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ESTIMATES FOR THE BILINEAR FORM x TA~'y WITH APPLICATIONS TO
LINEAR ALGEBRA PROBLEMS *

PARASKEVI FIKAT, MARILENA MITROULI f, AND PARASKEVI ROUPA!

Abstract. Let A € RP*P be a nonsingular matrix ang, y vectors inRP. The task of this paper is to de-
velop efficient estimation methods for the bilinear forrh A—'y based on the extrapolation of moments of the
matrix A at the point—1. The extrapolation method and estimates for the tracd of presented in Brezinski et
al. [Numer. Linear Algebra Appl., 19 (2012), pp. 937-953] exéended, and families of estimates efficiently ap-
proximating the bilinear form requiring only few matrix vectroducts are derived. Numerical approximations of
the entries and the trace of the inverse of any real nonsinguiatrix are presented and several numerical results,
discussions, and comparisons are given.
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1. Introduction and motivation for the problem. Let A be a real nonsingular matrix
of orderp, and letz, y be real vectors of length. The subject of this work is to estimate the
bilinear formz” A~'y. The evaluation of this form arises in several applicatioruding
network analysis, signal processing, nuclear physicsytgua mechanics, and computational
fluid dynamics 5, 19, 20]. The motivation for this problem stems from the fact that fo
a specific selection of vectots andy, by estimating the bilinear form” A='y, we can
approximate several useful quantities arising frequenttgany linear algebra problems. Let
us name some of them.

Elements of the matrixd—'. By choosing as vectors andy appropriate columns of
the identity matrix of ordep, notated as/,,, estimates for the diagonal and off-diagonal
entries of A=! can be computed. In network analysis, it is important to uate the re-
solvent subgraph centrality(/, — «A)~');; and the resolvent subgraph communicability
((I, — «A)~1);; of nodesi andj, wherea is an appropriate parametés, [L2]. The com-
putation of the diagonal of the inverse of a matrix appeass & graph theory, machine
learning, electronic structure calculations, and poidfanalysis, and various methods are
proposed in the literature for this task, [21]. Uncertainty quantification in risk analysis
requires the diagonal entries of the inverse covarianceiceatfor evaluating the degree of
confidence in the quality of the data1].

The trace of the matrixi—!. For appropriately chosen random vectorshe evaluation
of 27 A2 can lead to the estimation of the trace of matrix powers, tiehas T(A9), for
anyq € QQ as described ing). The specific case af = —1 was presented in/]. This case
has attracted a lot of attention in view of the computatiotheftrace of the inverse TA 1)
of symmetric matrices?, 7, 14]. The trace of the inverse of a matrix is required in several
applications arising from the fields of statistics, frastdattice quantum chromodynamics,
crystals, network analysis, and graph thedfyd, 14]. Also, in network analysis, the resol-
vent Estrada index is calculated from the tracg Ty — aA)~!) [5, 12).

Given a nonsingular matrid € RP*? and vectors:, y € R?, the bilinear formz” A~y
can be computed explicitly by using dense matrix computalionethods. In general, these
methods requir€(p?) floating point operations, and therefore Afis sufficiently large, a
direct method is not an option. In case thgis a symmetric matrix, the bilinear form can be
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transformed to a Riemann-Stieltjes integral and can becappated by applying quadrature
rules using orthogonal polynomial theory and the Lanczothowe[l, 14]. These methods
require a complexity of ordeP (jp?), where;j is the number of (Lanczos) iterations. For any
nonsingular complex square matrixandz, y complex vectors, approaches for approximat-
ing z* A~y are given in P0]. These approaches are based on non-Hermitian genei@ligat
of Vorobyev moment problems.

The goal of this paper is to develop a different approach wieimploys extrapolation
techniques. For any nonsingular square mattixand vectorse,y, we obtain estimates
for 7 A=y by extrapolation of the moments of at the point—1. The derived families
of estimateg, , v € R, require only some inner products and few matrix-vector potsland
can provide an accurate estimate for an appropriate safectiv. However, the choice of
this “good” value ofv is not yet solved and remains an important open problem.

The paper is organized as follows. The extrapolation proeei developed and ap-
proximations of the bilinear form” A~y are presented in Sectich Applications to the
estimation of the elements of ~! and the trace TrA~!) are given in Section84. The
extrapolation method is illustrated by numerical experiteén Sectiorb, where details on
the method, other considerations, and comparisons arassied. Concluding remarks end
the paper.

Throughout the papelx|| denotes the Euclidean norm of the vectof| A|| is the spec-
tral norm of the matrix4, and(-, -) the Euclidean inner product.

2. Estimation ofxT A~y via an extrapolation procedure. Claude Brezinskiin 1999
introduced the extrapolation of the moments of a matrix &imeating the norm of the error
when solving a linear systerd][ Extensions of this approach are presente®jri.{], where
applications of the error estimates in least squares prabénd regularization are developed.
Generalization of the extrapolation approach to Hilbegcgs for compact, linear operators
are described in7] for the estimation of the trace of the inverse of an invéetimear operator
and in B] for the estimation of the trace of a power of a positive s&lfeint linear operator.

Next, we will extend the extrapolation procedure to theggion of estimates for the
bilinear form27 A~y for any nonsingular matrixd. We first consider the quadratic case
wherex = y.

