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ROUNDOFF ERROR ANALYSIS OF THE CHOLESKYQR2 ALGORITHM∗

YUSAKU YAMAMOTO†, YUJI NAKATSUKASA‡, YUKA YANAGISAWA§, AND TAKESHI FUKAYA¶

Abstract. We consider the QR decomposition of an m × n matrix X with full column rank, where m ≥ n.
Among the many algorithms available, the Cholesky QR algorithm is ideal from the viewpoint of high performance
computing since it consists entirely of standard level 3 BLAS operations with large matrix sizes, and requires only one
reduce and broadcast in parallel environments. Unfortunately, it is well-known that the algorithm is not numerically
stable and the deviation from orthogonality of the computed Q factor is of order O((κ2(X))2u), where κ2(X) is
the 2-norm condition number of X and u is the unit roundoff. In this paper, we show that if the condition number
of X is not too large, we can greatly improve the stability by iterating the Cholesky QR algorithm twice. More
specifically, if κ2(X) is at most O(u−

1
2 ), both the residual and deviation from orthogonality are shown to be of

order O(u). Numerical results support our theoretical analysis.
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1. Introduction. Let X ∈ Rm×n be an m by n matrix with m ≥ n of full column rank.
We consider the computation of its QR decomposition, X = QR, where Q ∈ Rm×n has
orthonormal columns and R ∈ Rn×n is upper triangular. This is one of the most fundamental
matrix decompositions and is used in various scientific computations. Examples include linear
least squares, preprocessing for the singular value decomposition of a rectangular matrix [10],
and orthogonalization of vectors arising in block Krylov methods [1, 17] or electronic structure
calculations [3, 22]. Frequently in applications, the matrix size is very large, so an algorithm
suited for modern high performance computers is desired.

One important feature of modern high performance architectures is that communication
is much slower than arithmetic. Here, communication refers to both data transfer between
processors or nodes, and data movement between memory hierarchies. Thus, it is essential for
higher performance to minimize the frequency and duration of these communications [2]. To
minimize interprocessor communications, the algorithm must have a large grain parallelism.
To minimize data movement between memory hierarchies, it is effective to reorganize the
algorithm to use level 3 BLAS operations as much as possible [10]. Of course, the benefit of
using level 3 BLAS operations increases as the size of matrices becomes larger.

Conventionally, three major algorithms have been used to compute the QR decomposition:
the Householder QR algorithm, the classical Gram-Schmidt (CGS) algorithm, and the modified
Gram-Schmidt (MGS) algorithm. The Householder QR algorithm is widely used due to its
excellent numerical stability [11]. MGS, which is less stable, is often preferred when the Q
factor is needed explicitly, because it requires only half as much work as the Householder
QR in that case. When the matrix A is well conditioned, CGS is also sometimes used since it
provides more parallelism. Note that for matrices with 2-norm condition number κ2(X) at
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most O(u−1), where u is the unit roundoff, repeating CGS or MGS twice leads to algorithms
that are as stable as Householder QR [9]. They are known as CGS2 and MGS2, respectively.

For each of these algorithms, variants that can better exploit modern high performance
architectures have been developed. There are block versions and recursive versions of House-
holder QR [6, 18], MGS [13], and CGS [12] that can perform most of the computations in the
form of level 3 BLAS. There is also a variant of Householder QR called the tall-and-skinny
QR (TSQR) [5], which has large grain parallelism and requires only one reduce and broadcast
in a distributed environment.

While these variants have been quite successful, they are not completely satisfactory from
the viewpoint of high performance computing. In the block and recursive versions mentioned
above, the sizes of matrices appearing in the level 3 BLAS are generally smaller than that of
X and become even smaller as the level goes down in the case of recursive algorithms. For the
TSQR algorithm, though only one reduce is required throughout the algorithm, the reduction
operation is a non-standard one, which corresponds to computing the QR decomposition of a
2n×n matrix formed by concatenating two upper triangular matrices [5]. Thus each reduction
step requires O(n3) work and this tends to become a bottleneck in parallel environments [7].
In addition, the TSQR algorithm requires non-standard level 3 BLAS operations such as
multiplication of two triangular matrices [5], for which no optimized routines are available on
most machines.

