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Abstract. Let A ∈ Rp×p be a nonsingular matrix andx, y vectors inRp. The task of this paper is to de-
velop efficient estimation methods for the bilinear formxTA−1y based on the extrapolation of moments of the
matrix A at the point−1. The extrapolation method and estimates for the trace ofA−1 presented in Brezinski et
al. [Numer. Linear Algebra Appl., 19 (2012), pp. 937–953] areextended, and families of estimates efficiently ap-
proximating the bilinear form requiring only few matrix vector products are derived. Numerical approximations of
the entries and the trace of the inverse of any real nonsingular matrix are presented and several numerical results,
discussions, and comparisons are given.
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1. Introduction and motivation for the problem. Let A be a real nonsingular matrix
of orderp, and letx, y be real vectors of lengthp. The subject of this work is to estimate the
bilinear formxTA−1y. The evaluation of this form arises in several applications including
network analysis, signal processing, nuclear physics, quantum mechanics, and computational
fluid dynamics [15, 19, 20]. The motivation for this problem stems from the fact that for
a specific selection of vectorsx and y, by estimating the bilinear formxTA−1y, we can
approximate several useful quantities arising frequentlyin many linear algebra problems. Let
us name some of them.

Elements of the matrixA−1. By choosing as vectorsx andy appropriate columns of
the identity matrix of orderp, notated asIp, estimates for the diagonal and off-diagonal
entries ofA−1 can be computed. In network analysis, it is important to calculate the re-
solvent subgraph centrality((Ip − αA)−1)ii and the resolvent subgraph communicability
((Ip − αA)−1)ij of nodesi andj, whereα is an appropriate parameter [5, 12]. The com-
putation of the diagonal of the inverse of a matrix appears also in graph theory, machine
learning, electronic structure calculations, and portfolio analysis, and various methods are
proposed in the literature for this task [4, 21]. Uncertainty quantification in risk analysis
requires the diagonal entries of the inverse covariance matrices for evaluating the degree of
confidence in the quality of the data [21].

The trace of the matrixA−1. For appropriately chosen random vectorsx, the evaluation
of xTAqx can lead to the estimation of the trace of matrix powers, denoted as Tr(Aq), for
anyq ∈ Q as described in [8]. The specific case ofq = −1 was presented in [7]. This case
has attracted a lot of attention in view of the computation ofthe trace of the inverse Tr(A−1)
of symmetric matrices [2, 7, 14]. The trace of the inverse of a matrix is required in several
applications arising from the fields of statistics, fractals, lattice quantum chromodynamics,
crystals, network analysis, and graph theory [7, 8, 14]. Also, in network analysis, the resol-
vent Estrada index is calculated from the trace Tr((Ip − αA)−1) [5, 12].

Given a nonsingular matrixA ∈ Rp×p and vectorsx, y ∈ Rp, the bilinear formxTA−1y
can be computed explicitly by using dense matrix computational methods. In general, these
methods requireO(p3) floating point operations, and therefore, ifA is sufficiently large, a
direct method is not an option. In case thatA is a symmetric matrix, the bilinear form can be
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transformed to a Riemann-Stieltjes integral and can be approximated by applying quadrature
rules using orthogonal polynomial theory and the Lanczos method [1, 14]. These methods
require a complexity of orderO(jp2), wherej is the number of (Lanczos) iterations. For any
nonsingular complex square matrixA andx, y complex vectors, approaches for approximat-
ing x∗A−1y are given in [20]. These approaches are based on non-Hermitian generalizations
of Vorobyev moment problems.

The goal of this paper is to develop a different approach which employs extrapolation
techniques. For any nonsingular square matrixA and vectorsx, y, we obtain estimates
for xTA−1y by extrapolation of the moments ofA at the point−1. The derived families
of estimateseν , ν ∈ R, require only some inner products and few matrix-vector products and
can provide an accurate estimate for an appropriate selection of ν. However, the choice of
this “good” value ofν is not yet solved and remains an important open problem.

The paper is organized as follows. The extrapolation procedure is developed and ap-
proximations of the bilinear formxTA−1y are presented in Section2. Applications to the
estimation of the elements ofA−1 and the trace Tr(A−1) are given in Sections3–4. The
extrapolation method is illustrated by numerical experiments in Section5, where details on
the method, other considerations, and comparisons are discussed. Concluding remarks end
the paper.

Throughout the paper,‖x‖ denotes the Euclidean norm of the vectorx, ‖A‖ is the spec-
tral norm of the matrixA, and(·, ·) the Euclidean inner product.

2. Estimation ofxTA−1y via an extrapolation procedure. Claude Brezinski in 1999
introduced the extrapolation of the moments of a matrix for estimating the norm of the error
when solving a linear system [6]. Extensions of this approach are presented in [9, 10], where
applications of the error estimates in least squares problems and regularization are developed.
Generalization of the extrapolation approach to Hilbert spaces for compact, linear operators
are described in [7] for the estimation of the trace of the inverse of an invertible linear operator
and in [8] for the estimation of the trace of a power of a positive self-adjoint linear operator.

Next, we will extend the extrapolation procedure to the derivation of estimates for the
bilinear formxTA−1y for any nonsingular matrixA. We first consider the quadratic case
wherex = y.

2.1. Estimates forxTA−1x. Let us recall the singular value decomposition (SVD) of
a given matrixA ∈ Rp×p

A = UΣV T =

p
∑

k=1

σkukv
T
k ,

whereU = [u1, . . . , up], V = [v1, . . . , vp] are orthogonal matrices and the singular values in
the diagonal matrixΣ = diag(σ1, . . . , σp) are ordered according toσ1 ≥ σ2 ≥ · · · ≥ σp > 0.

For a real vectorx ∈ Rp it holds that

Ax =

p
∑

k=1

σk(vk, x)uk, ATx =

p
∑

k=1

σk(uk, x)vk, and A−1x =

p
∑

k=1

σ−1
k (uk, x)vk.

Let us define the moments ofA as follows:

c2n(x) = (x, (ATA)nx), c2n+1(x) = (x,A(ATA)nx), n ≥ 0,

c2n(x) = (x, (AAT )nx), c2n+1(x) = (x,AT (AAT )nx), n ≤ 0.
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Using some moments forn ≥ 0 as interpolation conditions, we obtain estimates by
extrapolation of these moments atn = −1,

c−1(x) = (x,AT (AAT )−1x) = (x,A−1x).