2.1. Estimates forxT A~'x. Let us recall the singular value decompositi®V) of
a given matrixA € RP*P

P
A=UsV" =3 o],
k=1

whereU = [ug, ..., uy], V = [v1,...,v,] are orthogonal matrices and the singular values in
the diagonal matriX = diag(o4, ..., 0,) are ordered accordingtq > o > --- > g, > 0.
For a real vector: € RP it holds that

p p p
Ax = Zak(vk,w)uk, ATy = Zak(uk, z)v,, and A7lzr= Z ak_l(uk,m)vk.
k=1 k=1 k=1
Let us define the moments df as follows:

con(2) = (2, (AT A)"x), cons1(z) = (z, A(AT A)"z), n >0,
con(z) = (z, (AAT)"2), Cons1(x) = (z, AT(AAT)"2), n <0.
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Using some moments for > 0 as interpolation conditions, we obtain estimates by
extrapolation of these momentsrat= —1,

c1(z) = (2, AT(AAT)1z) = (2, A7),

By defining the moments of the nonsymmetric mattiin this way, we can now express
them as summations derived from the SVD/Abf

2
con(x) = E o (x,vp,)? g oa?, n >0,
Con(x g O'k (z, uk g a,%"b n <0,
Cont1(x E 02”+1 (2, o) (z, ug) E 02”+1akb;€,

whereay, = (z,v;) andby, = (x, ug).

We notice that the moment  (z) can be estimated by keeping one or two terms in its
expansion

(2.1) (x, A Jc Zak 2, vg) (2, ug) Zak arby.

Usually we neither know the singular values r@randb;, but we are able to compute
the moments:, (x), for n > 0, by considering appropriate interpolation conditions. Ha t
sequel, the moments, (z) will be denoted asg,,, and all the denominators of the estimates
are assumed to be different from zero.

One-term estimates. Approximations of:_; can be obtained by keeping only one term
in the summation4.1), that is,

o1 = (z, A7) ~ s7lap,
where the unknowns, «, and are determined by the following interpolation conditions:

o = (w,2) = VT2, VT2) = 3 (w0, 00)° = o,
k

co=(z,2)=(U"T2,U"z) = Z(x’uky — 52,
k

(z, Az) Zak x,v)(x, u) = saf,
k

co = (x, AT Az) = (Az, Ax) Zak z,v,)? = s2a’.

This is a nonlinear system of four equations with three umkie Since a unique solution
does not exist, we obtain the following valuessof
LEMMA 2.1.

—v/2-1 y+1 IJ/Q‘
b

ls| = |eo Cy v eR.

Proof. Solving the system, we have the following expressions fevhich are gathered
into the compact formula
fi/27lc§+1c2fi/2‘

[s| = e , 1=0,—-1,-2.
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We notice also that the above formula can be extended to ahpuenber. Indeed,
e "2 e ey = ()P () (Pa?) R = s,

assuming that? = 32 = c. O
Replacing|s| from Lemma2.1in the formulac_; ~ s~2c;, we obtain the following
family of estimates for the moment ;.

(2.2) e, =ch2er ey, veR.

In case that; = 0, by choosingr = —1/2, we avoid division by zero. For small values
of ¢1, formula .2) yields estimates of_; for appropriate values of € R.

REMARK 2.2. Forv = 0, formula .2) givesey = ¢2/c1, which is the one-term estimate
stated in f].

PROPOSITION2.3. The family of estimate® (2) satisfy the relations

2.3 e, =p’ey, e, =pe,_1, wherep = cpea/c?, v € R
P P 4 1

ande, is a nondecreasing function ofe R for ¢; > 0 and nonincreasing foe; < 0.
Proof. We have

v .2
_ owv+2 —2v—1 o _ [ CoC2 O
€y =Cy (€ (12—<c2 ;—p €o,
1 1

wherep = coca/c3. We also have, = p“eq = p(p”~teg) = pe,_1.

It holds that(x, Ax)? < (z,z)(Az, Az) by the Cauchy-Schwarz inequalityd]. This
implies thatc? < coco and thusp = coca/c? > 1. Therefore, ife; > 0, thatisey > 0, then
e, = pe,_1 > e, foranyv € R, whereas ife; < 0, thene, = pe, 1 < e,_1 Sincee, is
negative for any € R. a

Next, we see that there existsi@such that,, gives the exact value ef ;.

LEMMA 2.4. Let A € RP*? be a positive real matrix, i.e(x, Az) > 0,Vz # 0. There
exists a valuey given by

such thate,, = c_;.

Proof. Sincer € R andp > 1, it holds thatlim, , , ., ¢, = +00 andlim, , ., e, =0
and thus the domain of the functiep is R, and its range is the set of positive real numbers,
ie.,e, : R— (0,+00).

If ¢c_1 > 0, there exists a valugy = logle1/e0) ¢ satisfyinge,, = p"°ep = c_1. On

log(p)
the other hand, it_; < 0, there exists a valug, = log(l‘jg*(ﬁ)/eo) + i) =7 +0ieC
satisfyinge,, = —pYeg = —|c_1| = c_; sinced log(p) = .

REMARK 2.5. A similar result can be provedf € RP*? is a negative real matrix, i.e.,
if (x,Az) <0,V #£0.

Nevertheless, in practice, it is not possible to compute idhéal valuev, as it requires
a priori knowledge of the exact value @f ;. However, we can find an upper bound fgrby
the following result.
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COROLLARY 2.6.Let A € RP*P pe a positive real matrix. It holds that

log(c1/(coop))
S

whereo, is the smallest singular value of the matdxe R?*?.
Proof. By the Cauchy-Schwarz inequality, we have
. - _ Co
co1 = (v, A7) < [|[A allfle]l < A l2]* = —.
p

log((‘1/(('017p))
Thus,log(+) < log(%-) impliesyy < =£55005202 .

More one-term estimates. More estimates can be obtained if we consider the following
interpolation condition given by the momestinstead ofc,,

Gy = (ATw, ATw) =) o (x,up)® = 576
k

Then, we get the following family of estimates for the moment,

(2.4) &, =cytPe; ey, veR

Indeedé, = ¢ 2?7 1ey = (a?) 2 (saB) 2" H(s?6%)" = s~ 'af sincea? = B2 = ¢.
The estimates inX 4) satisfy the relations

(2.5) €, =pleq  forp=coir/c?

and have a similar monotonic behavior as thosif)(

Another family of estimates for the momerit, for a symmetric positive definite matrix
is given in P]. More formulae yielding families of one-term estimatedicdidor any v € R
can be derived. All these formulae, for an appropriate sieleof v € R, produce the same
one-term estimates.

