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Abstract. We present efficient domain decomposition solvers for a class of non-standard finite element methods
(FEM). These methods utilize PDE-harmonic trial functions in every element of a polyhedral mesh and use boundary
element techniques locally in order to assemble the finite element stiffness matrices. For these reasons, the terms
BEM-based FEM or Trefftz-FEM are sometimes used in connection with this method. In the present paper, we show
that finite element tearing and interconnecting (FETI) methods can be used to solve the resulting linear systems in a
quasi-optimal, robust, and parallel manner. Spectral equivalences between certain approximations of element-local
Steklov-Poincaré operators play a central role in transferring the known convergence results for FETI to this new
method. The theoretical results are supplemented by numerical tests confirming the theoretical predictions.
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1. Introduction. This paper is devoted to the construction and analysis of fast and robust
solution methods for a new class of non-standard finite element schemes which were introduced
by Copeland, Langer, and Pusch [2] and developed in a series of publications in recent years
[1, 8, 9, 10, 21, 26, 31, 32].

The characteristic features of these new methods are the following: (1) instead of homo-
geneous simplicial or hexahedral meshes, spatial discretizations which consist of arbitrary,
even non-convex, polygons or polyhedra are admissible; (2) trial functions are constructed as
local solutions of the partial differential equation with simple, usually piecewise linear bound-
ary data on each element; (3) Green’s formula then permits the reduction of the variational
equation to the element boundaries, leading to a so-called skeletal variational formulation;
(4) techniques based on boundary element methods (BEM) are used in order to approximate
the Dirichlet-to-Neumann maps which are associated to the element-local problems. The
method shares many characteristic features with the finite element method: it is a Galerkin
method which employs trial functions with local support and which preserves symmetry and
coercivity of the underlying partial differential operator in the discretized system. Indeed, it
can be viewed as a finite element method where the element stiffness matrices are computed
using boundary element techniques. Therefore, the method has been dubbed “BEM-based
FEM” in the literature.

Previous publications on this method have investigated a priori error estimates [8, 10],
a posteriori error estimators and adaptive refinement [31], generalizations to higher-order
trial functions [26], and applications to Helmholtz and Maxwell equations [1, 2] as well
as convection-diffusion problems [11]. The main results have been collected in two PhD.
theses [9, 32].

In the present work, we turn our attention to the efficient solution of the linear systems
arising from the BEM-based FEM discretization of second-order scalar elliptic partial differ-
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ential equations (PDEs) such as the diffusion equation in two and three spatial dimensions.
While early experiments with algebraic multigrid solvers have shown promising results [2],
herein we focus on a domain decomposition approach based on the finite element tearing
and interconnecting (FETI) method. The FETI method was introduced by Farhat and Roux
in [7] and has been generalized and analyzed by numerous researchers; see, e.g., the mono-
graphs [19, 30] for the corresponding references. Our main goal in this article is to demonstrate
that the FETI method as well as commonly used preconditioners can be adapted with only
minor modifications to the setting of the BEM-based FEM. Furthermore, by proving certain
spectral equivalences for the Schur complements arising in this new FETI-like scheme, we
are able to transfer known condition number estimates from the FETI literature to the new
BEM-based FETI solver.

It should be mentioned that the boundary element tearing and interconnecting (BETI)
method, introduced by Langer and Steinbach [13] as the boundary element counterpart of the
FETI method, bears a certain similarity to the scheme we will derive here. Indeed, the BETI
method corresponds to the case where every subdomain is a single BEM domain, while in
the new FETI-like scheme for the BEM-based FEM, subdomains are typically agglomerates
of several BEM domains coupled together. The convergence analysis of the BETI method
is heavily based on spectral equivalences between FEM- and BEM-approximated Steklov-
Poincaré operators. As mentioned above, similar techniques are used for the convergence
analysis of the new scheme considered in this paper.

The remainder of this paper is structured as follows. In Section 2, we derive the skeletal
variational formulation which serves as the starting point for discretization in the BEM-based
FEM. In Section 3, we introduce BEM-based approximations of Steklov-Poincaré operators.
In Section 4, we introduce discretized spaces and obtain a discrete scheme. In Section 5,
we derive our BEM-based FETI solution method for these discrete linear systems. Then
we establish the convergence analysis for this domain decomposition method in Section 6.
In Section 7, we present and discuss some results of our numerical experiments. Section 8
concludes the paper with some final remarks.

2. Derivation of a skeletal variational formulation. We give a brief derivation of the
BEM-based FEM and refer to [9, 10] for further details.

Let Ω ⊂ R
d, d = 2 or 3, be a bounded Lipschitz domain. We consider the mixed boundary

value problem for the potential equation,

(2.1)

− div(α∇u) = f in Ω,

u = gD on ΓD,

α
∂u

∂n
= gN on ΓN ,

where α = α(x) ≥ α0 > 0 is a given bounded, uniformly positive diffusion coefficient, f
is a given forcing term, ΓD ⊆ ∂Ω is the Dirichlet boundary with prescribed values gD and
has positive surface measure, and ΓN = ∂Ω \ ΓD is the Neumann boundary with prescribed
conormal derivative gN .

The standard variational formulation of (2.1) is given by

(2.2)
∫

Ω

α∇u · ∇v dx =

∫

Ω

fv dx+

∫

ΓN

gNv ds ∀v ∈ H1
D(Ω),

where H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0} is the space of H1-functions which vanish on
the Dirichlet boundary. Here, u is sought in the manifold of H1-functions which match gD
on ΓD.
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Consider a decomposition T of the domain Ω into polytopal elements T ∈ T . In contrast
to a standard FEM method, we do not restrict ourselves to homogeneous element topologies,
but allow the mesh to consist of a mixture of rather general polygons (in 2D) or polyhedra (in
3D). We assume that the coefficient function α is piecewise constant with respect to T , i.e.,
α(x) = αT ∀x ∈ T, ∀T ∈ T . The mesh size will be denoted by h = maxT∈T diam(T ).

We now formulate a homogeneous local problem on every element T . Namely, given
gT ∈ H1/2(∂T ), find uT ∈ H1(T ) with uT |∂T = gT such that

∫

T

αT∇uT · ∇vT dx = 0 ∀vT ∈ H1
0 (T ).

This local problem is uniquely solvable, and we denote the mapping gT 7→ uT by the local
harmonic extension operator HT : H1/2(∂T ) → H1(T ). It is elementary that HT minimizes
the H1-energy in the sense that

|HT gT |H1(T ) = inf
wT∈H1(T )
wT |∂T=gT

|wT |H1(T ).