There is another algorithm for the QR decomposition, namely the Cholesky QR algorithm.
In this algorithm, one first forms the Gram matrix A = X>X , computes its Cholesky
factorization A = R>R, and then finds the Q factor by Q = XR−1. This algorithm is ideal
from the viewpoint of high performance computing because (1) its computational cost is 2mn2

(in the case where m� n), which is equivalent to the cost of CGS and MGS and half that of
Householder QR, (2) it consists entirely of standard level 3 BLAS operations, (3) the first and
third steps are highly parallel large size level 3 BLAS operations in which two of the three
matrices are of size m × n, (4) the second step, which is the only sequential part, requires
only O(n3) work as opposed to the O(mn2) work in the first and the third steps, and (5) it
requires only one reduce and one broadcast if X is partitioned horizontally. Unfortunately,
it is well-known that Cholesky QR is not stable. In fact, deviation from orthogonality of the
Q factor computed by Cholesky QR is proportional to κ2(X)2 [19]. Accordingly, standard
textbooks like [21] describe the method as “quite unstable and is to be avoided unless we know
a priori that R is well conditioned”.

In this paper, we show that the Cholesky QR algorithm can be applied to matrices with
a large condition number to give a stable QR factorization if it is repeated twice. More
specifically, we show that if κ2(X) is at most O(u−

1
2 ), then the Q and R factors obtained

by applying Cholesky QR twice satisfy ‖Q>Q − I‖F = O(u) and ‖X − QR‖F = O(u).
Furthermore, we give the coefficients of u in these bounds explicitly as simple low-degree
polynomials in m and n. In the following, we call this method CholeskyQR2. Of course,
the arithmetic cost of CholeskyQR2 is twice that of Cholesky QR, CGS and MGS, but it is
equivalent to the cost of Householder QR, CGS2, and MGS2. Given the advantages stated
above, the increase in the computational work might be more than compensated in some cases.
Hence, for matrices with κ2(X) ∼ O(u−

1
2 ), CholeskyQR2 can be the method of choice in

terms of both numerical stability and efficiency on high performance architectures.
Examining the numerical stability of CholeskyQR2 is important because some experimen-

tal results suggest it can have very attractive parallel performance. Demmel et al. [5] report the
performance of various QR decomposition algorithms, including Cholesky QR (not iterated
twice), TSQR, CGS, and conventional Householder QR, on a Pentium III cluster with up to 64
processors and an IBM BlueGene/L with up to 256 processors. They report that on the former
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machine, Cholesky QR was more than 6 times faster than TSQR for 1 to 64 processors, while
on the latter, Cholesky QR was more than 3 times faster than TSQR for up to 256 processors.
Other algorithms were consistently slower than these two. This suggests that CholeskyQR2
would be 1.5 to 3 times faster than TSQR on these machines. In addition, a recent report by the
authors [8] compared the performance of CholeskyQR2, TSQR, and conventional Householder
QR on the K computer using up to 16384 nodes. In that experiment, the speedup achieved by
CholeskyQR2 over TSQR grew with the number of nodes p. Specifically, CholeskyQR2 was
about 2 times faster than TSQR when p = 1024 and 3 times faster when p = 16384. Detailed
performance analysis of both algorithms based on performance models is also given in [8].