Two-term estimates. By keeping two terms in relatior2(1), the moment_; can be
approximated as follows.

c1=(x,A7x)~¢, = 51_104151 + 52_104252.
Let us consider the following interpolation conditions:

co=(z,2) = (VT2,VTa) =Y (z.0) = af + a3,
k

co = (z,2) = (U2, U x) = Z(m up)? = B3+ B3,

T 2j 2
coj = (z, (AT A) E o (z,vp)? = 5302 + 533,
~ T\j 25 2j
¢y = (z, (AA") E O’k (z,ug) fsl 51+52 B2,
T 2 +1 2j+1 2j+1
C2j4+1 = (J) A A A E (ors J Z‘ ’Uk JJ Uk) = Slj Oélﬂl + 52] 05252,

~ T T 2741
Cojr1 = (x, A" (AA ZUJJF T, vg) xuk)—sl LonBa —|—52 g B,
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for different values ofj > 0. The following family of two-term estimates, can be derived,

2 ~
CoC2 — €T Colyqa — C1Cu41

(2.6) €, = e + veN,

€1 C1Cuq3 — Caluta’
whereey is the one-term estimate d?.Q) for » = 0. Indeed, replacing in2 6) the interpola-
tion conditions given by the moments, 1, ¢, 12, ¢, 12, Cuy3, (6, = ¢, If vis 0dd), we get
é, =57 a1 + 55 oo
In case that; = 0, equation 2.6) can be rewritten in the form
s cteuis — CoCaCyt1 — COC1Cy 42 + CRCy 11

v — )

C1Cy43 — C2Cpy2

and thus division by zero is avoided.

As a consequence of the Cauchy-Schwarz inequality, thendie@borcyc, 13 — coéy 40
is always positive for a symmetric positive definite matri%hen the Cauchy-Schwarz in-
equality holds as an equality, i.e., the vectocoincides with an eigenvector of the matrix,
formula 2.6) cannot be used since the denominator is equal to zero.

REMARK 2.7. The moments of formul&(6) are indexed by, and thus it is required
thatr € N. On the contrary, the moments &f9) are raised to powers ofwhich can be any
real number.

2.2. Estimates forxT A~'y. Forz # y, we define the bilinear moment
C,]_(x, y) = (wvA_ly)'

It holds thatz” A=ty = 27 (AT A)~'u, whereu = ATy. Then we can use the polar-
ization identityz” (AT A) ~tu = L (wT (AT A) 1w — 2T (AT A)~'z), wherew = z + v and

Z=T —U.
We set the momentg, (z) = (z, (AT A)"z),n € Z. Then,
1
(2.7) co1(z,y) = 1(9—1(10) —g-1(2)).

Estimates fore_; (x, y) can be obtained by considering one- or two-term estimates fo
the momentg_; (w) andg_1(z) from formulae R.3), (2.5), and @.6), respectively.

2.3. Estimates for symmetric matrices.If A is a symmetric matrix, we can prove that
ep in (2.3) andéy in (2.6) are lower bounds for_ .

LEMMA 2.8.Let A € RP*P be a symmetric matrix. The one-term estimateoincides
with the lower bound fofz, A~'z) obtained by using the Gauss quadrature rule and one
Lanczos iteration of the approach presentedi#].

The two-term estimaté, coincides with the lower bound fdw, A=12) obtained by
using the Gauss quadrature rule and two Lanczos iteratjaédk

Proof. In [14] it is proved that the estimate (lower bound using the Gausslature
rule) of z” A~z obtained in thekth iteration is given by the (1,1) element of the inverse of
thek x k Jacobi matrixJ,, multiplied by ||z||?. For one Lanczos iteratiork (= 1), the Jacobi
matrix becomes/; = [u” Au], whereu = z/||z||. Therefore,

oT A e = [la]*(u” Au) ™" = [lof* (27 Az/[|2]*) ™ = coler/co)TF = c§/ex = eo.

For k = 2 Lanczos iterations, applying the algorithm df, [L4], we have the Jacobi
matrix

. T T
Jo = [CI/CO T”}, where r—=A—~ L% rAr _r Ar

I el el X7 T2 T T
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. . . 2 2 3_
Since A is symmetric, we have”r = 2 - % andr’ Ar = Cacp e —2e1c2¢0  Thyg,
0

€0
— A _ ede 22t holds that

K rTr CSCchgcl
1 { " —||r||} |
2 Gu— ) L=l en/eo
Therefore,
T 4—1 2 71 M
AT~ l2)|f Ty (L) = o5
ST T
B e+ ckes — 2cpcien B 5 (cocg — 2)?
a ci1C3 — C% a C1 C%Cg — Clc% ’
which iség in (2.6) sincecés = co. 0

If the matrix A is also positive definite, additional bounds f@rcan be derived. Corol-
lary 2.6 yields thatyy < W, where\,,.;,, is the smallest eigenvalue of the ma-
trix A. In addition, we obtain an interval in whiah lies.

PROPOSITION2.9. Let A € RP*P be a symmetric positive definite matrix. It holds that

log(m)
log(p) ’

wherem = % andk(A) is the spectral condition number df.

Proof. For a symmetric positive definite matrikand for any vectot:, it holds that [/]

0<y <

c? c?
D<A g <m2.
C1 C1

Thus,0 < ¢g < c_1 < meg, and therefore
log(1) _ log(c—1/e0)
log(p) = log(p)

sincelog(p) > 0 asp > 1. Respectively, we get

e < C-1

c_1
4 < log(—) <1 < .
c_1 <mey = log( - ) <log(m) = w< Tog(p)
REMARK 2.10. The double inequality of Propositi@rB shows that, ifA is orthogonal,
thenk(A) = 1, and it follows that/, = 0, which shows thaty = c¢_;.
SinceA is symmetric, we can use the polarization identity

1(wTA*lw — 2T A71y)

T p—1
A =

for the evaluation of the bilinear form’ A=1y. Then, the bilinear moment_(x,y) can be
expressed as

28) caley) = Flea(w) — ea(2),

wherew = z +yandz =z — y.
Estimates fore_; (z, y) can be obtained by considering one- or two-term estimates fo
the momentg_, (w) andc_1(z) given by formulaeZ.3), (2.5, and @.6), respectively.
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3. Estimates for the elements of the matrixA~*. Let A = [a;;] € RP*P, for
i,j =1,...,p,and lets; be theith column of the identity matrix. Then_; (§;) = (A~1);.

