Galerkin approach produces approximatifjé = V,,,Y,SAWT where
Y,G4 is a solution of the low-order Sylvester matrix equation

(3.3) To Y, + YA (T + EE =0,

whereF; = VI E andF, = WZI F. The projected problenB(3) has a unique solution if

and only if the matrice¥2, ande,iT have no eigenvalue in common. Notice that the prob-
lem (3.1) does not have this restriction. Now, the main issue is hasotee the reduced-order
minimization problem §.1). In the next section, we describe different direct andhiiee
strategies for solving3(1). These techniques were inspired from thosel#] for Lyapunov
matrix equations.
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4. Methods for solving the reduced minimization problem.

4.1. The least squares approach associated with the Kroneek form. Using the
Kronecker product properties, probleh3) can be written as

([omaenzo[])ore

andy = vec(Y"). This least squares problem is then solved

(4.2) min
y

)

F

RgRL 0

0 0
by direct methods such as the classical QR algorithm. Fol salaes of the iteration num-
berm, this gives good results. However, whenincreases, the method becomes very slow
and cannot be used.

wherec = vec

4.2. The Hu-Reichel method for solving the reduced problemHere we discuss the
Hu-Reichel method (seé]]) for solving the reduced-order matrix least squares EohB.1).
More precisely, we apply the approach givenis][and the strategy used in§].

LetT? = UT,UT andTZ = VTV be the real Schur decompositions of the matrices
T 4 andT g, respectively. The minimization probler.() is written as

TA 1, [TB1"  [RgRL 0
[hAy[Io]JrOYhB 1% o

?

F

min
Y

whereh 4 andhp represent thér last rows of the matrice@f,‘z andTﬁ, respectively. Then
we obtain the new minimization problem

min
Y

)

[T;‘}y +YTB" £ RgRL 0 }
F

haY YT

which is equivalent to
min (Hmy +yTB” 4 REREHi +[lhaY |2 + HthHi)
=min (|UTAUTY +Y (VTVT)T + ReRE |7 + IhaY | + [R5 )
= min (HTA? + YT + UTRERIT;VHi + HhAU?Hi + Hf/vTthD ,

whereY = UTYV. Using the Kronecker product, the preceding problem issfiamed into

2

IQTy+Tg®I N vec(UTRpRLV)
(4.2) min I®haU vec(Y) + 0
Y hsV @ I 0

2

Problem §.2) can also be expressed as

oo

I ® haU
hgV &I\

2
min
¥

)
2

whereR=1®Ts+ T ® I andS = {
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The associated normal equation(8” R + STS)y + RTd = 0. If the matrix R is
nonsingular, then we have

(I+(SRHTSR YHz+d=0, wherez = Rj).
Now, using the Sherman-Morrison-Woodbury formula, we get
z=—d+ (SRHT(I+SRYSR™HT)"'SRd.

Therefore fromz, we obtainY” and theny’, the solution of problem3 1). We notice that an
economical strategy for computingR—! is also possible and can be obtained in the same
way as in [L5, 18]. Furthermore, in its matrix form, problerd @) could also be solved by the
global LSQR or by the global CG method with an appropriateqnéitioner.

REMARK 4.1. Both the Kronecker least squares approach and the bindtenethod
requireO(m3r?) multiplications which is similar to the amount of computats required at
each step of the Galerkin method when using the Bartels&Btedgorithm for solving the
low-order Sylvester equatior3(3). Whenm increases, the least squares approach and the
Hu-Reichel method become expensive. In these cases, ooklsis® iterative methods as
will be defined in the next two subsections.

4.3. The global LSQR algorithm. In this section, we demonstrate how to adapt the
LSQR algorithm of Paige and Sandedd] for solving the low-order least squares prob-
lem (3.1). The classical LSQR algorithm is analytically equivalemthe conjugate gradient
method applied to the associated normal equation. The LS@Rad makes use of the
Golub-Kahan bidiagonalization proces$.[

At each stepn of the process, we determine approximate solutions to theico Y,/
of the problem 8.1). For simplicity, problem3.1) is now written in the following way,

(4.3) min £, (Y) = Cl|r,

where

(4.4) L,(Y)=TaY [T 0]+ [é] YTBT,
and

_ [ReR% 0
c__{ ! 0]

