Electronic Transactions on Numerical Analysis. ETNA

Volume 43, pp. 60-69, 2014. Kent State University
Copyright 0 2014, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

THE DAVISON-MAN METHOD REVISITED *

MILOUD SADKANE f

Abstract. The Davison-Man method is an iterative technique for soldyapunov equations where the approx-
imate solution is updated through a matrix integral and a doglgrocedure. In theory, convergence is quadratic,
but, in practice, there are examples where the method stageradeno further improvement is seen. In this work, an
implementation that avoids stagnation and improves the cordatation is proposed and justified.
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1. Introduction. Lyapunov equations appear in many applications such asat@md
model reduction; see, e.g2,[4]. For small-size matrix equations, the method of Bartels an
Stewart [L] is widely used. After transformation to Schur form, thisthmd solves the result-
ing triangular systems and then recovers the solution byapdepost matrix multiplications.
It requiresO(n?) memory storage an@(n?) operations, where is the size of the matrix
equations, and it is implemented in MATLABIgap function.

In 1968, Davison and Mar8[ proposed an iterative method for solving Lyapunov equa-
tions. The method updates the approximate solution througfhnix integrals and a doubling
procedure involving matrix exponentials. In their implertaion, the first integral is roughly
approximated by the left-rectangle numerical integrafanmula, and the matrix exponen-
tials are computed by a Crank-Nicolson type method. Thiglt®é inaccurate computed
solutions.

The purpose of the present note is to revisit this method. Mésvgheoretically and
numerically that when the first integral and the matrix exgarals are computed accurately,
the method converges quadratically. However, in practieeijterations may stagnate and no
further improvement is seen. We show how to avoid stagnatiuife continuing to improve
the solution. Numerical illustrations carried out in MATBAare given throughout the note.

The following notation is used| || and|| || » denote the 2-norm and Frobenius norm,
A= AT > 0 (A = AT > 0) means that the matri¥d is symmetric and positive definite
(semidefinite) ] denotes the identity matrix, where the order is clear froencbntext,A ® B
denotes the Kronecker product of the matridesnd B, andvec(A) denotes an ordered stack
of the columns of the matrixd from left to right starting with the first column; see, e.d. [

2. The Davison-Man algorithm. Consider the Lyapunov equation
(2.1) AX + XAT 4 C =0,

whereA,C € R"*". We assume that is stable (its eigenvalues have negative real parts)
andC = CT > 0, which is the case in many applications (see, eZ), plthough the
caseC # CT is also important and will be considered later; see Se@ién

Then it is known that the unique solution ®.7) is given by

(2.2) X=[ etcetat=x">o0.
0
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We can write
27 h T
(2.3) X = lim X;, X;= / etACett dt,
Jj—o0 0

wherel is a scaling parameter. Frord.p) and €.3) we have
(24) X = Xj + €2jhAX62jhAT7

) . 2 ; )
and sinced is stable and?' "4 = (eQJ 1’““) , we have:?'"4 — 0 quadratically ag — oc.
The residual associated wift; is R; = AX; + X; AT + C and can be written

R; = / . (ietACetAT> dt +C = ¥ M0 AT
0
Whenj; = 0, equation 2.4) is the Stein equation
(2.5) X — e xe” = X,

Since A is stable, the eigenvalues ef“ lie in the open unit disk and the Smith or squared
Smith method §] can be applied to2.5) provided that"4 and X, are computed accurately.
Note that from 2.3), the matrixX; can be decomposed as

(26) Xj = Xj_l + €2j_lhAXj_162j_1hAT.
Writing (2.4) at iterationj — 1 and subtracting it fromZ.6) gives
X — XJ — 62j71hA(X _ inl)eQJilhAT.
As a consequence
X — Xj _ 6(2j71)hA(X o Xo)e(ijl)hAT’

which shows that the convergence is essentially quadratic.
The computation o ; is summarized in the following algorithm.