By defining the moments of the nonsymmetric matrixA in this way, we can now express
them as summations derived from the SVD ofA :

c2n(x) =
∑

k

σ2n
k (x, vk)

2 =
∑

k

σ2n
k a2k, n ≥ 0,

c2n(x) =
∑

k

σ2n
k (x, uk)

2 =
∑

k

σ2n
k b2k, n ≤ 0,

c2n+1(x) =
∑

k

σ2n+1
k (x, vk)(x, uk) =

∑

k

σ2n+1
k akbk,

whereak = (x, vk) andbk = (x, uk).
We notice that the momentc−1(x) can be estimated by keeping one or two terms in its

expansion

(2.1) (x,A−1x) =
∑

k

σ−1
k (x, vk)(x, uk) =

∑

k

σ−1
k akbk.

Usually we neither know the singular values norak andbk, but we are able to compute
the momentscn(x), for n ≥ 0, by considering appropriate interpolation conditions. In the
sequel, the momentscn(x) will be denoted ascn, and all the denominators of the estimates
are assumed to be different from zero.

One-term estimates.Approximations ofc−1 can be obtained by keeping only one term
in the summation (2.1), that is,

c−1 = (x,A−1x) ≃ s−1αβ,

where the unknownss, α, andβ are determined by the following interpolation conditions:

c0 = (x, x) = (V Tx, V Tx) =
∑

k

(x, vk)
2 = α2,

c0 = (x, x) = (UTx, UTx) =
∑

k

(x, uk)
2 = β2,

c1 = (x,Ax) =
∑

k

σk(x, vk)(x, uk) = sαβ,

c2 = (x,ATAx) = (Ax,Ax) =
∑

k

σ2
k(x, vk)

2 = s2α2.

This is a nonlinear system of four equations with three unknowns. Since a unique solution
does not exist, we obtain the following values ofs.

LEMMA 2.1.

|s| = |c
−ν/2−1
0 cν+1

1 c
−ν/2
2 |, ν ∈ R.

Proof. Solving the system, we have the following expressions fors, which are gathered
into the compact formula

|s| = |c
−i/2−1
0 ci+1

1 c
−i/2
2 |, i = 0,−1,−2.
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We notice also that the above formula can be extended to any real numberν. Indeed,

|c
−ν/2−1
0 cν+1

1 c
−ν/2
2 | = |(β2)−ν/2−1(sαβ)ν+1(s2α2)−ν/2| = |s|,

assuming thatα2 = β2 = c0.

Replacing|s| from Lemma2.1 in the formulac−1 ≃ s−2c1, we obtain the following
family of estimates for the momentc−1.

(2.2) eν = cν+2
0 c−2ν−1

1 cν2 , ν ∈ R.

In case thatc1 = 0, by choosingν = −1/2, we avoid division by zero. For small values
of c1, formula (2.2) yields estimates ofc−1 for appropriate values ofν ∈ R.

REMARK 2.2. Forν = 0, formula (2.2) givese0 = c20/c1, which is the one-term estimate
stated in [7].

PROPOSITION2.3. The family of estimates (2.2) satisfy the relations

(2.3) eν = ρνe0, eν = ρ eν−1, whereρ = c0c2/c
2
1, ν ∈ R

andeν is a nondecreasing function ofν ∈ R for c1 > 0 and nonincreasing forc1 < 0.

Proof. We have

eν = cν+2
0 c−2ν−1

1 cν2 =

(

c0c2
c21

)ν
c20
c1

= ρνe0,

whereρ = c0c2/c
2
1. We also haveeν = ρνe0 = ρ(ρν−1e0) = ρeν−1.

It holds that(x,Ax)2 ≤ (x, x)(Ax,Ax) by the Cauchy-Schwarz inequality [16]. This
implies thatc21 ≤ c0c2 and thusρ = c0c2/c

2
1 ≥ 1. Therefore, ifc1 > 0, that ise0 > 0, then

eν = ρeν−1 ≥ eν−1 for anyν ∈ R, whereas ifc1 < 0, theneν = ρeν−1 ≤ eν−1 sinceeν is
negative for anyν ∈ R.

Next, we see that there exists aν0 such thateν0
gives the exact value ofc−1.

LEMMA 2.4. LetA ∈ Rp×p be a positive real matrix, i.e.,(x,Ax) > 0, ∀x 6= 0. There
exists a valueν0 given by

ν0 =
log(c−1/e0)

log(ρ)
, ρ = c0c2/c

2
1

such thateν0
= c−1.

Proof. Sinceν ∈ R andρ ≥ 1, it holds thatlimν→+∞ eν = +∞ andlimν→−∞ eν = 0
and thus the domain of the functioneν is R, and its range is the set of positive real numbers,
i.e.,eν : R → (0,+∞).

If c−1 > 0, there exists a valueν0 = log(c
−1/e0)

log(ρ) ∈ R satisfyingeν0
= ρν0e0 = c−1. On

the other hand, ifc−1 < 0, there exists a valueν0 = log(|c
−1|/e0)

log(ρ) + i( π
log(ρ) ) = γ + δi ∈ C

satisfyingeν0
= −ργe0 = −|c−1| = c−1 sinceδ log(ρ) = π.

REMARK 2.5. A similar result can be proved ifA ∈ Rp×p is a negative real matrix, i.e.,
if (x,Ax) < 0, ∀x 6= 0.

Nevertheless, in practice, it is not possible to compute this ideal valueν0 as it requires
a priori knowledge of the exact value ofc−1. However, we can find an upper bound forν0 by
the following result.
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COROLLARY 2.6. LetA ∈ Rp×p be a positive real matrix. It holds that

ν0 ≤
log(c1/(c0σp))

log(ρ)
,

whereσp is the smallest singular value of the matrixA ∈ Rp×p.
Proof. By the Cauchy-Schwarz inequality, we have

c−1 = (x,A−1x) ≤ ‖A−1x‖‖x‖ ≤ ‖A−1‖‖x‖2 =
c0
σp

.

Thus,log( c−1

e0
) ≤ log( c0

e0σp
) impliesν0 ≤

log(c1/(c0σp))
log(ρ) .

More one-term estimates.More estimates can be obtained if we consider the following
interpolation condition given by the momentc̃2 instead ofc2,

c̃2 = (ATx,ATx) =
∑

k

σ2
k(x, uk)

2 = s2β2.

Then, we get the following family of estimates for the momentc−1,

(2.4) ẽν = cν+2
0 c−2ν−1

1 c̃ν2 , ν ∈ R.