We now define the local Steklov-Poincaré operator ST : H1/2(∂T ) → H−1/2(∂T ) which
maps u ∈ H1/2(∂T ) to the functional

〈STu, v〉 :=

∫

T

αT∇(HTu) · ∇(HT v) dx ∀v ∈ H1/2(∂T ).

In the case of sufficient smoothness, Green’s formula yields STu = αT∂n(HTu), i.e., STu is
the conormal derivative of the harmonic extension. Therefore, ST is also called the Dirichlet-

to-Neumann map. From the definition, it immediately follows that

〈ST v, v〉 = αT |HT v|
2
H1(T ) .

If we introduce the skeleton (not to be confused with the interface (5.2))

ΓS :=
⋃

T∈T

∂T

as the union of all element boundaries and denote by H1/2(ΓS) the trace space of H1(Ω)-
functions onto the skeleton (in the sense of the usual Sobolev trace operator), we can formulate
the skeletal variational problem: find u ∈ H1/2(ΓS) with u|ΓD

= gD such that

(2.3) a(u, v) = 〈F, v〉 ∀v ∈ WD,

where

a(u, v) :=
∑

T∈T

〈STu|∂T , v|∂T 〉,

〈F, v〉 :=
∑

T∈T

[∫

T

fHT (v|∂T ) dx+

∫

∂T∩ΓN

gNv ds

]
,

WD := {v ∈ H1/2(ΓS) : v|ΓD
= 0}.

It can be shown that this skeletal formulation is equivalent to the standard variational formula-
tion (2.2) in the sense that the solution of the former is the skeletal trace of the solution of the
latter [9, 10].
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3. Approximation of the Steklov-Poincaré operator. The Steklov-Poincaré operator
ST appearing in the variational formulation (2.3) does not admit an exact evaluation in general.
In the following, we give a rather standard computable approximation in terms of boundary
integral operators.

A fundamental solution for the Laplace operator in R
d is given by

G(x, y) :=

{
− 1

2π log |x− y| if d = 2,
1
4π |x− y|−1 if d = 3;

see, e.g., [27, 29]. Based on this, we define on the boundary of every element T ∈ T the local
boundary integral operators (cf. [27, 29])

VT : H−1/2(∂T ) → H1/2(∂T ), KT : H1/2(∂T ) → H1/2(∂T ),

K ′
T : H−1/2(∂T ) → H−1/2(∂T ), DT : H1/2(∂T ) → H−1/2(∂T ),

called, in turn, the single layer potential, double layer potential, adjoint double layer potential,
and hypersingular operators. For sufficiently smooth functions, they admit the integral
representations

(VT v)(y) =

∫

∂T

G(x, y)v(x) dsx,

(KTu)(y) =

∫

∂T

( ∂

∂nT,x
G(x, y)

)
u(x) dsx,

(K ′
T v)(y) =

∫

∂T

∂

∂nT,y
G(x, y)v(x) dsx,

(DTu)(y) = −
∂

∂nT,y

∫

∂T

( ∂

∂nT,x
G(x, y)

)(
u(x)− u(y)

)
dsx.

Let us mention that VT and DT are self-adjoint whereas KT and K ′
T are adjoint to each

other. For d = 2, we make the additional technical assumption diam(T ) < 1 for all T ∈ T
throughout, to ensure that VT is invertible.

It can be shown [27, 29] that the Steklov-Poincaré operator ST can be expressed in terms
of the boundary integral operators via the two expressions

ST = αT (V
−1
T ( 12I +KT )) = αT (DT + ( 12I +K ′

T )V
−1
T ( 12I +KT )).

Both of these representations contain the inverse of the single layer potential operator, which
is not readily computable. We therefore construct a computable approximation as described in
the following.

We assume that each element boundary ∂T has a shape-regular mesh FT which consists
of line segments in R

2 and of triangles in R
3. We further assume that these local meshes are

matching across elements in the sense that for any two elements T1 and T2 having a common
interface Γ12 = ∂T1 ∩ ∂T2 with positive measure, any triangle τ ∈ FT1

with τ ∩ Γ12 6= ∅
should also belong to FT2

. In other words, element interfaces must be triangulated identically
in both elements.

On the boundary mesh FT , we construct a space Zh
T of piecewise constant (per boundary

element τ ∈ FT ) functions and, given u ∈ H1/2(∂T ), define the discrete variable wh
T ∈ Zh

T

by solving the discrete variational problem

〈VTw
h
T , z

h
T 〉 = 〈( 12I +KT )u, z

h
T 〉 ∀zhT ∈ Zh

T .
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A computable approximation to ST is then given by

S̃Tu := αT (DTu+ ( 12I +K ′
T )w

h
T ).

It is easy to show that the approximation S̃T remains self-adjoint and that its kernel is given by
the constant functions, just as for ST . Furthermore, the following spectral equivalence holds;
see, e.g., [20, Section 7.1] or [19, Lemma 1.93].

THEOREM 3.1. The element-level BEM-approximated Steklov-Poincaré operator S̃T

satisfies the spectral equivalence

(3.1) c̃T 〈ST v, v〉 ≤ 〈S̃T v, v〉 ≤ 〈ST v, v〉 ∀v ∈ H1/2(∂T )

with a constant c̃T ∈ (0, 1
2 ) depending only on the shape of T .

In (2.3), by replacing the exact Steklov-Poincaré operator ST with its BEM approximation
S̃T , we obtain the bilinear form approximation

ã(u, v) =
∑

T∈T

〈S̃Tu|∂T , v|∂T 〉

and the inexact variational formulation: find u ∈ H1/2(ΓS) with u|ΓD
= gD such that

ã(u, v) = 〈F, v〉 ∀v ∈ WD.

The positive constant c̃T from Theorem 3.1 only depends on the shape of the element T .
For robust error estimates, it is required to bound c̃T from below uniformly for all elements.
It is only recently that explicit bounds for these constants have been investigated, starting
with a paper by Pechstein [20] which relies on the so-called Jones parameter and a constant
in an isoperimetric inequality. These results were employed in the first rigorous a priori

error analysis of the BEM-based FEM [10] as well as in a later analysis based on a mixed
formulation which allowed L2 error estimates to be obtained [8]. Later, the assumptions were
simplified such that, at least in the three-dimensional case, only relatively standard assumptions
on mesh regularity need to be imposed [9, 21], which we state in the following.