Notice that the adjoint of the linear operatfy, with respect to the Frobenius inner product

is given by

m 0 m*

(4.5) L5 (2) = (TAY 2 {I ] L[ 0] ZTE
The global Lanczos bidiagonalization processThis iterative procedure is initialized
by

410, =C, B1 = |CllF,
Vi = L, (0h), ar = L (1),
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and continued using the recurrence relations

51:+1(7i+1 = Em(f/z') - Oéiﬁi,

ais1Vigr = L5, (ﬁz) — BiVi.
The scalarsy; > 0 andj; > 0 are chosen such th4t; ||z = ||Villr = 1,i = 1,2,... We
setUy := [Ul, Us, ..., Uk], Vi := [Vl, Vo, ..., Vk], and

e5]
B2

Bs

=
I

Qg
Br+1

It is not difficult to show that the constructed blocﬁ’s andX~/j are F-orthonormal (which
means that they are orthonormal with respect to the Frobenner product). Using the
global Lanczos process, we find approximate solutigiisof the exact solutiory,* of
problem @.1). We can write the previous recurrence relations in matirfas

(4.6) (Lo (V2), Lon(Va), ooy Lon (Vi)] = Uppir (Th, @ I).

The method consists in searching for an approximate solatiche form

Applying the linear operatof,,, to Y*, we get

k k
L,(YE) =1L, (Z z<i>x2> =Y "20L,,(V)

=1 i=1
= L (V1) ooy Lon (V)] (21 © L) = Upey 1 (The @ 1) (21, @ 1)
= ®k+l(Tkzk ®1I),

wherez, = (21, 2 ... ()T Then,

€ = £ ()| = 8101 = Dpa Tz 0 1)

= H[[~Jk+1(51€1 @ I,) — Upyr (Tezi @ L) -

= [T [Brer 0 1) - Tem @ 1)
= [[Brer = Tzl -
Therefore, problem4(3) is equivalent to
min ||Brer — Thzrl|, -

The global LSQR algorithm for solving probler8.() is summarized in Algorithn2.
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ALGORITHM 2. The global LSQR algorithm (GI-LSQR).

1. SetY? =0. N N N _
Computes; = ||Cl|, Ur = C/B1, a1 = (L) (U1)||F, Vi = (Ln)" (U1) /0,
and Ser = ‘71,61 = 61, P = Q.

2. Fori = 1,2, ..., knax _ .

@) Wi =L (Vi) — Ui, Bigr = ||[Wi
(b) Uis1 = Wi/Bita N

(©) Li = (Ln)" (Ui1) — Bira Vi

(d) a1 = || Lillp

(€) Visr = Li/ait1, pi = m

() ci =p1/p1, si = Bit1/p1

(9) Oi1 = sivit1, Piy1 = CiCtiga

(h) (I)z = CZ'(I)Z', CI)i+1 = SZ(I%

() Yo=Y+ (2i/p)W;

() Wis1 = Vigr — (0ix1/pi)W;. If |@,41] is small enough then stop.
3. End For

The preceding algorithm allows us to compute an approxinsalation Y*, with
1 <k < kpax, Of the minimization problem4(6). Next, we give an expression of the as-
sociated residual norm.

THEOREM 4.2. Let X,, = V,,Y,,WZ be the approximate solution to the Sylvester
equation obtained after m iterations of the (EBA) algorithm, where

Y,, = argmin

)

A Il ~pr , [RERE 0O
TaY [I 0}+[O}Y"H‘m +[ 00

Y F
is obtained by the global LSQR algorithm. Then
[ B (Xm) |l = @,
where ® = [®;, 1] isgivenin Algorithm 2.
Proof. We have
IR(Xm)llp = |AXm + XmB + EF"|
_ _ T
= |TAv [T 0]+ || vmBr 4 | PR
m 0 m 0 0 =

= rr%in | L (Y) — CHF
= . O

Theorem4.2 plays a very important role in practice. It allows us to cotepiine norm
of the residual without computing the approximate solutiwhich is available only when
convergence is achieved.

If the matricesA and B are stable Re(\;(A4)) < 0 andRe(\;(B)) < 0), then the
Sylvester matrix equationl(l) has a unique solution given by the integral representation

(see 7))

o0
X = / A EFT B qt.
0
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The logarithmic "2-norm” of the stable matriA is defined by
1
ua(A) = 3 Anaz(A+ AT < 0.

The logarithmic norm provides a useful bound for the mateipamential. It is known
(see 1)) that

| et ||y < et t>0.

