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IMPROVED PERTURBATION BOUNDS FOR THE CONTINUOUS-TIME
H..-CONTROL PROBLEM *

NICOLAI D. CHRISTOV!, MIHAIL M. KONSTANTINOV #, AND PETKO HR. PETKOM

Abstract. New local perturbation bounds for the continuous-tifig,-control problem are obtained, which are
nonlinear functions of the data perturbations and aredigtian the existing condition number-based local bounds.
These nonlinear local bounds are then incorporated inttonahperturbation bounds which are less conservative
than the existing nonlocal perturbation estimates forfihg-control problem.
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1. Introduction. In this paper we present a complete perturbation analysithef
H .-control problem for continuous-time linear multivarieldystems. Nonlinear local per-
turbation bounds are first obtained for the matrix equatd@iermining the problem solution.
These local bounds are tighter than the condition numbsedperturbation bounds.

Using the nonlocal perturbation analysis techniques dgesl in B, 9], nonlocal per-
turbation bounds are then derived. The new nonlocal bourelkeas conservative than the
existing nonlocal perturbation estimates for ftig,-control problem and are rigorously valid
in contrast to the local bounds.

The following notations are used®™*" denotes the space of read x n matrices,
R" = R™"*1, [, the unitn x n matrix, A” the transpose ofl, || A||z = omax(A) the spectral
norm of A, whereo,,.x(A) denotes the largest singular value &f ||Al|lr = /tr(AT A)
is the Frobenius norm afl, ||.|| is any of the above normsec(A) € R™" denotes the
column-wise vector representation.éfe R™*" II € R™ %"’ the vec-permutation matrix
so thatvec(AT) = Tlvec(A) for A € R"*", andA ® B denotes the Kronecker product of
the matricesA andB. The notation *=" stands for “equal by definition”.

2. Statement of the problem. Consider the linear multivariable continuous-time sys-
tem

(2.1)

wherez(t) € R", u(t) € R™, y(t) € R", andz(t) € RP are the system state, input,
output, and performance vectors, respectively) € R! andw(t) € R” are disturbances,
andA, B, C, D, E are constant matrices of compatible dimensions.
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The H.-control problem is stated as follows: given the systém)(and a constant
A > 0, find a stabilizing controller

u(t) = —Kz(t),
i(t) = A + L(y(t) — Ci(t)),
which satisfies
[H oo := sup [[H(s)|l2 <A,
Res>0

whereH (s) is the closed-loop transfer matrix fromw to z.
If such a controller exists, then it holds thao]

K = B X,
A=A-Y,(CTC - DTD/N?),
L = ZY,C7,

whereX, > 0 andY, > 0 are the stabilizing solutions to the Riccati equations

22) ATX + XA - X(BBT - EET/)>)X +DTD =0,
' AY +YAT —v(CTC - D"D/\*)Y + EET =0,

and the matrix?7; is defined by
(2.3) Zo = (I — YoXo/N*)™

under the assumptiafiy Xo|l2 < A2
In the sequel we shall write equatiors?) as
(2.4) ATX + XA -XSX +Q =0,
(2.5) AY +YAT —YRY +T =0,
whereQ = DTD, T = EET,S = BBT —T/A2, R=CTC — Q/\2

Suppose that the matrices ..., F in (2.1) are subject to perturbationSA, ..., AFE.
Then we have the perturbed equations

(2.6) (A+AATX + X(A+AA) - X(S+AS)X +Q+AQ =0,
(2.7) (A+AAY +Y(A+AADT —Y(R+ AR)Y + T+ AT =0,
(2.8) Z=(I-YX/\)"!,

where

AQ =ADTD+ DTAD + ADTAD,
AT = AEET + EAET + AEAET,
AS = ABBT + BABT + ABABT — AT/)\?,
AR =ACTC +CTAC + ACTAC — AQ/N2.
Denote byA,, = ||[AM]| the absolute perturbation of a matr{. It is natural to

use the Frobenius norih. ||z identifying the matrix perturbations with their vectorsei
representations.
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Since the Fechet derivatives of the left-hand sides ), (2.5 in X andY at X = X
andY = Yj are invertible (see the next section), then, according ¢oirtiiplicit function
theorem ], the perturbed equation2.¢), (2.7) have unique solution&X = X, + AX
andY =Y, + AY in a neighborhood oi, andYj, respectively. Assume thal” X || < A2,
and denote by = Z, + AZ the corresponding solution of the perturbed equati8)

The sensitivity analysis of thé/..-control problem aims at determining perturbation
bounds for the solutionX’, Y, and Z of equations Z.4), (2.5, and @.3) as functions of the
perturbations in the datd, S, Q, R, T.