Indeed,̃eν = cν+2
0 c−2ν−1

1 c̃ν2 = (α2)ν+2(sαβ)−2ν−1(s2β2)ν = s−1αβ sinceα2 = β2 = c0.
The estimates in (2.4) satisfy the relations

(2.5) ẽν = ρ̃νe0 for ρ̃ = c0c̃2/c
2
1

and have a similar monotonic behavior as those in (2.3).
Another family of estimates for the momentc2−1 for a symmetric positive definite matrix

is given in [9]. More formulae yielding families of one-term estimates valid for any ν ∈ R

can be derived. All these formulae, for an appropriate selection of ν ∈ R, produce the same
one-term estimates.

Two-term estimates. By keeping two terms in relation (2.1), the momentc−1 can be
approximated as follows.

c−1 = (x,A−1x) ≃ êν = s−1
1 α1β1 + s−1

2 α2β2.

Let us consider the following interpolation conditions:

c0 = (x, x) = (V Tx, V Tx) =
∑

k

(x, vk)
2 = α2

1 + α2
2,

c0 = (x, x) = (UTx, UTx) =
∑

k

(x, uk)
2 = β2

1 + β2
2 ,

c2j = (x, (ATA)jx) =
∑

k

σ2j
k (x, vk)

2 = s2j1 α2
1 + s2j2 α2

2,

c̃2j = (x, (AAT )jx) =
∑

k

σ2j
k (x, uk)

2 = s2j1 β2
1 + s2j2 β2

2 ,

c2j+1 = (x,A(ATA)jx) =
∑

k

σ2j+1
k (x, vk)(x, uk) = s2j+1

1 α1β1 + s2j+1
2 α2β2,

c̃2j+1 = (x,AT (AAT )jx) =
∑

k

σ2j+1
k (x, vk)(x, uk) = s2j+1

1 α1β1 + s2j+1
2 α2β2,
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for different values ofj ≥ 0. The following family of two-term estimateŝeν can be derived,

(2.6) êν = e0 +
c0c2 − c21

c1

c0c̃ν+2 − c1cν+1

c1cν+3 − c2c̃ν+2
, ν ∈ N,

wheree0 is the one-term estimate of (2.2) for ν = 0. Indeed, replacing in (2.6) the interpola-
tion conditions given by the momentscν+1, cν+2, c̃ν+2, cν+3, (c̃ν = cν , if ν is odd), we get
êν = s−1

1 α1β1 + s−1
2 α2β2.

In case thatc1 = 0, equation (2.6) can be rewritten in the form

êν =
c20cν+3 − c0c2cν+1 − c0c1c̃ν+2 + c21cν+1

c1cν+3 − c2c̃ν+2
,

and thus division by zero is avoided.
As a consequence of the Cauchy-Schwarz inequality, the denominatorc1cν+3 − c2c̃ν+2

is always positive for a symmetric positive definite matrix.When the Cauchy-Schwarz in-
equality holds as an equality, i.e., the vectorx coincides with an eigenvector of the matrix,
formula (2.6) cannot be used since the denominator is equal to zero.

REMARK 2.7. The moments of formula (2.6) are indexed byν, and thus it is required
thatν ∈ N. On the contrary, the moments of (2.2) are raised to powers ofν which can be any
real number.

2.2. Estimates forxTA−1y. Forx 6= y, we define the bilinear moment

c−1(x, y) = (x,A−1y).

It holds thatxTA−1y = xT (ATA)−1u, whereu = AT y. Then we can use the polar-
ization identityxT (ATA)−1u = 1

4 (w
T (ATA)−1w − zT (ATA)−1z), wherew = x+ u and

z = x− u.
We set the momentsgn(x) = (x, (ATA)nx), n ∈ Z. Then,

(2.7) c−1(x, y) =
1

4
(g−1(w)− g−1(z)).

Estimates forc−1(x, y) can be obtained by considering one- or two-term estimates for
the momentsg−1(w) andg−1(z) from formulae (2.3), (2.5), and (2.6), respectively.

2.3. Estimates for symmetric matrices.If A is a symmetric matrix, we can prove that
e0 in (2.3) andê0 in (2.6) are lower bounds forc−1.

LEMMA 2.8. LetA ∈ Rp×p be a symmetric matrix. The one-term estimatee0 coincides
with the lower bound for(x,A−1x) obtained by using the Gauss quadrature rule and one
Lanczos iteration of the approach presented in[14].

The two-term estimatêe0 coincides with the lower bound for(x,A−1x) obtained by
using the Gauss quadrature rule and two Lanczos iterations[14].

Proof. In [14] it is proved that the estimate (lower bound using the Gauss quadrature
rule) of xTA−1x obtained in thekth iteration is given by the (1,1) element of the inverse of
thek×k Jacobi matrixJk, multiplied by‖x‖2. For one Lanczos iteration (k = 1), the Jacobi
matrix becomesJ1 = [uTAu], whereu = x/‖x‖. Therefore,

xTA−1x ≃ ‖x‖2(uTAu)−1 = ‖x‖2(xTAx/‖x‖2)−1 = c0(c1/c0)
−1 = c20/c1 = e0.

For k = 2 Lanczos iterations, applying the algorithm of [1, 14], we have the Jacobi
matrix

J2 =

[

c1/c0 ‖r‖
‖r‖ µ

]

, where r = A
x

‖x‖
−

c1
c0

x

‖x‖
, µ =

rTAr

‖r‖2
=

rTAr

rT r
.
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SinceA is symmetric, we haverT r = c2
c0

−
c2
1

c2
0

andrTAr =
c3c

2

0
+c3

1
−2c1c2c0
c3
0

. Thus,

µ = rTAr
rT r

=
c3c

2

0
+c3

1
−2c1c2c0

c2
0
c2−c0c21

. It holds that

J−1
2 =

1
c1
c0
µ− ‖r‖2

[

µ −‖r‖
−‖r‖ c1/c0

]

.

Therefore,

xTA−1x ≃ ‖x‖2J−1
2 (1, 1) = c0

µ
c1
c0
µ− ‖r‖2

=
c31 + c20c3 − 2c0c1c2

c1c3 − c22
=

c20
c1

+
(c0c2 − c21)

2

c21c3 − c1c22
,

which is ê0 in (2.6) sincec̃2 = c2.
If the matrixA is also positive definite, additional bounds forν0 can be derived. Corol-

lary 2.6 yields thatν0 ≤ log(c1/(c0λmin))
log(ρ) , whereλmin is the smallest eigenvalue of the ma-

trix A. In addition, we obtain an interval in whichν0 lies.
PROPOSITION2.9. LetA ∈ Rp×p be a symmetric positive definite matrix. It holds that

0 ≤ ν0 ≤
log(m)

log(ρ)
,

wherem = (1+κ(A))2

4κ(A) andκ(A) is the spectral condition number ofA.
Proof. For a symmetric positive definite matrixA and for any vectorx, it holds that [7]

c20
c1

≤ xTA−1x ≤ m
c20
c1

.