In the following proposition, we give an upper bound for tleem of the errorX — X,
THEOREM4.3. Assumethat A and B are stable matrices, and let X,,, = V,,,Y,, WL be

the approximate solution to the Sylvester equation obtained after m iterations of the extended
block Arnoldi algorithm. Then we obtain the following upper bound for theerror X — X,,,:

—Tm

X=X, oL ———,
| o= A+ e (B)

where r,,, isthe residual norm given by (3.2).
Proof. SubtractingR(X,,) = AX,, + X,,B + EFT from the initial Sylvester matrix
equation {..1), we get

A(Xpm — X) + B(X,, — X) = R(X,n).

As A and B are assumed to be stable, we find

XX, = / e R(X,,) et dt.
0

Hence, by using the logarithmic norm, we obtain
| X — X I<]| R(Xm) Hz/ etn2(A)+p2(B) gy
0

Therefore, ad R(X.,) ||2<|| R(X.) ||F andpua(A) + p2(B) < 0, the result follows.
a
The convergence of the global LSQR algorithm may be slow,thad we have to use
this method with a preconditioner. Different strategies possible, and one can adapt the
techniques used irf].

4.4. The preconditioned global conjugate gradient methodIn this section, we con-
sider the preconditioned global conjugate gradient meffiRE@CG) for solving the least
squares reduced problem.$). This is a matrix version of the well known PCGLS, the
classical preconditioned CG method applied to the normahtgn. The normal equation
associated with4.3) is given by

(4.7) L5, (LmY)) = L, (C),

where the operatois,, andL’, are defined in4.4) and @.5), respectively.
Let the matriceﬂT‘:L andeL be expressed as

m

_A TA — TB
[hzl] and Tp = {hg},
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B
m?

whereh 4 andhp represent th@r last rows of the matrice@: andT
the normal equationg}(7) can be written as

respectively. Then

(4.8) ATy 4 vTe T2 + ATy BT L TAYTE _ ¢, — 0,
whereC; = LI (C). Considering the singular value decomposition (SVD) of rthetrices
Tﬁ; andTi,

T —UASAVY, T =UpSpVa,
we get the following eigendecompositions

—AT_a —BT_p
Tm Tm = QADAQE’ P]I‘m Tm = QBDBan

whereQa = VA, Qp = Vi, andDy = 454 . SettingV” = QLY Qp andC = Q%C1Q5,
the normal equationg!(8) are now expressed as

(4.9) DAY +YDp +TAYTE 4 (TA)TYTE)T —C =0,

whereT4 = QTTAQ., TB = QLTEQp, andY = Q%Y Qp. This expression suggests
that one can use the first part as a preconditioner, thatesnttrix operator

(4.10) P(Y) = DAY +YDg.

It can be seen that expressi@gng) corresponds to the normal equations of the matrix operator
(4.11) %@zﬁ?mﬁﬂ+ﬁﬂﬁﬁﬂ

Whereﬁ;‘,‘ = Ti @4 and 7~}f = Tﬁ (). Therefore, the preconditioned global conjugate
gradient algorithm is obtained by applying the precondiio@.10 to the normal equations
associated with the matrix linear operator defined 4yt1). This is summarized in Algo-
rithm 3.

ALGORITHM 3. The preconditioned global CG algorithm (PGCG).
1. Choose atoleranael > 0, a maximum number of,.. iterations.
ChooseYy, and setRy = C — L,,,(Yo), So = L, (Ro), Zo = P~(So), Po = Sp.
2. Forj =0,1,2,..., jmax
@) Wj = L (Fj)
(0) a; = (S, Z;) p /Wl
©) Y =Y+ ;P
(d) RjJr’l = Rj — Oéjo
(e) If [|[Rj+1]|F < tol, stop
else
() Sjr1 =L (Rjt1)
@) Zjt1 =P 1 (Sj41)
() Bj = (Sj+1, Zjw1)p /(S5 Zj) p
() Pjt1=Zj1+ 505
3. End For
Notice that the use of the preconditiorférrequires solving a Sylvester equation at each
iteration. But since the matricd34 andD g of these Sylvester matrix equations are diagonal
matrices, the cost is reduced.
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4.5. Low-rank form of the approximate solutions. The solutionX,,, can be given as
a product of two matrices of low-rank. It is possible to depose it asX,, = 7, Z7,
where the matriceg; and Z; are of low-rank (lower tham). Consider the singular value
decomposition of th@msr x 2mr matrix

