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A MINIMAL RESIDUAL NORM METHOD FOR LARGE-SCALE
SYLVESTER MATRIX EQUATIONS ∗

SAID AGOUJIL†, ABDESLEM H. BENTBIB‡, KHALIDE JBILOU§, AND EL MOSTAFA SADEK‡§

Abstract. In this paper, we present a new method for solving large-scaleSylvester matrix equations with a
low-rank right-hand side. The proposed method is an iterative method based on a projection onto an extended
block Krylov subspace by minimization of the norm of the residual. The obtained reduced-order problem is solved
via different direct or iterative solvers that exploit the structure of the linear operator associated with the obtained
matrix equation. In particular, we use the global LSQR algorithm as iterative method for the derived low-order
problem. Then, when convergence is achieved, a low-rank approximate solution is computed given as a product of
two low-rank matrices, and a stopping procedure based on an economical computation of the norm of the residual
is proposed. Different numerical examples are presented, andthe proposed minimal residual approach is compared
with the corresponding Galerkin-type approach.

Key words. extended block Krylov subspaces, low-rank approximation, Sylvester equation, minimal residual
methods
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1. Introduction. In this paper, we consider the large-scale Sylvester matrixequation

(1.1) AX +XB + EFT = 0,

whereA andB are square matrices of sizen×n ands×s, respectively, andE,F are matrices
of sizen× r ands× r, respectively.

Sylvester equations play a fundamental role in many problems in control, communication
theory, image processing, signal processing, filtering, model reduction problems, decoupling
techniques for ordinary partial differential equations, and the implementation of implicit nu-
merical methods for ordinary differential equations; see,e.g., [3, 6, 10, 13] and the references
therein. Sylvester matrix equations have a unique solutionif and only if α + β 6= 0 for
all α ∈ σ(A) andβ ∈ σ(B), whereσ(Z) denotes the spectrum of the matrixZ. For small- to
medium-sized problems, direct methods such as the Bartels-Stewart [2] and the Hessenberg-
Schur [8] algorithms can be used. These algorithms are based on reducing A andB into
triangular or Hessenberg forms.

During the last years, several projection methods based on Krylov subspaces have been
proposed; see, e.g., [5, 6, 10, 12, 13, 14, 18, 23] and the references therein. The main idea
employed in these methods is to use a block (global or extended) subspace and then apply the
block (global or extended block) Arnoldi process to construct orthonormal bases. Then, the
original large Sylvester matrix equation is projected ontothese Krylov subspaces. The alter-
nating directional implicit (in short ADI) iterations [3, 4, 16] can also be utilized if spectral
information aboutA andB is given. Note that, ADI iterations allow for faster convergence
if optimal shifts toA andB can be effectively computed and linear systems with shifted
coefficient matrices are solved effectively at low cost.
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The approximate solutions produced by Krylov subspace methods are given as
Xm = VmYmW

T
m, whereVm andWm are orthonormal matrices whose columns form bases

for the Krylov subspaceKm(A,E) andKm(BT , F ), respectively. Then, the Sylvester matrix
equation is projected via the following Galerkin condition

V
T
m(AVmYmW

T
m + VmYmW

T
mB + EFT )Wm = 0.

The obtained low-order Sylvester matrix equation is solvedby direct methods such as the
Hessenberg-Schur method. Instead of using a Galerkin-typeprojection, in this paper we
consider the minimization of the Frobenius norm of the residual associated with the Sylvester
matrix equation (1.1), which leads to the following minimization problem

Y MR
m = argmin

Xm=VmYmWT
m

∥∥AXm +XmB + EFT
∥∥
F
.

The rest of the paper is organized as follows. In the next section, we recall the ex-
tended block Arnoldi algorithm with some of its properties.In Section3, we define the min-
imal residual method for Sylvester matrix equations by using the extended Krylov subspaces
Km(A,E) andKm(BT , F ). Then, in Section4, we give some direct and iterative methods
for solving the obtained low-order minimization problem. Finally, Section5 is devoted to
numerical experiments.

Throughout the paper, we use the following notations. The Frobenius inner product of
the matricesX andY is defined by〈X,Y 〉F = tr(XTY ), wheretr(Z) denotes the trace of a
square matrixZ. The associated norm is the Frobenius norm denoted by‖.‖F . The Kronecker
product of two matricesA andB is defined byA ⊗ B = [ai,jB], whereA = [ai,j ]. This
product satisfies the properties(A⊗B)(C⊗D) = (AC⊗BD) and(A⊗B)T = AT ⊗BT .
Finally, if X is a matrix, thenvec(X) is the vector obtained by stacking all the columns ofX.

2. The extended block Arnoldi process.In this section, we recall the extended Krylov
subspace and extended block Arnoldi process. LetV be a matrix of dimensionn × r. Then
the block Krylov subspace associated to(A, V ) is defined as

Km(A, V ) = Range
({

V,AV,A2V, . . . , Am−1V
})

.

Assuming that the matrixA is nonsingular, the extended block Krylov subspace associated
with (A,A−1, V ) is given by (see [5, 23])

Ke
m(A, V ) = Range

({
V,A−1V,AV,A−2V,A2V, . . . , Am−1V,A−m+1V

})

= Km(A, V ) +Km(A−1, A−1V ).

