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Abstract. In this paper we are concerned with the numerical solution of a diffusion equation in which the

time derivative is of non-integer order, i.e., in the interval (0, 1). An implicit numerical method is presented and its

unconditional stability and convergence are proved. Two numerical examples are provided to illustrate the obtained

theoretical results.
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1. Introduction. In the past decades, considerable attention has been devoted to the

extension of the classical diffusion equation

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ f(x, t)

to the fractional setting. This extension can be obtained in several different ways, depending

on the physical models we are interested in; see, for example, [18, 19, 22]. One can replace

the first-order derivative in time by a derivative of non-integer order α > 0 or the second-order

derivative in space by a derivative of arbitrary real order β > 1, or one can replace both

integer-order derivatives with non-integer ones. In each of these cases, we obtain a so-called

fractional diffusion equation.

Here we are interested in the first case, that is, the case where the first-order time derivative

is replaced by a derivative of real order α, and, as explained in [22], this generalisation may

be given in two different forms if we consider the two most popular definitions of fractional

derivative. We can obtain the time-fractional diffusion equation:

∂u(x, t)

∂t
=

RL∂1−α

∂t1−α

(
∂2u(x, t)

∂x2
+ f(x, t)

)
, t > 0, 0 < x < L,

where
RL∂α

∂tα is the fractional Riemann-Liouville derivative of arbitrary real order α, or the

following time-fractional diffusion equation (TFDE):

(1.1)
∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
+ f(x, t), t > 0, 0 < x < L,

where ∂α

∂tα is the fractional Caputo derivative of arbitrary real order α.

The Riemann-Liouville and the Caputo derivatives of order α of a function y(t) may be

defined as follows [6, 25]. The Riemann-Liouville derivative is given by:

RLDα := D⌈α⌉J⌈α⌉−α,
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with Jβ being the Riemann-Liouville integral operator,

Jβy(t) :=
1

Γ(β)

∫ t

0

(t− s)
β−1

y(s) ds, t > 0,

and D⌈α⌉ is the classical integer order derivative, where ⌈α⌉ is the smallest integer greater

than or equal to α. Analogously, ⌊α⌋ denotes the largest integer smaller than α.

The Caputo derivative is given by [6]

Dαy(t) := RLDα(y − T [y])(t), t > 0,

where T [y] is the Taylor polynomial of degree ⌊α⌋ for y centered at 0. The Caputo derivative

has the advantage of dealing with initial value problems in which the initial conditions are

given in terms of the field variables and their integer order derivatives, which is the case in

most physical processes [6]. That is the reason why the Caputo derivative is more frequently

used in applications, and therefore we choose to use this definition of fractional derivative in

this paper. We will only consider the case 0 < α < 1. In this case and because we are dealing

with a function of two variables, we have

∂αu(x, t)

∂tα
:=

RL∂α

∂tα
(u(x, t)− u(x, 0)).

Alternatively, we can also write [6]

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

(t− s)
−α ∂u(x, s)

∂s
ds.

These two generalisations of the diffusion equation have a physical meaning and are commonly

used to describe anomalous diffusion processes. Basically, the fractional derivative represents

a degree of memory in the diffusion material. If 0 < α < 1, then the time-fractional diffusion

equation corresponds to a sub-diffusive model, if 1 < α < 2, then to a super-diffusive model,

and if α = 1, then we recover the classical diffusion model, in which it is assumed that the

mean square displacement of the particles from the original starting site is linear in time. For

the interested reader, a detailed physical interpretation of the time-fractional diffusion equation

may be found in [11] and the references therein.

Concerning the numerical approximation to the solution of the time-fractional diffusion

equation, several methods have been developed: finite element methods [14, 27], meshless

collocation methods [12], collocation spectral methods [13], and finite difference methods;

see, for example, [3, 4, 5, 9, 15, 16, 17, 23, 28, 29, 30]. We refer the reader to the recently

published book [1] containing a survey on numerical methods for partial differential equations,

where the TFDE is included.

A further generalisation of the classical diffusion equation may be obtained by using the

time-fractional diffusion equation of distributed order (DODE):

(1.2)

∫ 1

0

c(α)
∂αu(x, t)

∂tα
dα =

∂2u(x, t)

∂x2
+ f(x, t), t > 0, 0 < x < L.