PrRopPoOsITION3.1. The families of one-term estimates for the diagonal elesneinthe
matrix A~! are

1 S;
1 v -1 oY — 0
(A= p'—, p=—5 or (A )i =p"—, p=—, vER,
i ag ig i
o P 2 ~ P 2
wheres, = >, _, a;; ands; = >, a;,.
Proof. We have

CO((SZ') = (S;T(SZ = 1,
C1 (51) = 5ZTA(57 = Q45,

P
c2(0:) = (A6;)TAS; = 6] ATAS; = ai; = s,
k=1

p
() = (AT6,)TAT5; = 6T AATS; =) afy, =5
k=1

Replacing the above quantities in formul@e3 and @.5), we obtain the result. O
PrOPOSITION3.2. The one-term estimates for the elements of the matrikusing the
one-term estimates, of (2.2) are

A4
1 < (,§j + 2(1]'1‘ + 1)2 (§j — Z(Zji + 1)2 )
A\ (st +aw)? 2 (=8t + au)?
wheres;; = > 1 _, awza;, ands; is as in PropositiorB. 1

Proof. The diagonal entries of the matri—! can be estimated using the one-term
estimatee, of (2.2), i.e.,c_1(8;) =~ eo(d;) = c3(3;)/c1(d;). It holds that

C_1(5Z‘) = 5311471(% = (Ail)i,', Co(di) = 5?51 =1, and C1(5i) = 6ZTA5L = Qj;,

and thus

By settingw = &;+A”§; andz = §;— AT'§; in (2.7), we obtain estimates for the off-diagonal
elements ofdA~!. Replacing the moments by the momentg; in the one-term estimateg
for (2.2), we obtain estimates for the moments(AT A)~1z. It holds that

M=

P
go(w) = whw = Z a?k +(1+a;)=
k=1 ki

p
PREEIC R o A R L
k=1,k#i

a?k + 1 + 20,]'7;,
1

a?k + 1-— 20,3'1',

M~ 7

b

=1
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P P
gl(w) (ATA)w = (Aw Z am 1 + a]z Z atkajk)2
t=1 k=1ki
P P
= Z Z Atk Ak +atz )
t=1 k=1
P P
g1(2) = 27 (AT A)z = (Az)T Z ay(1—aj;) — Z akajx)?
t=1 k=1,k#i

P
§ Atk Ak + an
k=1

I
Mﬁ

W
Il
—

Replacing inc_; (z,y) ~ %(gg(w)/gl (w)—g2(2)/91(2)) the momentgy (w), g1 (w), go(2),
andg; (z), we obtain the result. O

3.1. Estimates for the elements of symmetric matriceslf A is a symmetric matrix,
then further estimates for its off-diagonal entries can dxéved.

PrRoOPOSITION3.3. The one-term estimate for the off-diagonal elementd of using
the one-term estimateg of (2.2) is

74(1”'

(aii +aj;)? — 4a3;’

(A7) ~

i # J.

Proof. By settingz = §; andy = 4; in the bilinear formz” A~'y and using the polar-
ization identity @.8), we obtain estimates for the off-diagonal elementsdof'. It holds
that 67 A=16; = L(wTA 'w — 2TA7'2), wherew = 6; + 6; andz = §; — §;. Us-
ing the one-term formula, for the momentsv” A=1w and 27 A~'z and considering that
STATI6; = (A71);;, we get(A™1);; ~ L(cB(w)/c1(w) — B(z)/c1(2)). Since, fori # j it
holds that

co(w) =2=cp(2), c1(w)= wl Aw = a;; + a;;j +2a;;, and
Cl(Z) = ZTAZ = a;; + a]‘j — 2a7;j,

the above formula yields

1 4 4 —da;;
=3 ( )-( )| -G O
4 i + Cij + Qaij [ Cij — 2(1”' (a“- + ajj) — 4aij

Next, we can prove that, in (2.2) andé, in (2.6) for z = 0, are lower bounds for the
diagonal elements of —!.

LEMMA 3.4. The one-term estimate for the enti—!);;, eo(6;) = 1/as;, coincides
with the lower bound of A—1);; given in[14] using the Gauss quadrature rule and one
Lanczos iteration.

Proof. Following Lemma?2.8, the estimate (lower bound using the Gauss rule) for
2T A1 obtained in the first iteration is

et A7z = (aT Ax/||z)|*) 7 H|2]|* = (c1/e0) "teo = i /ex,
which implies that

(A_l)ii = 6ZTA_1(SZ ~ cg(éi)/cl(éi) = 1/(1” 0
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LEMMA 3.5. The two-term estimate for the enttyl=1);;, éo in (2.6) for x = §;,
coincides with the lower bound 6fi—1);; given in[14] using the Gauss quadrature rule and
two Lanczos iterations.

Proof. In the same way as fér = 1, we obtain lower bounds for arlye N. For k = 2,
the following formula obtained by Gauss quadrature is gingii4, Theorem 11.1].

