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Abstract. The Davison-Man method is an iterative technique for solvingLyapunov equations where the approx-
imate solution is updated through a matrix integral and a doubling procedure. In theory, convergence is quadratic,
but, in practice, there are examples where the method stagnates and no further improvement is seen. In this work, an
implementation that avoids stagnation and improves the computed solution is proposed and justified.
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1. Introduction. Lyapunov equations appear in many applications such as control and
model reduction; see, e.g., [2, 4]. For small-size matrix equations, the method of Bartels and
Stewart [1] is widely used. After transformation to Schur form, this method solves the result-
ing triangular systems and then recovers the solution by preand post matrix multiplications.
It requiresO(n2) memory storage andO(n3) operations, wheren is the size of the matrix
equations, and it is implemented in MATLAB’slyap function.

In 1968, Davison and Man [3] proposed an iterative method for solving Lyapunov equa-
tions. The method updates the approximate solution throughmatrix integrals and a doubling
procedure involving matrix exponentials. In their implementation, the first integral is roughly
approximated by the left-rectangle numerical integrationformula, and the matrix exponen-
tials are computed by a Crank-Nicolson type method. This results in inaccurate computed
solutions.

The purpose of the present note is to revisit this method. We show theoretically and
numerically that when the first integral and the matrix exponentials are computed accurately,
the method converges quadratically. However, in practice,the iterations may stagnate and no
further improvement is seen. We show how to avoid stagnationwhile continuing to improve
the solution. Numerical illustrations carried out in MATLAB are given throughout the note.

The following notation is used:‖ ‖2 and‖ ‖F denote the 2-norm and Frobenius norm,
A = AT > 0 (A = AT ≥ 0) means that the matrixA is symmetric and positive definite
(semidefinite),I denotes the identity matrix, where the order is clear from the context,A⊗B
denotes the Kronecker product of the matricesA andB, andvec(A) denotes an ordered stack
of the columns of the matrixA from left to right starting with the first column; see, e.g., [5].

2. The Davison-Man algorithm. Consider the Lyapunov equation

(2.1) AX +XAT + C = 0,

whereA,C ∈ R
n×n. We assume thatA is stable (its eigenvalues have negative real parts)

andC = CT ≥ 0, which is the case in many applications (see, e.g., [2]), although the
caseC 6= CT is also important and will be considered later; see Section2.2.

Then it is known that the unique solution to (2.1) is given by

(2.2) X =

∫ ∞

0

etACetA
T

dt = XT ≥ 0.
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We can write

(2.3) X = lim
j→∞

Xj , Xj =

∫ 2jh

0

etACetA
T

dt,

whereh is a scaling parameter. From (2.2) and (2.3) we have

(2.4) X = Xj + e2
jhAXe2

jhAT

,

and sinceA is stable ande2
jhA =

(

e2
j−1hA

)2

, we havee2
jhA → 0 quadratically asj → ∞.

The residual associated withXj is Rj = AXj +XjA
T + C and can be written

Rj =

∫ 2jh

0

(

d

dt
etACetA

T

)

dt+ C = e2
jhACe2

jhAT

.

Whenj = 0, equation (2.4) is the Stein equation

(2.5) X − ehAXehA
T

= X0.

SinceA is stable, the eigenvalues ofehA lie in the open unit disk and the Smith or squared
Smith method [6] can be applied to (2.5) provided thatehA andX0 are computed accurately.

Note that from (2.3), the matrixXj can be decomposed as

(2.6) Xj = Xj−1 + e2
j−1hAXj−1e

2j−1hAT

.

Writing (2.4) at iterationj − 1 and subtracting it from (2.6) gives

X −Xj = e2
j−1hA(X −Xj−1)e

2j−1hAT

.

As a consequence

X −Xj = e(2
j−1)hA(X −X0)e

(2j−1)hAT

,

which shows that the convergence is essentially quadratic.
The computation ofXj is summarized in the following algorithm.