This kind of equation has been less discussed than the TFDE. For the purpose of generalisation

of (1.1), it is assumed that in (1.2) the function c(α) acting as a weight for the order of

differentiation is a continuous function such that [10, 21]

c(α) ≥ 0 and

∫ 1

0

c(α) dα = C > 0.
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While the fundamental solution for the Cauchy problem associated to (1.1) is interpreted

as a probability density of a self-similar non-Markovian stochastic process related to the

phenomenon of sub-diffusion (the variance grows sub-linearly in time), the fundamental

solution of (1.2) is still a probability density of a non-Markovian process that, however, is no

longer self-similar but exhibits a corresponding distribution of time-scales; see [22] for details.

In [2, 26], both time and space distributed order diffusion equations were analysed. In [24],

the diffusion equation of distributed order in time (between zero and one) was analysed for

Dirichlet, Neumann, and Cauchy boundary conditions. The physical interpretation as well as

some analytical aspects of the time-fractional diffusion equation of distributed order may also

be found in [10, 20, 21] and the references therein.

As far as we know, numerical methods for this type of equation have not been reported yet,

and these will be our concern in this paper. A first attempt to solve numerically a distributed-

order differential equation was provided in [7]. In that paper the authors developed a numerical

method for distributed-order linear equations of the form

(1.3)

∫ m

0

β(r)Dry(t)dr = f(t), 0 ≤ t ≤ T,

for some positive real m, where Dry(t) is the derivative of y(t) in the Caputo sense. They

used a quadrature rule to approximate the integral term in (1.3), reducing (1.3) to a multi-term

fractional ordinary differential equation, which could be solved with any available numerical

method for ordinary fractional differential equations. The authors of that paper have presented

several numerical examples in order to study the effects of the step sizes used in the quadrature

rule and the step sizes in the fractional initial value problem solver. As they explained, in

their approach, there were two sources for errors: the first one arises when the integral in

the distributed-order equation is approximated by a finite sum, depending on the chosen

quadrature rule, and the second one is due to the error related to the initial ordinary fractional

value problem solver. Here we will use a similar approach, which we describe in detail in the

next section. We, obviously, will have here another source for the error since we are dealing

with a distributed-order partial differential operator instead of an ordinary differential operator

as in [7]. We are interested in the numerical solution of (1.2) together with the initial condition

(1.4) u(x, 0) = g(x),

and the boundary conditions

(1.5) u(0, t) = u0, u(L, t) = uL,

where we assume that u0 and uL are constants, g(x), f(x, t), and the nonnegative function

c(α) are continuous, and the fractional derivative is given in the Caputo sense.

The paper is organised in the following way: in Section 2 we provide an unconditionally

stable and convergent numerical scheme for the approximation of the solution of (1.2), (1.4),

(1.5), and in Section 3 we prove convergence and stability of the method. Finally, in Section 4

we illustrate the performance of the method and the obtained theoretical results with some

numerical results obtained for examples whose analytical solutions are known. We end with

some conclusions and plans for further investigation.

2. A numerical method. In this section we present an implicit numerical method for

the approximation to the solution of (1.2). Existence and uniqueness of the solution will not

be addressed here (for theoretical aspects on this kind of problems, see [20, 21, 22]), and

throughout the paper we always assume that the solution of (1.2), (1.4), (1.5) exists and is
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unique. As explained before, we first approximate the integral in (1.2) with a finite sum by

using a quadrature rule and in this way obtain a multi-term equation (several orders for the time

derivative will appear). Then, we need to approximate the derivatives with respect to t and x,

and in order to do this, we must impose certain regularity assumptions on the solution u(x, t).
REMARK 2.1. Throughout the next two sections we assume that the solution of (1.2) with

initial condition (1.4) and boundary conditions (1.5) is of class C2 with respect to the time

variable t and is of class C4 with respect to the variable x, and we assume that the function

(2.1) H(α) = c(α)
∂αu(x, t)

∂tα
∈ C2([0, 1]).

As we will see, this is needed for the convergence analysis.

Let us then consider a partition of the interval [0, 1], the interval where the order of

the time derivative lies, into N subintervals, [βj−1, βj ], j = 1, . . . , N , of equal amplitude

h = 1/N . Defining the midpoints of each one of these subintervals by

αj =
βj−1 + βj

2
, j = 1, . . . , N,

we can use the midpoint rule to approximate the integral in (1.2) to obtain

(2.2)

∫ 1

0

c(α)
∂αu(x, t)

∂tα
dα = h

N∑

j=1

c(αj)
∂αju(x, t)

∂tαj
− h2

24
H ′′(ν), ν ∈ (0, 1),

where H is defined by (2.1). Neglecting the O(h2) in the above inequality, (1.2) may be

approximated by

(2.3) h

N∑

j=1

c(αj)
∂αju(x, t)

∂tαj
=

∂2u(x, t)

∂x2
+ f(x, t).

