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RANDOMIZED METHODS FOR RANK-DEFICIENT LINEAR SYSTEMS∗

JOSEF SIFUENTES†, ZYDRUNAS GIMBUTAS‡, AND LESLIE GREENGARD§

Abstract. We present a simple, accurate method for solving consistent, rank-deficient linear systems, with
or without additional rank-completing constraints. Such problems arise in a variety of applications such as the
computation of the eigenvectors of a matrix corresponding to a known eigenvalue. The method is based on elementary
linear algebra combined with the observation that if the matrix is rank-k deficient, then a random rank-k perturbation
yields a nonsingular matrix with probability close to 1.
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1. Introduction. A variety of problems in numerical linear algebra involve the solution
of rank-deficient linear systems. The most straightforward example is that of finding the
eigenspace of a matrix A ∈ Cn×n corresponding to a known eigenvalue λ. One then wishes
to solve

(A− λI)x = 0.

If A itself is rank-deficient, of course, then setting λ = 0 corresponds to seeking its null space.
A second category of problems involves the solution of an inhomogeneous linear system

(1.1) Ax = b,

where A is rank-k deficient but b is in the range of A. A third category consists of problems
like (1.1), but for which a set of k additional constraints are known of the form:

(1.2) C∗x = f ,

where the matrix [
A
C∗

]
is full-rank. Here, C ∈ Cn×k, C∗ denotes its conjugate transpose, and f ∈ Ck.

In this relatively brief note, we describe a very simple framework for solving such
problems using randomized schemes. They are particularly useful when A is well-conditioned
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in a suitable (n − k)-dimensional subspace. In terms of the singular value decomposition
A = UΣV ∗, this corresponds to the case when σ1(A)/σn−k(A) is of modest size and
σn−k+1(A), . . . , σn(A) = 0, where the σi(A) are the singular values of A. We do not address
least squares problems, that is, we assume that the system (1.1), with or without (1.2), is
consistent.

DEFINITION 1.1. We will denote by N (A) the null space of A and byR(A) its range.
There is a substantial literature on this subject, which we do not seek to review here. We

refer the reader to the texts [15, 19] and the papers [2, 4, 5, 6, 7, 8, 9, 10, 14, 18, 20, 21, 30]. Of
particular relevance are [24, 25, 26, 27, 28, 32], which demonstrate the power of randomized
schemes using methods closely related to the ones described below. It is also worth noting
that, in recent years, the use of randomization together with numerical rank-based ideas has
proven to be a powerful combination for a variety of problems in linear algebra and theoretical
computer science; see, for example, [17, 22, 29].

The basic idea in the present work is remarkably simple and summarized in the following
theorem.

THEOREM 1.2. Suppose A is a rank-1 deficient matrix and that Ax = b. Suppose further
that p /∈ R(A) and q /∈ R(A∗). Then (A + pq∗)y = b is a nonsingular system, and the
solution satisfies Ay = b. Furthermore, the difference x− y is in the null space of A.

Proof. That A+ pq∗ is nonsingular is implied by the fact that p /∈ R(A) and q /∈ R(A∗).
It follows thatA(x−y) = b− (b−pq∗y) = p(q∗y). SinceA(x−y) must be inR(A) and p is
not, both sides vanish, implying that x− y is a null vector of A and q∗y must be zero. Ay = b
follows directly from A(x− y) = 0.

Another perspective, which may be more natural to some readers, is to consider the affine
space {x′ +N (A)} consisting of solutions to Az = b, where, x′ is the solution of minimal
norm. The difference of any two vectors in the affine space clearly lies in the null space of A.
If A + pq∗ is nonsingular, then y is the unique vector in the affine space orthogonal to q,
implying that x− y ∈ N (A).

This suggests the following simple procedure for computing a null vector of a rank-1
deficient matrix A:

1. Choose a random vector x ∈ Cn, and compute b = Ax.
2. Choose random vectors p, q ∈ Cn, and solve

(1.3) (A+ pq∗)y = b.

Then, the difference x− y is in the null space of A. Since p and q are random, the requirement
p /∈ R(A) and q /∈ R(A∗) occurs with probability close to 1.