Using the approach developed i B], local perturbation bounds for thH .-control
problem have been obtained it] based on the condition numbers of equatiohg)( (2.5),
and @.3). However, using condition numbers for those local estimahay eventually pro-
duce too pessimistic results. At the same time it is poss$théerive local, first order homo-
geneous estimates which are tighter in genéjallp this paper, we use the local perturbation
analysis technique developed B fo establish such bound that are tighter than thosé]in [

Local perturbation bounds have a serious drawback: theyadie in a usually small
neighborhood of the datd, ..., T, i.e., forA = [Ag4,.. .,AT]T asymptotically small. In
practice, however, the perturbations in the data are aliaits. Hence, the use of local
estimates remains (at least theoretically) unjustifie@ssmian additional analysis of the ne-
glected terms is done, which in most cases is a difficult tasfact, obtaining bounds for the
neglected nonlinear terms means getting a nonlocal patiorbbound.

Nonlocal perturbation bounds for the continuous-tifiig -control problem have been
first obtained in 1] using the Banach fixed point principle. In this paper, apmythe method
of nonlinear perturbation analysig, [9], we derive new nonlocal perturbation bounds for the
problem considered which are less conservative than tinddé i

3. Local perturbation analysis. Consider first the local sensitivity analysis of the Ric-
cati equation?.4). Denote by

F(X,X)=F(X,A,S5,Q)
the left-hand side ofq.4), where
Y=(4,5Q) e R"" x R"" x R™".

ThenF(Xy,%) = 0.
SettingX = X, + AX, the perturbed equatio.©) may be written as

F(Xo+AX, Y + AY)
(3.1) = F(X0,%) + Fx(AX) + F4(AA) + Fs(AS) + Fo(AQ)
+ G(AX,AX) =0,

whereFx (.), Fa(.), Fs(.), andFg(.) are the Fechet derivatives of'(X, X) in the corre-
sponding matrix arguments evaluatediat= X, andG(AX, AX) contains the second and
higher order terms i\ X, AY. A straightforward calculation leads to

Fx(M)=A"M + MA,,
Fa(M) = XoM + M* X,
Fs(M) = —XoM Xo,
Fo(M) = M,
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where
A.=A— (BBT - EET/)\*)X,.

Denote byMx € ]R”QX”Q,MA € R”2X”27Ms € R™*"” the matrix representations of the
operatorsFx (.), Fa(.), Fs(.),

My =AT &1, + 1, ® AL,
(3.2) My =1I,® Xo + (Xo @ I)IL,
Mg = —Xo ® Xo,

whereIl € R™* %" s the permutation matrix such thatc(17) = Ilvec(M) for each

M e R™"™, andvec(M) € R"” is the column-wise vector representatiomdt
It follows from (3.1) that

(3.3) Fx(AX)=—Fa(AA) — Fs(AS) — AQ — G(AX,AY).

SinceA. is stable, the operatdrx (.) is invertible, and 8.3) yields

(34) AX = —Fy'oF4(AA) — Fx'oFs(AS) — Fx'(AQ) — Fx'(G(AX,AY)).
The operator equatior3(4) may be written in vector form as

vec(AX) = Nyvec(AA) + Novec(AS) + N3vec(AQ)

(3.5) o
— My vec(G(AX,AY)),

whereN; = —My'Ma, Ny = —My ' Mg, N3 = — My "
It is easy to show that the well-known condition number-bgserturbation boundl] is
a corollary of 8.5). Indeed, it follows from 8.5) that

[vec(AX)l2 < [|N1l2[[vec(AA)[|2 + [[N2[l2[vec(AS) |2 + [[Na|[2[lvec(AQ) |2
+O(|A]%).

Having in mind that|vec(AM)|2 = ||AM]| r = A and denoting
KX =|Nilla, Kg =[[Nal2, K =[N3,
we obtain
(3.6) Ax S KXAx+KEAs+ K3 Aq+O(JA%),
whereK 3, Kg', K are the individual condition numbers d.¢) and
A =[A4,A5,Aq)".
DenotingA .« = max{A 4, Ag, Ag} and taking into account the inequalities

KX < 2K || Xoll,
Kg < K| Xol?,
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we get
(37) AX S Kg(]- + ||X()H)2Amaxa

wherngf(l + || Xo])? is the overall condition number o2 (4). Relation 8.5) also gives
(3.8) Ax < [IN|2lIAllz + O(IA]) .

