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STRUCTURE PRESERVING DEFLATION OF INFINITE EIGENVALUES IN
STRUCTURED PENCILS*
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Abstract. The long standing problem is discussed of how to deflate the part associated with the eigenvalue
infinity in a structured matrix pencil using structure preserving unitary transformations. We derive such a deflation
procedure and apply this new technique to symmetric, Hermitian or alternating pencils and in a modified form to
(anti)-palindromic pencils. We present a detailed error and perturbation analysis of this and other deflation procedures
and demonstrate the properties of the new algorithm with several numerical examples.
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1. Introduction. In this paper we develop numerical methods to calculate a structure pre-
serving deflation under unitary (or in the real case real orthogonal) equivalence transformations
for the infinite eigenvalue part in eigenvalue problems for structured matrix pencils

(1.1) (AN = M)z =0,

where N = oy N*, M = oy M* € K", oy, 00 € {£1}, and  is either T', the transpose,
or %, the conjugate transpose. Here K stands for either R or C.

Eigenvalue problems of this form arise in many applications, in particular in the context of
linear quadratic optimal control problems (see, e.g., [9, 12, 15, 17, 19]), H control problems
(see, e.g., [1, 7, 14, 20]), and other applications; see, e.g., [10, 13].

In most applications one needs information about the Kronecker structure (eigenvalues,
eigenvectors, multiplicities, Jordan chains, sign characteristic) of these pencils; see [18]. Nu-
merically, in order to obtain such information, structure preserving methods (using congruence
rather than equivalence) are preferred because only these preserve all possible characteris-
tics and they reveal the symmetries in the Kronecker structure of a structured pencil of the
form (1.1). A structure preserving method may also save computational time and work since it
can make use of the symmetries in the matrix structures to simplify the computation. In order
to compute the Kronecker structure of (1.1) in a numerically backward stable way, a structured
staircase form under unitary structure preserving transformations has been derived in [5] and
implemented as production software in [4]. In the real case, the unitary transformations can be
chosen to be real orthogonal, but to simplify, in the following when speaking of unitary trans-
formations, we implicitly mean real orthogonal transformations in the case of real matrices.
The following result summarizes the staircase form.
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2 V. MEHRMANN AND H. XU

THEOREM 1.1 (Structured staircase form). For a pencil AN — M with N = onN*,
M = o) M* € K™", there exists a real orthogonal or unitary matrix U € K™, respectively,
such that

U*NU =
N11 N1’m N17m+1 Nl,m+2 Nl,gm 07 ni
. Nm—l,m+2 B ’

O—NNik,m T e Nm,m Nm,m+1 0 Nm
UNNKm-f—l UNN;7m+1 Nm+1,m+l l ’
UNmeH O'NNr’r(Lfl,quQ 0 dm
O-NNIk,Qm - q2

L 0 1l @«
(1.2)
UMU =
r My, - e Mim Mims1 | Mimy2 oo. ... M1 2m+1 1 n

O']\{Mik’m ...... Mm7m Mm,m+1 Mm,m+2 Nm
UJWMKerl ...... UMM:z,m+1 Mm+1,m+1 l )
O'[querg ...... anM::L,erg qm

| o Mo i1 ] @
where g1 > n1 > qa > ng > ... > Gm > Ny,
Njams1-j € K05+, L<j<m-1,
A 0 * 2p,2
Nm+1,m+1: 0 0 5 AZO'NA € K*P p7
M;omya—j = [ r; o } e K", I e R"", 1<j<m,
M _ Y11 Y2 T =ouX} € KPP,
m+l,m+1 L 0‘]\/[2{(2 Yoo |’ Yoo = UME§2 € Ki=2pi=2p >
and the blocks Y22, A, andl';, j = 1,...,m, are nonsingular.
Proof. The proof for the real case, oy = —1, and oy = 1 has been given in [5]; the other
cases follow analogously. g

It is clear that the transformation introduced in Theorem 1.1 preserves the structure of the
pencil, but note that in the real case or in the complex case with x being the complex conjugate,
this transformation is a congruence transformation, while in the complex case with x being the
transpose, this is just a structure preserving equivalence transformation but not a congruence
transformation.

This staircase form allows to deflate the singular part and some of the infinite eigenvalue
parts of the pencil in a structure preserving way so that for eigenvalue, eigenvector, and
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invariant subspace computations, only the central block ANy, 11, m+1 — Mp41,m+1 of the
form (1.2) has to be considered, which is regular and of index at most one, i.e., it has only
finite eigenvalues plus infinite eigenvalues with Kronecker blocks of size one due to the fact
that A and X5, are nonsingular.

The staircase form has recently been extended to parameter dependent matrix pencils
arising in the control of differential-algebraic systems with variable coefficients [9], where,
however, the transformation is more complex.

From the staircase form it is clear how to deflate all the parts associated with higher (than
one) indices and singular parts using unitary transformations (despite the usual difficulties
with rank decisions). However, for a long time it remained an open problem how to deflate
the remaining index one part associated with the eigenvalue infinity in a structure preserving
way using unitary structure preserving transformations, i.e., to reduce the central subpencil
to a subpencil ANy — M of the same structure (with a nonsingular N) that contains all the
information about the finite eigenvalues. In this paper we solve this problem and develop a new
technique for structure preserving deflation of infinite eigenvalues via unitary transformations.
We present an error and perturbation analysis and also several numerical examples that
demonstrate the properties of the new method and also compare it to non-unitary structure
preserving transformations.

2. Deflation of the index one part. A simple way to achieve a structure preserving but
non-unitary deflation is to use the Schur complement. Compute a factorization

7]

* _
Q2.1 U N_[O

of N with V7 of full row rank. This can be done via the rank-revealing QR decomposition or
the singular value decomposition; see [8]. The critical part in this factorization is the decision
about the rank of IV, which is done in the usual way by setting those part to zero that are
associated to the singular values which are smaller than the machine precision times the norm
of NV; see [6] for a detailed discussion of this topic.

Using the structure of the pencil, we have

Ny, 0

-
(2.2) N_UNU—[O 0

], M =U*MU = -
O’MM12 M22

i, mﬂ

where N11 = O'NNikl, M“' = O']\/]M-*

(R

1 = 1,2. By construction, ZVH is invertible, and
since AN — M is regular and of index at most one, M»s is also invertible. Then, with

(2.3) L= [ J 0] ,

—O’MMQ_;]/\ZE I

one has
wWMmpﬁﬁ:mlw
- e~ [S 0
* _ Tk _ Y
(2.4) (UL*M(UL) = L*ML = {0 Mm]’

with the Schur complement

2.5) S = My — o MMy, M.
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Hence, AN — M is equivalent to the decoupled block diagonal pencil
(AN11 — S) ® (A0 — Mas).

This deflation procedure via a non-unitary transformation preserves the structure, but if Mgg is
ill-conditioned with respect to inversion, then the eigenvalues of the pencil AN1; — S may
be corrupted due to the ill-conditioning in the computation of the Schur complement S. We
analyze the properties of the Schur complement approach in Section 4 and present some
numerical examples in Section 7.

Another possibility to deflate the part associated with the infinite eigenvalues is to use
equivalence transformations that are unitary but not structure preserving. Starting again with

the factorization (2.1), we form U*M = [%1} partitioned analogously and let V' be a unitary
2

matrix such that

(2.6) MV = [0 Mo
with ]/\4\22 square nonsingular. Setting

N=U*NV = [Nu ]\712} 7

0 0

Q2.7 M=U*MV =

M, ]14\\12
0 M|’

then, since N 11 and M\QQ in (2.7) are nonsingular, we can eliminate N 12 and M, 12 simultane-
ously by block Gaussian eliminations. It follows that AN — M is equivalent to the decoupled
block diagonal pencil

(AN11 = My1) @ (A0 — May).