ASSUMPTION 3.2. There exists a shape-regular simplicial mesh Ξ(Ω′) of an open,

bounded superset Ω′ ⊃ Ω of the computational domain Ω such that each element T ∈ T is

the union of simplices from Ξ(Ω′), and the number of simplices per element T is uniformly

bounded. Furthermore, the boundary meshes FT of ∂T , T ∈ T are uniformly shape-regular.

Under these regularity assumptions, the following theorem holds.
THEOREM 3.3 ([9, 21]). Under Assumption 3.2 and for d = 3, the constant c̃T , T ∈ T ,

from (3.1) is uniformly bounded away from 0 by an expression which depends only on the

mesh regularity parameters.

Assumption 3.2 can be slightly relaxed [21, Section 6]. We believe that Theorem 3.3
holds for d = 2 as well, but a proof is still missing; see also [20].

4. Discretization. Due to the assumption that the local boundary meshes FT are match-
ing across element boundaries, F :=

⋃
T∈T FT describes a shape-regular triangulation of the

skeleton ΓS . On this mesh, we construct the discrete trial spaces

Wh :=
{
v ∈ H1/2(ΓS) : v|τ ∈ P 1(τ) ∀τ ∈ F

}
, Wh,0 := Wh ∩WD

of piecewise linear, continuous functions on the skeleton. For simplicity, let us assume that
gD is continuous and piecewise linear with respect to the surface mesh. In that case, the
discretized variational problem reads as follows: find uh ∈ Wh with uh|ΓD

= gD such that

(4.1) ã(uh, vh) = 〈F, vh〉 ∀vh ∈ Wh,0.
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FIG. 5.1. Sketch of domain decomposition approach in 2D for a rectangular domain with N = 2 subdomains.

Left: FETI substructuring. Right: FETI-like substructuring for our BEM-based FEM.

This is the variational formulation underlying the BEM-based FEM. Rigorous error estimates
for this discretized variational problem may be found in [8, 9, 10]. They are of the same
optimal order as a standard finite element method on an auxiliary finer mesh consisting of
simplices.

Equivalently, (4.1) can be written as an operator equation

(4.2) Auh = F

with A : Wh → (Wh)
∗. The associated stiffness matrix is given by

A = (〈Aφℓ, φk〉)k,ℓ,

where {φk} forms a nodal basis for Wh,0 such that φk is 1 in the k-th skeletal node, 0 in all
others, and interpolated linearly on every (simplicial) facet τ ∈ F of the skeleton. It shares
many properties with the stiffness matrix obtained from a standard finite element method in
that it is sparse, symmetric, and positive definite.

5. A FETI solver. In the following, we derive a solution method for (4.2) based on the
ideas of the FETI substructuring approach, originally proposed by Farhat and Roux [7] and
since then established both in theory and in practice as a highly efficient approach to the
solution of discretized partial differential equations. Our derivation closely follows that of the
classical FETI method, and we therefore refer to the literature, e.g., [7, 12, 16, 19, 30], for
further details and some omitted proofs.

5.1. Tearing and interconnecting. We decompose the computational domain Ω into
non-overlapping subdomains (Ωi)

N
i=1 in agreement with the polyhedral mesh T , that is,

Ωi =
⋃

T∈Ti
T with a corresponding decomposition (Ti)

N
i=1. We set Hi := diam(Ωi). Every

subdomain Ωi has an associated (fine) skeleton
⋃

T∈Ti
∂T and a discrete skeletal trial space

Wh,0(Ωi) as constructed in Section 4. In the following, we assume that the problem has been
homogenized with respect to the given Dirichlet data gD, so that uh ∈ Wh,0. It is easy to see
that both the operator A and the functional F can be written as a sum of local contributions
Ai : Wh,0(Ωi) → Wh,0(Ωi)

∗ given by

Aiu : v 7→
∑

T∈Ti

〈S̃TuT , vT 〉

and, analogously, F̃i ∈ Wh,0(Ωi)
∗. We rewrite the global discrete problem (4.2) as the

equivalent minimization problem

(5.1) u = argmin
v∈Wh,0(Ω)

1

2

N∑

i=1

〈Aiv|Ωi
, v|Ωi

〉 −
N∑

i=1

〈F̃i, v|Ωi
〉,
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FIG. 5.2. Constraints at the intersection between four subdomains. Left: a choice of non-redundant constraints.

Right: fully redundant constraints.

where in (5.1) and in what follows, we drop the subscript h since all functions are discrete from
now on. Indeed, all relevant functions live in spaces of piecewise linear functions which have
canonical nodal bases. Therefore, we will not distinguish in the following between functions
and the coefficient vectors representing them with respect to the nodal basis, nor between
operators and their matrix representations.

We group the degrees of freedom (dofs) on Ωi into coupling dofs (subscript Γ) that are
associated with the interface

(5.2) Γ :=
N⋃

i 6=j=1

(∂Ωi ∩ ∂Ωj) \ ΓD ,

and the remaining interior dofs (subscript I). The latter are either in the interior of Ωi or
non-coupling dofs on the Neumann boundary ΓN . Note that there are no dofs associated to the
Dirichlet boundary ΓD (for an alternative approach including Dirichlet dofs; see Remark 5.2
below).

For a discrete function wi ∈ Wh,0(Ωi) with coupling dofs wΓ and interior dofs wI , the
matrix Ai splits into blocks as well:

Aiw =

[
Ai,ΓΓ Ai,ΓI

Ai,IΓ Ai,II

] [
wΓ

wI

]
.

Eliminating the interior dofs leads to the Schur complement

S̃i = Ai,ΓΓ −Ai,ΓIA
−1
i,IIAi,IΓ.

Let Γi := ∂Ωi ∩ (Γ∪ΓD) and let Wh,0(Γi) denote the trace space of Wh,0(Ωi) onto Γi, then
S̃i : Wh,0(Γi) → Wh,0(Γi)

∗. The Schur complement system associated to (5.1) is

(5.3) u = argmin
v∈Wh,0(Γ)

1

2

N∑

i=1

〈S̃iv|Γi
, v|Γi

〉 −
N∑

i=1

〈gi, v|Γi
〉,

where in matrix-vector notation, gi = F̃i,Γ −Ai,ΓIA
−1
i,II F̃i,I , cf. [30, Section 4.3].

We introduce a space Y of broken functions, given by

Yi := Wh,0(Γi), Y :=

N∏

i=1

Yi.