S Ailiia i:]-v"‘apa
aiiSii — (D pozi i) A7)
wheres;; = Z#i Zk# At Akt k-

The estimaté in (2.6) for z = §; gives
¢ (0i) 4 3(8:) — 2¢1(8i)ca(03)
c1(0i)es(0:) — ¢3(0s)

Sig

(3.1)

(A1) ~

sincecy(6;) = 1.
For a symmetric matri¥, it holds that

p
c1(6;) = ais, ca(d;) = Zaii = Zaii +ag;,

k=1 ki
and
P p P
c3(0;) = E E Qi QepQp; = E E @iy Qi Qki + Qg Qi Qi
t=1 k=1 t=1 \ ki

I
NE

it QLi + § At Qi Qg

t=1 kti t=1
= it Otk aL; + E it GG + E it Qg Qi
t#i ki k#i
2
= 84 + ¢1(04) E aj; +c1(0;) E it Qi
kti =1

= S;i + 01(6 )(02(5 ) c?(éz)) + 01(52‘)02(61‘) = S;; + 201(61‘)02(51‘) — C‘;’((SZ)

Thus,>>, 4, ai; = ca(8;) — ¢1(8:), ands; = c3(8i) — 2¢1(8:)e2(6;) + ¢3(6;). Inserting
these identities into3( 1), we have

Sii _ cf(éz) + 63((51) — 2cq (6l)62(51)
@iiSii — (s i) c1(0:)e3(d:) — c3(0:) '

4. A family of estimates for the trace of the matrix A=1. For a symmetric matrix
A, the trace of its inverse, TH™!), can be related to the moment; due to a stochastic
result proved by Hutchinson irif]. Let X be a discrete random variable taking the values
1 and—1 with equal probability0.5, and letz be a vector op independent samples frox
(for simplicity, we write in this case € X?). It holds thatF(c_;(z)) = Tr(A~!), where
E(-) denotes the expected value.

Let A € RP*P be any nonsingular matrix. In order to apply Hutchinson&utefor the
estimation of T(A~!), we define the matrix1], 7]

0

= %(A*l +477) = %((ATA)*AT +AATA)TY.



ETNA
Kent State University
http://etna.math.kent.edu

80 P. FIKA, M. MITROULI, AND P. ROUPA

The matrix)M is symmetric and TtV ) = Tr(A~!). We define the moments
dn(z) = (z, (AT A" AT 4 A(ATA)™)/2)z), n=-1,0,1,....
In the sequeld,, denotes the momedt, (z). We have
d_y = (2, Mz) =c_q, do = (z, (AT + A)/2)z) = (x, Az) = ¢4,

and, more generally, forall = —1,0,1, ...,
p
(4.2) dy =Y op" M agby,
k=1

whereay, andb;, are defined in Sectiod.1. Applying the extrapolation procedure, we obtain
one- and two-term estimates for the momént. By keeping one term in the summatich®)
and imposing that,, = s>"*'a3, the following expressions afcan be derived.

LEMMA 4.1.

$2 =dg"* a2, veR.

Sinced_; ~ s~*d;, we get the following family of estimates for the moment; .
(4.2) t, =dydr Ty ~d veR.

Then,E(t,), for z € X?, is an estimate for T ') for any matrixA.

By keeping two terms in the summatiof.{), along the same lines as in Secti&anwe
obtain a family of estimatels, which are the same s in (2.6) with the momentsl; in place
of ¢;. The expected values of these estimdigs, ), for x € X7, are estimates for TA~1).

5. Implementation and numerical examples.

5.1. Computational complexity of the estimates.The one- and two-term estimates re-
quire some inner products and few matrix-vector productgpéh It is worth pointing out
that the evaluation ofA” A)", n = 1,2, required for the initial moments;, c3, ¢4, and
di, do, ds3, dg, is never carried out by explicitly forming the produgtd” A)z, (AT A)%x,
(AT Ak ATz, andA(AT A)kz, k = 1,2, ..., but these expressions are computed by succes-
sive matrix-vector products.

In particular, by computing the initial matrix-vector pruoet (mvp)w; = Az, the mo-
mentsc; = x7w; ande, = wlw, are derived by only one additional inner product. In
this way, for symmetricA, by computingw, = Aw,, we obtain the moments, = w{ w,
andc, = wiw, with two more inner products. Ifi is a nonsymmetric matrix, the additional
mvpsw; = ATz, s = ATwy, andws = Aw, are required for the moments = &7 o,

Cq = ’lf)gﬂ)g, Co = 11}{11}1, andég = ’IIJg’Iﬂ?,.

Table5.1 displays the number of arithmetic operations requiredtierdcomputation of
the estimates,, ¢,,, andé,, for dense and banded matrices with bandwidtim Table5.2, we
can observe the number of arithmetic operations requirethoestimation of the bilinear
form 2T A=y using @.7) for any matrix A. Formula @.8) requires twice the number of
operations reported in Tabfel for symmetric matrices. We notice that the computation of
each momeny,, (z) = (z, (ATA)"z), n =0, 1, ..., requiresn mvps.

The elements oft ~! can be approximated by the one-term estimgtperforming only
few scalar operations. Any othey, requires arithmetic operations of ord€¢p), whereas
the two-term estimates require operations of orc¥p?). Table 5.3 gives the number of
arithmetic operations required for the computation of thingates,, in (4.2).
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TABLE 5.1
Arithmetic operations for the estimation of the momehtd — .

Matrix A e, €, é,, vV even é,, v odd
dense o) | 02p*) | O((v+3)p?) O((v +2)p®)
symmetric dense | O(p?) | O(p?) | O((v/2+2)p?) | O((v/2+ 3/2)p?)
banded O(gp) | O(2qp) | O((v+3)qp) O((v + 2)qp)
symmetric banded| O(qp) | O(gp) | O((v/2+2)qp) | O((v/2 + 3/2)qp)

TABLE 5.2
Arithmetic operations for the estimation of the bilineamfor” A~1y.

Matrix A | €o | e, | €, | €,
nonsymmetric| O(3p2) | O(5p) | O(9p?) | O((2v + 7)p?)

TABLE 5.3
Arithmetic operations for the estimation of the moment .

tO | ty, | fv
O(6p?) | 0(10p2) | O((14 + 4v)p?)