The computation of the subpencil AN 11 — M, 11 can be performed in a backward stable way,
but it has lost its symmetry structures, and as a consequence it is hard to obtain the resulting
symmetric structure in the finite spectrum of AN — M in further computations. Thus, this
method is inadequate for many of the tasks where the exact eigenvalue symmetry is needed. We
present some numerical examples to demonstrate this deficiency in Section 7. Furthermore, in
the resulting pencil, the sign characteristics, which are invariants of the pencil under structure
preserving transformations [18], are not preserved.

3. Deflation under unitary structure preserving transformations. To derive a struc-
ture preserving deflation under unitary structure preserving transformations, consider the
unitary matrices U, V obtained in (2.1) and (2.6). Form

Nit Nig

3.1 VANV =:
( ) |:O'NN1*2 N22

] VAMV —: [ My M12].

*
O'MM12 M22

Then we have the following surprising result.

THEOREM 3.1. Consider a structured pencil of the form (1.1) which is regular and of
Q11 Q2
Q21 Q22

structure in (3.1), where U,V are obtained in (2.1) and (2.6). Then Q11 is invertible and

index at most one. Let Q = U*V = be partitioned conformably to the block

ANy — My = Qﬁ()\ﬁn - 8)Q11 = Qﬁ()\ﬁu - ]/\/1\11)7
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where the subpencils A\N11 — M, )\1\711 — S, and /\]vn — J/W\n are given in (3.1), (2.4), and
(2.7), respectively.

Consequently, the finite eigenvalues of AN — M are exactly the finite eigenvalues of the
structured subpencil AN11 — M.

Proof. By definition of (), one has

(3.2) AVENV — VAMV = Q*(AN — M)
and
(3.3) AVANV — VMV = Q*(AN — M)Q.

Based on (2.2), one has

Ny * Nu 0} * [Mﬂ * Mn Mn *
=U"N = U y =U"M = e = U )
[ 0 } [ 0 0 Mo o MPy, Moo

and then (2.6) becomes
[UMMIE Mm} Q= [0 M\m} .

From this relation we obtain that

(3.4) UJWM;(QQll + MyyQa1 =0
and
(3.5) UMMTQ = M\22Q’f2, My = ]/\4\2262;2-

Suppose that ()17 is singular, then there exists a nonzero vector = such that Q11 = 0. By
post-multiplying x to (3.4) and using the fact that Mas is invertible, one has QY212 = 0. Then

{Qn

x = 0 contradicting the fact that @) is unitary. Therefore, ()11 must be invertible.

Q21

Comparing the (1,1) block on both sides of (3.2) leads to the first equivalence relation
AN — My = Q5 (AN — ]\/4\11)-

Since Mgg is invertible, from the second relation in (3.5), so are M\QQ and QQ22. From (3.4) it
follows that

(36) leQil = _O-MM{;MI\’?
Then the matrix L defined in (2.3) becomes
~ I 0
L= _ ,
amert 1)
and, defining

o Qu Q12
R_[O Q22*]7
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and using the fact that @ is unitary, it follows that
Q = LR.
Hence, (3.3) can be written as
(3.7) AVNV — VMV = RX(AL*NL — L*ML)R,
and comparing the (1, 1) block on both sides of (3.7) leads to the second equivalence relation
ANi; — My = QF (AN11 — S)Qu1. 0

One can also obtain another perception of how the subpﬂe/ncils AN 11 — S and ANy; — My are
related to the pencils A\V¥*NV — V*MV and AN — M. The relation (3.7) implies that

R*OAV*NV = V*MV)R™' = L*(AN — M)L = (AN, — S) @ (A0 — Ma,).

Setting

Qi 0] +[Qu 0 I Q@] [Qu 0] s
o A B S P B L

we have () = LR and also
(3.8) R XAV NV = V*MV)R™" = L*(AN — M)L = (AN1; — M11) & (A0 — May),

which has the pencil (A\Ny; — M) in the (1, 1) position. The pencil \V*NV — VXMV,
however, is unitarily congruent or equivalent in the complex transpose case to the original
pencil, and the finite eigenvalue part can be simply extracted from the (1, 1) block.

It follows from (3.8), that the columns of the matrices

ol 1]

form orthonormal bases for the right deflating subspaces corresponding to the finite and

infinite eigenvalues of AN — M, respectively. In contrast to this, (2.4) shows that the Schur
complement method simply uses the non-orthonormal basis with the columns of

st
Q@]
i.e., the first block column of L for a structure preserving transformation to block diagonalize

AN — M.
For the original pencil AN — M with V' = [V}, V5] and U = [Uy, Us], the columns of

V11 Qn U2
= = d =
Vi [Vm] v [Qm] , and U |:U22:|

span the right deflating subspaces corresponding to the finite and infinite eigenvalues, respec-
tively.
The minimal angle between the two right deflating subspaces is

—_ : -1 |$*y| _ —1 * _ —1
Omin = min cosT  ———— =cos” " ||V7'Us| = cos™" ||Qa1 [,

0£w€range Vi, ]l
0#£y€range Us
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where || - || denotes the Euclidean norm for vectors and the spectral norm for matrices. The
minimal angle measures the closeness of the two deflating subspaces.

For @, there exists a CS decomposition; see [8]. If the size n;, of @17 is larger than or
equal to the size ny of (22, then this has the form

P 0 -
{Wf 0}{@11 Q12:||:Zl 0}_ 0 I 0
0 W3 Qa | Q22 0 Z T mam K ’
where Wy, Wa, Z7, Z5 are unitary matrices, and the diagonal matrices ® = diag(¢1,. .. ,¢n,)

and U = diag(¢1,. .. ,%,,) have nonnegative diagonal entries satisfying ®2 + W2 = [,,,.
If n; < ng, then one has

o | —U 0
|:W1* 0}[@11 le}{% 0}: \Il‘<1> 0
0 Wy Q21 | Q22 0 Z 01 0 In, .,
Suppose that the singular values of Q21 are cos 61, . .., €08 Oin(n, n,}» then except for possi-
bly some extra singular values at 1, the singular values of Q11 are sin 1, ..., sinOpin{n, ns}
where 01, ..., Omin{n, n,} € [0,7/2]. Thus, we have
Omin = min §;.
Introducing
(3.9) pi= | My MS|| = (| M2 My |
and using (3.6), one has
cot Omin = maxcotd; = p,
J
and hence,
Omin = cot 1 p.
Thus, the smallest singular values of (17 and Q22 are given by
. 1
(310) Umin(Qll) = Umin(Q22) = sm @min = T
V 1+ p?
and ||Q12|| = ||Q21]| = —L=. If p is large, which happens commonly when Mas is nearly

\/ 1+p2

singular, then the numerical computation of the Schur complement .S in (2.5) may be subject
to large errors. On the other hand, in this case the block Ny, = Qﬁ N11Q11 may be close to a
singular matrix as well, which may also lead to big numerical problems, in particular when
deciding about the rank of V.

Let us summarize the methods for computing the subpencils AN7; — M7, defined in (3.1)
in the following algorithms. The first algorithm, Algorithm 1, uses the factorizations (2.1) and
(2.6) to compute U and V' and eventually the subpencil ANy; — Mj;. The second algorithm,
Algorithm 2, is just a different version, which computes the factorization (2.2) explicitly, and
the factorization (3.1) is computed using () = U*V instead of V.
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ALGORITHM 1. Consider a regular structured pencil AN — M of index at most one
with N* = oy N and M* = oy M.
1. Use a rank revealing QR or singular value decomposition to compute a unitary
matrix U such that

wnr |Vt
UN_[O],

where IV is of full row rank. Partition U = [U; Us| accordingly, and set
My = UFM.