Algorithm 1 (Davison-Man).
Input: matricesA andC and a parameterh.
Output: matrixXj .

X0 =
∫ h

0
etACetA

T

dt andE0 = ehA

for j = 1, 2, . . . do
Xj = Xj−1 + Ej−1Xj−1E

T
j−1

Ej = E2
j−1

end for

It is clear thatX0 andE0 must be computed accurately. The algorithm requiresO(n2)
memory storage andO(n3) operations. In [3] (see also [4]), the parameterh is chosen as
h = 1

20|λmax(A)| , whereλmax(A) is the eigenvalue of A with maximal real part or magnitude,
and the matricesX0 andE0 are approximated, respectively, by the left-rectangle method
and a modification of the Crank-Nicolson method. With these approximations there is no
guarantee that the computed solution will be accurate.
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The problem that may affect the convergence of Algorithm1 is related to the stability
of A. In theory, as mentioned above, the fact that the eigenvalues lie in the left half of the
complex plane guarantees convergence. In practice, it is the behavior of the exponentialsetA

for t > 0 that governs the convergence: an excessive growth of‖etA‖2 leads to divergence of
the sequenceXj , and a rapid decay of this function leads to stagnation.

A sufficient but not necessary condition to avoid the growth of ‖etA‖2 is

(2.7) λmax

(

(A+AT )/2
)

≤ µ < 0,

whereλmax denotes the largest eigenvalue andµ is a negative scalar, ideally far from0.
This condition implies that (see, e.g., [5])

‖etA‖2 ≤ etµ.

It also ensures that the solutionX and hence the sequenceXj remain bounded since

‖Xj‖2 ≤ ‖C‖2

∫ ∞

0

‖etA‖22 dt ≤
‖C‖2
2|µ|

.

In practice, the growth of the exponentials is reflected by a growth in the sequenceXj . This
situation is easy to handle: when such a growth is observed, Algorithm 1 must be stopped.

The opposite situation is the rapid decay of‖etA‖2. This is reflected by a stagnation of
the sequenceXj at early iterations as the for-loop of Algorithm1 clearly shows. This is the
point we would like to discuss in this note. An illustration is given below.

Example 1. In this and the following examples, the parameterh is chosen to be of the
form h = a/‖A‖, where0 < a < 1 and‖A‖ is some norm ofA, e.g.,h = 0.5/‖A‖1. The
matrixX0 is approximated by the adaptive Simpson quadrature rule andE0 is computed by
the scaling and squaring method (MATLAB’squadv andexpm functions).

We consider equation (2.1) with n = 500. The matrixA is Toeplitz bidiagonal with−2
on its diagonal and1 on its upper diagonal, andC = eeT , wheree is the vector of all ones.
Figure2.1(left) shows that the quadratic convergence is followed by stagnation.
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FIG. 2.1.Left: Convergence of Algorithm1. Right: Behavior of‖EjXjE
T
j ‖2 (Example1).

It is clear that the source of the stagnation is the rapid decay of the termEj−1Xj−1E
T
j−1;

see Figure2.1(right). Since‖Ej−1Xj−1E
T
j−1‖2 ≤ ‖Xj−1‖‖e

2j−1hA‖22, a few iterations (8 in
the present example) suffice to make the entries ofEj−1Xj−1E

T
j−1 tiny so that

Xj = Xj−1+Ej−1Xj−1E
T
j−1 ≈ Xj−1. One way to avoid stagnation is to stop the iterations

when the norm ofEj−1Xj−1E
T
j−1 becomes negligible. This gives rise to Algorithm2.
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Algorithm 2
Input: matricesA andC and parametersh andtol.
Output: approximate solutionXk of (2.1).
X0 =

∫ h

0
etACetA

T

dt, E0 = ehA, k = 0
while ‖EkXkE

T
k ‖2 > tol do

k := k + 1
Xk = Xk−1 + Ek−1Xk−1E

T
k−1

Ek = E2
k−1

end while

This algorithm avoids stagnation but does not necessarily lead to a better solution. Below
we discuss two ways to improve the computed solution.