The extended block Arnoldi process allows us to construct anorthonormal basis for the ex-
tended block Krylov subspaceKe

m(A, V ); see [9, 23].



ETNA
Kent State University 

http://etna.math.kent.edu

MINIMAL RESIDUAL METHOD FOR SYLVESTER MATRIX EQUATIONS 47

ALGORITHM 1. The extended block Arnoldi algorithm (EBA).
Input: A ann× n matrix,V ann× r matrix, andm an integer.

1. Compute the QR decomposition of[V,A−1V ], i.e.,[V,A−1V ] = V1Λ.
2. SetV0 = [ ].
3. Forj = 1, 2, ...,m

(a) SetV (1)
j : first r columns ofVj , V

(2)
j : secondr columns ofVj .

(b) Vj = [Vj−1, Vj ] , V̂j+1 =
[
AV

(1)
j , A−1 V

(2)
j

]

(c) OrthogonalizêVj+1 with respect toVj to getVj+1, i.e.,
i. For i = 1, 2, . . .
ii. Hi,j = V T

i V̂j+1

iii. V̂j+1 = V̂j+1 − Vi Hi,j

iv. End For
(d) Compute the QR decomposition ofV̂j+1, i.e.,V̂j+1 = Vj+1 Hj+1,j .

4. End For

Since the extended block Arnoldi algorithm involves the Gram-Schmidt process, the ob-
tained block vectorsVm = [V1, V2, . . . , Vm] (Vi ∈ R

n×2r) have their columns mutually
orthogonal provided none of the upper triangular matricesHj+1,j are rank deficient. Af-
ter m steps, Algorithm1 has built an orthonormal basisVm of the extended block Krylov
subspaceRange({V,AV, . . . , Am−1 V,A−1 V, . . . , (A−1)m V }) and a block upper Hessen-
berg matrixHm whose non zeros blocks are the entriesHi,j . Note that each submatrixHi,j

(1 ≤ i ≤ j ≤ m) is of order2r.
LetTm ∈ R

2mr×2mr be the restriction of the matrixA to the extended Krylov subspace
Ke

m(A, V ), i.e.,Tm = V
T
m AVm. It is shown in [23] thatTm is also block upper Hessenberg

with 2r × 2r blocks. Moreover, a recursion is derived to computeTm from Hm without
requiring matrix-vector products withA. For more details on how to computeTm from Hm,
we refer to [23]. We note that for large problems, the inverse of the matrixA is not computed
explicitly, and in this case we can use iterative solvers with preconditioners to solve linear
systems involvingA. We notice that Algorithm1 could suffer from a possible breakdown
if for somej the upper triangular matrixHj+1,j is rank deficient. To avoid this problem,
one may define a sequential extended block Arnoldi with a deflation procedure in the same
manner as it was already done for the classical block Arnoldialgorithm.

PROPOSITION2.1 ([9]). Let T̄m = V
T
m+1AVm. Then we have the following relations

AVm = Vm+1T̄m

= VmTm + Vm+1Tm+1,mE
T
m,

where Em = [02(m−1)r×2r, I2r]
T is the matrix of the last 2r columns of the identity ma-

trix I2mr.
In the next section, we define the minimal residual approach for solving Sylvester matrix

equations. For this we can use block, global or extended Krylov subspaces. We will focus
only on extended Krylov subspace methods; the other approaches could be used in the same
manner.

3. The minimal residual method for large-scale Sylvester matrix equations. In the
last years, several projection methods based on Krylov subspaces have been proposed to pro-
duce approximations to exact solutions of Lyapunov or Sylvester equations;
see, e.g., [6, 12, 13, 14, 22, 23]. Most of these projection methods use the Galerkin con-
dition to extract the approximate solutions from the projection space.
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In this section, we consider approximate solutions of the form

XMR = VmY MR
m W

T
m,

whereY MR
m solves the following low-order minimization problem

Y MR = argmin
Xm=VmYmWT

m

∥∥AXm +XmB + EFT
∥∥
F
,

whereVm = [V1, V2, · · · , Vm], Wm = [W1,W2, · · · ,Wm] ∈ R
n×mr are the orthonor-

mal matrices constructed by applying simultaneouslym steps of the extended block Arnoldi
algorithm to the pairs(A,E) and(BT , F ), respectively. In this case, we have

AVm = Vm+1T̄
A
m,

BT
Wm = Wm+1T̄

B
m.