The idea of performing the QR decomposition twice to get better stability is not new.
In his textbook [15], Parlett analyzes Gram-Schmidt orthogonalization of two vectors and
introduces the principle of “twice is enough”, which he attributes to Kahan. There is also a
classical paper by Daniel, Gragg, Kaufman, and Stewart [4], which deals with the effect of
reorthogonalization on the update of the Gram-Schmidt QR decomposition. More recently,
Giraud et al. perform a detailed error analysis of CGS2 and MGS2 and show that they give
numerically orthogonal Q factor and small residual for matrices with κ2(X) ∼ O(u−1) [9].
Stathopoulas et al. experimentally show that the Cholesky QR algorithm can be applied to
matrices with a large condition number, if it is applied twice (or more) [19]. Rozložník
et al. analyze the CholeskyQR2 algorithm in a more general setting of orthogonalization
under indefinite inner product and derive bounds on both the residual and the deviation from
orthogonality [16]. However, their bounds are expressed in terms of the computed Q and R
factors along with the matrix B that defines the inner product, and do not constitute a priori
error bounds in contrast to the bounds derived in this paper. Also, the coefficients of u are not
given explicitly.

Even though the underlying idea of repeating an unstable algorithm twice to improve
stability is the same, it is worth noting the inherent disadvantage of CholeskyQR2 when
compared with CGS2 and MGS2: numerical breakdown. Specifically, if κ2(X)� O(u−

1
2 ),

then the Cholesky factorization of XTX can break down, and so does CholeskyQR2. By
contrast, Gram-Schmidt type algorithms are free from such breakdowns (except for very
obvious breakdowns due to division by zeros in the normalization) and, as shown in [9], give
stable QR factorizations for a much wider class of matrices κ2(X) ∼ O(u−1) when repeated
twice.

The rest of this paper is organized as follows. In Section 2, after giving some definitions
and assumptions, we introduce the CholeskyQR2 algorithm. A detailed error analysis of
CholeskyQR2 is presented in Section 3. Numerical results that support our analysis is provided
in Section 4. Section 5 gives some discussion on our results. Finally, some concluding remarks
are given in Section 6.

2. The CholeskyQR2 algorithm.

2.1. Notation and assumptions. In the following, we consider computing the QR de-
composition of an m by n real matrix X , where m ≥ n. Throughout this paper, we assume
that computations are performed using IEEE 754 floating point standard and denote the unit
roundoff by u. Let σi(X) be the ith largest singular value of X and κ2(X) = σ1(X)/σn(X)
be its condition number. We further assume that

(2.1) δ ≡ 8κ2(X)
√
mnu + n(n+ 1)u ≤ 1.

This means that the condition number of X is at most O(u−
1
2 ). From this assumption and

κ2(X) ≥ 1, we also have

(2.2) mnu ≤ 1

64
, n(n+ 1)u ≤ 1

64
.
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Following [11], let us define a quantity γk for a positive integer k by

γk =
ku

1− ku
.

Then, it is easy to show that under the assumption (2.1)

(2.3) γm =
mu

1−mu
≤ 1.1mu, γn+1 =

(n+ 1)u

1− (n+ 1)u
≤ 1.1(n+ 1)u.

Throughout the paper, a vector norm is always the 2-norm.

2.2. The algorithm. In the Cholesky QR algorithm, we compute the QR decomposition
of X by the following procedure

A = X>X,

R = chol(A),

Y = XR−1,

where chol(A) is a function that computes the (upper triangular) Cholesky factor of A. Then,
X = Y R can be regarded as the QR decomposition of X .

In the CholeskyQR2 algorithm, after obtaining Y and R by the above procedure, we
further compute the following

B = Y >Y,

S = chol(B),

Z = Y S−1 (= X(SR)−1),

U = SR.

If the columns of Y are exactly orthonormal, B becomes the identity and Z = Y . However,
in finite precision arithmetic, this does not hold in general and Z 6= Y . In the CholeskyQR2
algorithm the QR decomposition of X is given by X = ZU .

3. Error analysis of the CholeskyQR2 algorithm. Our objective is to show that un-
der assumption (2.1), the CholeskyQR2 algorithm delivers an orthogonal factor Z and
an upper triangular factor U for which both the orthogonality ‖Z>Z − I‖F and residual
‖X −ZU‖F /‖X‖2 are of O(u). Here, the constants in O(u) contain lower order terms in m
and n, but not in κ2(X).