2.1. Postprocessing.A first way is to refine the approximate solution through a “Galer-
kin process” which uses the space spanned by the columns of the solution computed by
Algorithm 2. This simple strategy will be referred to as postprocessing. It is summarized in
the following algorithm.

Algorithm 3 Postprocessing step
Input: approximate solutionXk computed by Algorithm2.
Output: refined solutionX̂.

ComputeVk = orth(Xk), Ak = V T
k AVk, Ck = V T

k CVk

Solve forY : AkY + Y AT
k + Ck = 0

SetX̂ = VkY V T
k

In Algorithm 3, orth(Xk) denotes any column orthonormalization procedure applied
toXk. The Lyapunov equation forY may be solved by thelyap function or by simply reusing
Algorithm 2. Note that when condition (2.7) is satisfied,Ak + AT

k = V T
k (A + AT )Vk < 0.

In particular,Ak is stable.
To illustrate the contribution of the postprocessing step,consider again Example1. Al-

gorithm2 stops at iterationk = 8 with an approximate solutionXk, whose residual norm is
‖Rk‖2 = 2.25 · 10−9. The postprocessing step, that is, a new application of Algorithm 2 to
the equationAkY + Y AT

k + Ck = 0, leads toX̂ with ‖AX̂ + X̂AT + C‖2 = 6.00 · 10−12.
To understand the effect of the postprocessing step, we assume that condition (2.7) is

satisfied, denote byYk an approximation ofY, and by

(2.8) ∆k = AkYk + YkA
T
k + Ck

the corresponding residual. Also, let̂Xk = VkYkV
T
k be the refined solution associated

with Yk and

(2.9) R̂k = AX̂k + X̂kA
T + C

the corresponding residual.
LetA = I⊗A+A⊗I, Vk = Vk⊗Vk, andPk = AVk

(

VT
k AVk

)−1
VT
k be the projector

ontorange(AVk) along the orthogonal complement ofrange(Vk). Since

λmax

((

VT
k

(

A+AT
)

Vk

)

/2
)

≤ λmax

((

A+AT
)

/2
)

≤ 2λmax

(

(A+AT )/2
)

,

condition (2.7) implies in particular that‖
(

VT
k AVk

)−1
‖2 =

∥

∥

∥

∫∞

0
etV

T
k AVkdt

∥

∥

∥

2
≤ 1/2|µ|

and hence,‖Pk‖2 ≤ ‖A‖2/2|µ| ≤ ‖A‖2/|µ|. Therefore,‖Pk‖2 remains bounded by a small
constant when‖A‖2/|µ| is not large.
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The link between∆k andR̂k is given by the following simple proposition.
PROPOSITION2.1. The residualR̂k associated with the refined solution̂Xk satisfies

V T
k R̂kVk = ∆k,(2.10)

vec(R̂k) = (I − Pk) vec(C) + PkVkvec(∆k).(2.11)

Proof. Equality (2.10) comes from (2.8) and (2.9). It is easy to check that

vec(R̂k) = Avec(X̂k) + vec(C),

vec(X̂k) = Vkvec(Yk),

vec(∆k) =
(

VT
k AVk

)

vec(Yk) + VT
k vec(C).

Inserting the expression ofvec(Yk) from the last equality into that ofvec(X̂k) leads to (2.11).

SincePk is a projector ontorange(AVk), we have for all matricesS (of appropriate
sizes)

vec(R̂k) = (I − Pk) (vec(C) +AVkvec(S)) + PkVkvec(∆k).

Hence,

‖R̂k‖F ≤ ‖ (I − Pk) ‖2 min
S

‖C +A(VkSV
T
k ) + (VkSV

T
k )AT ‖F + ‖Pk‖2‖∆k‖F .