2. Use a rank revealing QR or singular value decomposition to determine a unitary
matrix V' such that

M2V = [0 ]/\4\22} s det M\QQ 75 0.

3. Compute

N1t Nig

*
O'NN12 NQQ

VXNV =
|: UMMikQ M22

] VAMV = [ My, M12:|

and return AN7; — M7 as the pencil associated with the finite spectrum of AN — M.

Algorithm 1 requires two singular value decompositions or rank revealing () R factoriza-
tions as well as the associated matrix-matrix multiplications. The most difficult part is the rank
decision for the matrix IV in step 1, which will affect the number of finite eigenvalues and the
size and therefore also the conditioning of M.

An alternative version of Algorithm [ is given in the following algorithm.

ALGORITHM 2. Consider a regular structured pencil AN — M of index at most one
with N* = oy N and M* = o/ M.

1. Use a Schur-like decomposition of NV to compute a unitary matrix U such that

Ny 0

*N:
UNU 0 0

:| = j\?, detﬁu#o,
and compute

M =U*"MU = L
O'MM12 MQQ

2. Use arank revealing Q R or singular value decomposition to compute a unitary matrix

Q. Q2
@= [Qm Q22

} partitioned accordingly, such that

{UM]\/Z*Q ]\722] Q= [0 ]/\4\22] .
3. Compute

~ N N —~ M M
*NO — 11 12 *0 — 11 12
@NQ onNN7Y, Naol|’ @"MQ omMpy, M|’

or, if only ANy, — M7, is needed, then

Nip = QN NuQu, My = Qﬁ(MnQn + M12Q21)~
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Algorithm 2 uses in contrast to Algorithm | a structured Schur-like decomposition in
the first step and performs two unitary transformations on the pencil. The other costs are
comparable to those of Algorithm 1.

We will perform the error and perturbation analysis for these algorithms as well as that of
the Schur complement approach in the next section.

4. Error and perturbation analysis. In this section we present a detailed error and
perturbation analysis for the different deflation procedures presented in the last sections. Our
error analysis for the structure preserving method under unitary transformations will be based
on Algorithm 2. The error analysis for Algorithm 1 is essentially the same.

Let u be the unit roundoff, and denote for each of the matrices defined in the previous
section the computed counterpart by the corresponding calligraphic letter, e.g., let U, N1
be the computed U and Ny in step 1 of Algorithm 2. Following standard backward error
analysis ([8]), there exists a unitary matrix U such that

U*(N + 6N,)U = [ 011 8} - N,

where ||U — U|| = O(u), N* = 650N, and ||6N,,|| = O(||N||u). For the computed M,
we have

M =U*(M + 6M,)U =

My M
O—MMTQ M22 ’

with 6Mf[ = opOMy, [|6M,|| = O(||M]|u).
Setting X = U*U we obtain from the exact factorization (2.2) that

@n N= {j\gﬂ 8] = X*(N + USN, U)X = X*

Nll +f§]\711 5-&712
O'N(SNikQ (SN22

Assume that ||(5N11 I < amin(ﬁu). Then Nll + 5]\7'11 is nonsingular. One can show that for

7 — ~ - -
K= { G] , G=(Nn +5N11)715N12,

0 I
one has
* N11+§N11 5&12 K— Nij + 6Ny ~ U _ Ni1+ 6Ny 0
O'N5N1*2 (5N22 0 (5N22—UN5NZ(2G 0 0 '
Introduce the unitary matrix
$_[1 ¢ (I+GG*)~= 0
I ICA 0 (I+G*G)%]

where (I + GG*)2 and (I + G*@)2 are the positive definite square roots of I + GG* and
I + G*@G, respectively. Then one has

(I+GG*)~ = 0

K=X ; .
L(IJF G*G):G* (I+ G*G)z} ’
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and then

)N(*

((1 + GG*)%)* (N11 +6Nu)(I +GG*)3 0] '
0 0

N1+ 6Ny, 6Ny ¥
o 2 -
0N5N12 5N22

Comparing with (4.1), one can show that X = X diag(X;, X2), where X, X, are unitary.
Without loss of generality, we set

v _. (I +0Xn 0X12
NS

and introduce the condition number
en = [INIINGH = [1N1 || N -
Since |G| = O(knu), and

6X1 = -G(I+G*G) 2, 6Xo1 = G*(I + GG*) ™7,
X1 = (I+GG*) "% —1, Xoy = (I+G*G)"% — 1,

one has
16X 12, [6Xa1]l = O(IG]) = O(knu),  [[6X11l, [6Xa2]l = O(IG?) = O(r{u?).
Clearly, here « measures the sensitivity of the null space of N. Hence,

Nip = (I +6X11)*Niy(I +6X11) + O(|N|ju) = N1y + 6N;y,
[6N11]] = O ((kXu+ 1)[|N|ju),

and it follows from M = X*(M + U*§M, U)X that
4.2) M =DM+M, ||sM| = O(ry|M]|u).
Partition M conformable to M , assume that

||5/W22|| < Umin(Mm)

so that ./K/lvgg is invertible, and let S be the computed Schur complement based on Mv . Then,
under the assumption that a backward stable linear system solver is used for computing

Mt M, columnwise, one has
S = M1 — oMMy M3, + E,
with
1B, = O ((IMull + ol Mz ]| + 92| Ma2l) w) = O ((1+ p)? [M]u)
where p is defined in (3.9). Some elementary calculations and (4.2) lead to

S=S+E;+F,=5+90S,
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with

IFll =0 ((1+p)* mlM]|u)

where F results from the errors introduced in M by performing the transformation with U.
Note that due to the structure of the error, we could absorb E; into F. Altogether, we have

M1 — 8 = A(Nig + 0N11) + (S + 68),
with [|6A71]| = O (k3 + 1)[|N|ju), and ||6S]| = O ((1 +p)° KNHMHU).
It then follows that the columns of
1 d 0
— — an
—on Mz M I’

span the right deflating subspaces corresponding to the finite and infinite eigenvalues, respec-

tively, of the pencil
~ ~ |Es 0
e (e [ 1))

and M\ — S, A0 — Mvzg are the corresponding computed subpencils associated to these
bases.
Let Q be unitary such that

[UMMVTQ /T/IJQQ} @ = [0 MV22:| .
Then
_UMMVE;MVE = éZl éﬁla

and therefore the right deflating subspace associated with the finite eigenvalues is spanned by

the orthonormal columns of the matrix l%u] . Introducing
21
y=QQ,
it follows from (4.2) that
“3) [0 M| = [onrl, Mo QY = ([0 M| +€) .

with
5 = [51 52] - {O’]u&/f\;l/‘fg 5.//\/1\/22} Q

Similar to the matrix X, one may express

Yo [I+53211 612 } _ [ I G}} {(HG;G),)% 0 }
Vo1 T+ 6V -Gy I 0 (I+GyGy)~ 2]’
where Gy = (M\gg + &) ~L&;. One then has
1612l 16V21]| = O (knRaru),  [[6D11], 16V2]l = O (k3 E30?)

where &y = [|M! ||| M| > 1.
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Since U* (AN +6N,) — (M + 6M,,)) U Q is block upper triangular, and because of
the structure of the pencil, the columns of
~ 10
ol

are the right deflating subspaces of A(N 4+ dN,,) — (M + §M,,) corresponding to the finite
and infinite eigenvalues, respectively. Hence, the minimal angle between these two subspaces
is given by

gll

U
Qa1

Omin = cos || Qa1 l,
and, since Qo = Q21(I + 0V11) + Q22601 it follows that
1921l = [|Qa1 ]| + O(knFrru),
and hence
Omin = Omin + O(csc OminkNRaru).