It is worth comparing the proposed method with a similar scheme in [27, 28] based on
considering the system

(1.4) (A+ pq∗)y = p,

where p is a random vector in Cn. By the same analysis, Ay = p− pq∗y = p(1− q∗y), and,
since Ay is in the range of A and p is not, both Ay = 0 and q∗y = 1. This scheme can be
viewed as dual to (1.3) since it enforces a non-homogeneous constraint on the solution y. By
construction, equation (1.4) is unable to handle consistent right-hand sides since p can not be
in the range of A in order for A+ pq∗ to be invertible.

Our method extends the existing scheme (1.4) to handle an arbitrary consistent right-hand
side in the range of A. In addition, the previous solutions can be reused more efficiently in
iterative refinement settings. If the solution y must satisfy an additional non-homogeneous
constraint, then equations (1.3) and (1.4) can be combined by solving (A+ pq∗)y = b+ pw,
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where b = Ax and w is an arbitrary constant, yielding A(x − y) = 0 and Ay = b subject
to q∗y = w.

The remainder of this note is intended to make the proposed procedure rigorous. While
related algorithms have been described in the literature (particularly [24, 27, 28]), the scheme
presented here provides a simple framework for solving a variety of problems such as (1.1),
(1.2) in addition to the null space problem. It is easy to implement, permits iterative refinement
in standard precision arithmetic, and is compatible with iterative solution techniques.

2. Mathematical preliminaries. Much of our analysis depends on estimating the condi-
tion number of a rank-k deficient complex n× n matrix A to which is added a rank-k random
perturbation. For P,Q ∈ Cn×k, we let

P = PR + PN∗ , R(PR) ⊂ R(A), R(PN∗) ⊂ N (A∗),

Q = QR∗ +QN , R(QR∗) ⊂ R(A∗), R(QN ) ⊂ N (A),
(2.1)

and

ρ := ‖PR‖ = σmax(PR), η := σmin(PN∗),

ξ := ‖QR∗‖ = σmax(QR∗), ν := σmin(QN ),
(2.2)

where, for all norms, ‖ · ‖ = ‖ · ‖2.
THEOREM 2.1. Let b = Ax and let y be an approximate solution to

(A+ PQ∗)y = b

in that it satisfies

(2.3) ‖b− (A+ PQ∗)y‖ ≤ δ.

Then

(2.4) ‖A(x− y)‖ ≤ δ
(

1 +
‖P‖

σmin(PN∗)

)
.

Proof. It follows from (2.3) and the triangle inequality that

(2.5) ‖A(x− y)‖ ≤ δ + ‖P‖‖Q∗y‖.

Moreover,

b−Ay − P (Q∗y) = δf

for some vector f ∈ Cn with ‖f‖ ≤ 1. Now let U be a matrix whose columns form an
orthonormal basis for N (A∗). Multiplying on the left by U∗, we have

−(U∗P ) (Q∗y) = δ(U∗f), ‖Q∗y‖ ≤ δ

σmin(PN∗)
,

where the last inequality follows from the fact that

δ ≥ inf
‖z‖=1,z∈Ck

‖U∗Pz‖‖Q∗y‖ = inf
‖z‖=1,z∈Ck

‖UU∗Pz‖‖Q∗y‖ = σmin(PN∗)‖Q∗y‖,

which yields the desired result when combined with (2.5).
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The obtained bound (2.4) indicates that x − y is an approximate null vector of the
matrix A, therefore, y is also an approximate solution to Ay = b for a given consistent
right-hand side b ∈ R(A).

THEOREM 2.2. Let A ∈ Cn×n have a k-dimensional null space, and let P, Q ∈ Cn×k.
Then

‖(A+ PQ∗)−1‖ ≤ 1

σn−k(A)

√
1 +

(
ρ

η

)2

+

(
ξ

ν

)2

+

(
σn−k(A) + ρξ

ην

)2

,

where ρ, η, ξ, ν are defined in (2.2).
Proof. Let A = UΣV ∗ be the singular value decomposition of A. Let C and D be

such that P = UC and Q = V D. Let CT = [CT
R CT

N∗ ], where CR ∈ C(n−k)×k and
CN∗ ∈ Ck×k. The entries in the columns of CR are coefficients of the corresponding columns
of P in an orthonormal basis of the range of A. Thus ‖CR‖ = ρ, and similarly, ‖C−1