Functions from Y may have two different values on either side of a subdomain interface. Only
if their values match across interfaces can they be identified with functions in Wh,0(Γ ∪ ΓD).
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In order to enforce this, we introduce the jump operator B : Y → R
NΛ , where NΛ ∈ N is

the total number of constraints. In the nodal basis, B has exactly two non-zero contributions
of opposite sign for each constraint and may thus be viewed as a signed Boolean matrix. In
this work, we assume fully redundant constraints [24], i.e., for every node on a subdomain
interface, constraints corresponding to all neighboring subdomains are introduced. This is
in contrast to the non-redundant case, where only a minimal set of constraints is introduced
in order to ensure continuity; see Figure 5.2 for an illustration. The choice of redundant
constraints implies that the jump operator B is not surjective. As is common in the literature,
we define the space of Lagrange multipliers as

Λ := range(B) ⊆ R
NΛ

and consider B as a mapping Y → Λ in the following. Alternatively, one could define Λ as
the factor space R

NΛ modulo ker(B⊤).
The jump operator B can be written as a sum of local contributions Bi : Yi → Λ, and the

globally consistent functions in Y are those which satisfy

By =
N∑

i=1

Biyi = 0,

that is, y ∈ ker(B). In light of this, we rewrite (5.3) as

u = argmin
y∈Y
By=0

1

2

N∑

i=1

〈S̃iyi, yi〉 −
N∑

i=1

〈gi, yi〉.

Introducing Lagrange multipliers to enforce the constraint By = 0, we obtain the saddle point
formulation

(5.4) find (u, λ) ∈ Y × Λ :

[
S̃ B⊤

B 0

] [
u
λ

]
=

[
g
0

]
,

where we have used the block matrices and vectors S̃ = diag(S̃1,. . . ,S̃N ), B = (B1,. . . ,BN ),
u = (u1, . . . , uN )⊤, g = (g1, . . . , gN )⊤.

5.2. Elimination of the primal unknowns u. From (5.4), we see that the local skeletal
functions ui satisfy the relationship

(5.5) S̃iui = gi −B⊤
i λ.

For a non-floating subdomain Ωi, where ∂Ωi ∩ ΓD 6= ∅, the operator S̃i is positive definite
and thus invertible. For a floating subdomain Ωi, where ∂Ωi ∩ ΓD = ∅, the kernel of S̃i

consists of the constant functions. In the latter case, we select an injective operator Ri with
range(Ri) = ker(S̃i), e.g.,

Ri : R → ker(S̃i) ⊆ Yi : ξi 7→ ξi.

Under the condition that the right-hand side is orthogonal to the kernel, i.e.,

(5.6) 〈gi −B⊤
i λ, Riζ〉 = 0 ∀ζ ∈ R,

the local problem (5.5) is solvable. Let S̃†
i denote a generalized inverse of S̃i, with the minimal

requirement that

S̃iS̃
†
i f = f ∀f ∈ range(S̃i).
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Then, under condition (5.6),

(5.7) ui = S̃†
i (gi −B⊤

i λ) +Riξi

with some ξi ∈ R. A simple choice for the generalized inverse is

S̃†
i = (S̃i + βiRiR

⊤
i )

−1

for some βi > 0. For practical reasons, different choices of S̃†
i are usually preferred; see

e.g., [7, Appendix I] and [19, Section 1.2.5.2]. In particular, it is common to start with the
original matrix Ai, which is sparse, define a generalized inverse A†

i by, e.g., adding a sparse
low rank correction, and define S̃†

i as a projection of A†
i ; see also [30, Section 1.3] as well as

Remark 5.1 below. Note, however, that the algorithm and analysis below are independent of
the actual choice of S̃†

i .
Formulae (5.6) and (5.7) remain valid for non-floating subdomains Ωi, if we set Ri ≡ 0

and S̃†
i = S̃−1

i . Hence, with Z :=
∏N

i=1 R
dim(ker(S̃i)) and the block operators

R = diag(R1, . . . , RN ) : Z → Y and S̃† = diag(S̃†
1, . . . , S̃

†
N ), the local solutions u can

be expressed by

(5.8) u = S̃†(g −B⊤λ) +Rξ, for some ξ ∈ Z,

under the compatibility condition (derived from (5.6))

R⊤B⊤λ = R⊤g.

Inserting (5.8) into the second line of (5.4) yields BS̃†g −BS̃†B⊤λ+BRξ = 0. Together
with the compatibility condition and with F := BS̃†B⊤ and G := BR, we obtain the dual
saddle point problem

(5.9) find (λ, ξ) ∈ Λ× Z :

[
F −G
G⊤ 0

] [
λ
ξ

]
=

[
BS̃†g
R⊤g

]
.

5.3. Projection method. Problem (5.9) is now solved using the projection method. With
a self-adjoint operator Q : Λ → Λ (yet to be specified) which is positive definite on the range
of G, we define

P = I −QG(G⊤QG)−1G⊤.

It is easy to see that G⊤QG is positive definite and thus indeed invertible, and that P is a
projection from Λ onto the subspace

Λ0 := ker(G⊤) ⊆ Λ.

The particular vector λg := QG(G⊤QG)−1R⊤g ∈ Λ fulfills the constraint G⊤λg = R⊤g by
construction. Thus, with λ = λ0 + λg, we can homogenize (5.9) such that we only need a
Lagrange parameter λ0 ∈ Λ0 fulfilling

(5.10) Fλ0 −Gξ = BS̃†g − Fλg︸ ︷︷ ︸
BS̃†(g−B⊤λg)

.

Applying the projector P⊤ to this equation and noting that P⊤G = 0, we are left to find

(5.11) λ0 ∈ Λ0 : P⊤Fλ0 = P⊤BS̃†(g −B⊤λg).
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It can be shown that P⊤F is self-adjoint and positive definite on Λ0, and so the system (5.11)
has a unique solution which may be computed by a conjugate gradient (CG) iteration in the
subspace Λ0. Once λ = λ0 + λg has been computed, ξ can be retrieved from the formula

ξ = (G⊤QG)−1G⊤QBS̃†(B⊤λ− g),

which is obtained by applying (G⊤QG)−1G⊤Q to (5.10). Finally, the original unknowns ui

are obtained by formula (5.8).
REMARK 5.1. The initial elimination of interior dofs in Section 5.1 is done mainly for

theoretical reasons and will be used in the analysis below. In practice, one usually works with
the original matrices Ai and suitable generalized inverses A†

i rather than with S̃i, S̃
†
i (at least

for the operators defined in Section 5.1–Section 5.3). However, whether with or without the
elimination, the resulting systems (5.9) and (5.11) remain the same, cf. [25, Section 2.1.3],
[19, Rem. 2.17].