YR~ §in T,

whereY is the diagonal matrix of the singular values Af"* sorted in decreasing order.
Let Y7 ; andY>; be the2mr x [ matrices consisting of the firgtcolumns ofY; and }72,
respectively, corresponding to thsingular values of magnitude larger than some tolerance.
We obtain the truncated singular value decomposition

MR T
Y, U, 5 Uy

wherey; = diagloy, ..., 0]. SettingZy ,, = V,, Uy, 5)/%, andZy ,,, = W, Us, %77, it
follows that

(4.12) X & Z1n 23 -

This is very important for large problems, because one doesave to compute and store
the approximationX,, at each iteration. We notice that there are cheaper waysnpuie
low-rank representations of the approximate solution]Sge

The minimal residual algorithm for solving Sylvester mateiquations (MRS) is sum-
marized in Algorithmd.

ALGORITHM 4. The minimal residual method for large Sylvester matrinapns (MR).
Choose a toleranael > 0, a maximum number dfermax iterations.

Form =1,2,3,...,itermax

UpdateVm,TA by EBA (Algorithm 1) applied to(A, E).

UpdateW,,, T.., by EBA applied to BT, F).

Solve the low-order problen3 (1);
if |R(Xm)||F < tol, stop.
End For

Using @.12), the approximate solutioX,, is given byX,, ~ Z; ,, Z{m.

©ONoOO A~ W DNE

5. Numerical experiments. In this section, we present some numerical examples of
continuous-time Sylvester matrix equations. We give caispas between the Galerkin pro-
jection approach (GA) and the minimal residual (MR) apploéar large-scale problems
using the global LSQR (GI-LSQR), the preconditioned globahjugate gradient method
(PGCQG), the direct Kronecker product when solving the reddeast squares minimization
problem, and the Hu-Reichel method (HR). In the last expenitywe also give a comparison
with the low-rank factored ADI (LtADI) method described in3, 4]. The algorithms are
coded in Matlats.0. For the Galerkin approach (GA) and at each iteratiarthe projected
problem of siz&mr x 2myr is solved by using the Bartels-Stewart algorithzh (When solv-
ing the reduced minimization problem, the global LSQR aredgteconditioned global CG
(PGCG) are stopped when the relative norm of the residuasisthanol; = 10~!2 or when
a maximum ofk,,,,, = 1000 iterations is achieved. The minimal residual (Algoritdjrand
the Galerkin approach are stopped when the norm of the ms&liess thanol = 10~7, and
a maximum ofitermax = 50 outer iterations is allowed.
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FiG. 5.1.GA: solid line, MR: dashed line.

The first set of matriced and B is obtained from the discretisation of the operator

(5.1) Ly = Au— fi(z, y)% + fa(z, y)% +9(z,y)

on the unit squar@, 1] x [0, 1] with homogeneous Dirichlet boundary conditions. The num-
ber of inner grid points in each directionsg for the operatoi.,,.. The dimensions of the
matricesA and B aren = n2 ands = s3, respectively. The discretization of the op-
erator L,, yields matrices extracted from thgyapack package 20] using the command
fdm2d_mat ri x and denoted ad = fdm(fi(z,y), f2(z,y),g(x,y)). For the second set
of matrix tests, we use the matriceéd32, pde2961, andthermal from the Harwell Boeing
Collection' and also the matrix 'floumeter’ from the Oberwolfach CollectiénThe coeffi-
cients of the matrice® and F" are random values uniformly distributed fin1], and we set
r=2.

ExAamPLE 5.1. In Figure5.1and Figures.2we plot the residual norms versus the num-
ber of iterations for the minimal residual and the Galerkip@aches. For this first experi-
ment, we use the global LSQR algorithm to solve the reducednmization problem §.1).

In Figure5.1, the matricesA and B are obtained from the discretisation of the operdigr
with dimensions, = 4900 ands = 3600, respectively. In Figur®.2, we use the matri-
cesA = pde2961 and B = thermal from the Harwell Boeing collection with dimensions
n = 2961 ands = 3456, respectively. For this experiment, the reduced-ordeblera is
solved by the direct least squares method associated tortiveeker form 4.1). As can
be seen from these two figures, the MR algorithm convergesesstully, while for the GA
approach, we obtain residual norms around>.