N∗‖ = 1/η.
Let DT = [DT

R∗ DT
N ], where DR∗ ∈ C(n−k)×k and DN ∈ Ck×k. By similar reasoning, we

have that ‖DR∗‖ = ξ and ‖D−1
N ‖ = 1/ν. Then

‖(A+ PQ∗)−1‖ = ‖(Σ + CD∗)−1‖,

and

(Σ + CD∗)−1 =

[
Σ′ + CRD

∗
R∗ CRD

∗
N

CN∗D∗R∗ CN∗D∗N

]−1

=

[
Σ′−1 −Σ′−1CR(CN∗)−1

−(D∗N )−1D∗R∗ Σ′−1 (D∗N )−1
(
Ik +D∗R∗ Σ′−1CR

)
(CN∗)−1

]
,(2.6)

where Σ′ ∈ C(n−k)×(n−k) is the upper (n− k)× (n− k) submatrix of Σ and Ik ∈ Ck×k is
the identity matrix. This gives

‖(Σ + CD∗)−1‖

≤

√
1

σ2
n−k(A)

+

(
ρ

σn−k(A) η

)2

+

(
ξ

σn−k(A) ν

)2

+

(
1 + ρξ/σn−k(A)

ην

)2

=
1

σn−k(A)

√
1 +

(
ρ

η

)2

+

(
ξ

ν

)2

+

(
σn−k(A) + ρξ

ην

)2

.

It follows from this result that one can bound the conditioning of the perturbed matrix.
THEOREM 2.3. Let A ∈ Cn×n have a k-dimensional null space, and let P, Q ∈ Cn×k.

Then

κ(A+ PQ∗) ≤ σ1(A) + ‖P‖ ‖Q‖
σn−k(A)

√
1 +

(
ρ

η

)2

+

(
ξ

ν

)2

+

(
σn−k(A) + ρξ

ην

)2

,

where ρ, η, ξ, ν are defined in (2.2).
The estimates in Theorems 2.2 and 2.3 improve the upper bounds for the perturbed

matrix given in [28]. The preceding theorems also indicate that, in the absence of additional
information, it is reasonable to pick random vectors of approximately unit norm and multiply
the perturbation term PQ∗ by the norm of A.

REMARK 2.4. The above estimates are very pessimistic. For consistent right-hand sides,
the inversion process involves only the first column of (2.6), therefore the solution accuracy
mostly depends on the spectral properties of Q.
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Since the condition number of the perturbed system largely depends on the projections
of P andQ on generally unknown null spacesN (A∗) andN (A), respectively, the algorithm is
relatively insensitive to the choice of random variables used to generate P andQ. In the context
of sparse matrices, a fast algorithm is required to apply the perturbation term PQ∗; the random
matrices can be constructed and applied using, for example, the fast Johnson-Lindenstrauss
transform (FJLT) [1] or the subsampled randomized Fourier transform (SRFT) [29].

In this note, we use standard random Gaussian matrices whose elements are independent
standard normal random variables. The behavior of the smallest singular values of such
matrices is closely related to the spectral properties of Wishart-type matrices [11, 12, 17].
Since the distribution of a standard Gaussian matrix is invariant under projections and rotations,
the parameter λmin = ν2 (or λmin = η2) is distributed as the smallest eigenvalue of a k × k
Wishart matrix. It is shown in [11] that, for the real-valued k × k Wishart matrices, the
mathematical expectation of log(kλmin) is finite, and, as k →∞,

E[log(kλmin)]→ −1.68788 . . .

For complex-valued k × k Wishart matrices, a more precise statement can be made:

E[log(kλmin)] = log 2− γ ≈ 0.11593,

where γ ≈ 0.5772 is Euler’s constant. The above estimates show that, on average, the condition
number of the perturbed matrix grows only moderately as the rank-deficiency increases. In
order to estimate the probability that a perturbed matrix with a very large condition number
may appear, we again refer the reader to [11, 12] for a more precise characterization of the
tails of eigenvalue distributions for Wishart matrices.

3. Solving consistent, rank-deficient linear systems. Let us first consider the solution
of the consistent, rank-k deficient linear system Ax = b in the special case where N (A)
and N (A∗) are spanned by the columns of known n × k matrices N and V , respectively.
Suppose now that we solve the linear system

(3.1) (A+ V N∗)x = b .