The perturbation in the deflating subspace associated to the finite eigenvalues can then be

measured by &7 := sin~! | A || with
gn _ [lerx @11
Qa1 Q22 Qo1 |’

s (ofg]) e

and the perturbation in the deflating subspace of the eigenvalue infinity can be measured by

oo 1= sin ! || A || with
I\ ~[o
s (vl]) ofi]

Inserting the obtained norm bounds, we have

6 = O([|6Xa1|| + [[6X][]) = O(knEM),  doo = O([[0X12]]) = O(knu).

It should be noted that in the case that [V is already in block diagonal form as N, which
is for example the case when NV arises from the middle block of the staircase form (1.2),
then U = U = I, and the computed subpencil corresponding to the finite eigenvalues is given
by

AN =S, S=S+E, ||E|=0(1+p|Mu).

where F is arising just from the computation of S.
_Instep 2 of Algorithm 2, for the computed version Q of Q, there exists a unitary matrix
@ such that ||Q — Q|| = O(u) and
4.4) ({UMM{(Q Mm] +E) Q= {0 M\22} ;

with ||E|| = O (\W22||u) ~0 (||J/\4\22Hu>.
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Introducing
Y =QQ,
then similar to (4.3) we obtain
(o0 Mty Maa| @ =[0 M + [orrdMly 6Ma| Q= [0 M| +,
with [|€]| = O(kn /|| M |lu). Then one has
([0 M| +EQ+€)Y =[0 M.

Partitioning EQ + £ = [Eyy Eya), then |Ey| = O ((\\1\722|| + nNHMH) u). Similar

to ), we may express

yo [T+ oY J_[ I Gy][U+GyGy) 73 0
0Yar  I+0Ye| |-Gy I 0 (I+GyGy) 2]’

where Gy = (]\/4\22 + E12) "1 E11. We obtain the estimates

10¥a1ll, 18Y1al = O (1B ll13' ) = O (7, + rxRar)u)
and

18Ya1ll, 6Y2all = O ((gz,, + rwiear)®u?),

where Ky = ||M22||||M2’21||.
Using these estimates, the computed Aj; and M can be expressed as

N = éﬁﬁ/’u@u + 6N,
with [[0N11 ]| = O ([|Q11]1?|N|Ju), and
My = @ﬁ(ﬂuéu + M12Qa1) + S My,

with oMy = O (1M1 Quul + 131 [1Q21 ) 1Qu1u).
Using the relation between AN — M and AN — M, one has

N = @ﬁNn@ll +An,
with |Ax[| = O ((sFu+ 1) [ N[[[|Q11][*u), and
My = éﬁ(ﬂnéu + My2Qa) + Ana,
with [[Any1l) = O (((knl| M+ [Mua][|Qual + 722/l Q21 ) Q11 w). Since
Q2107
= (Qa1 (I + 6Y11) + Q20Ya1) (Qu1 (I + 0Y11) + Q126Y21) ™

- <Q21Q;11 + Qg20Yay (I +6Y11) ! Q;f) (I + Q120Yay (I 4 6Y11) ! Q;f) -

—1
= QuQ1 + Qo Yoy (I +6Y11) ' Q1 (I + Q120Yay (I +6Y11) ! Qﬁl) )
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using (3.6), one obtains
My = QF,SQu + Anr + Ao,

where, by using (3.5),
Apr
= QN Q@) Moad¥on (14 0Y1) " Qi (14 Quud¥er (1 +6v) ' Qi) G
= —Q;J/\/f\zz(sym(f-i— 8Y11) (I + Qi Q126Ya1 (I +6Y11) ™) ' Q! Qur.
Using §Y21 (I 4+ 6Y11)" 1 = -Gy = —(]/\4\22 + E12) "1 Eqy, it follows that

Ao = Q;En +o(u),
and hence,

18as2ll = O (IQutll (I3as] + s 10])) w)

and

My = QN SQu + A,

with [|Anr]| = O ((knlIM] + | Mo || Q21 + Mir|Qua]?) w). Here we have used the
fact that

[ Mia|| < (| Mo Mys' ||| Maal| = [|Qaa /]| Moz ]|.

In the situation that only the finite eigenvalues are considered, one can reduce the effort to
compute AN7; — My only. So if we set

oNNDy = QN1LQu1, oMb = Q% (Mn@n +M12éz1) ,

@:11

then the columns of l
21

] form an orthonormal basis for the right deflating subspace of

N — /T/ﬂ corresponding to the finite eigenvalues, where Ml is a perturbed Mv of or-
der O(Mi1u) because of the inexact QR factorization (4.4). The resulting subpencil is

)\éﬁ./\N/'n@u — @’ﬁ (MV11©11 + Mlzézl), and the pencil AN7; — Mj; is obtained by
adding the extra error pencil AAy — Ay introduced by the numerical computation of N7,

and M. Similarly, the columns of span the right deflating subspace of MW — M 1

0

|/

corresponding to the eigenvalue infinity, and the columns of the matrices
7 |€n

~ 10
Q| o)

span the corresponding deflating subspaces of a pencil slightly perturbed from AN — M.
Setting

- (vfa)) o

o R N e
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and

< I\ = [o 1R
A“_<U [OD UH’ oo Al

we have €5, = doo = O(knyu), and similarly,
e = 0 (I8%a1 + 8X11) = O ( (g7, + rvFar ) u)
and the minimal angle between the two perturbed subspaces is given by
Omin = Omin + O (csc Omin (f@ﬁm + ,%NEM) u) .
If AN — M is already in the form AN — M, then U = U = I, and in this case,

Janl =0 (INIIQuIP) . 1Aax ) = O ((IM2ll| Qa1 + M 1Qui 1?) w)

and it follows that

~

€o =0, €5 =0(kg 1), Omin = Omin + O(csc Opinkizz, ).
We may express N11 and M7 as
N = QN (N + Ax)Qu1, Miy = QN (S + Ax)Qu
with
Ay = Q" ANQi, Au = Qi AnQy

By using (3.10), we have

IAN] = O ((k%e +1) Ky, [N ) ,

13all = O ((snNQTMPIM + 12, | M| + QT M2l w)
where rg,, = [|Qui |7l

Recalling from (3.10) that || Q17! || = /1 + p?, and comparing the errors in the subpencils

A1 — 8 and ANG; — My, it follows that || Ay || and ||6S]| have the same order, while
||A | can be larger than ||0N711]| by a factor "%11 . The latter will be of equal order only when

2 .
KG,, 18 not too large. N
On the other hand, if we transform MN;; — S to

Q1 (W11 — 8)Q11 = @ (AN — S)Qu1 + QT (ANt — 38)Qu1,
then we have
1QT10N1 Q11 = O ((3u+1) [|Qui[*|N ) ,
~ ~ 2
1@1165G 11l = 0 (14 p)” | @u |kl M )

