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FAST ALGORITHMS FOR SPECTRAL DIFFERENTIATION MATRICES∗

JARED L. AURENTZ†

Abstract. Recently Olver and Townsend presented a fast spectral method that relies on bases of ultraspherical

polynomials to give differentiation matrices that are almost banded. The almost-banded structure allowed them to

develop efficient algorithms for solving certain discretized systems in linear time. We show that one can also design

fast algorithms for standard spectral methods because the underlying matrices, though dense, have the same rank

structure as those of Olver and Townsend.
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1. Introduction. In [13] Olver and Townsend presented a fast spectral method for solving

linear differential equations using bases of ultraspherical polynomials, which has subsequently

been exploited in Chebfun [6] and ApproxFun [12]. The “fast” in these methods appears

to come from the fact that the discretized systems involve almost-banded matrices, making

it possible to solve the systems in linear time via structured QR factorizations.1,2 More

standard bases, such as Chebyshev bases, give dense matrices that appear to require more

expensive linear algebra. Here we show that, although standard spectral matrices are dense,

their underlying rank structure is mathematically equivalent to being almost-banded and the

systems of equations can still be solved in linear time.

2. A simple example. We present the main idea by means of a particular example,

namely, given a continuous function f defined on [−1, 1], find u such that

u′ + u = f, u(1) = 0.

As is well established in [13], this model serves as a prototype for a larger class of problems.

Our first task is to rewrite this equation in terms of coefficients of orthogonal polynomials. We

will do this in two ways. The first method will construct the matrices using the techniques

in [13]. The second will construct equivalent matrices that depend only on Chebyshev

coefficients and involve no conversions to other ultraspherical representations. When clarity

is needed, we subscript variables corresponding to the first method by “ultra” and variables

corresponding to the second method with “cheb”.

Our linear operator can be written as the sum of two basic operators: differentiation (D)

and identity (I). In the first method, the ultraspherical method of Olver and Townsend, D is

the matrix that maps the Chebyshev coefficients of u to the ultraspherical coefficients of u′.
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Let {ui}
∞
i=0

be the Chebyshev coefficients of u. The matrix Dultra is defined as
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
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Similarly, one can write down the matrix Iultra that takes Chebyshev coefficients to ultraspheri-

cal coefficients (also known as the conversion operator),

Iultrau =
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To account for the boundary condition, we need an additional functional for computing u(1).
For Chebyshev coefficients this takes the form of a simple inner product,

u(1) =
[

1 1 1 1 · · ·
]
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Combining all these pieces together, we get the following system of equations:

(2.1)
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Here the values {f̂i} are the ultraspherical coefficients of f computed by multiplying f by Iultra.

We will refer to this matrix as Lultra.

To facilitate our discussion, we focus on the nonzero pattern. Below is the almost-banded

pattern of the 10× 10 Lultra matrix,

(2.2)
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Before we start discussing equivalence, we need the matrices for the second method,

the more standard spectral method based on Chebyshev coefficients; see, e.g., [11]. The

matrices D and I now take the following forms:

Dcheb =















0 1 3 5 7 · · ·
4 8 12 16

6 10 14
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. . .
. . .















, Icheb =


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1
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



.

Notice how all the rows of Dcheb with even/odd indices are multiples of each other away from

the main diagonal. This hints at a special structure that can be used to describe Dcheb using

only O(n) parameters.

The entire system expressed as a single matrix has the following form:

(2.3)
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We will refer to this matrix as Lcheb.

Here we can see why using only Chebyshev coefficients looks expensive. The new system

is essentially dense in the upper-triangular part and appears to require O(n2) storage. Below

we illustrate the nonzero pattern of the 10× 10 Lcheb matrix,

(2.4)
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3. Rank-structured matrices. Now that we have our matrices, (2.1)–(2.2) and (2.3)–