Since a factorization ofXk of the formVkSV
T
k can obviously be found, the above inequality

implies that

(2.12) ‖R̂k‖F ≤ ‖I − Pk‖2‖Rk‖F + ‖Pk‖2‖∆k‖F .

Note that this inequality brings together the three residuals involved in the postprocessing
step.

Recall that the norm ofXk remains bounded by a small constant due to condition (2.7).
However,Xk can be ill-conditioned (a part of its eigenvalues can be zeroor close to zero). It
is interesting to ask which columns ofVk contribute to the approximation. In order to answer
this question, consider the spectral decomposition ofXk

(2.13) Xk = UDUT = U1D1U
T
1 + U2D2U

T
2 , λmax(D2) < ε ≤ λmin(D1),

whereU = [U1, U2] andD = blockdiag(D1, D2) denote the matrices of orthonormal eigen-
vectors and eigenvalues ofXk andε is a small tolerance that separates the largest and smallest
eigenvalues. A natural choice isVk = U1. It leads to

V T
k RkVk = V T

k (AXk +XkA
T + C)Vk = AkD1 +D1A

T
k + Ck.

Therefore,

‖AkD1 +D1A
T
k + Ck‖2 ≤ ‖Rk‖2.

Similar bounds can be obtained by increasing or decreasing the number of columns inU,
irrespective of the choice ofε. Moreover, with the choiceVk = U1, we have

‖A(VkD1V
T
k −Xk) + (VkD1V

T
k −Xk)A

T +Rk‖2 ≤ 2ε‖A‖2 + ‖Rk‖2,
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and so

min
S

‖AVkSV
T
k + VkSV

T
k AT + C‖2 ≤ 2ε‖A‖2 + ‖Rk‖2.

This bound can be improved by increasing the size ofD1 since this will lead to a smallε.
The choiceD1 = D, that is,Vk = U, eliminates the term2ε‖A‖2.

This discussion suggests that choices in favor of a larger size ofD1 may be efficient even
if they involve extra costs. The following proposition results from the above discussion and
the residual formula (2.11).

PROPOSITION 2.2. If condition (2.7) is satisfied and‖A‖2/|µ| is not large, then the
residualR̂k associated with the refined solution̂Xk satisfies

‖R̂k‖2 = O (‖ (I − Pk) vec(C)‖2 + ‖∆k‖2)

and the constant in theO-notation is small.
To illustrate this proposition, consider the matricesA andC of Example1 with n = 50.

For this case, Algorithm2 stops at iterationk = 8 with a solution whose residual norm is
‖Rk‖2 = 5.64 · 10−10. Table2.1 shows the effect of the postprocessing whenVk = U1 is
chosen to satisfy (2.13) with different values ofε. For eachε, the table displays the number
of columns ofVk denoted bycol(Vk), the norms‖∆k‖2 and‖R̂k‖2, and analogous norms
‖∆lyap

k ‖2 and‖R̂lyap
k ‖2 obtained when thelyap function instead of Algorithm2 is used to

computeYk. The norms of‖I − Pk‖2 and‖ (I − Pk) vec(C)‖2 are given in Table2.2.

TABLE 2.1
Results of the postprocessing step with different values ofε (Example1, n = 50).

ε col(Vk) ‖∆k‖2 ‖R̂k‖2 ‖∆lyap
k ‖2 ‖R̂lyap

k ‖2

10−6 5 6.20 · 10−10 3.41 · 10−6 4.21 · 10−14 3.41 · 10−6

10−8 7 5.53 · 10−10 1.75 · 10−8 1.79 · 10−13 1.75 · 10−8

10−10 9 5.51 · 10−10 5.32 · 10−10 9.07 · 10−14 9.02 · 10−11

10−12 11 5.30 · 10−10 5.30 · 10−10 1.15 · 10−13 1.12 · 10−12

10−14 12 5.30 · 10−10 5.30 · 10−10 3.07 · 10−13 5.54 · 10−13

10−16 50 2.47 · 10−12 2.48 · 10−12 9.97 · 10−14 9.37 · 10−14

TABLE 2.2
Results of the postprocessing step with different values ofε (Example1, n = 50).