We have the following result.
THEOREM 3.1. Let Vm and Wm be the orthonormal matrices constructed by applying

simultaneously m steps of the extended block Arnoldi algorithm to the pairs (A,E) and
(BT , F ), respectively. Then the minimization problem

Y MR
m = argmin

Xm=VmYmWT
m

∥∥AXm +XmB + EFT
∥∥
F
,

can be written as

(3.1) Y MR
m = argmin

∥∥∥∥ T̄
A
mYm

[
I 0

]
+

[
I
0

]
Ym(T̄B

m)T +

[
RER

T
F 0

0 0

]∥∥∥∥
F

,

where E = V1RE and F = W1RF are the QR-factorizations of E and F , respectively.
Proof. We have

min
X=VmYmWT

m

∥∥AX +XB + EFT
∥∥
F

=min
Ym

‖AVmYmW
T
m +BVmYmW

T
m + V1RER

T
FW

T
1 ‖F

=min
Ym

∥∥∥∥Vm+1

(
T̄
A
mYm

[
I 0

]
+

[
I
0

]
Ym(T̄B

m)T +

[
RER

T
F 0

0 0

])
W

T
m+1

∥∥∥∥
F

=min
Ym

∥∥∥∥ T̄
A
mYm

[
I 0

]
+

[
I
0

]
Ym(T̄B

m)T +

[
RER

T
F 0

0 0

]∥∥∥∥
F

.

Notice that the computation of the norm of the residualR(Xm) requires only the knowl-
edge ofY MR

m but does not require the approximate solutionXm, which is computed only
when convergence is achieved. This residual norm can be calculated by

(3.2) rm =

∥∥∥∥ T̄
A
mYm

[
I 0

]
+

[
I
0

]
Ym(T̄B

m)T +

[
RER

T
F 0

0 0

]∥∥∥∥
F

.

Recall that the Galerkin approach produces approximationsXGA
m = VmY GA

m W
T
m where

Y GA
m is a solution of the low-order Sylvester matrix equation

(3.3) T
A
mY GA

m + Y GA
m (TB

m)T + Ẽ1F̃
T
1 = 0,

whereẼ1 = V
T
mE andF̃1 = W

T
mF . The projected problem (3.3) has a unique solution if

and only if the matricesTA
m andTB

m
T

have no eigenvalue in common. Notice that the prob-
lem (3.1) does not have this restriction. Now, the main issue is how tosolve the reduced-order
minimization problem (3.1). In the next section, we describe different direct and iterative
strategies for solving (3.1). These techniques were inspired from those in [18] for Lyapunov
matrix equations.
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4. Methods for solving the reduced minimization problem.

4.1. The least squares approach associated with the Kronecker form. Using the
Kronecker product properties, problem (4.3) can be written as

(4.1) min
y

∥∥∥∥
([

I
0

]
⊗ T̄

A
m + T̄

B
m ⊗

[
I
0

])
y + c

∥∥∥∥
F

,

wherec = vec

([
RER

T
F 0

0 0

])
andy = vec(Y ). This least squares problem is then solved

by direct methods such as the classical QR algorithm. For small values of the iteration num-
berm, this gives good results. However, whenm increases, the method becomes very slow
and cannot be used.

4.2. The Hu-Reichel method for solving the reduced problem.Here we discuss the
Hu-Reichel method (see [11]) for solving the reduced-order matrix least squares problem (3.1).
More precisely, we apply the approach given in [15] and the strategy used in [18].

LetTA
m = UTAU

T andTB
m = V TBV

T be the real Schur decompositions of the matrices
TA andTB , respectively. The minimization problem (3.1) is written as

min
Y

∥∥∥∥∥

[
T
A
m

hA

]
Y
[
I 0

]
+

[
I
0

]
Y

[
T
B
m

hB

]T
+

[
RER

T
F 0

0 0

]∥∥∥∥∥
F

,

wherehA andhB represent the2r last rows of the matricesT
A

m andT
B

m, respectively. Then
we obtain the new minimization problem

min
Y

∥∥∥∥
[
T
A
mY + Y T

B
m

T
+RER

T
F 0

hAY Y hT
B

]∥∥∥∥
F

,

which is equivalent to

min
Y

(∥∥∥TA
mY + Y T

B
m

T
+RER

T
F

∥∥∥
2

F
+ ‖hAY ‖

2
F +

∥∥Y hT
B

∥∥2
F

)

=min
Y

(∥∥UTAU
TY + Y (V TBV

T )T +RER
T
F

∥∥2
F
+ ‖hAY ‖

2
F +

∥∥Y hT
B

∥∥2
F

)

=min
Ỹ

(∥∥∥TAỸ + Ỹ TT
B + UTRER

T
FV
∥∥∥
2

F
+
∥∥∥hAUỸ

∥∥∥
2

F
+
∥∥∥Ỹ V ThT

B

∥∥∥
2

F

)
,

whereỸ = UTY V . Using the Kronecker product, the preceding problem is transformed into

(4.2) min
Y

∥∥∥∥∥∥



I ⊗ TA + TB ⊗ I

I ⊗ hAU
hBV ⊗ I


 vec(Ỹ ) +



vec(UTRER

T
FV )

0
0



∥∥∥∥∥∥

2

2

.

Problem (4.2) can also be expressed as

min
ỹ

∥∥∥∥
[
R
S

]
ỹ +

[
d
0

]∥∥∥∥
2

2

,

whereR = I ⊗ TA + TB ⊗ I andS =

[
I ⊗ hAU
hBV ⊗ I

]
.
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The associated normal equation is(RTR + STS)ỹ + RT d = 0. If the matrixR is
nonsingular, then we have

(I + (SR−1)TSR−1)z + d = 0, wherez = Rỹ.