(2.4) in hand, we can describe how these two have essentially the same rank structure. Rank-

structured matrices are quite prevalent in applied mathematics, and in the last few decades

considerable work has been done to develop efficient algorithms. The central idea is that even

dense matrices can be represented by very few parameters if certain submatrices have small

rank. Let us look more closely at Lultra. Below we have highlighted a rectangular submatrix
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whose lower-left corner intersects the main diagonal,
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Notice that the highlighted matrix has rank at most 3. This remains true for any submatrix

whose lower-left corner intersects the main diagonal,
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Now we draw a similar box on the Lcheb matrix,
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This submatrix too has rank at most 3! In fact, any submatrix whose lower-left corner intersects

the main diagonal will have rank at most 3. To see this, we decompose Lcheb into three parts

and highlight the same submatrix,
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Since the highlighted submatrix in each of the 3 parts has rank at most 1, the highlighted block

of Lcheb has rank at most 3.

This type of rank structure is a generalization of semiseparability.3 The study of rank-

structured matrices originates with Gantmacher and Kreı̆n [10]. For more recent developments,

see, for example, [4, 15].

4. Fast solutions via QR factorization. In [13] the discretized systems are solved using

QR factorizations. The authors use the almost-bandedness to show that both of the factors Q

and R in QR = Lultra have a special structure that makes it possible to compute Q and perform

the back solve in linear time. We now observe that it is not the almost-bandedness that matters,

but it is really the rank structure. This means that it is just as easy to develop a linear time

QR-based solver for the Lcheb system.

The details are a bit complicated and will be spelled out with numerical applications

in a future publication. Here we highlight the key points. The first thing to note is that

both Lultra and Lcheb are upper-Hessenberg. This implies that Qultra and Qcheb (QR = L) are

upper-Hessenberg. Consequently, they and their inverses can be represented by products of n

elementary 2× 2 matrices and applied to a vector in linear time.

3Applicable definitions include both sequentially-semiseparable [5] and quasiseparable [7].
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The R matrices are much more interesting. In general they are dense,

Q∗
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

























× × × × × × × × × · · ·
× × × × × × × ×

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
. . .



























,

but any submatrix whose lower-left corner intersects the diagonal has rank at most 4,
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





















.

One can explain the rank structure by recalling that Lultra is rank-structured and unitary

matrices preserve rank. Exactly the same reasoning can be applied to Lcheb with the same

conclusion.

The back substitution, in both methods, involves an upper-triangular matrix with a definite

rank structure. Olver and Townsend exploited this structure to develop a linear time algorithm

for performing a back solve with Rultra. Their algorithm is an extension of a similar method

that was first developed by Chandrasekaran and Gu [2]. The same technique can also be used

for Rcheb.

4.1. Conditioning. It should be noted that the simple form of the Chebyshev differentia-

tion matrices presented here is subject to the same ill-conditioning as other Chebyshev-based

spectral methods [1, 8]. In [13] the authors construct a structure-preserving preconditioner to

ensure that the ultraspherical-based systems are well conditioned. A similar technique can be

applied to the Chebyshev-based methods proposed in this note.

5. Other orthogonal families. Above, we considered a specific Chebyshev example.

We conclude this note by showing that orthogonal families more generally possess rank-

structured differentiation matrices. The matrices for these examples are derived from formulas

in [14].

The first example is the 10× 10 version of Lleg, the spectral discretization of u′ + u = f,
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with u(1) = 0, using Legendre coefficients,

Lleg =
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








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


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
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

.

Just as with Chebyshev bases, this submatrix has rank at most 3. A similar structure also

exists for trigonometric polynomials as illustrated by our second example. Below is the 9× 9
version of Lfour, the spectral discretization of u′ = f, u(0) = 0 with

∫

f = 0, using Fourier

coefficients,

Lfour =
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




















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Here the rank is at most 2. The low-rank structure can even be observed in spectral methods for

unbounded domains. Our last example is the 10×10 version of Llag, the spectral discretization

of u′ + u = f, u(0) = 0, using Laguerre coefficients,

Llag =
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
























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1 −1 −1 −1 −1 −1 −1
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.

Here the rank is again bounded by 2.

Conclusions. It has been shown that spectral differentiation matrices possess structure

that can be exploited to develop fast methods for a variety of orthogonal families. This

observation opens the door to new classes of spectral methods for solving ordinary and partial

differential equations.
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