Algorithm 1 (Davison-Man).
Input: matricesA andC' and a paramete.
Output: matrix X ;.
Xo = foh etACetA dt andEy = eh4
for j=1,2,...do
X;j=X;_1+ Ej—lXj—lEjT,l
E; = Effl
end for

It is clear thatX, and £, must be computed accurately. The algorithm requiP¢s?)
memory storage an@(n3) operations. InJ] (see also 4]), the parameteh is chosen as
h = m where\,.x(A) is the eigenvalue of A with maximal real part or magnitude,
and the matrices{, and E, are approximated, respectively, by the left-rectanglehat
and a modification of the Crank-Nicolson method. With thegpraximations there is no

guarantee that the computed solution will be accurate.
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The problem that may affect the convergence of Algorithiis related to the stability
of A. In theory, as mentioned above, the fact that the eigensdieen the left half of the
complex plane guarantees convergence. In practice, ieibehavior of the exponentiadé?
for ¢ > 0 that governs the convergence: an excessive growfh'df|, leads to divergence of
the sequencg;, and a rapid decay of this function leads to stagnation.

A sufficient but not necessary condition to avoid the grovithed” ||, is

(2.7) Amax (A + AT)/2) <p <0,

where\,.. denotes the largest eigenvalue anid a negative scalar, ideally far froi
This condition implies that (see, e.g5]{

e ]2 < .
It also ensures that the solutidhand hence the sequendg remain bounded since

[Cl2
2|l

In practice, the growth of the exponentials is reflected byoavth in the sequenc ;. This
situation is easy to handle: when such a growth is observiggrithm 1 must be stopped.

The opposite situation is the rapid decayi|ef*||,. This is reflected by a stagnation of
the sequence; at early iterations as the for-loop of Algorithinclearly shows. This is the
point we would like to discuss in this note. An illustratiagiven below.

oo
1X;]2 < ||0H2/0 et 2 dt <

Example 1. In this and the following examples, the paramétes chosen to be of the
form h = a/||A||, where0 < a < 1 and|/A|| is some norm of4, e.g.,h = 0.5/||A||;. The
matrix X is approximated by the adaptive Simpson quadrature rulefgarid computed by
the scaling and squaring method (MATLABjsadv andexpm functions).

We consider equatior2(1) with n = 500. The matrixA is Toeplitz bidiagonal with-2
on its diagonal and on its upper diagonal, and = ee”’, wheree is the vector of all ones.
Figure2.1 (left) shows that the quadratic convergence is followedthgsation.
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FiG. 2.1.Left: Convergence of Algorithrh Right: Behavior of| E; X ; E].THQ (Examplel).

Itis clear that the source of the stagnation is the rapidyletthe termEj_lXj_lEijl;

see Figur@.1(right). Sincel|E; 1 X; 1 E] |2 < 1X;_1]l[|e2’ 74|12, a few iterationsg in
the present example) suffice to make the entries Egthj,lEjT_l tiny so that
X; =X; 1+FE;1X; 1E]_| ~ X;_1. One way to avoid stagnation is to stop the iterations

when the norm oEj,lXj,lEjT_l becomes negligible. This gives rise to Algorittan
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Algorithm 2
Input: matricesA andC' and parameterk andtol.
Output: approximate solutioX;, of (2.1).

Xo = [y etACe! A" dt, By = ", k = 0

while ||EkaEg||2 > tol do

k=k+1
X =Xp_1+ Ek_le_lEﬁ1
E,=E}_,

end while

This algorithm avoids stagnation but does not necessaaly to a better solution. Below
we discuss two ways to improve the computed solution.

2.1. PostprocessingA first way is to refine the approximate solution through a ‘&3al
kin process” which uses the space spanned by the columneddiation computed by
Algorithm 2. This simple strategy will be referred to as postprocessinig summarized in
the following algorithm.

Algorithm 3 Postprocessing step
Input: approximate solutioX’;, computed by Algorithn®.
Output: refined solution.
Computer = orth(Xk), Ak = VkTAVk, C}C = VkTCVk
Solve forY: 4,Y + YAT +C, =0
SetX = V,YV/[

In Algorithm 3, orth(X}) denotes any column orthonormalization procedure applied
to X. The Lyapunov equation far may be solved by thigap function or by simply reusing
Algorithm 2. Note that when conditior(7) is satisfied A, + A = V' (A + ATV, < 0.

In particular,A;, is stable.