Thus,0 < e0 ≤ c−1 ≤ me0, and therefore

e0 ≤ c−1 ⇒
log(1)

log(ρ)
≤

log(c−1/e0)

log(ρ)
⇒ ν0 ≥ 0

sincelog(ρ) > 0 asρ ≥ 1. Respectively, we get

c−1 ≤ me0 ⇒ log(
c−1

e0
) ≤ log(m) ⇒ ν0 ≤

log(m)

log(ρ)
.

REMARK 2.10. The double inequality of Proposition2.9shows that, ifA is orthogonal,
thenκ(A) = 1, and it follows thatν0 = 0, which shows thate0 = c−1.

SinceA is symmetric, we can use the polarization identity

xTA−1y =
1

4
(wTA−1w − zTA−1z)

for the evaluation of the bilinear formxTA−1y. Then, the bilinear momentc−1(x, y) can be
expressed as

(2.8) c−1(x, y) =
1

4
(c−1(w)− c−1(z)),

wherew = x+ y andz = x− y.
Estimates forc−1(x, y) can be obtained by considering one- or two-term estimates for

the momentsc−1(w) andc−1(z) given by formulae (2.3), (2.5), and (2.6), respectively.
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3. Estimates for the elements of the matrixA−1. Let A = [aij ] ∈ Rp×p, for
i, j = 1, . . . , p, and letδi be theith column of the identity matrix. Thenc−1(δi) = (A−1)ii.

PROPOSITION3.1. The families of one-term estimates for the diagonal elements of the
matrixA−1 are

(A−1)ii ≃ ρν
1

aii
, ρ =

si
a2ii

or (A−1)ii ≃ ρ̃ν
1

aii
, ρ̃ =

s̃i
a2ii

, ν ∈ R,

wheresi =
∑p

k=1 a
2
ki and s̃i =

∑p
k=1 a

2
ik.

Proof. We have

c0(δi) = δTi δi = 1,

c1(δi) = δTi Aδi = aii,

c2(δi) = (Aδi)
TAδi = δTi A

TAδi =

p
∑

k=1

a2ki = si,

c̃2(δi) = (AT δi)
TAT δi = δTi AA

T δi =

p
∑

k=1

a2ik = s̃i.

Replacing the above quantities in formulae (2.3) and (2.5), we obtain the result.
PROPOSITION3.2. The one-term estimates for the elements of the matrixA−1 using the

one-term estimatese0 of (2.2) are

(A−1)ii ≃
1

aii
,

(A−1)ij ≃
1

4

(

(s̃j + 2aji + 1)2
∑p

t=1(stj + ati)2
−

(s̃j − 2aji + 1)2
∑p

t=1(−stj + ati)2

)

,

wherestj =
∑p

k=1 atkajk and s̃j is as in Proposition3.1.
Proof. The diagonal entries of the matrixA−1 can be estimated using the one-term

estimatee0 of (2.2), i.e.,c−1(δi) ≃ e0(δi) = c20(δi)/c1(δi). It holds that

c−1(δi) = δTi A
−1δi = (A−1)ii, c0(δi) = δTi δi = 1, and c1(δi) = δTi Aδi = aii,

and thus

(A−1)ii ≃ e0(δi) = a−1
ii .

By settingw = δi+AT δj andz = δi−AT δj in (2.7), we obtain estimates for the off-diagonal
elements ofA−1. Replacing the momentsci by the momentsgi in the one-term estimatese0
for (2.2), we obtain estimates for the momentsxT (ATA)−1x. It holds that

g0(w) = wTw =

p
∑

k=1,k 6=i

a2jk + (1 + aji)
2 =

p
∑

k=1

a2jk + 1 + 2aji,

g0(z) = zT z =

p
∑

k=1,k 6=i

a2jk + (1− aji)
2 =

p
∑

k=1

a2jk + 1− 2aji,
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g1(w) = wT (ATA)w = (Aw)T (Aw) =

p
∑

t=1

(ati(1 + aji) +

p
∑

k=1,k 6=i

atkajk)
2

=

p
∑

t=1

(

p
∑

k=1

atkajk + ati)
2,

g1(z) = zT (ATA)z = (Az)T (Az) =

p
∑

t=1

(ati(1− aji)−

p
∑

k=1,k 6=i

atkajk)
2

=

p
∑

t=1

(−

p
∑

k=1

atkajk + ati)
2.

Replacing inc−1(x, y) ≃
1
4 (g

2
0(w)/g1(w)−g20(z)/g1(z)) the momentsg0(w), g1(w), g0(z),

andg1(z), we obtain the result.

3.1. Estimates for the elements of symmetric matrices.If A is a symmetric matrix,
then further estimates for its off-diagonal entries can be derived.

PROPOSITION3.3. The one-term estimate for the off-diagonal elements ofA−1 using
the one-term estimatese0 of (2.2) is

(A−1)ij ≃
−4aij

(aii + ajj)2 − 4a2ij
, i 6= j.

Proof. By settingx = δi andy = δj in the bilinear formxTA−1y and using the polar-
ization identity (2.8), we obtain estimates for the off-diagonal elements ofA−1. It holds
that δTi A

−1δj = 1
4 (w

TA−1w − zTA−1z), wherew = δi + δj and z = δi − δj . Us-
ing the one-term formulae0 for the momentswTA−1w andzTA−1z and considering that
δTi A

−1δj = (A−1)ij , we get(A−1)ij ≃ 1
4 (c

2
0(w)/c1(w)− c20(z)/c1(z)). Since, fori 6= j it

holds that

c0(w) = 2 = c0(z), c1(w) = wTAw = aii + ajj + 2aij , and

c1(z) = zTAz = aii + ajj − 2aij ,

the above formula yields

(A−1)ij ≃
1

4

[(

4

aii + ajj + 2aij

)

−

(

4

aii + ajj − 2aij

)]

=
−4aij

(aii + ajj)2 − 4a2ij
.

Next, we can prove thate0 in (2.2) and ê0 in (2.6) for x = δi are lower bounds for the
diagonal elements ofA−1.

LEMMA 3.4. The one-term estimate for the entry(A−1)ii, e0(δi) = 1/aii, coincides
with the lower bound of(A−1)ii given in [14] using the Gauss quadrature rule and one
Lanczos iteration.