whereN = [Ny, N2, N3|. Depending of the value ak, the bound in 8.8) can be larger or
smaller than that in3.6).
There is also a third bound, which is always smaller or equéhé bound in §.6). We

have
Ax < /ATU(N)A + O(||A|?),

whereU (N) is the3 x 3 matrix with elementsi;;(N) = || NI N;||o. Since
NN (|, < NGl 1V |2,

VATU(N)A < [ N1]2A4 + [ Na]l2As + || V324

Hence, we have the overall estimate
(3.9) Ax < f(A)+O(IA]%), A —o,

where

we get

f<A>=min{||N||2||A2, ATU(N)A}

is a first order homogeneous and piecewise real analyti¢ibmin A.
The local sensitivity of the Riccati equatioB.f) may be determined using the duality
of (2.4) and @.5). For the estimate oAy, we have

(3.10) Ay <g(A)+O(J|A]?),  A—o,

where

g(A) = min{||N||2||A2, ATU(N)A} ,

A = [A4,Ag, AT, and N is determined by replacing i8(2) A, and X, by AT andYj,
respectively.
Consider finally the local sensitivity analysis of equat{@rB). In view of (2.8), we have

AZ =[I, — (Yo + AY)(Xo + AX)/ Nt - Z,
= ZoW Zo + O(|W ),
whereWV = (YpAX + AY Xy + AYAX) /N2, It follows form (3.11) that
Az <125 @ Zollo[W 1| e + O([W %),
and denoting), = || ZL ® Z||2, we get
Az < Go([IYoll2Ax + [[Xoll2Ay) /A + O (AX, AY)|?)
< GoIYoll2f (A) + (1 Xollg(A)) /A% + O(| A[1?).-

The relations §.9), (3.10, and @.12 give local first order perturbation bounds for the
continuous-timeH ., -control problem.

(3.11)

(3.12)
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4. Nonlocal perturbation analysis. The local perturbation bounds are obtained by ne-
glecting terms of order QJA|?), i.e., they are valid only asymptotically fax — 0. That
is why their application for possibly small but neverthsldmite perturbationg\ requires
additional justification. This disadvantage may be overearsing the methods of nonlin-
ear perturbation analysig,[12]. As a result, we obtain nonlocal (and in general nonlinear)
perturbation bounds, which guarantee that the perturbalalgm still has a solution, and are
valid rigorously unlike the local bounds,[9]. However, in some cases the nonlocal bounds
may not exist or may be too pessimistic.

Consider first the nonlocal perturbation analysis of thecRicequationZ.4). The per-
turbed equation3.4) can be rewritten in the form

4.1) AX = U(AX),

whereWw : R"*" — R"*" s determined by the right-hand side 8f4). Forp > 0, denote
by B(p) C R™*™ the set of all matriced/ € R"*" satisfying|| M ||z < p. ForU,V € B(p),
we have

[U(U)]|r < ao(A) + a1 (A)p + as(A)p?
and
@) =¥ (V)|r < (a1(A) + 2a2(A)p)|U = V||,
where

aO(A) = f(A>7
a1(A) =2 Mx [2A 4 + (M5 (Xo @ Ln)ll2 + | Mx ' (In ® Xo)[l2)As,
as(A) == [ My (1S + As).

Hence, the function
h(p, A) = ag(D) + a1 (A)p + az(A)p?

is a Lyapunov majorant?] for equation ¢.1), and the majorant equation for determining a
nonlocal boung = p(A) for Ax is

(4.2) as(A)p? — (1 — a1(A))p + ag(A) = 0.

Suppose thah € Q, where

Q= {A = 0:a1(A) +2y/ao(A)az(A) < 1} .

Then, equation4.2) has nonnegative root§][p; < p2 with

(4.3) pr=(A) =

- ar(A) +1/(1 - a1(8))? — dag(A)as (A)
The operato’r maps the closed convex set

B(A) = {M e RV ||M||p < ¢(A)} c R
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into itself, and according to the Schauder fixed point pplei there exists a solution
AX € B(A) of equation 4.1) for which

(4.4) Ax < o(A), AeQ.

The elgmerlts oA X are continuous functions of the elementsof.
If A € Qq, where

1= {A 0:a1(A) +21/ao(A)az(A) < 1} cQ,

thenp; < po, and the operato¥ is a contraction oi8(A). Hence, according to the Banach
fixed point principle, the solutiot\ X for which the estimate(4) holds true is unique. This
means that the perturbed equation has an isolated soliitienX, + AX. In this case, the
elements oA X are analytic functions of the elements/ii..