REMARK 5.2. In contrast to the original FETI approach, the total FETI (TFETI) [4]
and the all-floating BETI [18] techniques include Dirichlet boundary dofs from the start and
enforce the Dirichlet conditions by Lagrange multipliers as well. This results in the fact that
all subdomains are floating in the sense that every subdomain matrix has a one-dimensional
kernel, and that the “coarse” matrix G⊤QG is slightly larger than in classical FETI; see also
[20, Section 2.2.2]. The all-floating approach can of course be used for the BEM-based FETI
as well and leads to analogous results.

5.4. Preconditioning. Preconditioners for FETI are typically constructed in the form
PM−1 with a suitable operator M−1 : Λ → Λ. The Dirichlet preconditioner proposed by
Farhat, Mandel, and Roux [6], adapted to our setting, is given by the choice

M−1 = BS̃B⊤

and works well for globally constant or mildly varying coefficient α. In this case, the choice
Q = I works satisfactorily.

To deal with coefficient jumps, we need to employ a weighted or scaled jump operator as
introduced by Rixen and Farhat [24] in a mechanical setting and later analyzed by Klawonn
and Widlund [12] for the scalar potential equation. For this, let xh ∈ ∂Ωi refer to an arbitrary
boundary node and introduce scalar weights ρi(xh) > 0. We will restrict ourselves to the case
of subdomain-wise constant coefficient α in the following, i.e.,

α(x) = αi ∀x ∈ Ωi.

For a comprehensive treatment of the case of an unresolved diffusion coefficient, we refer to
[19, 22, 23]. In the setting of piecewise constant α, we simply choose the weights

ρi(x
h) = αi.

These are used to define the weighted counting functions δ†j , j = 1, . . . , N , by the nodal values

δ†j (x
h) :=





ρj(x
h)∑

k∈N (xh)
ρk(x

h)
if xh ∈ ∂Ωj ,

0 if xh ∈ Γ \ ∂Ωj

and piecewise linear interpolation on the facets of Γ. N (xh) = {i ∈ {1, . . . , N} : xh ∈ ∂Ωi}
denotes the set of indices of subdomains whose boundaries contain xh. The family of counting
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functions {δ†j}
N
j=1 forms a partition of unity on Γ. If α is globally constant, then δ†j (x

h) is the
reciprocal of the multiplicity of xh, and hence often called multiplicity scaling.

Following [12, 24], we introduce diagonal scaling matrices Di : Λ → Λ, i = 1, . . . , N ,
operating on the space of Lagrange multipliers. Consider two neighboring domains Ωi and
Ωj sharing a node xh ∈ ∂Ωi ∩ ∂Ωj . Let k ∈ {1, . . . , NΛ} denote the index of the Lagrange
multiplier associated with this node and pair of subdomains. Then, the k-th diagonal entry of
Di is set to δ†j (x

h), and the k-th diagonal entry of Dj is set to δ†i (x
h). Diagonal entries of Di

not associated with a node on ∂Ωi are set to zero.
The scaled jump operator BD : Y → Λ is now given by

BD = [D1B1, . . . , DNBN ],

and the scaled Dirichlet preconditioner by

M−1
D = BDS̃B⊤

D.

In this case, a possible choice for Q is simply Q = M−1
D . Alternatively, Q can be replaced by

a suitable diagonal matrix as described in [12].

6. Convergence analysis. In this subsection, we first construct auxiliary subdomain
meshes together with corresponding standard finite element (FE) spaces and matrices. We
then prove element- and subdomain-wise spectral equivalence relations between the FE and
the BEM-based FEM matrices. This approach allows us to lift known results of classical FETI
to BEM-based FETI.

6.1. Auxiliary simplicial meshes and FE matrices. For each subdomain Ωi, we con-
sider a simplicial, shape-regular mesh Ξi of Ωi such that

(i) each polytopal element in Ti is a union of simplices from Ξi,
(ii) for each element T ∈ Ti, the restriction of the surface mesh FT to ∂Ωi and the

restriction of the volume Ξi to ∂Ωi ∩ ∂T are identical, and
(iii) the number of simplices per polytopal element is uniformly bounded.

Thanks to Assumption 3.2, such meshes indeed exist.

On each auxiliary mesh Ξi, we construct the standard piecewise linear finite element space
Vh(Ωi) as well as Vh,0(Ωi) := {w ∈ Vh(Ωi) : w|ΓD

= 0}. We note that, by construction,
the space Yi introduced in Section 5.1 is simply the trace space of Vh,0(Ωi) onto ∂Ωi. In the
following, the letter V will always be used for finite element spaces associated to Ξi, whereas
the letter W will be associated with spaces of functions living on boundaries or skeletons.

Recall that every element T ∈ Ti is the union of simplices from Ξi. On each such
macroelement T ∈ Ti, we assemble the local stiffness matrix KF

T ,

〈KF
T v, w〉 =

∑

γ∈Ξi,γ⊆T

∫

γ

α∇v · ∇w dx for v, w ∈ Vh,0(T ).

The superscript F stands for standard “FEM”. Static condensation of possible dofs in KF
T that

are not associated to ∂T leads to the Schur complement

SF
T : W0,h(∂T ) → W0,h(∂T )

∗,

where W0,h(∂T ) is the trace space of V0,h(Ωi) on ∂T , which—due to Property (ii) above—is
identical to the restriction of the space W0,h(Ωi) from Section 5.1 to ∂T .
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6.2. Spectral equivalence relations. In this subsection, we derive spectral equivalence
relations between several FEM and BEM-based FEM matrices. To simplify the notation, for
symmetric matrices A and B ∈ R

n, we write A ∼= B for

c〈Aw, w〉 ≤ 〈Bw, w〉 ≤ C〈Aw, w〉 ∀w ∈ R
n,

if the (positive) equivalence constants c, C depend only on mesh regularity parameters of
Assumption 3.2. Throughout this subsection, we assume d = 3 in view of Theorem 3.3.

LEMMA 6.1. Let Assumption 3.2 be fulfilled. Then for each (macro)element T ∈ Ti,

SF
T
∼= S̃T .