5.2. Numerical examples.This section presents extensive numerical experimenis val
dating the behavior of the one- and two-term estimates. éktgutations were performed in
vectorized form inMATLAB (R2009b) 64-bit on an Intel Core i7 computer with 8 Gb RAM.
The so—calle@xactvalues reported in this section were obtained by usingrh&inction in
MATLAB .

ExAMPLE 5.1 (Monotonic behavior of the one-term estimates). Wettesmonotony
of the family of one-term estimates, = p“eq in (2.3). We consider thgarter matrix of
order3000 obtained by using thgallery function inMATLAB . Parteris a well-conditioned
(k(A) = 4.6694) Cauchy- and Toeplitz matrix with elements; = 1/(i —j + 0.5).

In Table 5.4 we estimate the elememl‘;m’mo = 2.0271e-1. The best value ob is
vy = —9.9978e-1. We notice that the one-term estimatgsincrease ag increases since
cp=2>0.

We also consider thersregl matrix of order2205 obtained from theUniversity of
Florida Sparse Matrix Collection[11].  This matrix is sparse and ill-conditioned
(k(A) = 1.5394e4). In Table5.5 we estimate the element o 1490 = —5.7741e-3. The
best value ofv is 1y = 5.0027. We notice thate, is a decreasing function aof since
c1 = —1.2640e4.

In Figure5.1 we illustrate the quality of approximating a part of the dingl of A~".
We depict the exact value and the one-term estimate&.8f for different values ofv for
the first 50 diagonal elements of thecar matrix of order4000. The grcar matrix, which is
Toeplitz and well-conditioneds( A) = 3.6277), is obtained by using thgallery function in
MATLAB . We observe that for most of the elements 5 is a good estimate. We notice
thate, increases as increases.
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TABLE 5.4
Increasing family of estimates fat;5100,1500 = 2.0271e-1 for the parter matrix of ordeB000.

v e, Relative error
-1 2.0267e-1 | 1.9821e-4
vy | 2.0271e-1 | Exact value
—0.9 | 2.2182e-1 | 9.4289e-2
—-0.8 | 2.4279%e-1 | 1.9771e-1
—0.7 | 2.6573e-1 | 3.1090e-1
—0.6 | 2.9084e-1 | 4.3478e-1
TABLE 5.5
Decreasing family of estimates fﬁr;4190’1490 = —5.7741e-3 for the orsreg1 matrix of order 2205.
v ey Relative error
2 —4.3969e+4 | 9.2385e-1
2.5 | —6.7510e-4 | 8.8308e-1
3 —1.0365e-3 | 8.2048e-1
3.5 | —1.5915e-3 | 7.2437e-1
4 —2.4436e-3 | 5.7680e-1
4.5 | =3.7519e-3 | 3.5022e-1
) —5.7606e-3 | 2.3254e-3
vg | —5.7741e-3 | Exact value
5.5 | —8.8448e-3 | 5.3183e-1
6 —1.3580e-2 | 1.3520€0
6.5 | —2.0851e-2 | 2.6112€0
7 —3.2015e2 | 4.5446€0

5.3. Estimates for matrix entries. If we consider symmetric matrices, we can com-
pare the estimates derived from Gauss quadrature methdlshsi estimates produced by
extrapolation.

ExamMPLE 5.2 (Comparison with the Gauss quadrature method). In Tableve re-
port the results for an example also given i,[ Table 11.6] for thePoissonmatrix of
order 900 obtained by using thgallery function in MATLAB. This matrix is symmetric,
block tridiagonal (sparse), and ill-conditioned @) = 5.6492e2). We estimate the element
Als0.150 = 0.3602. We observe thaty, which is also the bound obtained by Gauss quadra-
ture in one iterationX = 1), is not a good approximation. However, for= 2.12, the value
of e, = 0.3599 is a fair estimation attained by one mvp. The best valueisfv, = 2.1250.

Using Gauss or Gauss-Radau quadrature rules, we obtaimthe &lue).3599 after
k = 20 iterations, whereas a very good approximation of the exalttevis achieved after
k = 40 iterations.

In Table 5.7 we report results for an example also given in Table 1] for theHeat
flow matrix of order900. This matrix is symmetric, block tridiagonal (sparse), avell-
conditioned £(A) = 2.6). We estimate the elemetzﬁtl‘j = 0.5702. The best value of is
1o = 1.0668. We notice that the relative error of the one-term estineatéor » = 1 (which
is very close tay) is of orderO(10~3). The two-term estimate&, andé; do not reduce
the order of the relative error. However, a relative erroomferO(10~°) can be attained by
Gauss quadrature in onky= 4 iterations.
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FiG. 5.1.Estimating the diagonal of the inverse of the grcar matrixafer 4000.

TABLE 5.6

Estimates fon4;510’150 = 0.3602 for the Poisson matrix of order 900.

Relative error| Estimates
eo = Gausgk = 1) | 3.0593e-1 0.2500
€9 2.1251e-2 0.3525
€91 4.2858e-3 0.3586
€2.12 8.5768e-4 0.3599
é9 = Gausgk =2) | 1.4576e-1 0.3077
é1 1.6555e-1 0.3006
Gausgk = 20) 8.2489e4 0.3599
Gausgk = 40) 2.9294e5 0.3602

ExampPLE 5.3 (Estimating the diagonal elements of the inverse of Gamee matrices).
Covariancematrices are symmetric positive definite of the farm= X X7, whereX is the
data matrix. We testedcovariance matrices o, 5) with entries a;; 1 + @
anda;; = 1/]i — j|?, fori # j, wherea, 3 € R [3].

The mean relative error of the diagonal entries of a matrixdé&fined as the
value (Y, |a;; — e(d;)|/|ais]) /p. Table5.8 presents the mean relative errors of the diago-
nal elements of inverse covariance matrices of opder4000 for variousa and3 using the
one-term estimates, for v = 0,1/4,1/2,3/4, 1. We notice that even the one-term estimate
eo = 1/ay;, which requires only one division, gives a good result. Inldst row we report
the execution time in second required for the estimatiomefithole diagonal.