The first quantity is of the same order as || A ||, while the second one can be larger than || A /||
by a factor /@%11 unless kq,, is not too large. So in terms of numerical stability, the error
analysis does not show which method has an advantage over the other. This is an unusual
circumstance in numerical analysis, where usually the methods based on unitary transfor-

mations in the worst case situation have smaller errors than the ones based on non-unitary
transformations. We will demonstrate this effect in the numerical examples in Section 7.
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5. An alternative point of view. Another way to understand the new unitary structure
preserving method of deflating the infinite eigenvalue part is to consider the extension trick
introduced in [9]. Partition the matrix U in (2.1) as U = [U 1 Ug] with U7 of the same size
as Ni{. For any eigenvector = of AN — M corresponding to a finite eigenvalue ), it then
follows from U*(AN — M)z = 0 that U Mx = 0. So the original eigenvalue problem is
equivalent to the non-square, non-symmetric eigenvalue problem

N M ]
5. (A[3] - [o] ) o=

and we are only looking for eigenvectors in the nullspace of U} M. Let

z
2i=Vig = |7
22

be partitioned according to the block structure in (3.1). Then the eigenvalue problem (5.1) is
equivalent to the extended eigenvalue problem

o 0] L) v

N11 N12 Mll M12 .
= | A|onN}y, No| — [omMT J/\{zz Ll} =0
0 0 0 Moy 2

Clearly then it follows that z; = 0 and
()\Nll — Mll)zl = 0

Hence, an eigenvector of AN — M corresponding to a finite eigenvalue has the form

=V ﬁ)l] where z; is an eigenvector of the subpencil ANy; — M7;. More generally,

the columns of V [181] form an orthonormal basis for the deflating subspace of AN — M
corresponding to the finite eigenvalues.

6. Palindromic and anti-palindromic pencils. Structured pencils closely related to
those discussed before are the palindromic/anti-palindromic pencils of the form

AA* — oA,

where A is an arbitrary real or complex square matrix and o = +1; see [10, 16] for a detailed
discussion of the relationship. Assume further that the eigenvalue o (if it occurs) is semi-
simple, which corresponds to the property of being regular and of index at most one for the
structured pencils discussed before. Applying a Cayley transformation (see [10, 11]), the
pencil AN — M with

N:=A*—6A=-oN* M:=A"+0A=0cM*

is a structured pencil of the form (1.1) with oy = —o and o)y = o, and the semi-simple
eigenvalue o becomes the eigenvalue co and the pencil has index at most one. To this pencil
we can apply the discussed transformations V, U as defined in (2.1) and (2.6). Then

My
My|”

Ny

(6.1) UX(A* —0A) = [ 0

} , UN(A*+0A) = [
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Partitioning
B
_ * 4 _ |1
AU = [Al AQ], UrA = {Bg]

conformably, one has
N1 _ AT—O’Bl M1 _ AT—}-O’Bl
0 - A‘é(*JBQ ’ M2 - A§+UBQ ’

A;:UBQ, M2:20B2.

and hence

Furthermore, applying V' to M, we obtain MV = {0 M\QQ] , and hence BoV = {0 §22]

with §22 = O'M\QQ/Z
Setting
A21 A22

V*AV — |:A11 A12:|

then

V*(AN = M)V =\ Ay —oAn A5 - UAl?} _ {Aﬁ + oA Af +o0Ap

ATQ — O’Agl A§2 — O’A22 ATQ + O'A21 A§2 + O'A22 ’
and thus
)\Nll — M11 = )‘(ATI — UAll) — (A’I(l —|— 0’A11)

is the subpencil of AN — M with the finite eigenvalues only. By taking the inverse Cayley
transformation, this is equivalent to the property that the palindromic subpencil

MY, — 0A

contains all the eigenvalues of AA* — o A except the eigenvalue o, which has been deflated.

It should be noted though that the Cayley transformation or its inverse may lead to
cancellation errors if there are eigenvalues close to ¢ but not equal to ¢. Note when some
eigenvalues are close o but not equal to o, since A* — o A has to be computed explicitly, the
rank decision in computing the first factorization (6.1) is more difficult to make.

7. Numerical examples. In this section we present several numerical tests to compare
the computed finite eigenvalues of the subpencils generated by the three methods: structured
unitary equivalence transformation (Algorithms 1 and 2), Schur complement transformation
(by using (2.4)), and the non-structured equivalence transformation (with (2.7)). All the tests
were performed in MATLAB (Version 8.2.0) with double precision. All the tested pencils
were real, and we use relative errors to measure the accuracy of the computed finite eigen-
values, where the “exact" eigenvalues are computed with the Matlab code eig in extended
precision vpa. The tested pencils are all skew-symmetric/symmetric. The finite eigenvalues
of the subpencil extracted with the two structure preserving methods are computed with the
MEX code skewHamileig ([2, 3]). If the pencil associated with the finite eigenvalues
is extracted via non-structured equivalence transformations, we use the MATLAB code gz.
We also display the quantities ©min, 07, €7, €, as well as p defined in (3.9). Since Opmin
and @min are always very close to O,;,, we do not display them. We do not show d, either
since it is the same as €,. The following quantities were obtained from the numerical tests.
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e Euax, ESmax, Ehmax: the maximum relative error of the finite eigenvalues for a
given pencil with the structured unitary equivalence transformation method, the
Schur complement method, and the non-structured equivalence transformation meth-
od, respectively.

® Euin, ESmin, Ehpin: the minimum relative error of the finite eigenvalues for a given
pencil with the structured unitary equivalence transformation method, the Schur
complement method, and the non-structured equivalence transformation method,
respectively.

e Eugas, Esgar, Ehgay: the geometric mean of the relative errors of the finite eigenval-
ues for a given pencil with the structured unitary equivalence transformation method,
the Schur complement method, and the non-structured equivalence transformation
method, respectively.

e Rep,s: the maximum real part of the eigenvalues computed by the non-structured
equivalence transformation method in the case when all the exact finite eigenvalues
are purely imaginary.

EXAMPLE 1. We tested a set of skew-symmetric/symmetric pencils X7 (AN — M)X,
where

o O O

0
0
5@07 M= @ Va ,
0

o
oo o

—p

and X is a randomly generated nonsingular matrix. The finite eigenvalues of such a pencil
are always +i+/6 and +i/6 /B independent of X and «. If 8 is small in modulus, then N
is close to a singular matrix, and when « is small in modulus, then it can be expected that
the eigenvalue infinity part will affect the finite eigenvalues. Note that when 3 = 1, then the
pencil has two pairs of double eigenvalues.

We have performed the computations 10 times for each pair of («, 3) where each time
a different random matrix X is generated. Tables 7.1-7.4 display the results for each pair
of («, ). The three methods determine the finite eigenvalues with about the same order
of relative errors. The non-structured method produces slightly less accurate eigenvalues.
Because it forms non-structured subpencils, the computed eigenvalues are no longer purely
imaginary. The real parts of the computed finite eigenvalues grow as || is getting smaller. For
all three methods, in this example, the errors seem insensitive to the value of «, while they
increase when | 3| decreases. However, « does affect the deflating subspace associated with
the finite eigenvalues.

EXAMPLE 2. We tested a set of skew-symmetric/symmetric pencils X7 (AN — M)X,
where

0 01 0 20 8 0] 10
o 00 -1 0 —2 0 3
N=121 00 0]®% M=|3 o o o|® \/aa’
0 10 0 0 8 0 0

and X is a randomly generated matrix. The finite eigenvalues of such a pencil are always +3
with both algebraic and geometric multiplicities of 2.

When |f] is tiny, then all the finite eigenvalues are close to zero and the eigenvalue
condition number is expected to increase. Tables 7.5-7.8 display the results for 4 different sets
of (v, B) (with 10 pencils for each set as in Example 1), illustrating that the three methods
have essentially the same accuracy. The results also show that the relative errors do increase
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TABLE 7.1

(o, B) = (1073, 1): eigenvalue errors, errors in deflating subspaces, ©, p.