To illustrate the contribution of the postprocessing stemsider again Exampte Al-
gorithm 2 stops at iteratiort = 8 with an approximate solutioX;, whose residual norm is
| Rell2 = 2.25 - 1079, The postprocessing step, that is, a new application of itlgm 2 to
the equatiomd, Y + Y A7 + Oy = 0, leads toX with [|AX + X AT + Ol = 6.00 - 102,

To understand the effect of the postprocessing step, wargsthat condition4.7) is
satisfied, denote by, an approximation o¥’, and by

(2.8) Ay =AYy + VAL + Cy

the corresponding residual. Also, &, = VkYkaT be the refined solution associated
with Y}, and

(2.9) Ry = AX + X, AT +C
the corresponding residual.

LetA=IQRA+ARI,V; =V, @V, andP;, = AV, (V,fAVk)_l VI be the projector
ontorange(.A))) along the orthogonal complementiafnge(Vy). Since

Amax (W (A+AT) V) /2) < Amax ((A+ AT) /2) < 2Xax (A + A7) /2),

condition @.7) implies in particular that] (VI.AV,) ™" |ls = Hfooo ew’»‘TAV"'dtHQ < 1/2|pl

and hence|| Py |2 < || All2/2|i| < ||All2/|p|- Therefore]| Py |2 remains bounded by a small
constant whetj A||2/| x| is not large.
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The link betweem\, and R, is given by the following simple proposition.
ProPOsSITION2.1. The residualR;. associated with the refined solutidf, satisfies

(2.10) VIRV = Ay,
(2.11) vec(Ry,) = (I — Py)vec(C) + PrVivec(Ay).

Proof. Equality .10 comes from2.8) and @.9). It is easy to check that

vec(]:%k) = Avec(Xy) + vee(C),

vec(Xy) = Vivee(Yy),
vec(Ay) = (VL AVy) vee(Yi) + Vi vee(C).

Inserting the expression etc(Y},) from the last equality into that Offec(Xk) leads to 2.11).
a
Since Py is a projector ontaange(.AVy), we have for all matrice$' (of appropriate
sizes)

vec(Ry) = (I — Py) (vec(C) + AVyvec(S)) 4 PiVivec(Ay).
Hence,

1Bkl < | (I = Pi) [l min |C + A(ViSV,) + (Vi SV AT[|p + [ Pl2]| Axll e

Since a factorization ok, of the formV;. SV, can obviously be found, the above inequality
implies that

(2.12) IRillr < T = Prll2l| Rellr + | Pell2l| Akl p-

Note that this inequality brings together the three redglirvolved in the postprocessing
step.

Recall that the norm ok, remains bounded by a small constant due to conditor).(
However, X, can be ill-conditioned (a part of its eigenvalues can be peose to zero). It
is interesting to ask which columns Bf contribute to the approximation. In order to answer
this question, consider the spectral decompositioN pf

(2.13) X, =UDUT = U, DU + Uy DoUT, Amax(D2) < € < Amin(D1),

whereU = [Uy, Us] andD = blockdiag(D;, D2) denote the matrices of orthonormal eigen-
vectors and eigenvalues &f, ande is a small tolerance that separates the largest and smallest
eigenvalues. A natural choicelig = Uj. It leads to

VERkVie = Vi (AXg + X, AT + C)Vi = AyDy + D1 AL + Cy.
Therefore,
| Ak D1 + Dy AR + Cll2 < || Rl2-

Similar bounds can be obtained by increasing or decreabmgiimber of columns b/,
irrespective of the choice af Moreover, with the choic&}, = Uy, we have

|A(VeD1ViE — X)) 4+ (VieD1 ViE — X)) AT + Rylo < 2¢|All2 + || Ri |2,
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and so
min [ AV SV + ViSVTAT + Clla < 2¢]| A2 + || Ri|2-

This bound can be improved by increasing the sizéefsince this will lead to a smaH.
The choiceD; = D, thatis,V;, = U, eliminates the terric|| A||>.

This discussion suggests that choices in favor of a largerafiD, may be efficient even
if they involve extra costs. The following proposition résdrom the above discussion and
the residual formulaZ.11).

PROPOSITION2.2. If condition (2.7) is satisfied and|A||2/|u| is not large, then the
residual R, associated with the refined solutiof, satisfies

[Ri]l2 = O (| (I = Py) vec(C)l|2 + [ Axll2)

and the constant in th@-notation is small.