It is then clear that V ∗Ax = V ∗b = 0, so that (V ∗V )(N∗x) = 0, from which we get
that N∗x = 0. Thus, x is the particular solution to Ax = b that is orthogonal to the null
space of A implying that x is the minimum-norm solution of Ax = b. From Theorem 2.3, the
condition number of A+ V N∗ is given by

(3.2) κ(A+ V N∗) ≤ σ1(A) + ‖V ‖ ‖N‖
σn−k(A)

√
1 +

(
σn−k(A)

σmin(V )σmin(N)

)2

.

The estimate (3.2) shows that the condition number of the perturbed system is very nearly
optimal, that is, approximately that of the original problem restricted to the range of A,
namely σ1/σn−k.

Suppose now that we have no prior information about the null spaces of A and/or A∗. We
may then substitute random matrices P and Q for V and/or N and follow the same procedure.
With probability close to 1, (A+ PQ∗) will be invertible, and we will obtain the particular
solution to Ax = b that is orthogonal to the columns of Q. This simply requires that the
projections of P onto N (A∗) and of Q onto N (A), denoted by PN∗ and QN , respectively,
must be full-rank; see (2.1). This implies that only a basis for N (A) is needed to compute the
minimum-norm solution: with probability close to 1, it is given by the solution to

(A+ PN∗)x = b.
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REMARK 3.1. This procedure allows us to obtain the minimum-norm solution to the
underdetermined linear system without recourse to the SVD or other dense matrix methods.
Any method for solving (3.1) can be used. If the perturbed system is reasonably well-
conditioned and A can be applied efficiently, Krylov space methods such as GMRES can be
extremely effective.

REMARK 3.2. It is worth noting that under certain conditions, GMRES can be used
directly on a singular or nearly singular system. This issue is carefully analyzed in [3].

3.1. Consistent, rectangular linear systems. We next consider the case where we wish
to solve the system (1.1) together with (1.2). Note that the system

(3.3)
[
A
C∗

]
x =

[
b
f

]
is full-rank if and only if any vector in N (A) has a nontrivial projection onto the columns
of C. There is no need, however, to solve a rectangular system of equations (3.3). One only
needs to solve the n× n linear system

(A+ V C∗)x = b+ V f .

IfR(V ) = N (A∗), then from Theorem 2.3, the condition number of A+ V C∗ is given by

κ(A+ V C∗) ≤ σ1(A) + ‖V ‖ ‖C‖
σn−k(A)

√
1 +

(
ξ

σmin(CN )

)2

+

(
σn−k(A)

σmin(V )σmin(CN )

)2

,

where ξ is the norm of CR∗ .
In some applications, the data may be known to be consistent (b is in the range of A),

but V may not be known. Then, one can proceed as above by solving

(A+ PC∗)x = b+ Pf ,

where P is a random n× k matrix. From Theorem 2.3, the condition number of A+ PC∗ is
given by

κ(A+ PC∗) ≤ σ1(A) + ‖P‖ ‖C‖
σn−k(A)

×√
1 +

(
ρ

σmin(PN∗)

)2

+

(
ξ

σmin(CN )

)2

+

(
σn−k(A) + ρξ

σmin(PN∗)σmin(CN )

)2

,

where ρ and ξ are the norms of PR and CR∗ , respectively.

4. Computing the null space. Let us return now to the question of finding a basis for
the null space of a rank-k deficient matrix A ∈ Cn×n. As in the introduction, we begin by
describing the procedure:

1. Choose k random vectors {xi, i = 1, . . . , k} ∈ Cn, and compute bi = Axi.
2. Choose random matrices P,Q ∈ Cn×k, and solve

(4.1) (A+ PQ∗)yi = bi.