Now, using the Sherman-Morrison-Woodbury formula, we get

z = −d+ (SR−1)T (I + SR−1(SR−1)T )−1SR−1d.

Therefore fromz, we obtainỸ and thenY , the solution of problem (3.1). We notice that an
economical strategy for computingSR−1 is also possible and can be obtained in the same
way as in [15, 18]. Furthermore, in its matrix form, problem (4.2) could also be solved by the
global LSQR or by the global CG method with an appropriate preconditioner.

REMARK 4.1. Both the Kronecker least squares approach and the Hu-Reichel method
requireO(m3r3) multiplications which is similar to the amount of computations required at
each step of the Galerkin method when using the Bartels-Stewart algorithm for solving the
low-order Sylvester equation (3.3). Whenm increases, the least squares approach and the
Hu-Reichel method become expensive. In these cases, one should use iterative methods as
will be defined in the next two subsections.

4.3. The global LSQR algorithm. In this section, we demonstrate how to adapt the
LSQR algorithm of Paige and Sanders [19] for solving the low-order least squares prob-
lem (3.1). The classical LSQR algorithm is analytically equivalentto the conjugate gradient
method applied to the associated normal equation. The LSQR method makes use of the
Golub-Kahan bidiagonalization process [7].

At each stepm of the process, we determine approximate solutions to the solution Y MR
m

of the problem (3.1). For simplicity, problem (3.1) is now written in the following way,

(4.3) min
Y

‖Lm(Y )− C‖F ,

where

(4.4) Lm(Y ) = T̄
A
mY

[
I 0

]
+

[
I
0

]
Y T̄

BT
m ,

and

C = −

[
RER

T
F 0

0 0

]
.

Notice that the adjoint of the linear operatorLm with respect to the Frobenius inner product
is given by

(4.5) L∗

m(Z) = (T̄A
m)TZ

[
I
0

]
+
[
I 0

]
Z T̄

B
m.

The global Lanczos bidiagonalization process.This iterative procedure is initialized
by

β1Ũ1 = C, β1 = ‖C‖F ,

α1Ṽ1 = Lm
T (Ũ1), α1 = ‖Lm

T (Ũ1)‖F ,
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and continued using the recurrence relations

βi+1Ũi+1 = Lm(Ṽi)− αiŨi,

αi+1Ṽi+1 = L∗

m

(
Ũi

)
− βiṼi.

The scalarsαi > 0 andβi > 0 are chosen such that‖Ũi‖F = ‖Ṽi‖F = 1, i = 1, 2, . . . We
setŨk := [Ũ1, Ũ2, ..., Ũk], Ṽk := [Ṽ1, Ṽ2, ..., Ṽk], and

T̄k =




α1

β2 α2

β3
. . .
. . . αk

βk+1



.

It is not difficult to show that the constructed blocks̃Vi and Ṽj are F-orthonormal (which
means that they are orthonormal with respect to the Frobenius inner product). Using the
global Lanczos process, we find approximate solutionsY k of the exact solutionY MR

m of
problem (3.1). We can write the previous recurrence relations in matrix form as

(4.6) [Lm(Ṽ1),Lm(Ṽ2), ...,Lm(Ṽk)] = Ũk+1(T̄k ⊗ I).

The method consists in searching for an approximate solution of the form

Y k =

k∑

i=1

z(i)Ṽi.

Applying the linear operatorLm to Y k, we get

Lm(Y k) = Lm

(
k∑

i=1

z(i)Ṽi

)
=

k∑

i=1

z(i)Lm(Ṽi)

= [Lm(Ṽ1), ...,Lm(Ṽk)] (zk ⊗ Is) = Ũk+1(T̄k ⊗ I)(zk ⊗ I)

= Ũk+1(T̄kzk ⊗ I),

wherezk = (z(1), z(2), · · · , z(k))T . Then,

∥∥C − Lm(Y k)
∥∥
F
=
∥∥∥β1Ũ1 − Ũk+1(T̄kzk ⊗ Is)

∥∥∥
F

=
∥∥∥Ũk+1(β1e1 ⊗ Is)− Ũk+1(T̄kzk ⊗ Is)

∥∥∥
F

=
∥∥∥Ũk+1

[
(β1e1 ⊗ Is)− (T̄kzk ⊗ Is)

]∥∥∥
F

=
∥∥β1e1 − T̄kzk

∥∥
2
.

Therefore, problem (4.3) is equivalent to

min
∥∥β1e1 − T̄kzk

∥∥
2
.

The global LSQR algorithm for solving problem (3.1) is summarized in Algorithm2.
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ALGORITHM 2. The global LSQR algorithm (Gl-LSQR).