Proof. Following Lemma2.8, the estimate (lower bound using the Gauss rule) for
xTA−1x obtained in the first iteration is

xTA−1x ≃ (xTAx/‖x‖2)−1‖x‖2 = (c1/c0)
−1c0 = c20/c1,

which implies that

(A−1)ii = δTi A
−1δi ≃ c20(δi)/c1(δi) = 1/aii.
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LEMMA 3.5. The two-term estimate for the entry(A−1)ii, ê0 in (2.6) for x = δi,
coincides with the lower bound of(A−1)ii given in[14] using the Gauss quadrature rule and
two Lanczos iterations.

Proof. In the same way as fork = 1, we obtain lower bounds for anyk ∈ N. Fork = 2,
the following formula obtained by Gauss quadrature is givenin [14, Theorem 11.1].

(3.1)
sii

aiisii − (
∑

k 6=i a
2
ki)

2
≤ (A−1)ii, i = 1, . . . , p,

wheresii =
∑

t 6=i

∑

k 6=i atiaktaki.
The estimatêe0 in (2.6) for x = δi gives

(A−1)ii ≃
c31(δi) + c3(δi)− 2c1(δi)c2(δi)

c1(δi)c3(δi)− c22(δi)

sincec0(δi) = 1.
For a symmetric matrixA, it holds that

c1(δi) = aii, c2(δi) =

p
∑

k=1

a2ki =
∑

k 6=i

a2ki + a2ii,

and

c3(δi) =

p
∑

t=1

p
∑

k=1

aitatkaki =

p
∑

t=1





∑

k 6=i

aitatkaki + aitatiaii





=

p
∑

t=1

∑

k 6=i

aitatkaki +

p
∑

t=1

aitatiaii

=
∑

t 6=i

∑

k 6=i

aitatkaki +
∑

k 6=i

aitatiaii +

p
∑

t=1

aitatiaii

= sii + c1(δi)
∑

k 6=i

a2ki + c1(δi)

p
∑

t=1

aitati

= sii + c1(δi)(c2(δi)− c21(δi)) + c1(δi)c2(δi) = sii + 2c1(δi)c2(δi)− c31(δi).

Thus,
∑

k 6=i a
2
ki = c2(δi)− c21(δi), andsii = c3(δi)− 2c1(δi)c2(δi) + c31(δi). Inserting

these identities into (3.1), we have

sii
aiisii − (

∑

k 6=i a
2
ki)

2
=

c31(δi) + c3(δi)− 2c1(δi)c2(δi)

c1(δi)c3(δi)− c22(δi)
.

4. A family of estimates for the trace of the matrixA−1. For a symmetric matrix
A, the trace of its inverse, Tr(A−1), can be related to the momentc−1 due to a stochastic
result proved by Hutchinson in [17]. Let X be a discrete random variable taking the values
1 and−1 with equal probability0.5, and letx be a vector ofp independent samples fromX
(for simplicity, we write in this casex ∈ Xp). It holds thatE(c−1(x)) = Tr(A−1), where
E(·) denotes the expected value.

Let A ∈ Rp×p be any nonsingular matrix. In order to apply Hutchinson’s result for the
estimation of Tr(A−1), we define the matrix [1, 7]

M =
1

2
(A−1 +A−T ) =

1

2
((ATA)−1AT +A(ATA)−1).
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The matrixM is symmetric and Tr(M) = Tr(A−1). We define the moments

dn(x) = (x, (((ATA)nAT +A(ATA)n)/2)x), n = −1, 0, 1, . . . .

In the sequel,dn denotes the momentdn(x). We have

d−1 = (z,Mz) = c−1, d0 = (x, ((AT +A)/2)x) = (x,Ax) = c1,

and, more generally, for alln = −1, 0, 1, . . .,

(4.1) dn =

p
∑

k=1

σ2n+1
k akbk,

whereak andbk are defined in Section2.1. Applying the extrapolation procedure, we obtain
one- and two-term estimates for the momentd−1. By keeping one term in the summation (4.1)
and imposing thatdn = s2n+1αβ, the following expressions ofs can be derived.

LEMMA 4.1.

s2 = d
−ν/2−1
0 dν+1

1 d
−ν/2
2 , ν ∈ R.

Sinced−1 ≃ s−4d1, we get the following family of estimates for the momentd−1.

(4.2) tν = dν+2
0 d−2ν−1

1 dν2 ≃ d−1, ν ∈ R.

Then,E(tν), for x ∈ Xp, is an estimate for Tr(A−1) for any matrixA.
By keeping two terms in the summation (4.1), along the same lines as in Section2, we

obtain a family of estimateŝtν which are the same aŝeν in (2.6) with the momentsdi in place
of ci. The expected values of these estimatesE(t̂ν), for x ∈ Xp, are estimates for Tr(A−1).

5. Implementation and numerical examples.

5.1. Computational complexity of the estimates.The one- and two-term estimates re-
quire some inner products and few matrix-vector products (mvps). It is worth pointing out
that the evaluation of(ATA)n, n = 1, 2, required for the initial momentsc2, c3, c4, and
d1, d2, d3, d4, is never carried out by explicitly forming the products(ATA)x, (ATA)2x,
(ATA)kATx, andA(ATA)kx, k = 1, 2, . . ., but these expressions are computed by succes-
sive matrix-vector products.

In particular, by computing the initial matrix-vector product (mvp)w1 = Ax, the mo-
mentsc1 = xTw1 and c2 = wT

1 w1 are derived by only one additional inner product. In
this way, for symmetricA, by computingw2 = Aw1, we obtain the momentsc3 = wT

1 w2

andc4 = wT
2 w2 with two more inner products. IfA is a nonsymmetric matrix, the additional

mvpsw̃1 = ATx, w̃2 = ATw1, andw̃3 = Aw̃1 are required for the momentsc3 = w̃T
1 w̃2,

c4 = w̃T
2 w̃2, c̃2 = w̃T

1 w̃1, andc̃2 = w̃T
3 w̃3.

Table5.1 displays the number of arithmetic operations required for the computation of
the estimateseν , ẽν , andêν for dense and banded matrices with bandwidthq. In Table5.2, we
can observe the number of arithmetic operations required for the estimation of the bilinear
form xTA−1y using (2.7) for any matrixA. Formula (2.8) requires twice the number of
operations reported in Table5.1 for symmetric matrices. We notice that the computation of
each momentgn(x) = (x, (ATA)nx), n = 0, 1, . . . , requiresn mvps.