Proof. Recall the local, exact Steklov-Poincaré operator ST from Section 3. In [19,
Corollary 1.57], it is shown that

〈ST v, v〉 ≤ 〈SF
T v, v〉 ≤ C〈ST v, v〉 ∀v ∈ Wh,0(∂T ),

where the constant C only depends on the shape regularity constant of Ξi. The proof in [19] is
for the case αT = 1 but can be generalized in a straightforward manner, since both ST and SF

T

scale linearly in αT . The lower bound with a factor of 1 is due to the fact that ST minimizes
the energy over extensions ṽ ∈ H1(T ) whereas SF

T over ṽ ∈ Vh,0(T ) with ṽ|∂T = v. The
constant in the upper bound originates from the stability estimate

|ΠTu|
2
H1(T ) ≤ C |u|2H1(T ) ∀u ∈ H1(T )

of the Scott-Zhang operator ΠT [28], which can be chosen such that ΠT preserves piecewise
linear boundary data on ∂T . The assertion now follows from Theorem 3.1 (stating that
S̃T

∼= ST on Wh,0(∂T )) and transitivity.
For each subdomain Ωi, we assemble the local condensed stiffness matrices SF

T over
T ∈ Ti resulting in the matrix KF,S

i , given by

〈KF,S
i v, w〉 =

∑

T∈Ti

〈SF
T v|∂T , w|∂T 〉 ∀v ∈ W0,h(Ωi).

As we did for the matrix Ai in Section 5.1, we eliminate all the interior dofs from KF,S
i ,

which results in the Schur complement

SF
i : W0,h(∂Ωi) → W0,h(∂Ωi)

∗.

LEMMA 6.2. Under Assumption 3.2, for each i = 1, . . . , N ,

Ai
∼= KF,S

i and S̃i
∼= SF

i .

Proof. Recall that
• KF,S

i is assembled from the matrices SF
T over T ∈ Ti and SF

i is the Schur comple-
ment of KF,S

i ,
• Ai is assembled from the matrices S̃T over T ∈ Ti and S̃i is the Schur complement

of Ai.
Since SF

T
∼= S̃T (Lemma 6.1), the first spectral equivalence is obtained immediately by

summing over T ∈ Ti. The second equivalence holds since corresponding Schur complements
of spectrally equivalent matrices are again spectrally equivalent.
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The spectral equivalence from Lemma 6.2 above implies a similar equivalence for gener-
alized inverses of the BEM-based FEM Schur complement S̃i and the FEM Schur comple-
ment SF

i .
LEMMA 6.3. Let Assumption 3.2 hold and let (SF

i )
† be any generalized inverse of SF

i ,

such that SF
i (S

F
i )

†f = f holds for all f ∈ range(SF
i ). Then

S̃†
i
∼= (SF

i )
† on range(S̃i).

Proof. Recall from Lemma 6.2 that SF
i
∼= S̃i. Moreover, both matrices are symmetric and

positive semi-definite and

ker(SF
i ) = ker(S̃i), range(SF

i ) = range(S̃i).

The assumptions on the generalized inverses yield that for f ∈ range(S̃i), we have
S̃†
i = (S̃i/ ker(S̃i)

)−1 + ξ for some ξ ∈ ker(S̃i). Since range(S̃i) is orthogonal to ker(S̃i), we
have

〈f, S̃†
i f〉 = 〈f, (S̃i/ ker(S̃i)

)−1f〉 ∀f ∈ range(S̃i).

The analogous property holds for (SF
i )

†. Due to a simple algebraic argument, SF
i

∼= S̃i

implies (S̃i/ ker(S̃i)
)−1 ∼= (SF

i/ ker(SF

i )
)−1. To summarize, 〈f, S̃†

i f〉
∼= 〈(SF

i )
†f, f〉 for all

f ∈ range(S̃i), which concludes the proof.

6.3. Condition number estimates for BEM-based FETI. To prove condition number
estimates for the BEM-based FETI, we make use of the classical FETI theory.

Recall that the matrix SF
i from Section 6.2 is constructed from the classical FE stiffness

matrix on V0,h(Ωi) by two elimination steps: firstly the static condensation of dofs not
associated to ∂T and secondly the elimination of interior dofs. It is easily seen that the
elimination of all the interior dofs of Vh,0(Ωi) together results in the same matrix SF

i . In other
words, SF

i is the classical Schur complement of the subdomain FE stiffness matrix (based
on Ξi) which is used in classical FETI.

We select generalized inverses (SF
i )

† of SF
i and set (SF)† := diag((SF

i )
†)Ni=1. Due to

Property (ii) in Section 6.1, the meshes Ti and Ξi coincide on ∂Ωi. Consequently, the operators
B and BD defined above are exactly those from the classical FETI algorithm. The standard
FETI operator is given by

FF := B(SF)†B⊤.

Since SF
i and S̃i have identical kernel and range, the operators G, P , Q, and R defined above

coincide with those from classical FETI as well.

The unpreconditioned case. The following result is known from the FETI literature.
ASSUMPTION 6.4 ([30, Assumption 4.3]).

1. Each subdomain Ωi is the union of simplices from a conforming and shape-regular

coarse triangulation of Ω, and the number of such simplices per subdomain is

uniformly bounded by a constant.

2. The set ∂Ωi ∩ ΓD is either empty or a union of vertices, edges, or faces of the above

coarse triangulation.
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THEOREM 6.5 ([6, 19]). Suppose that Assumption 6.4 holds and that for each

i = 1, . . . , N , the restriction of Ξi to ∂Ωi is quasi-uniform with mesh parameter hF
i . Moreover,

assume that ∂Ωi ∩ ΓD is either empty or has positive surface measure. Then, for the choice

Q = I , the classical FETI operator satisfies the condition number estimate

κ(P⊤FF|Λ0
) ≤ C

α

α

(
max

i=1,...,N

Hi

hF
i

)
,

where Hi = diam(Ωi), α = maxx∈Ω α(x), α = minx∈Ω α(x), and C depends only on the

mesh regularity parameters of Assumption 6.4.

Using the spectral equivalence relations from Section 6.2, we are able to lift the above
condition number estimate for the classical FETI operator P⊤FF to one for the BEM-based
FETI operator P⊤F .

THEOREM 6.6. Let d = 3, let Assumption 3.2 and Assumption 6.4 hold, and suppose

that for each i = 1, . . . , N , the restriction of Ti to ∂Ωi is a quasi-uniform triangulation (with

mesh parameter hi). Moreover, assume that ∂Ωi ∩ ΓD is either empty or has positive surface

measure. Then, for the choice Q = I ,

κ(P⊤F |Λ0
) ≤ C

α

α

(
max

i=1,...,N

Hi

hi

)
,

where α = maxx∈Ω α(x), α = minx∈Ω α(x), and C depends only on the mesh regularity

parameters of Assumptions 3.2 and 6.4.