ε ‖I − Pk‖2 ‖ (I − Pk) vec(C)‖2

10−6 1.08 3.41 · 10−6

10−8 1.08 1.75 · 10−8

10−10 1.08 9.03 · 10−11

10−12 1.08 1.40 · 10−12

10−14 1.08 5.24 · 10−13

10−16 4.08 · 10−15 9.14 · 10−14

These tables show clearly that the convergence depends essentially on the maximum of
‖ (I − Pk) vec(C)‖2 and‖∆k‖2. For example, when the valueε = 10−6 is taken, we have
‖R̂k‖ ≈ ‖ (I − Pk) vec(C)‖2, and whenε = 10−14, ‖R̂k‖ ≈ ‖∆k‖2, and these properties
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hold with ‖R̂lyap
k ‖2 and‖∆lyap

k ‖2. The tables also show thatε must be carefully selected so
that the columns ofXk andVk span (numerically) the same space. A look at Figure2.2
reveals that the numerical rank ofXk is around11, and Table2.1shows that this is obtained
with ε = 10−12 and the results improve whenε ≤ 10−12. For these values ofε, Table2.2
shows thatvec(C) is almost in the range ofPk. Note that inequality (2.12) is clearly not
satisfied withε = 10−6 andε = 10−8.

All these arguments demonstrate thatVk = U is an appropriate choice: it dispenses with
the need for selectingε, it yields Pk ≈ I (and so the condition on‖A‖2/|µ| is no longer
needed),̂Rk ≈ Vk∆kV

T
k , and hence,‖R̂k‖2 ≈ ‖∆k‖2.
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FIG. 2.2.Singular values ofX (Example1, n = 50).

2.2. Restart. A second way to get out of stagnation is to restart Algorithm2 accord-
ing to the principle of “iterative refinement”. Suppose thatAlgorithm 2 has computed an
approximate solutionXk which satisfies‖Rk‖2 ≤ tol1‖C‖2, wheretol1 is some tolerance,
but thatXk is still considered unsatisfactory. Then we can compute another correctionY by
solving the Lyapunov equationAY +Y AT +Rk = 0. In other words, we restart Algorithm2
whereC is now replaced by the residualRk. If Algorithm 2 provides an approximationYk

such that

‖AYk + YkA
T +Rk‖2 ≤ tol2‖Rk‖2,

then

‖A(Xk + Yk) + (Xk + Yk)A
T + C‖2 ≤ tol1tol2‖C‖2.

ThereforeXk + Yk is an improvement overXk. This process can be continued until the so-
lution meets a prescribed tolerance or the number of restarts becomes too large. One possible
implementation is sketched in Algorithm4.

In an “ideal” implementation, Algorithm2 or a variant of this algorithm should be used
at each restart of Algorithm4. This would lead to a dynamic choice ofk. However, with
this approach, the matricesEj would be recomputed at each restart. On the other hand, the
numerical tests show that the values ofk obtained during restarts generally differ by at most1
or 2 iterations. Therefore, to avoid this drawback, the stepr = 1 in Algorithm 4 is performed
separately so that the matricesEj are computed only once.
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Algorithm 4 [restarted Davison-Man]
Input: matricesA andC, parameterh, tolerancetol,

maximum number of restartsrmax.
Output: approximate solutionY (r) of (2.1).