1. SetY 0 = 0.
Computeβ1 = ‖C‖F , Ũ1 = C/β1, α1 = ‖(Lm)T (Ũ1)‖F , Ṽ1 = (Lm)T (Ũ1)/α1,

and set̃W1 = Ṽ1, Φ1 = β1, ρ1 = α1.
2. Fori = 1, 2, ..., kmax

(a) W̃i = Lm(Ṽi)− αiŨi, βi+1 = ‖W̃i‖

(b) Ũi+1 = W̃i/βi+1

(c) Li = (Lm)T (Ũi+1)− βi+1Ṽi

(d) αi+1 = ‖Li‖F

(e) Ṽi+1 = Li/αi+1, ρi =
√
ρ21 + β2

i+1

(f) ci = ρ1/ρ1, si = βi+1/ρ1
(g) θi+1 = siαi+1, ρi+1 = ciαi+1

(h) Φi = ciΦi, Φi+1 = siΦi

(i) Y i = Y i−1 + (Φi/ρi)W̃i

(j) Wi+1 = Vi+1 − (θi+1/ρi)W̃i. If
∣∣Φi+1

∣∣ is small enough then stop.
3. End For

The preceding algorithm allows us to compute an approximatesolution Y k, with
1 ≤ k ≤ kmax, of the minimization problem (4.6). Next, we give an expression of the as-
sociated residual norm.

THEOREM 4.2. Let Xm = VmYmW
T
m be the approximate solution to the Sylvester

equation obtained after m iterations of the (EBA) algorithm, where

Ym = argmin
Y

∥∥∥∥ T̄
A
mY

[
I 0

]
+

[
I
0

]
Y T̄

BT
m +

[
RER

T
F 0

0 0

]∥∥∥∥
F

,

is obtained by the global LSQR algorithm. Then

‖Rm(Xm)‖F = Φ,

where Φ = |Φkmax+1| is given in Algorithm 2.

Proof. We have

‖R(Xm)‖F = ‖AXm +XmB + EFT ‖F

=

∥∥∥∥T̄
A
mYm

[
I 0

]
+

[
I
0

]
YmT̄

BT
m +

[
RER

T
F 0

0 0

]∥∥∥∥
F

= min
Y

‖ Lm(Y )− C‖F

= Φ.

Theorem4.2 plays a very important role in practice. It allows us to compute the norm
of the residual without computing the approximate solution, which is available only when
convergence is achieved.

If the matricesA andB are stable (Re(λi(A)) < 0 andRe(λi(B)) < 0), then the
Sylvester matrix equation (1.1) has a unique solution given by the integral representation
(see [17])

X =

∫
∞

0

etA EFT etB dt.
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The logarithmic ”2-norm” of the stable matrixA is defined by

µ2(A) =
1

2
λmax(A+AT ) < 0.

The logarithmic norm provides a useful bound for the matrix exponential. It is known
(see [21]) that

‖ etA ‖2 ≤ eµ2(A)t, t ≥ 0.

In the following proposition, we give an upper bound for the norm of the errorX −Xm.
THEOREM 4.3. Assume that A and B are stable matrices, and let Xm = VmYmW

T
m be

the approximate solution to the Sylvester equation obtained after m iterations of the extended
block Arnoldi algorithm. Then we obtain the following upper bound for the error X −Xm:

‖ X −Xm ‖2≤
−rm

µ2(A) + µ2(B)
,

where rm is the residual norm given by (3.2).
Proof. SubtractingR(Xm) = AXm + XmB + EFT from the initial Sylvester matrix

equation (1.1), we get

A(Xm −X) +B(Xm −X) = R(Xm).

As A andB are assumed to be stable, we find

X −Xm =

∫
∞

0

etA R(Xm) etB dt.

Hence, by using the logarithmic norm, we obtain

‖ X −Xm ‖≤‖ R(Xm) ‖2

∫
∞

0

et(µ2(A)+µ2(B)) dt.

Therefore, as‖ R(Xm) ‖2≤‖ R(Xm) ‖F andµ2(A) + µ2(B) < 0, the result follows.

The convergence of the global LSQR algorithm may be slow, andthen we have to use
this method with a preconditioner. Different strategies are possible, and one can adapt the
techniques used in [1].

4.4. The preconditioned global conjugate gradient method.In this section, we con-
sider the preconditioned global conjugate gradient method(PGCG) for solving the least
squares reduced problem (4.3). This is a matrix version of the well known PCGLS, the
classical preconditioned CG method applied to the normal equation. The normal equation
associated with (4.3) is given by

(4.7) L∗

m(Lm Y )) = L∗

m(C),

where the operatorsLm andL∗

m are defined in (4.4) and (4.5), respectively.

Let the matricesT
A

m andT
B

m be expressed as

T
A

m =

[
T
A
m

hA
m

]
and TB =

[
T
B
m

hB
m

]
,
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wherehA andhB represent the2r last rows of the matricesT
A

m andT
B

m, respectively. Then
the normal equations (4.7) can be written as

(4.8) T
A

m

T
T
A

mY + Y T
B

m

T
T
B

m + T
A
m

T
Y T

B
m

T
+ T

A
mY T

B
m − C1 = 0,

whereC1 = LT
m(C). Considering the singular value decomposition (SVD) of thematrices

T
A

m andT
B

m,

T
A

m = UAΣAV
T

A, T
B

m = UBΣBV
T

B ,

we get the following eigendecompositions

T
A

m

T
T
A

m = QADAQ
T
A, T

B

m

T
T
B

m = QBDBQ
T
B ,

whereQA = V A, QB = V B , andDA = Σ
T

AΣA . SettingỸ = QT
AY QB andC̃ = QT

AC1QB ,
the normal equations (4.8) are now expressed as

(4.9) DAỸ + Ỹ DB + T̃
A
mỸ T̃

B
m + (T̃A

m)T Ỹ T̃
B
m)T − C̃ = 0,

whereT̃A
m = QT

AT
A
mQA, T̃B

m = QT
BT

B
mQB , andỸ = QT

AY QB . This expression suggests
that one can use the first part as a preconditioner, that is, the matrix operator

(4.10) P(Ỹ ) = DAỸ + Ỹ DB .