Proof. Step 1: we show that the operator P⊤F and its classical FETI analogue P⊤FF

are spectrally equivalent on the subspace Λ0. Since P is a projector onto Λ0, we have

〈P⊤Fλ, λ〉 = 〈Fλ, λ〉 and 〈P⊤FFλ, λ〉 = 〈FFλ, λ〉 ∀λ ∈ Λ0.

From G = GR, range(R) = ker(S̃) = ker(S̃F) the fact that range(S̃) is spanned by the
vectors orthogonal to ker(S̃), we see that

Λ0 = ker(G⊤) = {λ ∈ U : B⊤λ ∈ range(S̃)}.

Hence, from the definitions of F and FF, the above properties, and Lemma 6.3, it follows that

〈P⊤Fλ, λ〉 = 〈S̃†B⊤λ, B⊤λ〉 ∼= 〈̃(SF)†B⊤λ, B⊤λ〉 = 〈P⊤FFλ, λ〉 ∀λ ∈ Λ0,

where the hidden constants only depend on the mesh regularity parameters of Assumption 3.2.
In other words, P⊤F ∼= P⊤FF on Λ0.

Step 2: due to Property (ii) in Section 6.1, hi
∼= hF

i . The assertion now follows directly
from Theorem 6.5 and the spectral equivalence of Step 1.

The preconditioned case. In a similar fashion to the above, we transfer the known
results on the condition number of the FETI system preconditioned with the scaled Dirichlet
preconditioner to our setting. For simplicity, we do this for a subdomain-wise constant
diffusion coefficient, where α(x) = αi for all x ∈ Ωi. However, all the available theoretical
results for non-resolved coefficients [19, 22, 23] can be transferred to BEM-based FETI; see
Remark 6.8 below. In particular, as the simplest of all generalizations, if we set ρi(xh) := αi

for all xh ∈ ∂Ωi ∩ Γ, then all the statements below hold as well with an additional factor of
maxNi=1 αi/αi.
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THEOREM 6.7. Let d = 3, let Assumption 3.2 and Assumption 6.4 hold, and assume addi-

tionally that ∂Ωi ∩ ΓD is either empty or contains at least an edge of the coarse triangulation

from Assumption 6.4. Moreover, suppose that α(x) = αi = const for x ∈ Ωi. Then, for the

choice Q = M−1
D , we have the condition number estimate

κ(PM−1
D P⊤F |Λ0

) ≤ C max
i=1,...,N

(1 + log(Hi/hi))
2,

where C depends only on the mesh regularity parameters of Assumptions 3.2 and 6.4. In

particular, C is independent of Hi, hi, the number of subdomains, and of the values αi.

Proof. In the first part of this proof, we follow the abstract, algebraic part of the classical
FETI analysis (see e.g., [30]), which can be carried out verbatim for our setting of BEM-based
FEM. Following the steps of the proofs of [19, Lemma 2.42, Lemma 2.43], we see that M−1

D

is positive definite on range(P⊤), which is isomorphic to the dual of Λ0. Therefore, to obtain
a condition number bound of the form κ(PM−1

D P⊤F |Λ0
) ≤ c2/c1, it suffices to show that

(6.1) c1〈MDλ, λ〉 ≤ 〈Fλ, λ〉 ≤ c2〈MDλ, λ〉 ∀λ ∈ Λ0,

where MD is the inverse of M−1
D |range(P⊤). For the choice Q = M−1

D , following the steps of
[30, Theorem 6.15] in a purely algebraic fashion, one obtains the lower bound with c1 = 1.
Similarly, by following the steps of [30, Section 6.3.3] or [19, Section 2.4.2.3 and Section 2.6]
in a purely algebraic fashion, one obtains the following result. Fix subspaces Y ⊥

i ⊆ Yi with
codimension dim(ker(S̃F

i )), e.g., by restricting a suitable mean value to zero if Ωi is floating,
and set Y :=

∏N
i=1 Yi. Then, for Q = M−1

D , an estimate of the form

(6.2) |B⊤
DBy|2

S̃
≤ ω|y|2

S̃
∀y ∈ Y ⊥

implies the upper bound in (6.1) with c2 = 4ω. For the classical FETI setting, it was shown in
[12] that

(6.3) |B⊤
DBy|2SF ≤ C max

i=1,...,N
(1 + log(Hi/h

F
i ))

2|y|2SF ∀y ∈ Y ⊥.

The constant C depends only on the mesh regularity parameters from Assumption 6.4 and from
the shape-regularity and quasi-uniformity constants of Ξi restricted to ∂Ωi, cf. [19]. Due to the
established spectral equivalence SF ∼= S̃ from Lemma 6.2 and since hi

∼= hF
i , estimate (6.3)

implies (6.2) and the upper bound in (6.1) with c2 ∼= ω ∼= maxi=1,...,N (1 + log(Hi/hi))
2.

REMARK 6.8.
1. In [12], a diagonal choice of Q is proposed and analyzed for classical FETI, leading to

the same condition number estimate as in Theorem 6.5. The entries of this diagonal
Q only include the values αi, hF

i
∼= hi, and Hi, i = 1, . . . , N . Because of the

established spectral equivalence SF ∼= S̃, the diagonal choice for Q in the setting of
BEM-based FETI leads to the same condition number estimate as in Theorem 6.7.

2. The assumption d = 3 in Theorem 6.6 and Theorem 6.7 can be dropped, if the
statement of Theorem 3.3 holds (provably) for d = 2.

3. The spectral equivalence relation of Lemma 6.2 allows the known condition number
estimates of Neumann-Neumann, FETI-DP, and BDDC methods from FEM to be
extended to BEM-based FEM in a similar fashion.

REMARK 6.9 (varying coefficients). Theorem 6.7 can be extended for coefficients that
vary inside each subdomain. If we drop the assumption α(x) = αi = constant for x ∈ Ωi,
then, thanks to Lemma 6.2, one can lift all the results in [19, Ch. 3] from FETI to BEM-
based FETI, for both the case Q = M−1

D as well as for suitable diagonal choices of Q [19,
Section 3.3.5.4]. For example, if the coefficient is only mildly varying or quasi-monotone
inside each subdomain, the condition number bound is essentially the same as in Theorem 6.7.
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FIG. 7.1. Left: Computational domain with a sample partitioning of N = 100 subdomains. Right: Detail of

polygonal mesh at right domain corner.

7. Numerical experiments. To demonstrate the behavior of the described algorithm, we
solve the Laplace equation with pure Dirichlet boundary conditions,

−∆u = 0 in Ω, u(x) = −
1

2π
log |x− x⋆| on ∂Ω,

on a two-dimensional domain Ω (Figure 7.1, left) which is discretized by an irregular polygonal
mesh. The source point x⋆ = (−1, 1)⊤ lies outside of Ω.