Then, A(xi − yi) = bi − (bi − PQ∗yi) = P (Q∗yi). Since A(xi − yi) ∈ R(A)
and assuming P (Q∗yi) /∈ R(A), it follows that both sides must equal zero and that each
vector zi = xi − yi is a null vector. Since the construction is random, the probability that
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the {zi} are linearly independent is 1. The result P (Q∗yi) /∈ R(A) follows from the fact
that P is random and that the projection of each column of P onto N (A∗) will be linearly
independent with probability close to 1. Theorem 2.3 tells us how to estimate the condition
number of (4.1). Finally, the accuracy of the null vectors {zi} can be further improved by an
iterative refinement z̃i = zi − ỹi, where the correction vectors ỹi solve (4.1)

(A+ PQ∗)ỹi = b̃i,

with the updated right-hand sides b̃i = Azi.
This version of iterative refinement works well in standard precision arithmetic. It is

clear from (2.3) and (2.4) that the accuracy of computing the null space is controlled by the
error parameter δ, which in turn scales proportionally to the norm of the right-hand side b. In
practice, just one refinement step is necessary to fully tighten the null vectors.

4.1. Stabilization. Since the condition number of the randomly perturbed matrix is
controlled only in a probabilistic sense, if high precision is required, then one can use a variant
of iterative refinement to improve the solution. That is, one can first compute q1, . . . , qk as
approximate null vectors of A and p1, . . . , pk as approximate null vectors of A∗.

With these at hand, one can repeat the calculation with P and Q whose columns are
{p1, . . . , pk} and {q1, . . . , qk}, respectively. The parameters ρ/η and ξ/ν in Theorem 2.3 will
be much less than 1, and the condition number of a second iteration will be approximately

κ(A+ PQ∗) ≈ σ1(A) + ‖P‖ ‖Q‖
σn−k(A)

√
1 +

(
σn−k(A)

σmin(PN∗)σmin(QN )

)2

.

4.2. Determining the dimension of the null space. When the dimension of the null
space is unknown, the algorithm above can also be used as a rank-revealing scheme; see also
[23]. For this, suppose that the actual rank-deficiency is kA and that we carry out the above
procedure with k > kA. The argument that P (Q∗yi) /∈ R(A) will fail since the projection of
each of the columns of P ontoN (A∗) must be linearly dependent. As a result, xi−yi will fail
to be a null vector (which will be obvious from the explicit computation of A(xi − yi)). The
estimated rank k can then be systematically reduced to determine kA. If kA is large, bisection
can be used to accelerate this estimate.

5. Numerical experiments. In this section, we describe the results of several numerical
tests of the algorithms discussed above. All computations were performed in IEEE double-
precision arithmetic using MATLAB version R2012a 1.

We use a pseudorandom number generator (MATLAB’s randn) to create n× 1 vectors
φ1, φ2, . . . , φn−k and ψ1, ψ2, . . . , ψn−k with entries that are independent and identically
distributed Gaussian random variables of zero mean and unit variance. We apply the Gram-
Schmidt process with reorthogonalization to φ1, φ2, . . . , φn−k and ψ1, ψ2, . . . , ψn−k to obtain
orthonormal vectors u1, u2, . . . , un−k and v1, v2, . . . , vn−k, respectively. We define A to be
the n× n matrix

A =

n−k∑
i=1

uiσiv
∗
i ,

where σi = 1/i. The rank-deficiency of A is clearly equal to k.

1Any mention of commercial products or reference to commercial organizations is for information only; it does
not imply recommendation or endorsement by NIST.
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In Table 5.1, we compare the regular and stabilized versions of the new algorithm for
finding the null space of a rank-deficient matrix A. The first and second columns contain
the parameters n and k determining the size and the rank-deficiency of the problem, respec-
tively. The third column contains the modified condition number σ1/σn−k of the original
matrixA ignoring the zero singular values for a more meaningful comparison between columns.
The fourth column contains the true condition number σ1/σn of a random rank-k perturba-
tion A+ PQ∗. Finally, the fifth and sixth columns contain the relative accuracy ‖AN‖/‖N‖
in determining the null space N for the randomized rank-k correction scheme before and after
iterative refinement, respectively.

In Table 5.2, we compare the accuracy of the regular and stabilized versions of the
randomized rank-k correction scheme for solving a rank-deficient linear system Ax = b
with a consistent right-hand side b. The first and second columns contain the parameters n
and k determining the size and the rank-deficiency of the problem, respectively. The third
and fourth columns contain the modified condition number σ1/σn−k of the original matrix
A and the condition number σ1/σn of a random rank-k perturbation A+ PQ∗, respectively.
The fifth column contains the condition number σ1/σn of the rank-k perturbation A+ V N∗,
where V and N are the approximate null vectors spanning the left and right null spaces,
respectively. Finally, the fifth and seventh columns contain the relative accuracy ‖Ax−b‖/‖b‖
in determining the solution vector x for the regular and stabilized schemes, respectively.