This section is structured as follows. In Section 3.1, we formulate the CholeskyQR2
algorithm in floating point arithmetic and prepare several bounds that are necessary to evaluate
the orthogonality of the computed orthogonal factor. Using these bounds, the bound on the
orthogonality is derived in Section 3.2. In Section 3.3, several bounds that are needed to
evaluate the residual are provided, and they are used in Section 3.4 to give a bound on the
residual.

3.1. Preparation for evaluating the orthogonality. Let us denote the matrices A, R
and Y computed using floating point arithmetic by Â = fl(X>X), R̂ = fl(chol(Â)) and
Ŷ = fl(XR̂−1), respectively. Taking rounding errors into account, the computed quantities
satisfy

Â = X>X + E1,(3.1)
R̂>R̂ = Â+ E2 = X>X + E1 + E2,(3.2)
ŷ>i = x>i (R̂+ ∆R̂i)

−1 (i = 1, 2, . . . ,m).(3.3)



ETNA
Kent State University

http://etna.math.kent.edu

310 Y. YAMAMOTO, Y. NAKATSUKASA, Y. YANAGISAWA, AND T. FUKAYA

Here, x>i and ŷ>i are the ith row vectors of X and Ŷ , respectively. The forward error of
the matrix-matrix multiplication X>X is denoted by E1, while E2 is the backward error of
the Cholesky decomposition of Â. The matrix ∆R̂i denotes the backward error arising from
solving the linear simultaneous equation y>i R̂ = x>i by forward substitution. It would be
easier if we could express the backward error of the forward substitution as

Ŷ = X(R̂+ ∆R̂)−1,

but we have to use the row-wise expression (3.3) instead, because the backward error ∆R̂
depends on the right-hand side vector x>i .

In the following, we evaluate each of E1, E2 and ∆R̂i. We also give bounds on the
2-norms of R̂−1 and XR̂−1 for later use. Furthermore, we derive an alternative form of
equation (3.3):

ŷ>i = (x>i + ∆x>i )R̂−1,

in which the backward error enters in the right-hand side vector instead of the coefficient
matrix. Equivalently, ∆x>i is the residual of the linear system y>i R = x>i . Then, by letting
∆X = (∆x1,∆x2, . . . ,∆xm)>, we can rewrite (3.3) as

Ŷ = (X + ∆X)R̂−1,

which is more convenient to use. We also evaluate the norm of ∆X .

3.1.1. Forward error in the matrix-matrix multiplication X>X . Let A ∈ Rm×n

and B ∈ Rn×p. Then, the componentwise forward error of the matrix-matrix multiplication
C = AB can be evaluated as

(3.4) |C − Ĉ| ≤ γn|A||B|,

where Ĉ = fl(AB), |A| denotes the matrix whose (i, j) element is |aij |, and the inequality
sign means componentwise inequality [11]. The 2-norm of the ith column of X , which we
denote by x̃i, is clearly less than or equal to ‖X‖2. Hence,

(3.5) |E1|ij = |A− Â|ij ≤ γm(|X|>|X|)ij = γm|x̃i|>|x̃j | ≤ γm‖x̃i‖ ‖x̃j‖ ≤ γm‖X‖22.

Thus we have

(3.6) ‖E1‖2 ≤ ‖E1‖F ≤ γmn‖X‖22.

Simplifying this result using (2.3) leads to

(3.7) ‖E1‖2 ≤ 1.1mnu‖X‖22.