1

2

3

4

5

6

7 8 9

10

Eumax
Esmax
Ehpmax
Eumin
Esmin
Ehpmin
EBugnm

Esam
Ehaar

4e-15
Te-15
le-14
2e-15
0
le-15
2e-15
0
4e-15

9e-15
4de-14
8e-14
9e-15
le-14
4e-14
9e-15
2e-14
6e-14

2e-14
le-14
2e-14
3e-15
5e-15
le-14
8e-15
8e-15
2e-14

4e-14
6e-14
le-13
le-14
9e-15
le-14
2e-14
2e-14
4e-14

6e-14
6e-14
6e-14
5e-15
4e-15
6e-15
2e-14
2e-14
2e-14

6e-14
6e-14
8e-14
6e-15
4e-15
3e-15
2e-14
2e-14
2e-14

Te-14 8e-14 2e-13
Te-14 1le-13 6e-14
6e-14 2e-13 1le-12
2e-14 1le-14 9e-16
2e-14 6e-15 4e-15
5e-15 9e-14 6e-15
3e-14 3e-14 1le-14
4e-14 3e-14 2e-14
2e-14 1le-13 8e-14

4e-13
5e-13
5e-13
3e-15
4e-15
2e-15
3e-14
4e-14
4e-14

Renat

2e-14

2e-13

2e-14

2e-13

le-14

4e-14

9e-15 2e-13 4e-13

le-13

€f

€oco

3e-11
3e-11
6e-16

3e-11
2e-11
6e-16

2e-12
2e-12
5e-16

2e-11
Te-12
Te-16

4e-11
2e-11
5e-16

4e-11
2e-11
5e-16

le-11 2e-11 1e-10
le-11 2e-11 1e-10

3e-16 3e-16 2e-16

Te-11
6e-11
5e-16

6e-01
1.4

2e-01
4.7

2e-01
4.0

2e-01
6.4

TABLE 7.2

8e-02
13

3e-01
3.5

2e-01 8e-02 8e-02

6.5 13 13

(o, B) = (1073,1072): eigenvalue errors, errors of deflating subspaces, and ©, p.

1

2

3

4

5

6

7 8 9

le-01
7.6

10

Eumax
Esmax
Ehpax
Eumin
ESmin
Ehmin
Eucgum
Esanm
Ehaar

8e-13
3e-12
8e-12
6e-14
6e-14
5e-14
2e-13
4e-13
6e-13

3e-12
3e-12
Te-11
4e-16
7e-16
4e-14
3e-14
5e-14
2e-12

6e-12
Te-12
3e-10
8e-14
3e-14
2e-12
Te-13
4e-13
2e-11

Te-12
9e-12
8e-12
4e-13
2e-13
4e-13
2e-12
le-12
2e-12

9e-12
4e-11
le-10
2e-14
2e-15
4e-14
4e-13
3e-13
2e-12

2e-11
3e-11
3e-11
9e-15
9e-15
8e-15
4e-13
5e-13
5e-13

8e-11 8e-11 3e-10
4e-11 4e-11 6e-10

le-10 4e-11 1e-09

9e-13 3e-15 5e-16

le-12 6e-15 7e-16

9e-13 9e-15 2e-15
9e-12 bHe-13 4e-13
8e-12 b5e-13 Te-13

le-11 6Ge-13 2e-12

2e-09
2e-09
3e-09
le-11
le-11
le-11
2e-10
le-10
2e-10

Rehat

2e-06

3e-06

7e-05

2e-06

2e-05

7e-06

le-05 1e-05 3e-04

6e-04

€f
dy

€oco

1e-08
1le-08
2e-12

8e-08
8e-08
2e-11

5e-08
5e-08
6e-12

8e-10
8e-10
6e-12

2e-07
2e-07
4e-11

le-07
le-07
le-11

1le-07 1e-07 4e-07
1e-07 1e-07 4e-07

7e-12 6e-12 1e-10

6e-06
6e-06
3e-11

(C]
p

2e-01
4.2

3e-01
3.1

2e-01
6.1

le-01
9.8

le-01
8.6

le-01
7.2

5e-02 1le-01 8e-02

19 8.3 12

6e-03
165

19

when || is getting tiny, and that again, the choice of « does not affect the accuracy very much.
For this example, no method yields finite eigenvalues that are exactly real.

EXAMPLE 3. For skew-symmetric/symmetric pencils of the form X7 (AN — M) X, where

o O O

@0,

SO = O

OO N

0
-2

0
B

oo o™

cowo
S2)
B

and X being a randomly generated nonsingular matrix, the finite eigenvalues of such a pencil
are always +/ with both algebraic and geometric multiplicities of 2. The numerical results
are similar to those of Example 2 and are not presented here.
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TABLE 7.3
(o, 8) = (1077, 1): eigenvalue errors, errors of deflating subspaces, and ©, p.

1 2 3 4 5 6 7 8 9 10
Eupax | 3e-15 4e-15 4e-15 6Ge-15 7e-15 9e-15 9e-15 9e-15 4e-14 6e-14
ESmax | 1le-15 4e-15 8e-15 be-15 4e-15 8e-15 4e-15 2e-14 2e-14 4e-14
Ehpax | 3e-14 8e-15 3e-14 4e-15 5e-15 2e-14 3e-14 3e-14 4e-14 3e-14
Eupin | 7e-16 9e-16 2e-16 7e-16 0 2e-15 5e-15 4e-15 5e-15 2e-15
ESmin | 2e-16 4e-16 1le-15 9e-16 1le-15 1le-15 2e-15 3e-15 2e-14 3e-15
Ehpin | 4e-16 4e-15 3e-15 2e-15 4e-15 4e-15 4e-15 1le-15 8e-15 1le-14
Eugar | 2e-15 2e-15 9e-16  2e-15 0 5e-15 6e-15 6e-15 1le-14 1le-14
Esgan | be-16  le-15 3e-15 2e-15 2e-15 3e-15 3e-15 8e-15 2e-14 1le-14
Ehgas | 3e-15 5e-15 1le-14 3e-15 4e-15 9e-15 1le-14 7e-15 2e-14 2e-14
Renat | 3e-14 2e-14 3e-14 3e-15 1le-14 1le-14 3e-14 7Te-15 3e-14 3e-14
€f 5e-08 4e-08 1e-07 2e-07 2e-08 2e-07 4e-07 1e-07 1e-06 4e-07
Oy 4e-08 3e-08 1e-07 9e-08 2e-08 1e-07 3e-07 1e-07 6e-07 3e-07
€oo 2e-16 5e-16 3e-16 3e-16 3e-16 T7e-16 3e-16 2e-16 2e-15 5e-16
(C) 2e-01 7e-01 3e-01 2e-01 4e-01 3e-01 2e-01 7e-02 2e-01 2e-01

p 4.6 1.2 3.7 5.8 2.4 3.8 4.9 14 4.6 5.0

TABLE 7.4
(a, B) = (1077,1073): eigenvalue errors, errors of deflating subspaces, and ©, p.