Setr = 1, C(0) = C
Compute(Ej)0≤j≤k

andX(1)
k via Algorithm2 starting with

X
(1)
0 =

∫ h

0
etAC(0)etA

T

dt

ComputeC(1) = AX
(1)
k +X

(1)
k AT + C and setY (1) = X

(1)
k

while (‖C(r)‖2 > tol‖C(r−1)‖2 & r < rmax) do
r := r + 1
X

(r)
0 =

∫ h

0
etAC(r−1)etA

T

dt
for j = 1, . . . , k do
X

(r)
j = X

(r)
j−1 + Ej−1X

(r)
j−1E

T
j−1

end for
ComputeC(r) = AX

(r)
k +X

(r)
k AT + C(r−1) andY (r) = Y (r−1) +X

(r)
k

end while

The following proposition shows that the quadratic convergence occurs at every restart
of Algorithm 4.

PROPOSITION 2.3. With the notation of Algorithm4, the approximate solutionY (r)

obtained at restartr satisfies

X − Y (r) =
(

e2
khA

)r

X
(

e2
khAT

)r

.

Proof. We haveY (r) =
∑r

p=1 X
(p)
k where

X
(p)
k =

∫ 2kh

0

etAC(p−1)etA
T

dt

and

C(p) = AX
(p)
k +X

(p)
k AT + C(p−1) = e2

khAC(p−1)e2
khAT

.

Hence,X(p)
k =

∫ 2kpk

2k(p−1)h
etACetA

T

dt. On the other hand, from (2.2) the solutionX can be
decomposed as

X =

r
∑

p=1

∫ 2kpk

2k(p−1)h

etACetA
T

dt+

∫ ∞

2kph

etACetA
T

dt

=

r
∑

p=1

X
(p)
k +

(

e2
khA

)r

X
(

e2
khAT

)r

= Y (r) +
(

e2
khA

)r

X
(

e2
khAT

)r

.

The importance of a restart is demonstrated in Figure2.3, which compares Algorithms1
and4. The figure shows that while a stagnation of Algorithm1 occurs at iteration8 with
a residual norm of order2.25 · 10−9, the residual norm produced by Algorithm4 with
tol = 10−12 decreases until iteration14 (corresponding to2 restarts) to a value of or-
der7.42 · 10−15.
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FIG. 2.3.Convergence of Algorithms1 and4 (Example1).
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j ‖2 (Example2).

TABLE 2.3
Norms of residuals and solutions computed by Algorithms2, 3, 4, andlyap (Example2).

α 0.02 0.04 0.06

‖Ralg2‖2 2.34 · 10−12 1.43 · 10−8 9.34 · 10−4

‖Ralg3‖2 1.72 · 10−12 4.93 · 10−8 2.06 · 10−3

‖Ralg4‖2 3.03 · 10−14 6.61 · 10−10 1.03 · 10−5

‖Rlyap‖2 1.32 · 10−13 7.04 · 10−9 1.41 · 10−4

‖Xlyap‖2 94.4 4.69 · 106 8.10 · 1010

Example 2. We end this section with a comparison of Algorithms2, 3, 4, and the func-
tion lyap when condition (2.7) is not satisfied andC is arbitrary. We consider the matrix
A = −2I + αT of ordern = 500, whereT has all1s on its strictly upper triangular part and
is zero elsewhere,α is a parameter to be varied, and the entries ofC are random in(0, 1).
For this example, the exponentials decay slowly asα gets larger (compare Figure2.4 and
Figure2.1 (right)). The tolerancetol in Algorithms3 and4 is fixed at10−12 and the max-
imum number of restartsrmax in Algorithm 4 is fixed at5. Table2.3 displays the norms of
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the residuals and the norms of the computed solutions. All methods yield the same norms of
the solutions. The norms of the relative residuals can be deduced from this table. The table
shows that only a minor improvement over Algorithm2 is obtained, and this improvement is
generally due to Algorithm4.

3. Conclusion. We have proposed modifications of the Davison-Man method forsolv-
ing Lyapunov equations. We have analyzed the convergence properties of the proposed
method. The modifications help prevent stagnation (which was the main limitation from
which this method suffers) and improve significantly the computed solution. The extension
of this work to Sylvester equations is straightforward.
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