Next, we approximate the fractional derivatives
∂αju(x,t)

∂tαj and
∂2u(x,t)

∂x2 . In order to approximate

the spatial derivative, we consider a uniform spatial mesh on the interval [0, L], defined by

the grid points xi = i∆x, i = 0, 1, . . . ,K, where ∆x = L
K , and we approximate the spatial

derivative at x = xi by the second order finite difference:

(2.4)
∂2u(xi, t)

∂x2
=

u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

(∆x)
2 − (∆x)

2

12

∂4u

∂x4
(ξi, t),

with ξi ∈ (xi−1, xi+1).
For a fixed h, denoting by Ui(t) the approximated value for u(xi, t), substituting (2.2)

and (2.4), and neglecting the O
(
(∆x)

2
)

term in (2.3), we obtain the semi-discretised scheme

(2.5) h

N∑

j=1

c(αj)
∂αjUi(t)

∂tαj
=

Ui+1(t)− 2Ui(t) + Ui−1(t)

(∆x)
2 +f(xi, t), i = 1, . . . ,K−1.

Note that from the boundary conditions (1.5), we have that

(2.6) U0(t) = u0 and UK(t) = uL,

and from the initial condition (1.4) that

(2.7) Ui(0) = g(xi), i = 1, . . . ,K − 1,
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holds. In order to approximate the fractional derivatives
∂αju(x,t)

∂tαj , we define the time grid

points tl = l∆t, l = 0, 1, . . ., and use the backward finite difference formula provided by

Diethelm (see [8]):

∂αjUi(tl)

∂tαj
=

(∆t)
−αj

Γ(2− αj)

l∑

m=0

a
(αj)
m,l (Ui (tl−m)− Ui(0))

+ cαj
(∆t)

2−αj
∂2u

∂t2
(xi, ηl), ηl ∈ (0, tl),

(2.8)

where the constants cαj
do not depend on ∆t and the coefficients a

(αj)
m,l are given by

(2.9) a
(αj)
m,l =





1, m = 0,

(m+ 1)
1−αj − 2m1−αj + (m− 1)

1−αj , 0 < m < l,

(1− αj)l
−αj − l1−αj + (l − 1)

1−αj , m = l.

Substituting in (2.5) and denoting U l
i ≈ u(xi, tl), we obtain the finite difference scheme:

h
N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=0

a
(αj)
m,l

(
U l−m
i − U0

i

)

=
U l
i+1 − 2U l

i + U l
i−1

(∆x)
2 + f(xi, tl), i = 1, . . . ,K − 1, l = 1, 2, . . . .

(2.10)

Hence, in order to obtain an approximation to the solution of (1.2) subject to the initial condition

(1.4) and boundary conditions (1.5), we need to solve the linear systems of equations (2.10)

taking into account (2.6) and (2.7):

U l
0 = u0, U

l
K = uL, l = 1, 2, . . . ,

U0
i = g(xi), i = 1, . . . ,K − 1.

The numerical scheme may also be written equivalently in the following matrix form:

(2.11) AU l =

l−1∑

m=1

BmU l−m + C, l = 1, 2, . . . ,

where

U l =




U l
1

U l
2
...

U l
K−1


 ,

A and Bm are the diagonal matrices (we only write the non-zero entries):

A =




Λ(h,∆t) + 2
(∆x)2

− 1
(∆x)2

− 1
(∆x)2

. . .
. . .

. . .
. . . − 1

(∆x)2

− 1
(∆x)2

Λ(h,∆t) + 2
(∆x)2



,
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Bm =




h
N∑

j=1

c(αj)
(∆t)−αj

Γ(2 − αj)
a
(αj)

m,l

h

N∑

j=1

c(αj)
(∆t)−αj

Γ(2 − αj)
a
(αj)

m,l

. . .

h
N∑

j=1

c(αj)
(∆t)−αj

Γ(2 − αj)
a
(αj)

m,l




,

C =




h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑l
m=0 a

(αj)
m,l g(x1) + f(x1, tl) +

u0

(∆x)2

h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑l
m=0 a

(αj)
m,l g(x2) + f(x2, tl)

...

h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑l
m=0 a

(αj)
m,l g(xK−2) + f(xK−2, tl)

h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑l
m=0 a

(αj)
m,l g(xK−1) + f(xK−1, tl) +

uL

(∆x)2




,

and Λ(h,∆t) = h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)
> 0 since the function c is nonnegative. As it can

easily been seen, A is a strictly diagonal dominant matrix, and therefore A−1 exists, and we

can conclude that for each l = 1, 2, . . . , equation (2.11) is solvable.