1 2 3 4 5 6 7 8 9 10
Eupmax | 1le-12 2e-12 9e-12 3e-11 3e-11 3e-11 52e-11 9e-11 1le-10 2e-10
Esmax | 2e-11 2e-12 Te-12 5e-12 2e-11 3e-11 T7e-11 1e-10 8e-11 1e-10
Ehpax | 26-11 3e-11 3e-11 Te-11 3e-10 1le-10 6e-11 1e-10 9e-11 1e-10
Eupin | 5e-16 1e-15 2e-15 1le-13 4e-15 2e-15 9e-14 1le-14 3e-13 1le-15
ESmin | 2e-15 1le-14 9e-16 2e-13 5e-15 3e-15 4e-14 4e-15 2e-13 6e-15
Ehpin | 6e-15 9e-14 Te-15 3e-13 3e-14 1le-14 T7e-14 5e-15 7e-13 le-14
Eugns | 3e-14  4e-14 1e-13 2e-12 4e-13 3e-13  2e-12  le-12 5e-12 4e-13
Esgar | 2e-13  1le-13 8e-14 9e-13 3e-13 3e-13  2e-12  T7e-13 4e-12 8e-13
Ehgyas | 3e-13  2e-12 8e-13 5e-12 2e-12 1le-12 2e-12  8e-13 8e-12 1le-12
Repqt | 4e-06 6e-06 2e-05 1e-05 6e-05 2e-05 4e-06 2e-05 2e-05 2e-05
€f 2e-04 4e-04 1e-03 4e-04 2e-03 5e-04 2e-03 2e-04 1e-04 2e-04
Oy 2e-04 4e-04 1e-03 4e-04 2e-03 5e-04 2e-03 2e-04 1le-04 2e-04
€oo | 6€-12 2e-12 2e-11 9e-12 3e-11 2e-11 1le-11 3e-11 4e-11 3e-11
(S 3e-01 2e-01 5e-01 5e-02 1e-01 4e-01 T7e-02 5e-02 2e-01 T7e-02

p 3.8 5.6 1.7 21 10 2.5 14 20 4.0 14

EXAMPLE 4. For skew-symmetric/symmetric pencils of the form X* (AN — M) X, where

100

B 1

0
B0, M= O’g@ Ja ,
0 0

Do oo

10 0
0 1 0
0 0 B
0 0 1
and X a randomly generated nonsingular matrix, there exist two 2 x 2 Jordan blocks, one
for the eigenvalue 5 and another for —/. In this case it is expected that the computed finite
eigenvalues have big errors due to the Jordan blocks, and when | 3| becomes smaller, then the
errors will get larger. Our numerical results presented in Tables 7.9 and 7.10 confirm these
expectations for two sets of (v, ).

All the numerical tests confirm our expectations obtained from the error analysis and
illustrate that, surprisingly, the Schur complement approach and the approach via orthogonal
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TABLE 7.5
(o, B) = (1073, 1): eigenvalue errors, errors of deflating subspaces, and ©, p.

1 2 3 4 5 6 7 8 9 10

Eumax | 2e-15 2e-14 2e-14 2e-14 2e-14 2e-14 3e-14 5e-14 6e-14 T7e-12
Esmax | 2e-15 3e-14 3e-14 9e-16 2e-14 2e-14 4e-14 9e-14 Te-14 3e-12
Ehpoax | 2e-14 6e-14 6e-14 5e-14 2e-13 2e-14 9e-14 6e-14 2e-13  6e-12
Eumin | 2e-15 2e-14 2e-14 2e-14 2e-14 2e-15 9e-15 2e-14 2e-14 2e-14
Esmin | 9e-16 3e-14 6e-15 9e-16 2e-14 7Te-15 2e-14 2e-14 2e-15 5e-14
Ehpin | 2e-15 8e-15 2e-14 5e-16 1le-14 5e-16 T7e-15 6e-14 1le-14 0

Eugar | 2e-15 2e-14 2e-14 2e-14 2e-14 6e-15 2e-14 3e-14 3e-14  4e-13
Esgar | 2e-15 3e-14 2e-14 9e-16 2e-14 9e-15 3e-14 4e-14 4le-14 4e-13
Ehgas | 5e-15 3e-14 3e-14 8e-15 4e-14 5e-15 3e-14 6Ge-14 4e-14 0

€f 8e-12 9e-11 9e-12 2e-11 4e-11 4e-12 5e-12 3e-11  9e-12  2e-10
Of 4e-12 4e-11 9e-12 le-11 2e-11 4e-12 4e-12 2e-11 6Ge-12 2e-10
€x | 4e-16 b5e-16 6e-16 3e-16 4e-16 4e-16 2e-16 5e-16 3e-16 5e-16

S} 3e-01 3e-01 5e-01 2e-01 3e-01 3e-01 3e-01 5e-01 2e-01 3e-02
p 4 4 3 8 5 5 4 3 6 40

TABLE 7.6
(o, B) = (1073,1072): eigenvalue errors, errors of deflating subspaces, and ©, p.

1 2 3 4 5 6 7 8 9 10

Eumax | 9¢-05 2e-04 2e-04 3e-04 4e-04 4e-04 5e-04 7e-04 3e-03 2e-02
Esmax | 5e-05 5e-04 5e-05 2e-04 3e-04 3e-04 6e-04 2e-04 2e-03 6e-03
Ehpax | 26-04 3e-04 2e-04 6e-03 4e-04 2e-03 2e-03 2e-03 4e-03 3e-02
Eupmin | 9e-05 2e-04 5e-06 Te-05 4e-04 5e-05 5e-04 5e-05 2e-05 2e-04
Esmin | De-05 4e-05 5e-05 2e-04 3e-04 5e-05 6e-04 2e-04 5e-05 2e-04
Ehpin | 2e-04  3e-04 9e-06 2e-04 4e-04 2e-04 3e-05 4e-05 7e-04 9e-04
Eugar | 9e-05 2e-04 3e-05 2e-04 4e-04 2e-04 5e-04 2e-04 2e-04 2e-03
Esgar | be-05 2e-04 5e-05 2e-04 3e-04 2e-04 6e-04 2e-04 3e-04 8e-04
Ehgas | 2e-04 3e-04  5e-05 9e-04 4e-04 4e-04 3e-04 2e-04 2e-03 5e-03

€f 2e-12 3e-11 b5e-12 4e-11 2e-11 2e-11 5e-11 6Ge-12 2e-11 2e-10
Oy 2e-13 2e-11 4e-12 2e-11 2e-11 2e-11 4e-11 5e-12 1le-11 T7e-11
€ | 3e-16 4e-16 3e-16 4e-16 4e-16 3e-16 3e-16 5Se-16 4e-16 Te-16

(C] 5e-01 5e-01 3e-01 4e-01 2e-01 3e-01 7e-02 3e-01 2e-01 2e-02
p 3 3 5 4 9 5 20 4 6 80

TABLE 7.7
(o, B) = (1077, 1): eigenvalue errors, errors of deflating subspaces, and ©, p.

1 2 3 4 5 6 7 8 9 10

Eumax | 9e-15 1le-14 1le-14 2e-14 3e-14 3e-14 b5e-14 b5e-14 2e-13 4e-13
ESmax | 2e-14 9e-15 3e-14 2e-14 3e-14 5e-14 3e-14 2e-13 2e-14 4e-13
Ehyax | 2e-14  2e-14 3e-13 3e-13 2e-13 1le-14 6e-14 2e-13 3e-13 4e-13
Eumin | 6e-15 1le-14 T7e-15 2e-14 3e-14 3e-14 4e-15 be-14 4e-15 8e-15
ESmin | 2e-15 3e-15 6e-15 2e-14 3e-14 3e-15 2e-15 4e-15 2e-14 Te-15
Ehpin | 9e-15 T7e-15 3e-14 6e-15 3e-14 T7e-15 3e-15 2e-13 2e-15 7e-15
Eugyr | 7e-15 le-14 9e-15 2e-14 3e-14 3e-14 2e-14 5e-14 3e-14 6Ge-14
Esgar | be-15 be-15 2e-14 2e-14 3e-14 2e-14 8e-15 3e-14 2e-14 5e-14
Ehgns | 2e-14  2e-14 6e-14 5He-14 Te-14 8e-15 2e-14 2e-13 3e-14 5e-14

€f 9e-08 5e-07 9e-08 2e-07 9e-07 2e-07 5e-07 2e-08 2e-07 T7e-07
05 | 7e-08 2e-07 9e-08 9e-08 3e-07 1e-07 5e-07 8e-09 5e-08 7e-07
€co | De-16 3e-16 4e-16 Te-16 4e-16 3e-16 3e-16 4e-16 3e-16 6e-16

(C] 3e-01 5e-01 2e-01 7e-01 3e-01 7e-02 3e-01 7e-02 5e-01 2e-01
p Se 3 9 2 4 20 5 20 2 8
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TABLE 7.8
(a, B) = (1077,1073): eigenvalue errors, errors of deflating subspaces, and ©, p.