5.4. Estimation of Tr(A~1). Estimates for TfA~!) can be obtained by realiziny
experiments and then computing the mean value of the qieitit:; ), for x; € X?, where
t(xz;) denote any of the one-term or two-term estimates for the monie; (z;), i.e.,
Tr(A ) ~7r =4 Zf;l t(x;). Actually, the computation of the one-term or two-term trace
estimates require N times the arithmetic operations reported in Talilelsand5.3. More
details about the implementation of the trace computatanhe found inT]. For the esti-
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TABLE 5.7
Estimates forAf& = 0.5702 for the Heat flow matrix of order 900.

Relative error| Estimates
eo = Gausgk = 1) | 2.5686e-2 0.5556
e1 1.6284e-3 0.5693
éo = Gausg(k = 2) | 1.0194e-3 0.5696
é1 1.4790e-3 0.5694
Gauss(k = 4) 2.2083e-6 0.5702
TABLE 5.8
Mean relative error of the diagonal entries of the inverse@fariance matrices.
(a, B)

L2) (@12 | (/24 |1
H(A) 2.9956€3 9.6207€6 7.6118el 2.9109e3

€o 2.4416e-4 | 8.0099e-5 | 3.0162e-3 | 2.6710e4
€1/4 1.8553e4 | 6.2590e-5 | 2.3172e-3 | 1.8500e4
e1/9 1.2510e4 | 1.5996e4 | 1.6111e-3 | 9.9504e-5
€3/4 6.2785e-5 | 3.2393e4 | 8.9787e4 | 4.4659e-5
el 3.3206e-5 | 5.3747e4 | 1.8367e4 | 8.2616e-H

time | 4.3279e2 | 3.8132e2 | 3.5464e2 | 3.6578e2

mation of T A~1), we use samples of sizZ€ = 50 in order to ensure a better convergence
to a standard normal distribution.

EXAMPLE 5.4 (A nonsymmetric matrix). We consider tharter matrix P of order1000
obtained by using thegallery function in MATLAB . In Tables5.9 and5.10 we report the
relative errors arising in the computation of(7~!), also tested in{, Example 4]. We
notice that the selected valuesoflo not much influence the values of the estimates since
their evaluation is based on a statistical result. The k@sew, of v is computed as the mean
value of the best values obtained for each sample. Howéeeretative error of the one-term
estimate is considerably better for= 3.6 than forv = 0, the value which was presented
in[7].

EXAMPLE 5.5 (A covariance matrix). In Tablg.11we test a covariance matrij of
orderp = 4000, with « = 1/2 and8 = 2, also used in18, Table 1]. The exact value of
Tr(A=1)is1.1944€2 andx(A) = 6.7094el. The methods employed in§] for the estimation
of Tr(A~1) have relative errors of orde?p(10~2) for different sample sizes. We notice that
the one-term estimate can attain, for appropriate value afelative error of orde®(10~9).

ExAMPLE 5.6 (A diagonal dominant matrix). We consider a tridiaganalrix .S(~y, 9).
The off-diagonal elements &f are random numbers betweermand 1, whereas its diagonal
entries lie in the intervaly, 6). This matrix is diagonal dominant for an appropriate choice
of (v,9). We have tested the matri& for various values of~, d). In Table5.12we notice
that, as the values of the diagonal entries increase, kegiproximations of TrS—!) can be
obtained.

5.5. Networks. In network analysis, it is important to extract numericahqgtities that
describe characteristic features of the graph of a givewarkt Some of these properties,
such as the importance of a node, the ease of traveling franmode to another, etc., can be
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TABLE 5.9
Relative errors in the estimation &f (P~ 1) = 2.0358e2 for the parter matrix of order 1000 using one-term
estimates.

Estimates, | Relative error
to 9.9366e-4
to.s 7.7408e+4
tig 5.5436e+4
to.4 3.3451e4
t3.o 1.1451e4
t3.4 5.9486e-H
ts.6 4.4556e-6
TABLE 5.10

Relative errors in the estimation &f (P 1) = 2.0358€2 for the parter matrix of order 1000 using two-term
estimates.

Estimated, | Relative error
to 1.5508e-3
t 8.4604e4
to 7.8382e4
ts 7.8603e4

obtained by the diagonal elements of a matrix functioapplied to the adjacency matrik
of the network.

The ease of traveling between nodeandj with ¢ £ j can be defined by the so-called
f-subgraph communicabilityf (A)),;. Also, the importance of a nodecan be defined by
the f-subgraph centralityf(A)),;. Particularly, the most important node in a given network
can be thought of as the node with the largéstubgraph centralityg, 13].

A matrix function which calculates subgraph centralityhie tnatrix resolvent

(I—aA)_l:I+aA+a2A2+~--+akAk+-~-:ZakAk,
k=0

where0 < a < ﬁ with p(A) the spectral radius ol. Bounds imposed on ensure that
P

I — aAis nonsingular and that the geometric series converges tovierse.

The resolvent Estrada index is defined ag Iy — «4) '), the resolvent subgraph cen-
trality of a nodei is the diagonal elemefitZ, —«A)~');;, and the resolvent subgraph commu-
nicability of nodes and; is the element(Z, — a«4)~!);;. In the following numerical results,
we use the parameter= 0.85/\,,.., where\,,... is the largest eigenvalue ef [5, 12].

We consider the Eigs networks from the Pajek group of tiniversity of Florida
Sparse Matrix Collectiorf11]. They represent various subnetworks of the @raollabo-
ration network.Erdds 982is a singular symmetric matrix of order= 5822. However, for
A =Erdds 982 the matrix resolvenB = (I, — @A) is nonsingular with<(B) = 1.1300€2.