It is clear from Table 5.2 that the condition number can be quite large for the non-stabilized
version of the algorithm when the rank-deficiency is high. This is due to the difficulty of finding
high-dimensional random matrices P and Q that have large projections onto the corresponding
null spaces N (A∗) and N (A). In such cases, the algorithm will strongly benefit from the
stabilization procedure.

6. Further examples. Our interest in the development of randomized methods was
driven largely by issues in the regularization of integral equation methods in potential theory.
For illustration, consider the Neumann problem for the Laplace equation in the interior of a
simply-connected, smooth domain Ω ⊂ R2 with boundary Γ.

∆u = 0 in Ω,
∂u

∂n
= f on Γ .

Classical potential theory [16] suggests seeking the solution as a single layer potential

u(x) =
1

2π

∫
Γ

log ‖x− y‖σ(y) dsy .

Using standard jump relations, this results in the integral equation

(6.1) σ(x) +
1

π

∫
Γ

∂

∂nx
log ‖x− y‖σ(y) dsy = 2f(x) ,

which we write as

(I +K)σ = 2f .

It is well-known that (6.1) is solvable if and only if the right-hand side satisfies the compatibility
condition

∫
Γ
f(y)dsy = 0. Using the L2 inner product (for real-valued functions)

〈f, g〉 =

∫
Γ

f(y)g(y)dsy,
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TABLE 5.1
Relative errors in determining the null vectors for the randomized rank-k correction scheme before and after

iterative refinement.

n k κ(A) κ(A+ PQ∗) E2 E2(ref)

160 1 1.6 10+02 2.0 10+03 1.4 10−16 8.1 10−17

160 3 1.6 10+02 4.3 10+04 2.2 10−15 2.7 10−16

160 6 1.5 10+02 1.1 10+04 2.7 10−14 6.4 10−16

320 1 3.2 10+02 5.3 10+03 9.1 10−17 3.6 10−17

320 3 3.2 10+02 9.3 10+03 1.9 10−16 6.0 10−17

320 6 3.1 10+02 3.4 10+04 7.5 10−16 2.5 10−16

640 1 6.4 10+02 3.9 10+04 1.9 10−16 2.1 10−16

640 3 6.4 10+02 1.3 10+06 3.9 10−15 5.8 10−16

640 6 6.3 10+02 3.9 10+06 5.9 10−13 5.8 10−16

1280 1 1.3 10+03 6.0 10+06 5.5 10−16 3.2 10−16

1280 3 1.3 10+03 4.0 10+04 1.0 10−14 6.9 10−17

1280 6 1.3 10+03 6.5 10+05 3.7 10−15 8.1 10−16

160 75 8.5 10+01 2.4 10+05 4.2 10−13 2.1 10−14

160 80 8.0 10+01 3.2 10+04 2.2 10−13 2.5 10−15

320 155 1.6 10+02 1.4 10+06 3.2 10−12 7.5 10−15

320 160 1.6 10+02 1.6 10+06 1.5 10−11 1.6 10−14

640 315 3.2 10+02 1.0 10+07 1.1 10−11 6.8 10−15

640 320 3.2 10+02 4.3 10+06 1.6 10−11 1.9 10−14

1280 635 6.4 10+02 3.5 10+08 2.7 10−10 4.3 10−14

1280 640 6.4 10+02 1.9 10+08 1.9 10−11 5.7 10−14

we may write the compatibility condition as

〈1, f〉 = 0 ,

where 1 denotes the function that is identically 1 on Γ. The function 1 is also in the null space
of I+K∗, the adjoint of the integral operator in (6.1), which is clearly necessary for solvability.
Following the procedure in Section 3, we regularize the integral equation by solving

(6.2) σ(x) +
1

π

∫
Γ

∂

∂nx
log ‖x− y‖σ(y) dsy +

∫
Γ

[r(x)1(y)]σ(y) dy = 2f(x) ,

or

(I +K)σ + r(x)〈1, σ〉 = 2f ,

where r(x) is a random function defined on Γ. Taking the inner product of (6.2) with the
function 1 yields

〈1, r〉 〈1, σ〉 = 0 .