It can be seen that expression (4.9) corresponds to the normal equations of the matrix operator

(4.11) L̃m(Ỹ ) = T̃ A
m Ỹ

[
QT

B 0
]
+

[
QA

0

]
Ỹ (T̃ B

m )T ,

whereT̃ A
m = T

A

m QA and T̃ B
m = T

B

m QB . Therefore, the preconditioned global conjugate
gradient algorithm is obtained by applying the preconditioner (4.10) to the normal equations
associated with the matrix linear operator defined by (4.11). This is summarized in Algo-
rithm 3.

ALGORITHM 3. The preconditioned global CG algorithm (PGCG).
1. Choose a tolerancetol > 0, a maximum number ofjmax iterations.

ChooseỸ0, and setR̃0 = C − L̃m(Ỹ0), S0 = L̃∗

m(R̃0), Z0 = P−1(S0), P0 = S0.
2. Forj = 0, 1, 2, ..., jmax

(a) Wj = L̃m(Pj)
(b) αj = 〈Sj , Zj〉F /|Wj |

2
F

(c) Ỹj+1 = Ỹj + αjPj

(d) R̃j+1 = R̃j − αjWj

(e) If ‖R̃j+1‖F < tol, stop
else

(f) Sj+1 = L̃∗

m(R̃j+1)
(g) Zj+1 = P−1(Sj+1)
(h) βj = 〈Sj+1, Zj+1〉F / 〈Sj , Zj〉F
(i) Pj+1 = Zj+1 + βjPj .

3. End For

Notice that the use of the preconditionerP requires solving a Sylvester equation at each
iteration. But since the matricesDA andDB of these Sylvester matrix equations are diagonal
matrices, the cost is reduced.
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4.5. Low-rank form of the approximate solutions. The solutionXm can be given as
a product of two matrices of low-rank. It is possible to decompose it asXm = Z1 Z

T
2 ,

where the matricesZ1 andZ2 are of low-rank (lower than2m). Consider the singular value
decomposition of the2mr × 2mr matrix

Y MR
m = Ỹ1Σ Ỹ T

2 ,

whereΣ is the diagonal matrix of the singular values ofY MR
m sorted in decreasing order.

Let Y1,l andY2,l be the2mr × l matrices consisting of the firstl columns ofỸ1 and Ỹ2,
respectively, corresponding to thel singular values of magnitude larger than some tolerance.
We obtain the truncated singular value decomposition

Y MR
m ≈ U1,l Σl U2,l

T ,

whereΣl = diag[σ1, . . . , σl]. SettingZ1,m = Vm U1,l Σ
1/2
l , andZ2,m = Wm U2,l Σ

1/2
l , it

follows that

(4.12) Xm ≈ Z1,m ZT
2,m.

This is very important for large problems, because one does not have to compute and store
the approximationXm at each iteration. We notice that there are cheaper ways to compute
low-rank representations of the approximate solution; see[3].

The minimal residual algorithm for solving Sylvester matrix equations (MRS) is sum-
marized in Algorithm4.

ALGORITHM 4. The minimal residual method for large Sylvester matrix equations (MR).
1. Choose a tolerancetol > 0, a maximum number ofitermax iterations.
2. Form = 1, 2, 3, ..., itermax

3. UpdateVm,T
A

m, by EBA (Algorithm1) applied to(A,E).

4. UpdateWm,T
B

m, by EBA applied to(BT , F ).
5. Solve the low-order problem (3.1);
6. if ‖R(Xm)‖F ≤ tol, stop.
7. End For
8. Using (4.12), the approximate solutionXm is given byXm ≈ Z1,m ZT

2,m.

5. Numerical experiments. In this section, we present some numerical examples of
continuous-time Sylvester matrix equations. We give comparisons between the Galerkin pro-
jection approach (GA) and the minimal residual (MR) approach for large-scale problems
using the global LSQR (Gl-LSQR), the preconditioned globalconjugate gradient method
(PGCG), the direct Kronecker product when solving the reduced least squares minimization
problem, and the Hu-Reichel method (HR). In the last experiment, we also give a comparison
with the low-rank factored ADI (LrADI) method described in [3, 4]. The algorithms are
coded in Matlab8.0. For the Galerkin approach (GA) and at each iterationm, the projected
problem of size2mr×2mr is solved by using the Bartels-Stewart algorithm [2]. When solv-
ing the reduced minimization problem, the global LSQR and the preconditioned global CG
(PGCG) are stopped when the relative norm of the residual is less thantoll = 10−12 or when
a maximum ofkmax = 1000 iterations is achieved. The minimal residual (Algorithm4) and
the Galerkin approach are stopped when the norm of the residual is less thantol = 10−7, and
a maximum ofitermax = 50 outer iterations is allowed.
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FIG. 5.1.GA: solid line, MR: dashed line.