The elements ofA−1 can be approximated by the one-term estimatee0 performing only
few scalar operations. Any othereν requires arithmetic operations of orderO(p), whereas
the two-term estimates require operations of orderO(p2). Table 5.3 gives the number of
arithmetic operations required for the computation of the estimatestν in (4.2).
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TABLE 5.1
Arithmetic operations for the estimation of the momentxTA−1x.

Matrix A eν ẽν êν , ν even êν , ν odd

dense O(p2) O(2p2) O((ν + 3)p2) O((ν + 2)p2)

symmetric dense O(p2) O(p2) O((ν/2 + 2)p2) O((ν/2 + 3/2)p2)

banded O(qp) O(2qp) O((ν + 3)qp) O((ν + 2)qp)

symmetric banded O(qp) O(qp) O((ν/2 + 2)qp) O((ν/2 + 3/2)qp)

TABLE 5.2
Arithmetic operations for the estimation of the bilinear form xTA−1y.

Matrix A e0 eν ẽν êν

nonsymmetric O(3p2) O(5p2) O(9p2) O((2ν + 7)p2)

TABLE 5.3
Arithmetic operations for the estimation of the momentd−1.

t0 tν t̂ν

O(6p2) O(10p2) O((14 + 4ν)p2)

5.2. Numerical examples.This section presents extensive numerical experiments vali-
dating the behavior of the one- and two-term estimates. All computations were performed in
vectorized form inMATLAB (R2009b) 64-bit on an Intel Core i7 computer with 8 Gb RAM.
The so–calledexactvalues reported in this section were obtained by using theinv function in
MATLAB .

EXAMPLE 5.1 (Monotonic behavior of the one-term estimates). We testthe monotony
of the family of one-term estimateseν = ρνe0 in (2.3). We consider theparter matrix of
order3000 obtained by using thegallery function in MATLAB . Parter is a well-conditioned
(κ(A) = 4.6694) Cauchy- and Toeplitz matrix with elementsaij = 1/(i− j + 0.5).
In Table 5.4 we estimate the elementA−1

1500,1500 = 2.0271e-1. The best value ofν is
ν0 = −9.9978e-1. We notice that the one-term estimateseν increase asν increases since
c1 = 2 > 0.

We also consider theorsreg1 matrix of order2205 obtained from theUniversity of
Florida Sparse Matrix Collection[11]. This matrix is sparse and ill-conditioned
(κ(A) = 1.5394e4). In Table5.5 we estimate the elementA−1

1490,1490 = −5.7741e-3. The
best value ofν is ν0 = 5.0027. We notice thateν is a decreasing function ofν since
c1 = −1.2640e4.

In Figure5.1 we illustrate the quality of approximating a part of the diagonal ofA−1.
We depict the exact value and the one-term estimates of (2.3) for different values ofν for
the first 50 diagonal elements of thegrcar matrix of order4000. Thegrcar matrix, which is
Toeplitz and well-conditioned (κ(A) = 3.6277), is obtained by using thegallery function in
MATLAB . We observe that for most of the elements,e−0.75 is a good estimate. We notice
thateν increases asν increases.
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TABLE 5.4
Increasing family of estimates forA−1

1500,1500 = 2.0271e-1 for the parter matrix of order3000.

ν eν Relative error

−1 2.0267e-1 1.9821e-4
ν0 2.0271e-1 Exact value

−0.9 2.2182e-1 9.4289e-2
−0.8 2.4279e-1 1.9771e-1
−0.7 2.6573e-1 3.1090e-1
−0.6 2.9084e-1 4.3478e-1

TABLE 5.5
Decreasing family of estimates forA−1

1490,1490 = −5.7741e-3 for the orsreg1 matrix of order 2205.

ν eν Relative error

2 −4.3969e-4 9.2385e-1
2.5 −6.7510e-4 8.8308e-1
3 −1.0365e-3 8.2048e-1
3.5 −1.5915e-3 7.2437e-1
4 −2.4436e-3 5.7680e-1
4.5 −3.7519e-3 3.5022e-1
5 −5.7606e-3 2.3254e-3
ν0 −5.7741e-3 Exact value
5.5 −8.8448e-3 5.3183e-1
6 −1.3580e-2 1.3520e0
6.5 −2.0851e-2 2.6112e0
7 −3.2015e-2 4.5446e0

5.3. Estimates for matrix entries. If we consider symmetric matrices, we can com-
pare the estimates derived from Gauss quadrature methods with the estimates produced by
extrapolation.

EXAMPLE 5.2 (Comparison with the Gauss quadrature method). In Table5.6, we re-
port the results for an example also given in [14, Table 11.6] for thePoissonmatrix of
order 900 obtained by using thegallery function in MATLAB . This matrix is symmetric,
block tridiagonal (sparse), and ill-conditioned (κ(A) = 5.6492e2). We estimate the element
A−1

150,150 = 0.3602. We observe thate0, which is also the bound obtained by Gauss quadra-
ture in one iteration (k = 1), is not a good approximation. However, forν = 2.12, the value
of eν = 0.3599 is a fair estimation attained by one mvp. The best value ofν is ν0 = 2.1250.

Using Gauss or Gauss-Radau quadrature rules, we obtain the same value0.3599 after
k = 20 iterations, whereas a very good approximation of the exact value is achieved after
k = 40 iterations.

In Table 5.7 we report results for an example also given in [1, Table 1] for theHeat
flow matrix of order900. This matrix is symmetric, block tridiagonal (sparse), andwell-
conditioned (κ(A) = 2.6). We estimate the elementA−1

1,1 = 0.5702. The best value ofν is
ν0 = 1.0668. We notice that the relative error of the one-term estimateeν for ν = 1 (which
is very close toν0) is of orderO(10−3). The two-term estimateŝe0 and ê1 do not reduce
the order of the relative error. However, a relative error oforderO(10−6) can be attained by
Gauss quadrature in onlyk = 4 iterations.
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FIG. 5.1.Estimating the diagonal of the inverse of the grcar matrix oforder 4000.

TABLE 5.6
Estimates forA−1

150,150 = 0.3602 for the Poisson matrix of order 900.