3. Stability and convergence of the numerical scheme. In this section we analyse

stability and convergence of the implicit numerical scheme presented in the previous section.

Our main results here are Theorems 3.3 and 3.6. Define

L1

(
U l
i

)
= h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)
U l
i −

U l
i+1 − 2U l

i + U l
i−1

(∆x)
2 ,

and

L2

(
U l−1
i

)
= −h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=1

a
(αj)
m,l U

l−m
i

+ h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=0

a
(αj)
m,l U

0
i .

It can be seen easily that the scheme (2.10) can be rewritten as (for i = 1, 2, . . . ,K − 1)

(3.1) L1

(
U l
i

)
= L2

(
U l−1
i

)
+ f(xi, tl).

REMARK 3.1. Note that this is not a two-term recurrence relation as it happens for

the classical diffusion equation case, where a relation between the time level tl and tl−1 is

established. Here, this recurrence relation is established between a time level tl and all the

previous time levels t0, . . . , tl−1.

In order to prove that the scheme is unconditionally stable and convergent we will need

the following auxiliary result:
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LEMMA 3.2. The coefficients a
(αj)
m,l , defined by (2.9) satisfy the following conditions:

a
(αj)
m,l < 0, m = 1, 2, . . . , l − 1,

l−1∑

m=0

a
(αj)
m,l > 0, l = 1, 2, . . . .

Proof. Let us prove that a
(αj)
m,l < 0, m = 1, 2, . . . , l − 1. For 1 < m < l, the coefficients

a
(αj)
m,l are given by

a
(αj)
m,l = (m+ 1)

1−αj − 2m1−αj + (m− 1)
1−αj .

Therefore applying the mean value theorem to the function g(x) = x1−αj , 0 < αj < 1, we

obtain

a
(αj)
m,l =

(
(m+ 1)

1−αj −m1−αj

)
+
(
(m− 1)

1−αj −m1−αj

)

= (1− αj)θ
−αj

1 − (1− αj)θ
−αj

2 , θ1 ∈]m,m+ 1[, θ2 ∈]m− 1,m[

= (1− αj)
(
θ
−αj

1 − θ
−αj

2

)
.

(3.2)

Using the fact that αj ∈]0, 1[, j = 1, . . . , N, and θ1 > θ2 (which implies θ
−αj

1 < θ
−αj

2

and θ
−αj

1 − θ
−αj

2 < 0), from (3.2) it follows that a
(αj)
m,l < 0, m = 1, 2, . . . , l − 1.

With respect to the second inequality, note that

l−1∑

m=0

a
(αj)
m,l = l1−αj − (l − 1)

1−αj , l = 1, 2, . . . ,

and therefore the result is proved.

3.1. Stability analysis. Our first main result, concerning the stability of the numerical

scheme, is presented in the following theorem.

THEOREM 3.3. The implicit numerical scheme (2.10) is unconditionally stable.

Proof. We assume that the initial data has error ε0i . Let g̃0i = g(xi)+ε0i , i = 1, . . . ,K−1,

U l
i and Ũ l

i (i = 1, . . . ,K − 1) be the solutions of (2.10) corresponding to the initial data g(xi)

and g̃0i , respectively. Then, the error εli = U l
i − Ũ l

i satisfies

L1

(
εli
)
= L2

(
εl−1
i

)
, l = 1, 2, . . . , i = 1, 2, . . . ,K − 1.

Let El = [εl1 ε
l
2 . . . εlK−1]

T
, for l = 0, 1, . . . . In order to prove stability of the proposed

method, we must prove that

‖El‖∞ ≤ ‖E0‖∞, l = 1, 2, . . . .(3.3)

We will verify (3.3) by mathematical induction. For l = 1, let p ∈ N such that

|ε1p| = max1≤i≤K−1 |ε1i | = ‖E1‖∞.
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Let Λ(h,∆t) = h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)
. Since the function c is nonnegative, then

Λ(h,∆t) > 0, and we have

Λ(h,∆t)‖E1‖∞ = Λ(h,∆t)|ε1p| = Λ(h,∆t)|ε1p|+
2|ε1p| − 2|ε1p|

∆x2

≤ Λ(h,∆t)|ε1p|+
2|ε1p| − |ε1p−1| − |ε1p+1|

∆x2

≤
∣∣∣∣∣Λ(h,∆t)ε1p −

ε1p−1 − 2ε1p + ε1p+1

∆x2

∣∣∣∣∣

= |L1(ε
1
p)| = |L2(ε

0
p)| = |Λ(h,∆t)ε0p|

= Λ(h,∆t)|ε0p| ≤ Λ(h,∆t)‖E0‖∞.