ExaMPLE 5.2. For the second set of experiments, we compare the pefmes of the
MR method associated to the different techniques for sglthe reduced-order minimization
problem and the Galerkin approach (GA). The reduced mirdtium problem is solved by the
direct least squares method, by the global LSQR, by the pdittoned conjugate gradient

Ihttp:// mat h. ni st. gov/ Mat ri xMar ket
2https://portal .uni-freiburg.de/inteksinul ati on/ benchmark
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FIG. 5.2.GA: solid line, MR: dashed line.

method for the normal equation (GPCG), and by the Hu-Reietethod (HR). In Tablé.1,

we list the CPU times (in seconds), the total number of ot¢eaiions, and the norms of the
residuals obtained by these different approaches. Theteghiimes include the time required
for LU computations of the matrice$ and B used in the extended block Arnoldi process. As
can be seen from this table, the results given by the Galeyigmoach are not good (except
for the first experiment). In some cases, the approximatwoduced by the GA method
deteriorate after a number of iterations. We also noticé wheen using the direct method
for solving the reduced minimization problem, the CPU tiraéhigher when many outer
iterations are needed to achieve convergence; this is Heefoathe last two experiments.

ExAMPLE 5.3. For the last experiment, we compare the performancésedBA ap-
proach, the MR method with GPCG as a solver for the low-ordarmization problem, and
the low-rank factored ADI (LIADI) method described in3, 4]. For this experiment, the
matricesA and B are the same as those given #) Example 1]. They are obtained from
the 5-point discretization of the operatby, in (5.1) with dimensions: = 6400 for A and
s = 3600 for B. For this experimently and F' are random matrices with = 4 columns.
In Table5.2, we list the residual norms and the corresponding CPU timedch method.
For this experiment, the algorithms are stopped when tlaivelresidual norms are smaller
than10—'!.

6. Conclusion. In this paper we presented an iterative method for solvingelscale
Sylvester matrix equations with low-rank right-hand sidBise proposed method is based on
a projection onto extended block Krylov subspaces with aimiration property. The ob-
tained low-order minimization problem is solved via itérator direct methods. To speed up
the convergence when solving the low-order minimizatiavbfgm, we use a preconditioned
global conjugate gradient method associated to the normtbnequation. The approximate
solutions are given as a product of two low-rank matricesctwhllows to save memory for
large problems. The advantage of the minimal residual noeisaccompared to the Galerkin-
type counterpart is its stability. This is demonstratedh®yperformed numerical tests.
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TABLE 5.1
Results for experiments 2.
Matrices Method CPUtime Its. Res. norm
A = thermal, MR(PGCG) 265 10 1.1x107°8
B = add32 MR (direct) 265 9 21x10°8
n = 3456, s = 4960 MR (GI-LSQR) 28s 10 1.3x10°8
MR(HR) 27s 9 35x1078
GA 25s 9 14x10°8
A = fdm(cos(zy),e?’*,100) MR(PGCG) 455 15 1.9x10°8
B = add32 MR (direct) 565 15 23x10°8
n = 90000, s = 4960 MR (GI-LSQR) 49s 17 1.1x1078
MR(HR) 88s 15 31x10°8
GA 83s 21 86x107°
A = fdm(sin(zy),e™,10) MR(PGCG) 565 18 25x10°8
B = thermal MR(direct) 58s 16 3.1x10°8
n = 122500, s = 3456 MR(GI-LSQR) —— 5 —-—-—
MR(HR) 110s 16 2.0x10°8
GA 82s 25 84 x107°
A = flow MR (PGCG) 49s 16 2.0x10°8
B = fdm(sin(zy),zy,1000) MR (direct) 700s 35 3.1x1078
n = 9669, s = 40000 MR(GI-LSQR) —— 5 —-—-—-—
MR(HR) 150s 35 24x1078
GA 95s 50 2.5x107°
A = fdm(zy,y%,1) MR(PGCG) 706s 18 2.1 x1078
B = fdm(zxy, cos(zy), 10) MR(direct) 1500s 42 15x1078
n = 122500, s = 48400 MR(GI-LSQR) —— - == ——
MR(HR) —— - - ===
GA 8055 50 4.2x107*
TABLE 5.2
Results for experiments 3.
Method Res. norm. CPU time
MR(PGCG) 1.2 x 10712 2.8s
GA 6.4 x 10712 3.2s
Lr_ADI 2.5 x 10712 5.2s
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