3.1.2. Backward error of the Cholesky decomposition of Â. Let A ∈ Rn×n be sym-
metric positive definite and assume that the Cholesky decomposition of A in floating point
arithmetic runs to completion and the upper triangular Cholesky factor R̂ is obtained. Then,
there exists ∆A ∈ Rn×n satisfying

R̂>R̂ = A+ ∆A, |∆A| ≤ γn+1|R̂|>|R̂|;

see Theorem 10.3 of [11] for details. In our case, we take Â = A in (3.2) to obtain

(3.8) |E2| ≤ γn+1|R̂|>|R̂|.
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Hence,

(3.9) ‖E2‖2 ≤ ‖ |E2| ‖F ≤ γn+1‖ |R̂|>|R̂| ‖F ≤ γn+1‖ |R̂| ‖2F ≤ γn+1n‖R̂‖22.

On the other hand, we have from equation (3.2),

(3.10) ‖R̂‖22 = ‖R̂>R̂‖2 ≤ ‖Â‖2 + ‖E2‖2.

Substituting equation (3.10) into the right hand side of equation (3.9) leads to

‖E2‖2 ≤ γn+1n(‖Â‖2 + ‖E2‖2),

or,

(3.11) ‖E2‖2 ≤
γn+1n

1− γn+1n
‖Â‖2.

Noting that

(3.12) ‖Â‖2 ≤ ‖X>X‖2 + ‖E1‖2 ≤ ‖X‖22 + γmn‖X‖22 = (1 + γmn)‖X‖22,

from equations (3.1) and (3.6) we have

‖E2‖2 ≤
γn+1n(1 + γmn)

1− γn+1n
‖X‖22.

This result can be simplified using (2.2) and (2.3) as

‖E2‖2 ≤
1.1(n+ 1)u · n · (1 + 1.1mnu)

1− 1.1n(n+ 1)u
‖X‖22

≤
1.1(n+ 1)u · n · (1 + 1.1

64 )

1− 1.1
64

‖X‖22

=
7161

6290
n(n+ 1)u‖X‖22 ≤ 1.2n(n+ 1)u‖X‖22.(3.13)

3.1.3. Backward error of the forward substitution. Let U ∈ Rn×n be a nonsingular
triangular matrix. Then, the solution x̂ obtained by solving the linear simultaneous equations
Ux = b by substitution in floating point arithmetic satisfies

(3.14) (U + ∆U)x̂ = b, |∆U | ≤ γn|U |;

see Theorem 8.5 of [11]. Note that ∆U depends both on U and b, although the bound in (3.14)
does not. In our case, U = R̂, so we have for 1 ≤ i ≤ m,

(3.15) ‖∆R̂i‖2 ≤ ‖∆R̂i‖F = ‖ |∆R̂i| ‖F ≤ γn‖ |R̂| ‖F ≤ γn
√
n‖R̂‖2.

By inserting equation (3.11) into the right-hand side of (3.10), and using (3.12), we have

(3.16) ‖R̂‖22 ≤
1

1− γn+1n
‖Â‖2 ≤

1 + γmn

1− γn+1n
‖X‖22.

Inserting this into equation (3.15) leads to

‖∆R̂i‖2 ≤ γn

√
n(1 + γmn)

1− γn+1n
‖X‖2.
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Simplifying the right-hand side in the same way as in equation (3.13), we obtain

‖∆R̂i‖2 ≤ 1.1nu

√
n(1 + 1.1mnu)

1− 1.1n(n+ 1)u
‖X‖2

≤ 1.1nu

√
n · (1 + 1.1

64 )

1− 1.1
64

‖X‖2 ≤ 1.2n
√
nu‖X‖2.(3.17)

3.1.4. Bounding the 2-norm of R̂−1. Next we evaluate the 2-norm of R̂−1. Noting
that all the matrices appearing in equation (3.2) are symmetric, we can apply the Bauer-Fike
theorem (or Weyl’s theorem) to obtain

(σn(X))2 − (‖E1‖2 + ‖E2‖2) ≤ (σn(R̂))2.