From the inequality above it follows that ‖E1‖∞ ≤ ‖E0‖∞.

Suppose that ‖Ej‖∞ ≤ ‖E0‖∞, for j = 1, 2, . . . , l − 1, and let p ∈ N be such that

|εlp| = max1≤i≤K−1 |εli| = ‖El‖∞. Similarly to the case l = 1, using the induction argument

and taking into account Lemma 3.2, we have that

Λ(h,∆t)‖El‖∞ ≤
∣∣∣∣∣Λ(h,∆t)εlp −

εlp−1 − 2εlp + ε1p+1

∆x2

∣∣∣∣∣ = |L1(ε
l
p)| = |L2(ε

l−1
p )|

=

∣∣∣∣∣∣
−h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=1

a
(αj)
m,l ε

l−m
p + h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=0

a
(αj)
m,l ε

0
p

∣∣∣∣∣∣

=

∣∣∣∣∣∣
h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

(
l−1∑

m=1

(
−a

(αj)
m,l

)
εl−m
p +

(
l−1∑

m=1

a
(αj)
m,l + 1

)
ε0p

)∣∣∣∣∣∣

≤ h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

(
l−1∑

m=1

(
−a

(αj)
m,l

) ∣∣εl−m
p

∣∣+
(

l−1∑

m=1

a
(αj)
m,l + 1

)
∣∣ε0p
∣∣
)

≤ h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

(
l−1∑

m=1

(
−a

(αj)
m,l

)∥∥E0
∥∥
∞

+

(
l−1∑

m=1

a
(αj)
m,l + 1

)
∥∥E0

∥∥
∞

)

= h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

∥∥E0
∥∥
∞

= Λ(h,∆t)‖E0‖∞,

and then it follows that ‖El‖∞ ≤ ‖E0‖∞, l = 1, 2, . . . .

3.2. Convergence analysis. Let us define the error at each point of the mesh (xi, tl) by

eli = u(xi, tl)− U l
i , l = 1, 2, . . . , i = 1, . . . ,K − 1,

where u(xi, tl) is the exact solution of (1.2) with the initial condition (1.4) and boundary con-

ditions (1.5), and U l
i is the approximate solution of u(xi, tl) obtained by the numerical scheme

(2.10). Define el =
[
el1, e

l
2, . . . , e

l
K−1

]
. From (1.4) and (2.7) it follows that e0 = [0, 0, . . . , 0].
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From (2.2), (2.4), and (2.8) it follows that the solution of equation (1.2) at (x, t) = (xi, tl)
satisfies

h

N∑

j=1

(
c(αj)

(∆t)
−αj

Γ(2− αj)

l∑

m=0

a
(αj)
m,l (u(xi, tl−m)− u(xi, 0))

+ cαj
(∆t)

2−αj
∂2u

∂t2
(xi, ηl)

)
+

h2

24
H ′′(ν)

=
u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

(∆x)
2 − (∆x)

2

12

∂4u

∂x4
(ξi, tl) + f(xi, tl),

(3.4)

where H is the function defined by (2.1), ξi ∈]xi−1, xi+1[, ηl ∈]0, tl[, and ν ∈]0, 1[. We can

rewrite (3.4) as

h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)
u(xi, tl)−

u(xi+1, tl)− 2u(xi, tl) + u(xi−1, tl)

(∆x)
2

= −h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=1

a
(αj)
m,l u(xi, tl−m)

+ h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=0

a
(αj)
m,l u(xi, t0)−

(∆x)
2

12

∂4u

∂x4
(ξi, tl)

− h
N∑

j=1

c(αj)cαj
(∆t)

2−αj
∂2u

∂t2
(xi, ηl)−

h2

24
H ′′(ν) + f(xi, tl).

(3.5)

Therefore, from (3.5) and using the definition of L1 and L2, the solution of equation (1.2) at

(x, t) = (xi, tl) satisfies

L1 (u(xi, tl)) = L2 (u(xi, tl)) + f(xi, tl)−
(∆x)