The first set of matricesA andB is obtained from the discretisation of the operator

(5.1) Lu = ∆u− f1(x, y)
∂u

∂x
+ f2(x, y)

∂u

∂y
+ g(x, y)

on the unit square[0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions. The num-
ber of inner grid points in each direction isn0 for the operatorLu. The dimensions of the
matricesA andB aren = n2

0 and s = s20, respectively. The discretization of the op-
eratorLu yields matrices extracted from theLyapack package [20] using the command
fdm 2d matrix and denoted asA = fdm(f1(x, y), f2(x, y), g(x, y)). For the second set
of matrix tests, we use the matricesadd32, pde2961, andthermal from the Harwell Boeing
Collection1 and also the matrix ’flowmeter’ from the Oberwolfach Collection2. The coeffi-
cients of the matricesE andF are random values uniformly distributed on[0, 1], and we set
r = 2.

EXAMPLE 5.1. In Figure5.1and Figure5.2we plot the residual norms versus the num-
ber of iterations for the minimal residual and the Galerkin approaches. For this first experi-
ment, we use the global LSQR algorithm to solve the reduced minimization problem (3.1).
In Figure5.1, the matricesA andB are obtained from the discretisation of the operatorLu

with dimensionsn = 4900 ands = 3600, respectively. In Figure5.2, we use the matri-
cesA = pde2961 andB = thermal from the Harwell Boeing collection with dimensions
n = 2961 ands = 3456, respectively. For this experiment, the reduced-order problem is
solved by the direct least squares method associated to the Kronecker form (4.1). As can
be seen from these two figures, the MR algorithm converges successfully, while for the GA
approach, we obtain residual norms around10−5.

EXAMPLE 5.2. For the second set of experiments, we compare the performances of the
MR method associated to the different techniques for solving the reduced-order minimization
problem and the Galerkin approach (GA). The reduced minimization problem is solved by the
direct least squares method, by the global LSQR, by the preconditioned conjugate gradient

1http://math.nist.gov/MatrixMarket
2https://portal.uni-freiburg.de/imteksimulation/benchmark

http://math.nist.gov/MatrixMarket
https://portal.uni-freiburg.de/imteksimulation/benchmark
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FIG. 5.2.GA: solid line, MR: dashed line.

method for the normal equation (GPCG), and by the Hu-Reichelmethod (HR). In Table5.1,
we list the CPU times (in seconds), the total number of outer iterations, and the norms of the
residuals obtained by these different approaches. The reported times include the time required
for LU computations of the matricesA andB used in the extended block Arnoldi process. As
can be seen from this table, the results given by the Galerkinapproach are not good (except
for the first experiment). In some cases, the approximationsproduced by the GA method
deteriorate after a number of iterations. We also notice that when using the direct method
for solving the reduced minimization problem, the CPU time is higher when many outer
iterations are needed to achieve convergence; this is the case for the last two experiments.

EXAMPLE 5.3. For the last experiment, we compare the performances ofthe GA ap-
proach, the MR method with GPCG as a solver for the low-order minimization problem, and
the low-rank factored ADI (LrADI) method described in [3, 4]. For this experiment, the
matricesA andB are the same as those given in [4, Example 1]. They are obtained from
the 5-point discretization of the operatorLu in (5.1) with dimensionsn = 6400 for A and
s = 3600 for B. For this experiment,E andF are random matrices withr = 4 columns.
In Table5.2, we list the residual norms and the corresponding CPU time for each method.
For this experiment, the algorithms are stopped when the relative residual norms are smaller
than10−11.

6. Conclusion. In this paper we presented an iterative method for solving large-scale
Sylvester matrix equations with low-rank right-hand sides. The proposed method is based on
a projection onto extended block Krylov subspaces with a minimization property. The ob-
tained low-order minimization problem is solved via iterative or direct methods. To speed up
the convergence when solving the low-order minimization problem, we use a preconditioned
global conjugate gradient method associated to the normal matrix equation. The approximate
solutions are given as a product of two low-rank matrices, which allows to save memory for
large problems. The advantage of the minimal residual method as compared to the Galerkin-
type counterpart is its stability. This is demonstrated by the performed numerical tests.
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TABLE 5.1
Results for experiments 2.