In a similar way, replacingl, with A, S with R, Q with 7', and X, with Y;, we obtain
a nonlocal perturbation bound fary'. Suppose thah € €, where

e}l

0= {A b1 (A) 4 24/bo(A)ba(A) < 1} CR%

and
bo(A) = g(A),
bi(A) = 2|| My |28 4 + (1M (Yo © L))o + 1My (I © Y0))12) A,
ba(B) = | My 2 (IRl2 + Ag)-

Then,

(4.5) Ay <y(A), Acq,

where

2bo(A)

W(A) = : :
1= ba(A) + /(1 - b1 (A)2 — 4by(A)ba(A)

Finally, the nonlinear perturbation bound f&rZ is obtained by using3(5 and &.3),
(4.9).If 1 ¢ spectW Z,), then we have

AZ = ZoW Zo(I,, — W Zy) L.
Hence,
Az < ClIWIFI(Tn = WZo) ™ 2.
If |[Wl2 < 1/||Zo||2, then we have

ColWllr
Ay < ——— ————.
1= Zoll2[ Wl

It is realistic to estimaté || when A X, AY vary independently. In this case, one has
to assume that

[Yollag(A) + [ Xoll2t(A) + ¢(A)(A) < X2/ Zo 2
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and
CoA%&o
4.6 Ay < —>— >
(46 7S N oot
where

€0 = |Yoll20(A) + || Xoll20(A) + ¢(A)p(A).

Relations 4.4), (4.5), and @.6) give nonlocal perturbation bounds for the continuous-
time H.-control problem.
Note finally that one has to ensure the inequality

4.7 [Y X[z < A2

Since the unperturbed inequalityy Xo||2 < A\? holds true, a sufficient condition fo# (7) to
be valid is

[Yoll20(A) + (| Xoll2t(A) + ¢(A)(A) < A — [[YVo Xo2 -
Note thatA, A depend om\2 throughAg, A g.

5. Numerical example. Consider a third order Riccati equation of tyf@e4) with ma-
trices

A=VAV, S=VS*V Q=VQ'V,
where
V=1I3—2w"/3, v=[1,1,1]7,
and
A* =diag1,-0.1,—1), S* =diag(0.2,1,10), Q* = diag0.1,0.1,0.1).
The solution is given by
X =VX'V, X*=dagr,zs, x3),

where

_ait+y/ai +sig
P e Vi il
o

3

anda;, s;, andg; are the corresponding diagonal elementgldf S*, and@*.
The perturbations considered in the data satisfy

AA=VAA'V, AS=VASV, AQ=VAQ'YV,

where

(3 -1 0] .

AF*=1|-1 2 —9| x107%,
0 -9 5]
10 =5 7] _

AS*=|-5 1 3| x107 L,
|7 3 10]
(1 -1 27 _

AQ*=1|-1 5 —1|x107", fori =12,11,...,4.
2 -1 10
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The perturbed solutiorX’ + AX of the Riccati equation is computed by the Schur
method [L1, 13] with relative arithmetic precision = 2752 ~ 2.22 x 10716,

The perturbationa y = ||[AX || in the solution are estimated by the well-known linear
bound B.7), the new nonlinear homogeneous boudd), and the nonlocal bound (4). The
results obtained for different values ©ére shown in Tablé.1 The actual variations in the
solution are close to the quantities predicted by the imgdosensitivity analysis. The case
when the conditions for existence of a nonlocal estimat®iatated is denoted by an asterisk.

TABLE 5.1

i Ax Est. 3.7 Est. 3.9 Est. @.9
12 21107% 26107 2510710 2510710
11 211079 261078 25107 251077
10 21107 261077 25107 251078
21107% 261079 251077 251077
211077 26107° 2510% 251076
2110°% 26107* 25107° 2510°°
211075 261072 25107%* 2510°*
2.1107% 261072 251073 2.6107°
211073 2,610t 251072 *

= U1t Oy N 00 ©

6. Conclusions. A complete perturbation analysis of tii&,,-control problem for con-
tinuous-time linear systems has been presented. FirstJowhand nonlocal perturbation
bounds have been obtained for the matrix equations detirgriine solution of the problem.
The new local bounds are nonlinear functions of the dataiggations and are tighter than
the existing condition number-based local bounds. Theimguke nonlinear perturbation
analysis technique developed by the authors, nonlocalation bounds have been derived.
These bounds guarantee—unlike the local perturbation Isauttitht the perturbed problem
still has a solution. The new nonlocal bounds are less ceates than the existing nonlocal
perturbation bounds for th& .-control problem.
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