2

12

∂4u

∂x4
(ξi, tl)

− h

N∑

j=1

c(αj)cαj
(∆t)

2−αj
∂2u

∂t2
(xi, ηl)−

h2

24
H ′′(ν).

(3.6)

Based on (3.1) and (3.6) we have that the errors eli, l = 1, 2, . . . , i = 1, . . . ,K − 1, satisfy
{
e0i = 0 i = 1, 2, . . . ,K − 1,

L1(e
l+1
i ) = L2(e

l
i) +Rl+1

i l = 0, 1, . . . , i = 1, 2, . . . ,K − 1,

where

Rl+1
i = − (∆x)

2

12

∂4u

∂x4
(ξi, tl)− h

N∑

j=1

c(αj)cαj
(∆t)

2−αj
∂2u

∂t2
(xi, ηl)−

h2

24
H ′′(ν)

l = 0, 1, . . . , i = 1, . . . ,K − 1.

Define Rl+1 = [Rl+1
1 , Rl+1

2 , . . . Rl+1
K−1], l = 0, 1, . . . .

LEMMA 3.4. There exists a positive constant C1 > 0 that does not depend on ∆x, ∆t
and h such that

‖Rl+1‖∞ ≤ C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)
, l = 0, 1, 2, . . . .(3.7)
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Proof. Using the regularity assumptions on the solution of equation (1.2) and the function

H , and because the function c(α) is positive, we have

|Rl+1
i | ≤ M1(∆x)

2
+M2(∆t)

2−αNh

N∑

j=1

c(αj) +M3h
2

≤ M1(∆x)
2
+M2(∆t)

2−αNhN max
α∈[0,1]

c(α) +M3h
2

= M1(∆x)
2
+M4∆t2−αN +M3h

2,

(3.8)

where M1 = 1
12 maxx∈[0,L]

∣∣∣∂
4u

∂x4 (x, tl)
∣∣∣, M2 = c̄maxt∈[0,tl]

∣∣∣∂
2u

∂t2 (xi, t)
∣∣∣, c̄ = maxj

{
cαj

}
,

M3 = 1
24 maxα∈[0,1] |H ′′(α)|, and M4 = M2 maxα∈[0,1] c(α). From (3.8) we obtain

‖Rl+1‖∞ ≤ C1

(
∆x)2 + h2 + (∆t)

2−αN

)
, l = 1, 2, . . . ,(3.9)

with C1 = max{M1, M2, M3, M4}. Note that αN = 1 + h
2 . Then, from (3.9), inequal-

ity (3.7) follows.

LEMMA 3.5. There exists a positive constant C1 > 0 not depending on ∆x, ∆t, and h
such that

‖e
l‖∞ ≤

C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑l−1
m=0 a

(αj)
m,l

, l = 1, 2, . . . .(3.10)

Proof. The proof is similar to the proof of Theorem 3.3. We use mathematical induction

to prove (3.10). For l = 1, let ‖e1‖∞ = max1≤i≤K−1 |e1i | = |e1p|. Then we have

Λ(h,∆t)‖e1‖∞ = Λ(h,∆t)|e1p| = Λ(h,∆t)|e1p|+
2|e1p| − 2|e1p|

∆x2

≤ |L1(e
1
p)| = |L2(e

0
p) +R1

p| = |Λ(h,∆t)e0p +R1
p|

≤ Λ(h,∆t) |ε0p|︸︷︷︸
=0

+|R1
p| ≤ ‖R1‖∞.

From the inequality above it follows that

‖e1‖∞ ≤ ‖R1‖∞
Λ(h,∆t)

·

Therefore, from Lemma 3.4 it follows that

‖e1‖∞ ≤
C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

Λ(h,∆t)
=

C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑0
m=0 a

(αj)
m,1

·

Suppose that

‖ek‖ ≤
C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑k−1
m=0 a

(αj)
m,k

, k = 1, 2, . . . , l − 1,
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and let ‖el‖∞ = |elp|. Then

Λ(h,∆t)‖el‖∞ ≤
∣∣∣∣∣Λ(h,∆t)elp −

elp−1 − 2elp + elp+1

∆x2

∣∣∣∣∣ = |L1(e
l
p)| = |L2(e

l−1
p ) +Rl

p|

=

∣∣∣∣∣∣
−h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=1

a
(αj)
m,l e

l−m
p + h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l∑

m=0

a
(αj)
m,l e

0
p +Rl

p

∣∣∣∣∣∣

=

∣∣∣∣∣∣
−h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=1

a
(αj)
m,l e

l−m
p +Rl

p

∣∣∣∣∣∣

≤ h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=1

(−a
(αj)
m,l )

∣∣el−m
p

∣∣+
∥∥∥Rl

∥∥∥
∞

≤ h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=1

(−a
(αj)
m,l )

C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−m−1∑

s=0

a
(αj)
s,l−m

+ C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)
.