1 2 3 4 5 6 7 8 9 10

Eupmax | 3e-05 3e-05 5e-05 2e-04 3e-04 4e-04 7e-04 3e-03 1e-01 2e-01
ESmax | 8e-06 3e-05 6e-05 2e-04 6e-04 4e-04 8e-04 2e-03 3e-02 3e-01
Ehpax | 5e-04  4e-05 4e-03 8e-04 2e-03 4e-04 3e-03 2e-03 8e-02 2e+00
Eupin | 2e-06 3e-05 5e-05 2e-04 1le-04 4e-04 7e-04 3e-05 5e-05 9e-05
Esmin | 8e-06 3e-05 6e-05 2e-04 7e-05 4e-04 8e-04 6e-05 4e-05 2e-03
Ehpin | 2e-05 4e-05 2e-04 2e-04 3e-04 4e-04 7e-04 4e-04 9e-05 2e-04
Eugas | 6e-06 3e-05 5e-05 2e-04 2e-04 4e-04 Te-04 3e-04 3e-03 4e-03
Esgar | 8e-06 3e-05 6e-05 2e-04 2e-04 4e-04 8e-04 3e-04 2e-03 2e-02
Ehgar | 9e-05 4e-05 8e-04 4e-04 7e-04 4e-04 2e-03 9e-04 3e-03 2e-02

€r | 4e-08 2e-08 5e-07 5e-07 2e-07 7e-07 2e-07 6e-07 9e-07 2e-06
6r | 3e-08 3e-08 4e-07 5e-07 3e-07 8e-07 2e-07 3e-07 4e-07 2e-06
€x | 2e-16 le-15 3e-16 T7e-16 4e-16 T7e-16 3e-16 b5e-16 6e-16 3e-16

(C] 2e-01 5e-01 6e-01 2e-01 1e-01 8e-02 7e-02 6e-02 2e-02 5e-03
p 6 3 2 5 20 20 20 20 90 300

TABLE 7.9
(cr, B) = (1075, 1): eigenvalue errors, errors of deflating subspaces, and ©, p

1 2 3 4 5 6 7 8 9 10

Eumax | 8e-08 8e-08 9e-08 1e-07 2e-07 2e-07 2e-07 2e-07 2e-07 1e-06
ESmax | 2e-07 4e-08 7e-08 6e-08 1e-07 2e-07 5e-08 2e-07 2e-07 8e-07
Ehpax | 2e-07 8e-08 2e-07 2e-07 2e-07 4e-07 3e-07 4e-07 6e-07 2e-06
Eupin | 8e-08 8e-08 9e-08 1e-07 2e-07 2e-07 2e-07 2e-07 2e-07 1e-06
ESmin | 2e-07 4e-08 7e-08 6e-08 1e-07 2e-07 5e-08 2e-07 2e-07 8e-07
Ehyin | 8e-08 7e-08 2e-07 4e-08 2e-07 3e-07 3e-07 2e-07 5e-07 1e-06
Eugas | 8e-08 8e-08 9e-08 1e-07 2e-07 2e-07 2e-07 2e-07 2e-07 1e-06
Esgar | 2e-07 4e-08 7e-08 6e-08 1e-07 2e-07 5e-08 2e-07 2e-07 8e-07
Ehgas | 2e-07  7e-08 2e-07 7e-08 2e-07 3e-07 3e-07 3e-07 5e-07 2e-06

€f 2e-09 2e-09 3e-09 8e-10 3e-10 8e-11 T7e-09 3e-10 4e-09 3e-09
Oy 1e-09 3e-09 3e-09 9e-10 4e-10 2e-10 2e-09 3e-10 2e-09 3e-09
€x | De-16 4e-16 4e-16 2e-15 1le-15 3e-16 5e-16 6e-16 3e-16 8e-16

S} 3e-01 4e-01 4e-01 6e-01 2e-01 3e-01 2e-01 5e-01 1e-01 2e-01
p 5 3 3 2 7 5 7 2 20 10

TABLE 7.10
(o, B) = (1075,1079): eigenvalue errors, errors of deflating subspaces, and ©, p

1 2 3 4 5 6 7 8 9 10

Eumax | 5e-02 6e-02 7e-02 8e-02 1le-01 1le-01 2e-01 3e-01 4e-01 5e-01
Esmax | De-02 5e-02 8e-02 8e-02 8e-02 2e-01 7e-02 3e-01 2e-01 6e-01
Ehpax | 5e-02 6e-02 3e-01 3e-01 2e-01 9e-02 2e-01 6e-01 3e-01 1e+00
Eumin | 5e-02 6e-02 7e-02 8e-02 1e-01 1e-01 2e-01 3e-01 4e-01 5e-01
Esmin | 5e-02 5e-02 8e-02 8e-02 8e-02 2e-01 7Te-02 3e-01 2e-01 5e-01
Ehpin | 2e-02 3e-02 2e-01 9e-02 5e-02 8e-02 2e-01 3e-01 3e-02 2e-01
Eugnr | 5e-02 6e-02 7e-02 8e-02 1le-01 1e-01 2e-01 3e-01 4e-01 5e-01
Esgar | be-02 5e-02 8e-02 8e-02 8e-02 2e-01 7e-02 3e-01 2e-01 6e-01
Ehgas | 3e-02 5e-02 3e-01 2e-01 8e-02 9e-02 2e-01 5e-01 9e-02 4e-01

€f 3e-10 9e-10 1e-09 2e-09 3e-09 2e-10 1e-09 3e-09 5e-09 3e-08
o 3e-10 8e-10 4e-10 2e-09 2e-09 3e-10 6e-10 3e-09 2e-09 3e-08
€00 4e-16 Te-16 be-16 6e-16 3e-16 9e-16 2e-16 4e-16 T7e-16 5e-16

(C] 4e-01 5e-01 2e-01 2e-01 4e-01 3e-01 6e-01 1e-01 6e-02 3e-02
p 3 3 6 6 4 5 2 20 20 50
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structure preserving transformations deliver the same accuracy despite possible ill-conditioning.
The unstructured orthogonal transformation, however, shows the expected problems with
purely imaginary eigenvalues.

8. Conclusions. We have presented and analyzed several methods to deflate the infinite
eigenvalue part in a structured regular pencil of index at most one. We have shown via a careful
error analysis that it is possible to do this deflation via a structure preserving real orthogonal
or unitary transformation as well as with a Schur complement approach. Both methods yield
similar results in the perturbation and error analysis and this is confirmed in the numerical
tests. This is surprising and counterintuitive to the general wisdom that unitary transformations
typically perform better than transformations with potentially unbounded transformations.
Nonetheless, we suggest to use the unitary structure preserving transformations since they are
very much in line with the staircase algorithm. Both methods are definitely preferable to the
non-structured unitary transformation.
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