To illustrate this proposition, consider the matriceandC of Examplel with n. = 50.
For this case, Algorithn2 stops at iteratiok = 8 with a solution whose residual norm is
|Rill2 = 5.64 - 10719, Table2.1 shows the effect of the postprocessing whén= U; is
chosen to satisfyX 13 with different values ot. For eacle, the table displays the number
of columns ofV;, denoted bycol(V;,), the norms|Ay ||, and || Ry ||2, and analogous norms
|AY??|l, and||R}*"||» obtained when théyap function instead of Algorithn® is used to
computeYy. The norms of|I — Pkl and|| (I — Px) vec(C)||2 are given in Table.2.

TABLE 2.1
Results of the postprocessing step with different valueg®kamplel, n = 50).

e | col(Vk) 1 Akl2 ([ 22 |2 APl [P
106 5 6.20-10710 | 341-1076 | 4.21-1071* | 3.41-10°6
108 7 5.53-10710 | 1.75-107% | 1.79.-107 | 1.75- 10783
1010 9 5.51-10710 | 5.32.1071° | 9.07-10"'* | 9.02- 10"

1012 11 5.30-1071° | 5.30-10719 | 1.15- 10713 | 1.12- 1012
10~14 12 5.30-10710 | 5.30-10710 | 3.07-10"13 | 5.54 - 1013
10-16 50 247-10712 | 248 -10=12 | 9.97.10~ | 9.37 .10~ 14

TABLE 2.2
Results of the postprocessing step with different valuegBxamplel, n = 50).

€ L —Pill2 | (L —Px) vec(C)]|2
10-6 1.08 3.41-10°6
108 1.08 1.75-1078
10-10 1.08 9.03 .10~
10-12 1.08 1.40 - 1012
10~14 1.08 5.24.10713
10716 | 4.08-10" 1 9.14 - 10~ ™

These tables show clearly that the convergence dependgiaigeon the maximum of
| (I — Pr) vec(C)|l2 and || A|lo. For example, when the value= 10° is taken, we have
| Rl = || (I = Px)vec(C)|2, and where = 10714, || Rk || = ||Ak||2, and these properties
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hold with || 2)*||> and||AY*"||,. The tables also show thatmust be carefully selected so
that the columns ofX;, andV;, span (numerically) the same space. A look at Figiz
reveals that the numerical rank &%, is aroundl 1, and Table2.1 shows that this is obtained
with e = 10~'2 and the results improve when< 10~'2. For these values aof, Table2.2
shows thatvec(C) is almost in the range dP;.. Note that inequalityZ.12) is clearly not
satisfied withe = 1075 ande = 1078.

All these arguments demonstrate that= U is an appropriate choice: it dispenses with
the need for selecting, it yields P, ~ I (and so the condition ofiA||2/|u| is no longer
needed) 2, ~ Vi A, VT, and hence| Ry||2 ~ || Ax]l2.

10 20 30 40 50

FiG. 2.2.Singular values o (Examplel, n = 50).

2.2. Restart. A second way to get out of stagnation is to restart Algorithimccord-
ing to the principle of “iterative refinement”. Suppose tdgorithm 2 has computed an
approximate solutiotX;, which satisfieg| Ry||2 < tol1]|/C||2, wheretol; is some tolerance,
but that X, is still considered unsatisfactory. Then we can computéhema@orrectiont” by
solving the Lyapunov equatianY +Y AT + R, = 0. In other words, we restart Algorithéh
whereC' is now replaced by the residu&l. If Algorithm 2 provides an approximatiohy,
such that

HAYk; + YkAT + Rk”Q < 1:O|2||Rk||27
then
|A(X, + Vi) + (X + Vi) AT + C|l2 < tolytoly||C|.