The polygonal mesh T is constructed by applying METIS to a standard triangular mesh
consisting of 524,288 triangles, resulting in a polygonal mesh with 99,970 elements, most
of which are unions of 5 or 6 triangles. A few of these elements are shown in the closeup in
Figure 7.1, right.

The domain decomposition {Ωi} is obtained by applying METIS a second time on top
of the mesh T . The result of this step is shown in Figure 7.1, left, for the case of N = 100
subdomains.

We use the Dirichlet preconditioner with multiplicity scaling and a suitable diagonal
matrix for Q as described in [12] for ease of implementation. The preconditioned equation

PM−1
D P⊤Fλ0 = PM−1

D g̃

is solved using a preconditioned Conjugate Gradient (PCG) iteration. In the following, we
give the number of PCG iterations required to achieve reduction of the initial residual by
a factor of 10−8 for varying numbers (N ) of subdomains. We also compare these results
to the non-preconditioned equation (5.11) solved by standard CG iteration. The estimated
condition numbers and iteration numbers for the non-preconditioned and the preconditioned
case, respectively, are shown in Figures 7.2 and 7.3. Additional data on these two cases can be
found in Tables 7.1 and 7.2, respectively.

We point out that the jagged nature of the plots in Figures 7.2 and 7.3 is due the fact that the
domain decompositions were individually created by METIS for varying N and therefore not
nested. The non-preconditioned case, Figure 7.2, shows a decay in the condition number which
roughly correlates to the theoretical estimate from Theorem 6.6, κ = O(H/h) = O(N−1/2).
The condition numbers for the preconditioned case in Figure 7.3 show no clear tendency,
which may be due to the problem size being too small. Most importantly, they stay uniformly
bounded, and therefore so do the iteration numbers. We have compared the condition and
iteration numbers to an analogous FETI method for a Courant FEM on the underlying triangular
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FIG. 7.2. Non-preconditioned FETI-type solver for the BEM-based FEM: estimated condition numbers and CG

iteration numbers as a function of N , the number of subdomains.

TABLE 7.1
Some results of the non-preconditioned solver. Columns: number of subdomains, total CPU time for solution,

averaged time for solution of local problems, number of iterations, residual error, number of Lagrange multipliers.

N total time avg. loc. time #iter error # Lagrange
2 24.503039 2.738385 56 0.000006 709
6 30.922103 0.559905 96 0.000006 2168

25 32.226731 0.077579 133 0.000005 5875
50 30.192864 0.031712 135 0.000006 8962

100 26.638113 0.013545 131 0.000005 13012
150 24.588265 0.008301 131 0.000005 16219
200 23.694787 0.005947 134 0.000005 19056
250 21.909531 0.004601 125 0.000005 21372
300 21.365941 0.003765 123 0.000005 23460
400 21.062826 0.002720 123 0.000005 27324
800 20.233496 0.001295 109 0.000005 39304

1200 20.503277 0.000848 98 0.000005 48813
1600 22.188883 0.000636 95 0.000005 56632
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FIG. 7.3. Preconditioned FETI-type solver for the BEM-based FEM, Dirichlet preconditioner: estimated

condition numbers and PCG iteration numbers as a function of N , the number of subdomains.

TABLE 7.2
Some results of the preconditioned solver. Columns: number of subdomains, total CPU time for solution,

averaged time for solution of local problems, number of iterations, residual error, number of Lagrange multipliers.

N total time avg. loc. time #iter error # Lagrange
2 22.9563 2.70074 14 6.45469e-06 709
6 21.7471 0.54795 21 6.39847e-06 2168

25 20.4929 0.0759496 29 4.77774e-06 5875
50 19.1048 0.0310428 30 5.90121e-06 8962

100 17.7017 0.013063 31 4.75217e-06 13012
150 17.5015 0.00799038 34 4.72264e-06 16219
200 17.4147 0.00573496 36 5.14293e-06 19056
250 16.0321 0.00440914 33 4.75428e-06 21372
300 16.1877 0.00360337 34 4.73872e-06 23460
400 16.1319 0.00263458 34 4.73785e-06 27324
800 17.6753 0.00125147 36 4.77933e-06 39304

1200 18.1828 0.000819669 32 4.82913e-06 48813
1600 20.9631 0.000613087 35 4.813e-06 56632
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mesh, and the numbers are comparable, indicating that the behavior of the condition number is
not particular to the BEM-based FEM.

We remark that, as in the standard FETI method, the smallest eigenvalues in the precon-
ditioned case are very close to 1 in all numerical experiments, and therefore Figure 7.3 can
equally be interpreted as a plot of the maximum eigenvalue.

8. Conclusion and outlook. We have applied a FETI-like solution scheme to the setting
of a BEM-based FEM and have shown that it results in a solver with performance comparable
to that of standard FETI solvers for FEM discretizations. Two different preconditioners for the
case of low and high variation in the diffusion coefficients, respectively, have likewise been
transferred to this setting. By proving a spectral equivalence for Schur complements on the
subdomain level, we succeeded in proving condition number estimates equivalent to those
known from the FETI literature.

The fast solver presented in this article is based directly on the classical one-level FETI
approach. Methods that were developed later, like the dual-primal FETI method (FETI-DP,
[5, 17]) or balancing domain decomposition by constraints (BDDC, [3, 14, 15]) could be
adapted in a similar fashion, and with the help of the spectral equivalences shown in Section 6,
we expect the analysis of these methods to transfer to the case of the BEM-based FEM in a
straightforward way.

Acknowledgments. This research was funded by the Austrian Science Fund (FWF):
W1214-N15, project DK4.

REFERENCES

[1] D. M. COPELAND, Boundary-element-based finite element methods for Helmholtz and Maxwell equations on

general polyhedral meshes, World Acad. Sci. Engrg. Techn., 3 (2009), pp. 863–876.
[2] D. M. COPELAND, U. LANGER, AND D. PUSCH, From the boundary element method to local Trefftz finite

element methods on polyhedral meshes, in Domain Decomposition Methods in Science and Engineering
XVIII, M. Bercovier, M. J. Gander, R. Kornhuber, and O. Widlund, eds., vol. 70 of Lecture Notes in
Computational Science and Engineering, Springer, Heidelberg 2009, pp. 315–322.

[3] C. R. DOHRMANN, A preconditioner for substructuring based on constrained energy minimization, SIAM J.
Sci. Comput., 25 (2003), pp. 246–258.
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