Using assumption (2.1), equations (3.7) and (3.13), we have ‖E1‖2+‖E2‖2 ≤ 1.2
64 (σn(X))2 ≤

(1− 1
1.12 )(σn(X))2. Hence,

1

1.12
(σn(X))2 ≤ (σn(R̂))2,

leading to the bound on R̂−1 as

(3.18) ‖R̂−1‖2 = (σn(R̂))−1 ≤ 1.1(σn(X))−1.

3.1.5. Bounding the 2-norm of XR̂−1. From equation (3.2), we have

(3.19) R̂−>X>XR̂−1 = I − R̂−>(E1 + E2)R̂−1.

Thus,

‖XR̂−1‖22 ≤ 1 + ‖R̂−1‖22 (‖E1‖2 + ‖E2‖2).

By using ‖E1‖2 + ‖E2‖2 ≤ 1.2
64 (σn(X))2 again and inserting equation (3.18), we obtain

(3.20) ‖XR̂−1‖2 ≤ 1.1.

3.1.6. Evaluation of the backward error ∆X . From equation (3.3), we have

ŷ>i = x>i (R̂+ ∆R̂i)
−1 = x>i (I + R̂−1∆R̂i)

−1R̂−1.

Now, let

(I + R̂−1∆R̂i)
−1 = I + R̆i.

Then, since R̆i =
∑∞

k=1(−R̂−1∆R̂i)
k, we obtain the bound on ‖R̆i‖2 as

‖R̆i‖2 ≤
∞∑
k=1

(‖R̂−1‖2‖∆R̂i‖2)k =
‖R̂−1‖2‖∆R̂i‖2

1− ‖R̂−1‖2‖∆R̂i‖2

≤ 1.1(σn(X)−1) · 1.2n
√
nu‖X‖2

1− 1.1(σn(X)−1) · 1.2n
√
nu‖X‖2

,(3.21)
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where we used equation (3.17) and (3.18) in the last inequality. The denominator of equa-
tion (3.21) can be evaluated as

1− 1.1(σn(X))−1 · 1.2n
√
nu‖X‖2 ≥ 1− 1.1 · 1.2n

√
nu

8
√
mnu + n(n+ 1)u

≥ 1− 1.32

8

√
nu

≥ 1− 1.32

8

√
1

11
≥ 0.95.

Inserting this into equation (3.21) and evaluating the numerator using equation (3.17) again,
we have

‖R̆i‖2 ≤
1

0.95
· 1.1κ2(X) · 1.2n

√
nu ≤ 1.4κ2(X)n

√
nu.

Now, let

∆x>i = x>i R̆i.

Then,

(3.22) ŷ>i = (x>i + ∆x>i )R̂−1.

By defining the matrix ∆X ∈ Rm×n as ∆X = (∆x1,∆x2, . . . ,∆xm)>, we can rewrite
equation (3.22) as

(3.23) Ŷ = (X + ∆X)R̂−1.

The bound on ‖∆X‖F can be given as

‖∆X‖F =

√√√√ m∑
i=1

‖∆x>i ‖2 ≤

√√√√ m∑
i=1

‖x>i ‖2 ‖R̆i‖22

≤ 1.4κ2(X)n
√
nu

√√√√ m∑
i=1

‖x>i ‖2 ≤ 1.4κ2(X)‖X‖2n2u,(3.24)

where the relationship
√∑m

i=1 ‖x>i ‖2 = ‖X‖F ≤
√
n ‖X‖2 is used to derive the last

inequality.

3.2. Orthogonality of Ŷ and Ẑ. Based on the bounds given in the previous subsection,
we evaluate the orthogonality of Ŷ and Ẑ as computed by the Cholesky QR and CholeskyQR2
algorithms. The following lemma holds.