Relative error Estimates
e0 = Gauss(k = 1) 3.0593e-1 0.2500

e2 2.1251e-2 0.3525

e2.1 4.2858e-3 0.3586

e2.12 8.5768e-4 0.3599

ê0 = Gauss(k = 2) 1.4576e-1 0.3077

ê1 1.6555e-1 0.3006

Gauss(k = 20) 8.2489e-4 0.3599

Gauss(k = 40) 2.9294e-5 0.3602

EXAMPLE 5.3 (Estimating the diagonal elements of the inverse of covariance matrices).
Covariancematrices are symmetric positive definite of the formA = XXT , whereX is the
data matrix. We testedcovariance matrices (α, β) with entries aii = 1 + iα

andaij = 1/|i− j|β , for i 6= j, whereα, β ∈ R [3].
The mean relative error of the diagonal entries of a matrix isdefined as the

value(
∑p

i=1 |aii − e(δi)|/|aii|) /p. Table5.8presents the mean relative errors of the diago-
nal elements of inverse covariance matrices of orderp = 4000 for variousα andβ using the
one-term estimateseν for ν = 0, 1/4, 1/2, 3/4, 1. We notice that even the one-term estimate
e0 = 1/aii, which requires only one division, gives a good result. In thelast row we report
the execution time in second required for the estimation of the whole diagonal.

5.4. Estimation of Tr(A−1). Estimates for Tr(A−1) can be obtained by realizingN
experiments and then computing the mean value of the quantitiest(xi), for xi ∈ Xp, where
t(xi) denote any of the one-term or two-term estimates for the moment d−1(xi), i.e.,
Tr(A−1) ≃ τ = 1

N

∑N
i=1 t(xi). Actually, the computation of the one-term or two-term trace

estimatesτ requireN times the arithmetic operations reported in Tables5.1 and5.3. More
details about the implementation of the trace computation can be found in [7]. For the esti-
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TABLE 5.7
Estimates forA−1

1,1 = 0.5702 for the Heat flow matrix of order 900.

Relative error Estimates
e0 = Gauss(k = 1) 2.5686e-2 0.5556

e1 1.6284e-3 0.5693

ê0 = Gauss(k = 2) 1.0194e-3 0.5696

ê1 1.4790e-3 0.5694

Gauss(k = 4) 2.2083e-6 0.5702

TABLE 5.8
Mean relative error of the diagonal entries of the inverse ofcovariance matrices.

(α, β)
(1, 2) (2, 1/2) (1/2, 4) (1, 1)

κ(A) 2.9956e3 9.6207e6 7.6118e1 2.9109e3
e0 2.4416e-4 8.0099e-5 3.0162e-3 2.6710e-4
e1/4 1.8553e-4 6.2590e-5 2.3172e-3 1.8500e-4
e1/2 1.2510e-4 1.5996e-4 1.6111e-3 9.9504e-5
e3/4 6.2785e-5 3.2393e-4 8.9787e-4 4.4659e-5
e1 3.3206e-5 5.3747e-4 1.8367e-4 8.2616e-5

time 4.3279e-2 3.8132e-2 3.5464e-2 3.6578e-2

mation of Tr(A−1), we use samples of sizeN = 50 in order to ensure a better convergence
to a standard normal distribution.

EXAMPLE 5.4 (A nonsymmetric matrix). We consider thepartermatrixP of order1000
obtained by using thegallery function in MATLAB . In Tables5.9 and 5.10 we report the
relative errors arising in the computation of Tr(P−1), also tested in [7, Example 4]. We
notice that the selected values ofν do not much influence the values of the estimates since
their evaluation is based on a statistical result. The best valueν0 of ν is computed as the mean
value of the best values obtained for each sample. However, the relative error of the one-term
estimate is considerably better forν = 3.6 than forν = 0, the value which was presented
in [7].

EXAMPLE 5.5 (A covariance matrix). In Table5.11we test a covariance matrixA of
orderp = 4000, with α = 1/2 andβ = 2, also used in [18, Table 1]. The exact value of
Tr(A−1) is1.1944e2 andκ(A) = 6.7094e1. The methods employed in [18] for the estimation
of Tr(A−1) have relative errors of orderO(10−3) for different sample sizes. We notice that
the one-term estimate can attain, for appropriate value ofν, a relative error of orderO(10−5).

EXAMPLE 5.6 (A diagonal dominant matrix). We consider a tridiagonalmatrixS(γ, δ).
The off-diagonal elements ofS are random numbers between0 and1, whereas its diagonal
entries lie in the interval(γ, δ). This matrix is diagonal dominant for an appropriate choice
of (γ, δ). We have tested the matrixS for various values of(γ, δ). In Table5.12we notice
that, as the values of the diagonal entries increase, betterapproximations of Tr(S−1) can be
obtained.

5.5. Networks. In network analysis, it is important to extract numerical quantities that
describe characteristic features of the graph of a given network. Some of these properties,
such as the importance of a node, the ease of traveling from one node to another, etc., can be
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TABLE 5.9
Relative errors in the estimation ofTr(P−1) = 2.0358e2 for the parter matrix of order 1000 using one-term

estimates.

Estimatestν Relative error
t0 9.9366e-4
t0.8 7.7408e-4
t1.6 5.5436e-4
t2.4 3.3451e-4
t3.2 1.1451e-4
t3.4 5.9486e-5
t3.6 4.4556e-6

TABLE 5.10
Relative errors in the estimation ofTr(P−1) = 2.0358e2 for the parter matrix of order 1000 using two-term

estimates.

Estimateŝtν Relative error
t̂0 1.5508e-3
t̂1 8.4604e-4
t̂2 7.8382e-4
t̂3 7.8603e-4

obtained by the diagonal elements of a matrix functionf applied to the adjacency matrixA
of the network.

The ease of traveling between nodesi andj with i 6= j can be defined by the so-called
f -subgraph communicability(f(A))ij . Also, the importance of a nodei can be defined by
thef -subgraph centrality(f(A))ii. Particularly, the most important node in a given network
can be thought of as the node with the largestf -subgraph centrality [5, 13].

A matrix function which calculates subgraph centrality is the matrix resolvent

(I − αA)−1 = I + αA+ α2A2 + · · ·+ αkAk + · · · =

∞
∑

k=0

αkAk,

where0 < α <
1

ρ(A)
with ρ(A) the spectral radius ofA. Bounds imposed onα ensure that

I − αA is nonsingular and that the geometric series converges to its inverse.
The resolvent Estrada index is defined as Tr((Ip − αA)−1), the resolvent subgraph cen-

trality of a nodei is the diagonal element((Ip−αA)−1)ii, and the resolvent subgraph commu-
nicability of nodesi andj is the element((Ip−αA)−1)ij . In the following numerical results,
we use the parameterα = 0.85/λmax, whereλmax is the largest eigenvalue ofA [5, 12].