ThereforeX; + Y} is an improvement oveK . This process can be continued until the so-
lution meets a prescribed tolerance or the number of redtadomes too large. One possible
implementation is sketched in Algorithi

In an “ideal” implementation, Algorithn2 or a variant of this algorithm should be used
at each restart of Algorithm. This would lead to a dynamic choice bf However, with
this approach, the matricés; would be recomputed at each restart. On the other hand, the
numerical tests show that the values:aibtained during restarts generally differ by at mbst
or 2 iterations. Therefore, to avoid this drawback, the step1 in Algorithm 4 is performed
separately so that the matricEs are computed only once.
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Algorithm 4 [restarted Davison-Man]
Input: matricesA andC', parameteh, toleranceol,
maximum number of restarts, ..
Output: approximate solution” (") of (2.1).
Setr = 1,00 =
Compute(Ej)OSjgk andX,il) via Algorithm 2 starting with
Xél) = foh tACOtAT gt
ComputeC) = AxY + XV AT 4 C and setr V) = x|V
while (|[C™]]2 > tol||CT V3 & r < rpay) dO
r:=r-4+1 .
Xér) _ foh tAC(r=1) ot A" gy
forj=1,...,kdo
X =x" v B XD EF
end for
ComputeC™) = AX\” + X\ AT 4 =1 andy (") = y (=) 4 x )
end while

The following proposition shows that the quadratic coneer occurs at every restart
of Algorithm 4.

PrROPOSITION2.3. With the notation of Algorithmd, the approximate solutiofy (")
obtained at restart: satisfies

X _y® = (erhA)rX (erhAT)T.

Proof. We havey ) = Y| X" where

2%h -
X}E:P) —_ / etAC(p—l)etA dt
0

and
C(p) _ AX]ip) + XIEP)AT + C«(pfl) _ tQ/Zk'hAC«(pfl)e2khAT'

.
Hence,X,gp) = ;kg'_l)h etACetA” dt. On the other hand, fron2(2) the solutionX can be
decomposed as

r 2’”'pk' . 0o .
X = Z/ etACet4 dt—l—/ etAcett dt
=1 2k (p—1)h 2kph

_ iXép) I (62""hA>TX (e2khAT)r
p=1
—ym 4 (CQkhA)rX <e2khAT)r. 0

The importance of a restart is demonstrated in FiguBewhich compares Algorithm$
and4. The figure shows that while a stagnation of Algoritinoccurs at iteratior® with
a residual norm of orde2.25 - 1072, the residual norm produced by Algorith#mwith
tol = 10~'2 decreases until iteratioh4 (corresponding t® restarts) to a value of or-
der7.42-101°.
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FiG. 2.3.Convergence of Algorithnmisand4 (Examplel).
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FIG. 2.4.Behavior of| E; X; ET || (Example2).

TABLE 2.3
Norms of residuals and solutions computed by AlgoritBn® 4, andlyap (Example2).

o 0.02 0.04 0.06

| Raigall2 | 2.34-10712 | 1.43-1078 | 9.34- 1074
| Raigall2 | 1.72-10712 | 4.93-10"8 | 2.06 - 1073
| Raigall2 | 3.03-1071 | 6.61-10710 | 1.03- 1075
| Riyapll2 | 1.32-10713 | 7.04-1072 | 1.41-10*
| Xiyapllz | 94.4 4.69 - 10° 8.10 - 1010

Example 2. We end this section with a comparison of Algorith@®)s3, 4, and the func-
tion lyap when condition 2.7) is not satisfied and is arbitrary. We consider the matrix
A = =21 + T of ordern = 500, whereT has allls on its strictly upper triangular part and
is zero elsewherey is a parameter to be varied, and the entrie§’aire random in0, 1).
For this example, the exponentials decay slowlyvagets larger (compare Figu4 and
Figure2.1 (right)). The toleranceol in Algorithms 3 and4 is fixed at10~'? and the max-
imum number of restarts,,,., in Algorithm 4 is fixed at5. Table2.3 displays the norms of
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the residuals and the norms of the computed solutions. Athots yield the same norms of
the solutions. The norms of the relative residuals can beastfrom this table. The table
shows that only a minor improvement over Algorittas obtained, and this improvement is
generally due to Algorithrd.

3. Conclusion. We have proposed modifications of the Davison-Man methoddbs-

ing Lyapunov equations. We have analyzed the convergermgepies of the proposed
method. The modifications help prevent stagnation (whick th@ main limitation from
which this method suffers) and improve significantly the poited solution. The extension
of this work to Sylvester equations is straightforward.
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