Matrices Method CPU time Its. Res. norm

A = thermal, MR(PGCG) 26s 10 1.1× 10−8

B = add32 MR (direct) 26s 9 2.1× 10−8

n = 3456, s = 4960 MR (Gl-LSQR) 28s 10 1.3× 10−8

MR(HR) 27s 9 3.5× 10−8

GA 25s 9 1.4× 10−8

A = fdm(cos(xy), ey
2x, 100) MR(PGCG) 45s 15 1.9× 10−8

B = add32 MR (direct) 56s 15 2.3× 10−8

n = 90000, s = 4960 MR (Gl-LSQR) 49s 17 1.1× 10−8

MR(HR) 88s 15 3.1× 10−8

GA 83s 21 8.6× 10−5

A = fdm(sin(xy), exy, 10) MR(PGCG) 56s 18 2.5× 10−8

B = thermal MR(direct) 58s 16 3.1× 10−8

n = 122500, s = 3456 MR(Gl-LSQR) −− 50 −−−−
MR(HR) 110s 16 2.0× 10−8

GA 82s 25 8.4× 10−5

A = flow MR (PGCG) 49s 16 2.0× 10−8

B = fdm(sin(xy), xy, 1000) MR (direct) 700s 35 3.1× 10−8

n = 9669, s = 40000 MR(Gl-LSQR) −− 50 −−−−
MR(HR) 150s 35 2.4× 10−8

GA 95s 50 2.5× 10−5

A = fdm(xy, y2, 1) MR(PGCG) 706s 18 2.1× 10−8

B = fdm(xy, cos(xy), 10) MR(direct) 1500s 42 1.5× 10−8

n = 122500, s = 48400 MR(Gl-LSQR) −− −− −−−−
MR(HR) −− −− −−−−
GA 805s 50 4.2× 10−4

TABLE 5.2
Results for experiments 3.

Method Res. norm. CPU time

MR(PGCG) 1.2× 10−12 2.8s
GA 6.4× 10−12 3.2s
Lr ADI 2.5× 10−12 5.2s
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[4] P. BENNER AND P. KÜRSCHNER, Computing real low-rank solutions of Sylvester equations by the factored
ADI method, Comput. Math. Appl., 67 (2014), pp. 1656–1672.

[5] V. D RUSKIN AND L. K NIZHNERMAN, Extended Krylov subspaces: approximation of the matrix square root
and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–771.

[6] A. EL GUENNOUNI, K. JBILOU , AND A. J. RIQUET, Block Krylov subspace methods for solving large
Sylvester equations, Numer. Algorithms, 29 (2002), pp. 75–96.

[7] G. H. GOLUB AND W. KAHAN , Calculating the singular values and pseudo-inverse of a matrix, J. Soc.
Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205–224.

[8] G. H. GOLUB, S. NASH, AND C. VAN LOAN, A Hessenberg Schur method for the problem AX+XB = C,
IEEE Trans. Automat. Control, 24 (1979), pp. 909–913.

[9] M. H EYOUNI AND K. JBILOU, An extended Block Arnoldi algorithm for large-scale solutions of the
continuous-time algebraic Riccati equation, Electron. Trans. Numer. Anal., 33 (2009), pp. 53–62.
http://etna.mcs.kent.edu/vol.33.2008-2009/pp53-62.dir

[10] M. HEYOUNI, Extended Arnoldi methods for large low-rank Sylvester matrix equations, Appl. Numer. Math.,
60 (2010), pp. 1171–1182.

[11] D. HU AND L. REICHEL, Krylov-subspace methods for the Sylvester equation, Linear Algebra Appl., 172
(1992), pp. 283–313.

[12] I. M. JAIMOUKHA AND E. M. KASENALLY , Krylov subspace methods for solving large Lyapunov equations,
SIAM J. Numer. Anal., 31 (1994), pp. 227–251.

[13] K. JBILOU, Low-rank approximate solution to large Sylvester matrix equations, App. Math. Comput., 177
(2006), pp. 365–376.

[14] K. JBILOU AND A. J. RIQUET, Projection methods for large Lyapunov matrix equations, Linear Algebra
Appl., 415 (2006), pp. 344–358.

[15] Z. JIA AND Y. SUN, A QR decomposition based solver for the least squares problems from the minimal
residual method for the Sylvester equation, J. Comput. Math., 25 (2007), pp. 531–542.

[16] D. KRESSNER ANDC. TOBLER, Low-rank tensor Krylov subspace methods for parametrized linear systems,
SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288–1316.

[17] P. LANCASTER AND M. T ISMENETSKY, The Theory of Matrices, Academic Press, Orlando, 1985.
[18] Y. L IN AND V. SIMONCINI , Minimal residual methods for large scale Lyapunov equations, App. Numer.

Math., 72 (2013), pp. 52–71.
[19] C. C. PAIGE AND A. SAUNDERS, LSQR: an algorithm for sparse linear equations and sparse least squares,

ACM Trans. Math. Software, 8 (1982), pp. 43–71.
[20] T. PENZL, LYAPACK: A MATLAB toolbox for large Lyapunov and Riccati equations, model reduction prob-

lems, and linear-quadratic optimal control problems, software available at
https://www.tu-chemnitz.de/sfb393/lyapack/.

[21] C. MOLER AND C. VAN LOAN, Ninteen dubious ways to compute the exponential of a matrix, SIAM Rev.,
20 (1978), pp. 801–836.

[22] Y. SAAD , Numerical solution of large Lyapunov equations, in Signal Processing, Scattering, Operator Theory
and Numerical Methods, M. A. Kaashoek, J. H. Van Shuppen, and A. C. Ran, eds., Progress in Systems
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