Because 0 <
∑l−m−1

s=0 a
(αj)
s,l−m = 1 +

∑l−m−1
s=1 a

(αj)
s,l−m and since the coefficients a

(αj)
m,l < 0,

m = 1, 2, . . . , l − 1, and hence

l−m−1∑

s=0

a
(αj)
s,l−m >

l−1∑

s=0

a
(αj)
s,l ,

we have

Λ(h,∆t)‖el‖∞ ≤ h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=1

(−a
(αj)
m,l )

C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h
∑N

j=1 c(αj)
(∆t)−αj

Γ(2−αj)

∑l−1
s=0 a

(αj)
s,l

+ C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

=
C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=0

a
(αj)
m,l


h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=1

(−a
(αj)
m,l )

+h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=0

a
(αj)
m,l




=
C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h
N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=0

a
(αj)
m,l

Λ(h,∆t).

Thus, the proof is complete.
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Finally, we present the main result in this subsection.

THEOREM 3.6. If the solution of (1.2) is of class C2 with respect to the time variable t, is

of class C4 with respect to the variable x, and the function H(α) = c(α)∂
αu(x,t)
∂tα ∈ C2([0, 1]),

then there exists a positive constant C independent of h, ∆x, and ∆t such that

(3.11) ‖e
l‖∞ ≤ C

(
(∆x)

2
+ (∆t)

1+h
2 + h2

)
.

Proof. From Lemma 3.2 we have

l−1∑

m=0

a
(αj)
m,l = l1−αj − (l − 1)

1−αj .

On the other hand,

lim
l→∞

l−αj

l1−αj − (l − 1)
1−αj

= lim
l→∞

l−1

1−
(
l−1
l

)1−αj
= lim

l→∞

1

1− αj

(
1− 1

l

)αj

=
1

1− αj
.

Therefore, there exist a constant C2, independent of h, ∆x, and ∆t such that

C1

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)

l−1∑

m=0

a
(αj)
m,l

≤
C1C2

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h

N∑

j=1

c(αj)
(∆t)

−αj

Γ(2− αj)
l−αj

=
C1C2

(
(∆x)

2
+ h2 + (∆t)

1+h
2

)

h

N∑

j=1

c(αj)
(l∆t)

−αj

Γ(2− αj)

.

Since c(α) is a continuous function and l∆t is finite, we obtain

h
N∑

j=1

c(αj)
(l∆t)

−αj

Γ(2− αj)
≥ C3Nh min

α∈[0,1]

(
c(α)

Γ(2− α)

)
= C3L min

α∈[0,1]

(
c(α)

Γ(2− α)

)
.

Taking into account Lemma 3.5 we can then conclude that there must exist a constant C
independent of h, ∆x, and ∆t such that (3.11) holds.

4. Numerical results. In this section we present some numerical results. In order to

show the performance of the proposed algorithm we consider the following two examples:

EXAMPLE 4.1.

∫ 1

0

Γ(3− α)
∂αu(x, t)

∂tα
dα =

∂2u(x, t)

∂x2
+ 2t2 +

2(t− 1)t(2− x)x

ln t
,

0 < t < 1, 0 < x < 2,

u(x, 0) = 0,

u(0, t) = u(2, t) = 0.
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FIG. 4.1. Exact (dashed line) and approximate (solid line) solutions obtained with ∆t = 0.015625 and

h = ∆x = 0.125. Top: Example 4.1. Bottom: Example 4.2.

EXAMPLE 4.2.

∫ 1

0

Γ(
5

2
− α)

∂αu(x, t)

∂tα
dα

=
∂2u(x, t)

∂x2
+

√
t(x− 1)

2

4 log(t)

(
3
√
π(t− 1)(x− 1)

2
x2 − 8t(5x(3x− 2) + 1) log(t)

)
,

0 < t < 1, 0 < x < 1,

u(x, 0) = 0,

u(0, t) = u(1, t) = 0.

For both examples, analytical solutions are known and are given by u(x, t) = t2x(2− x) and

u(x, t) = x2(1− x)
4
t3/2, respectively. In order to obtain approximate solutions of the above

examples, we use the proposed method (2.10) for several step sizes h, ∆x, and ∆t.