We also examine the matroa-GrQcfrom the Snap group of theniversity of Florida
Sparse Matrix Collectionwhich represents a collaboration network for the arXiv &ah
Relativity. Theca-GrQcmatrix is a singular symmetric matrix of ordgr= 5242, whereas
B = (I, — aA), for A =ca-GrQg is nonsingular with«(B) = 2.2378el.
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TABLE 5.11
Estimates foffr(A—1) = 1.1944e2 for a covariance matrixA of orderp = 4000.

Relative error| Estimates
€o 2.2442e-1 9.2636¢€l
el 1.3125e-1 1.0376e2
es 2.6886e-2 1.1623e2
€9.9 4.5554e-3 1.1890e2
€294 | 2.8150e-5 1.1944€2
€o 8.8750e-2 1.0884e2

TABLE 5.12
Relative errors in estimatingr(S—1) for the matrixS of order 1000 using two-term estimates.

(v,90)
(10,20) | (20,30) | (30,40) | (40,50) | (50,60)

to | 1.8784e-2 | 2.7315e-3 | 5.9190e4 | 2.2566e4 | 6.5519e-H
t1 | 2.5495e-2 | 3.7943e-3 | 8.9577e-4 | 3.6824e4 | 1.1241e+4
ty | 3.0673e2 | 4.7538e-3 | 1.1833e-3 | 5.0573e4 | 1.5829e+4
t3 | 3.4638e-2 | 5.6071e-3 | 1.4523e-3 | 6.3722e4 | 2.0296e+4

Finally, we use the adjacency matiixef of orderp = 4000. This matrix represents
connected simple graphs and is taken from the toolbox CONT&SVATLAB [22]. The
condition number of the matri® = (I, — aA), for A =pref, is x(B) = 1.2043el.

We compare the estimated resolvent Estrada index cEttés 982matrix with its ex-
act value5.8833e3 (Table5.13), the estimated resolvent subgraph centrality of nbdéthe
ca-GrQcmatrix with its exact valud.0003 (Table5.14), and the estimated resolvent sub-
graph communicability of nodesand17 of the pref matrix with its exact value.0418e-1
(Table5.15.

In the Tables5.13 5.14 and5.15the satisfactory relative error that appeared in these
computations is reported. Specifically, in Tablé3 we notice that the one-term estimate
for v = 1.25 attains a relative error of orde€?(10~°), whereas the relative errors of the
two-term estimates are of ordér(10—3). In Table5.14 we notice that for various values
of v, we achieve a satisfactory relative error using one- ortevo: estimates. In particular,
the relative error of the one-term estimatefor » = 1 is of orderO(10~7), but the relative
errors of the two-term estimates are smaller. Finally, ibl&&.15 it is also noted that the
relative error of the one-term estimatgfor v = 2 is of orderO(10~°). On the other hand,
the relative errors of the two-term estimates are worse.

In Figures5.2and5.3, we display the exact value and the one-term estimate’ §ffor
different values ofs estimating the resolvent subgraph centrality of the firsh&@es of the
smallwmatrix of order3000 obtained by the toolbox CONTEST &faTLAB [22] and of the
minnesotanmatrix of order2642 from theUniversity of Florida Sparse Matrix Collectidi 1].
We notice that for appropriate valuesigfwe obtain very satisfactory approximations.

6. Concluding remarks. In this paper, we extended the extrapolation techniquesldev
oped in B, 7, 8 9] and proposed families of estimates for the bilinear moment
c_1(z,y) = 2T A~y for any nonsingular matrixd € RP*?. Approximations of the ele-
ments and the trace of ~! were derived and implemented in several numerical expeitisne
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TABLE 5.13
Relative errors of the resolvent Estrada index for thed@r882 matrix of order 5822.

Relative error
€o 1.0399e-2
e1 2.1272e-3
€1.25 4.8475e-5
€15 2.0346e-3
€0 1.7295e-3
é1 2.2086e-3
éo 2.5830e-3
és3 2.8838e-3

TABLE 5.14
Relative errors of the resolvent subgraph centrality of@ddor the ca-GrQc matrix of order 5242.

Relative error
€o 3.4721e4

€0.9 3.4835e-5

e1 1.2055e-7

€11 3.4595e-5

€1.5 1.7347e4

€0 2.2197e-16

él 0
ég 0
és3 0
TABLE 5.15
Relative errors of the resolvent subgraph communicahiiityodesl and 17 for the pref matrix of order 4000.
Relative error
eo | 7.2989%e-1
e1 | 4.4738e-1
es | 5.9324eH
éo | 3.2726e-1
é1 | 4.2900e-1
éo | 4.8159%e-1
és | 5.1084e-1

In case thatd is a symmetric matrix, some values of the one- and two-tetimates
can be interpreted as Gauss quadrature formulae, and teysitb lower bounds of ;.
Nevertheless, there are differences between Gauss quisdeatd extrapolation techniques.
Mainly, by using the extrapolation method, families of e&ttes can be derived which are
valid for any nonsingular matrix and thus can be used for yiwmsetric problems. In the
performed numerical tests, the efficiency of the approxionatsing estimates derived either
from Gauss quadrature or extrapolation methods is sulxpetttet choice of the symmetric
matrix.
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FiG. 5.2. Estimating the resolvent subgraph centrality of #meallwmatrix.
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FIG. 5.3. Estimating the resolvent subgraph centrality of thennesotanatrix.

The presented numerical results show the convincing behatithe derived estimates
and indicate that they can be used in the approximation dfilgeantities arising in a variety
of linear algebra problems. According to the numericaltest performed, it seems that the
one- and two-term estimates are not very sensitive to geations of the initial matrix.

Extrapolation methods can provide a very good estimate efroatrix-vector product,
but the problem is that we do not know the best value afpriori. The specification of this
value remains an important open problem. For symmetridigesiefinite matrices, a range
of values in which this best value lies is specified. Howeadahorough study is needed to
obtain sharper intervals. The estimationadff(A)y for an appropriate smooth function is
also under consideration.
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