We consider the Erd̈os networks from the Pajek group of theUniversity of Florida
Sparse Matrix Collection[11]. They represent various subnetworks of the Erdös collabo-
ration network.Erdös 982is a singular symmetric matrix of orderp = 5822. However, for
A =Erdös 982, the matrix resolventB = (Ip − αA) is nonsingular withκ(B) = 1.1300e2.

We also examine the matrixca-GrQcfrom the Snap group of theUniversity of Florida
Sparse Matrix Collection, which represents a collaboration network for the arXiv General
Relativity. Theca-GrQcmatrix is a singular symmetric matrix of orderp = 5242, whereas
B = (Ip − αA), for A =ca-GrQc, is nonsingular withκ(B) = 2.2378e1.
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TABLE 5.11
Estimates forTr(A−1) = 1.1944e2 for a covariance matrixA of orderp = 4000.

Relative error Estimates
e0 2.2442e-1 9.2636e1
e1 1.3125e-1 1.0376e2
e2 2.6886e-2 1.1623e2
e2.2 4.5554e-3 1.1890e2
e2.24 2.8150e-5 1.1944e2
ê0 8.8750e-2 1.0884e2

TABLE 5.12
Relative errors in estimatingTr(S−1) for the matrixS of order 1000 using two-term estimates.

(γ, δ)
(10, 20) (20, 30) (30, 40) (40, 50) (50, 60)

t̂0 1.8784e-2 2.7315e-3 5.9190e-4 2.2566e-4 6.5519e-5
t̂1 2.5495e-2 3.7943e-3 8.9577e-4 3.6824e-4 1.1241e-4
t̂2 3.0673e-2 4.7538e-3 1.1833e-3 5.0573e-4 1.5829e-4
t̂3 3.4638e-2 5.6071e-3 1.4523e-3 6.3722e-4 2.0296e-4

Finally, we use the adjacency matrixpref of orderp = 4000. This matrix represents
connected simple graphs and is taken from the toolbox CONTEST of MATLAB [22]. The
condition number of the matrixB = (Ip − αA), for A =pref, isκ(B) = 1.2043e1.

We compare the estimated resolvent Estrada index of theErdös 982matrix with its ex-
act value5.8833e3 (Table5.13), the estimated resolvent subgraph centrality of node5 of the
ca-GrQcmatrix with its exact value1.0003 (Table5.14), and the estimated resolvent sub-
graph communicability of nodes1 and17 of thepref matrix with its exact value2.0418e-1
(Table5.15).

In the Tables5.13, 5.14, and5.15 the satisfactory relative error that appeared in these
computations is reported. Specifically, in Table5.13, we notice that the one-term estimateeν
for ν = 1.25 attains a relative error of orderO(10−5), whereas the relative errors of the
two-term estimates are of orderO(10−3). In Table5.14, we notice that for various values
of ν, we achieve a satisfactory relative error using one- or two-term estimates. In particular,
the relative error of the one-term estimateeν for ν = 1 is of orderO(10−7), but the relative
errors of the two-term estimates are smaller. Finally, in Table 5.15, it is also noted that the
relative error of the one-term estimateeν for ν = 2 is of orderO(10−5). On the other hand,
the relative errors of the two-term estimates are worse.

In Figures5.2and5.3, we display the exact value and the one-term estimates of (2.3) for
different values ofν estimating the resolvent subgraph centrality of the first 50nodes of the
smallwmatrix of order3000 obtained by the toolbox CONTEST ofMATLAB [22] and of the
minnesotamatrix of order2642 from theUniversity of Florida Sparse Matrix Collection[11].
We notice that for appropriate values ofν, we obtain very satisfactory approximations.

6. Concluding remarks. In this paper, we extended the extrapolation techniques devel-
oped in [6, 7, 8, 9] and proposed families of estimates for the bilinear moment
c−1(x, y) = xTA−1y for any nonsingular matrixA ∈ Rp×p. Approximations of the ele-
ments and the trace ofA−1 were derived and implemented in several numerical experiments.
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TABLE 5.13
Relative errors of the resolvent Estrada index for the Erdös 982 matrix of order 5822.

Relative error
e0 1.0399e-2
e1 2.1272e-3
e1.25 4.8475e-5
e1.5 2.0346e-3
ê0 1.7295e-3
ê1 2.2086e-3
ê2 2.5830e-3
ê3 2.8838e-3

TABLE 5.14
Relative errors of the resolvent subgraph centrality of node5 for the ca-GrQc matrix of order 5242.

Relative error
e0 3.4721e-4
e0.9 3.4835e-5
e1 1.2055e-7
e1.1 3.4595e-5
e1.5 1.7347e-4
ê0 2.2197e-16
ê1 0

ê2 0

ê3 0

TABLE 5.15
Relative errors of the resolvent subgraph communicabilityof nodes1 and17 for the pref matrix of order 4000.

Relative error
e0 7.2989e-1
e1 4.4738e-1
e2 5.9324e-5
ê0 3.2726e-1
ê1 4.2900e-1
ê2 4.8159e-1
ê3 5.1084e-1

In case thatA is a symmetric matrix, some values of the one- and two-term estimates
can be interpreted as Gauss quadrature formulae, and thus they are lower bounds ofc−1.
Nevertheless, there are differences between Gauss quadrature and extrapolation techniques.
Mainly, by using the extrapolation method, families of estimates can be derived which are
valid for any nonsingular matrix and thus can be used for nonsymmetric problems. In the
performed numerical tests, the efficiency of the approximation using estimates derived either
from Gauss quadrature or extrapolation methods is subject to the choice of the symmetric
matrix.



ETNA
Kent State University 

http://etna.math.kent.edu

88 P. FIKA, M. MITROULI, AND P. ROUPA

0 10 20 30 40 50
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

diagonal element

on
e 

te
rm

 e
st

im
at

es

 

 
Exact
v=0
v=1
v=1.5
v=2
v=2.5

FIG. 5.2.Estimating the resolvent subgraph centrality of thesmallwmatrix.
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FIG. 5.3.Estimating the resolvent subgraph centrality of theminnesotamatrix.

The presented numerical results show the convincing behavior of the derived estimates
and indicate that they can be used in the approximation of useful quantities arising in a variety
of linear algebra problems. According to the numerical tests we performed, it seems that the
one- and two-term estimates are not very sensitive to perturbations of the initial matrix.

Extrapolation methods can provide a very good estimate of one matrix-vector product,
but the problem is that we do not know the best value ofν a priori. The specification of this
value remains an important open problem. For symmetric positive definite matrices, a range
of values in which this best value lies is specified. However,a thorough study is needed to
obtain sharper intervals. The estimation ofxT f(A)y for an appropriate smooth function is
also under consideration.
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