In Figure 4.1 we present a comparison of the exact and numerical solutions for the

Examples 4.1 and 4.2 at several points t ∈ (0, 1) of the mesh. In both cases, we can see that

the numerical solutions are in good agreement with the exact solutions.

In Figures 4.2 and 4.3 we compare the absolute errors, at the points (x, 0.25) and (x, 0.75)
obtained for several meshes. These figures illustrate the convergence of the algorithm (2.10)

applied to Example 4.1 and Example 4.2.

In Tables 4.1 and 4.2 we list the maximum of the errors

‖E‖ = max
1≤i≤K−1,l=1,2,...

∣∣U l
i − u(xi, tl)

∣∣ ,
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FIG. 4.2. Example 4.1: Pointwise absolute error at the points (x, 0.25), x ∈ [0, 2] (top) and (x, 0.75),
x ∈ [0, 2] (bottom), obtained by the algorithm (2.10) with several meshes (Mesh 1:∆x = h = 0.25,∆t = 0.0625
Mesh 2:∆x = h = 0.125,∆t = 0.015625 and Mesh 3:∆x = h = 0.0625,∆t = 0.00390625).

TABLE 4.1

Example 4.1: Maximum of errors and experimental convergence orders.

∆t h = ∆x ‖E‖ px = ph pt

0.25 0.5 2.39 · 10−2 - -

0.0625 0.25 4.66 · 10−3 2.36 1.18

0.015625 0.125 9.10 · 10−4 2.36 1.18

0.00390625 0.0625 1.84 · 10−4 2.30 1.15

for several values of h, ∆x, and ∆t and the experimental spatial, temporal, and numerical

integration convergence orders that we denote by px, pt, and ph, respectively. The results of

Tables 4.1 and 4.2 indicate that the experimental order of convergence with respect to the time

variable is approximately 1 and the spacial and numerical integration order is approximately 2,

confirming the theoretical result (3.11) of Theorem 3.6.
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FIG. 4.3. Example 4.2: Pointwise absolute error at the points (x, 0.25), x ∈ [0, 1] (top) and (x, 0.75),
x ∈ [0, 1] (bottom), obtained by the algorithm (2.10) with several meshes (Mesh 1:∆x = h = 0.125,
∆t = 0.015625, Mesh 2:∆x = h = 0.0625,∆t = 0.00390625 and Mesh 3:∆x = h = 0.03125,
∆t = 0.000976563).

TABLE 4.2

Example 4.2: Maximum of errors and experimental convergence orders.

∆t h = ∆x ‖E‖ px = ph pt

0.25 0.5 8.40 · 10−3 - -

0.0625 0.25 2.45 · 10−3 1.78 0.89

0.015625 0.125 6.36 · 10−4 1.95 0.97

0.00390625 0.0625 1.62 · 10−4 1.98 0.99

REMARK 4.3. From Table 4.2, it can be seen that the method presented here yields

convergence of order of pt ∼ 1 in time and of px = ph ∼ 2 in space and numerical integration,

which is in agreement with Theorem 3.6. Although the regularity assumptions in Theorem 3.6

are not satisfied, still the method performs well. Actually, in Example 4.2, the solution u(x, t)
is not in C2([0, 1]) with respect to the time variable t as the solution is not a twice continuously

differentiable function at t = 0.



ETNA
Kent State University

http://etna.math.kent.edu

304 N. FORD, M. L. MORGADO, AND M. REBELO

5. Conclusions. In this work, an implicit difference method for the spatially one-dimen-

sional diffusion equation with distributed-order of derivative in time has been presented, and

its unconditional stability and convergence were proved. As far as we know, this is the first

attempt to solve this kind of equation numerically. Some numerical examples are considered

in order to illustrate the performance of the method. In the future, we intend to explore other

approaches to the approximation of the time derivatives since it will be convenient to use

approximations of higher order and ones that are independent of the order of the derivatives and

in the discretization of the integral term as well as in the approximation of the space derivative.

We also intend to use this method for problems with higher spacial dimension, which is a

straightforward extension in view of potential applications. Finally, for further investigation,

we also intend to analyse the super-diffusive case, i.e., where the order of the time-derivative is

distributed over the interval [0, 2]. Note that in this case, the approximation (2.8) is no longer

appropriate since if αj ∈ (0, 2) because then the order of convergence of this approximation

may become extremely low.
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