This is a well-known fact for the Neumann problem, and the obvious choice is simply r(x) = 1,
so that (6.2) becomes

σ(x) +
1

π

∫
Γ

[
∂

∂nx
log ‖x− y‖+ 1

]
σ(y) dsy = 2f(x) .
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TABLE 5.2
Relative errors for the regular and stabilized versions of the randomized rank-k correction scheme in determining

the solution of the rank-k deficient linear system Ax = b with the consistent right-hand side b ∈ R(A).

n k κ(A) κ(A+ PQ∗) E2 κ(A+ UV ∗) E2(stab)

160 1 1.6 10+02 9.1 10+02 1.3 10−15 1.6 10+02 1.1 10−15

160 3 1.6 10+02 3.1 10+03 3.9 10−15 1.6 10+02 1.9 10−15

160 6 1.5 10+02 1.3 10+06 1.4 10−13 1.5 10+02 1.7 10−15

320 1 3.2 10+02 4.9 10+05 7.3 10−15 3.2 10+02 1.3 10−15

320 3 3.2 10+02 4.1 10+05 6.6 10−14 3.2 10+02 2.9 10−15

320 6 3.1 10+02 3.3 10+04 1.1 10−14 3.1 10+02 2.7 10−15

640 1 6.4 10+02 1.2 10+05 1.7 10−14 6.4 10+02 2.1 10−15

640 3 6.4 10+02 8.8 10+04 9.1 10−15 6.4 10+02 3.1 10−15

640 6 6.3 10+02 1.6 10+05 9.9 10−15 6.3 10+02 2.8 10−15

1280 1 1.3 10+03 8.3 10+04 4.5 10−15 1.3 10+03 3.5 10−15

1280 3 1.3 10+03 5.2 10+05 1.7 10−14 1.3 10+03 6.9 10−15

1280 6 1.3 10+03 7.7 10+05 3.9 10−14 1.2 10+03 4.7 10−15

160 75 8.5 10+01 7.1 10+04 3.8 10−13 8.5 10+01 4.2 10−15

160 80 8.0 10+01 2.4 10+04 9.3 10−14 8.0 10+01 3.9 10−15

320 155 1.6 10+02 1.7 10+05 1.9 10−13 1.6 10+02 1.2 10−14

320 160 1.6 10+02 9.4 10+05 6.1 10−12 1.6 10+02 8.9 10−15

640 315 3.2 10+02 5.5 10+07 8.5 10−11 3.2 10+02 2.6 10−14

40 320 3.2 10+02 2.6 10+07 1.6 10−11 3.2 10+02 1.9 10−14

1280 635 6.4 10+02 5.9 10+06 7.5 10−12 6.5 10+02 3.2 10−14

1280 640 6.4 10+02 1.1 10+07 1.2 10−11 6.4 10+02 7.5 10−14

For an application of the preceding analysis in electromagnetic scattering, see [31]. In [13],
a situation of the type discussed in Section 3.1 arises. Without entering into details, it was
shown that the “magnetic field integral equation" is rank-k deficient in the static limit in
exterior multiply-connected domains of genus k. A set of k nontrivial constraints was derived
from electromagnetic considerations, which were added to the system matrix as described
above. Since we have illustrated the basic principle in the context of the null space problem,
we omit further numerical calculations.

7. Conclusions. We have presented a simple set of tools for solving rank-deficient, but
consistent, linear systems and demonstrated their utility with some numerical examples. Since
the perturbed/augmented linear systems are reasonably well-conditioned with high probability,
one can rely on Krylov subspace based iterative methods (e.g., conjugate gradient for self-
adjoint problems or GMRES for non-self-adjoint problems) avoiding the cost of dense linear
algebraic methods such as Gaussian elimination or the SVD itself. This is a particularly
powerful approach when A is sparse or when there is a fast algorithm for applying A to a
vector. Finite rank-deficiency issues arise in the continuous setting as well, especially in
integral equation methods, which we have touched on only briefly here.

We are currently working on the development of robust software for the null space problem
that we expect will be competitive with standard approaches such as QR-based schemes [4],
inverse iteration [9, 15], or Arnoldi methods [14].
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