LEMMA 3.1. Suppose that X ∈ Rm×n, with m ≥ n, satisfies equation (2.1) . Then, the
matrix Ŷ obtained by applying the Cholesky QR algorithm in floating point arithmetic to X
satisfies the following inequality, with δ defined as in (2.1),

‖Ŷ >Ŷ − I‖2 ≤
5

64
δ2.
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Proof. By expanding Ŷ >Ŷ using equation (3.23), we have

Ŷ >Ŷ= R̂−>(X + ∆X)>(X + ∆X)R̂−1

= R̂−>X>XR̂−1 + R̂−>X>∆X R̂−1 + R̂−>∆X>XR̂−1 + R̂−>∆X>∆X R̂−1

= I − R̂−>(E1 + E2)R̂−1 + (XR̂−1)>∆X R̂−1 + R̂−>∆X>(XR̂−1)

+R̂−>∆X>∆X R̂−1.

Here, we used equation (3.19) to derive the last equality. Thus,

‖Ŷ >Ŷ − I‖2 ≤ ‖R̂−1‖22(‖E1‖2 + ‖E2‖2) + 2‖R̂−1‖2‖XR̂−1‖2‖∆X‖2 + ‖R̂−1‖22‖∆X‖22
≤ ‖R̂−1‖22(‖E1‖2 + ‖E2‖2) + 2‖R̂−1‖2‖XR̂−1‖2‖∆X‖F + ‖R̂−1‖22‖∆X‖2F
≤ (1.1(σn(X))−1)2(1.1mnu + 1.2n(n+ 1)u)‖X‖22

+2 · 1.1(σn(X))−1 · 1.1 · 1.4κ2(X)‖X‖2n2u
+(1.1(σn(X))−1 · 1.4κ2(X)‖X‖2n2u)2

≤ 1.12 · 1.2
64

δ2 +
2 · 1.12 · 1.4

64
δ2 +

(
1.1 · 1.4

64
δ2
)2

≤ 5

64
δ2.(3.25)

In the fourth inequality, we used equations (3.7), (3.13), (3.18), (3.20), and (3.24). In the last
inequality, we simplified the expression using the assumption δ ≤ 1.

The next corollary follows immediately from Lemma 3.1.
COROLLARY 3.2. The condition number of Ŷ satisfies κ2(Ŷ ) ≤ 1.1.
Proof. By Lemma 3.1, every eigenvalue λi of Ŷ >Ŷ satisfies

1− 5

64
≤ λi ≤ 1 +

5

64
.

Hence, every singular value σi(Ŷ ) of Ŷ satisfies

(3.26)
√

59

8
≤ σi(Ŷ ) ≤

√
69

8
.

Thus it follows that

κ2(Ŷ ) =
σ1(Ŷ )

σn(Ŷ )
≤
√

69

59
≤ 1.1.

In other words, the matrix Ŷ obtained by applying the Cholesky QR algorithm once is
extremely well-conditioned, though its deviation from orthogonality, ‖Ŷ >Ŷ − I‖2, is still of
order 0.1.

Combining Lemma 3.1 and Corollary 3.2, we obtain one of the main results of this paper.
THEOREM 3.3. The matrix Ẑ obtained by applying CholeskyQR2 in floating point

arithmetic to X satisfies the following inequality.

‖Ẑ>Ẑ − I‖2 ≤ 6(mnu + n(n+ 1)u).

Proof. Noting that κ2(Ŷ ) ≤
√

69
59 , from Corollary 3.2 and applying Lemma 3.1 again to

Ŷ , we have

‖Ẑ>Ẑ − I‖2 ≤
5

64
δ2 ≤ 5

64
· 69

59
· 64(mnu + n(n+ 1)u)

≤ 6(mnu + n(n+ 1)u).(3.27)
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3.2.1. Orthogonality error in the Frobenius norm. In the previous sections, we de-
rived the bound on the orthogonality error in terms of the 2-norm, because we wanted to
give a bound on the 2-norm condition number of Ŷ . However, by tracing the derivation of
equation (3.25), we can also derive the following bound in the Frobenius norm,

‖Ŷ >Ŷ − I‖F ≤‖R̂−1‖22(‖E1‖F + ‖E2‖F )

+2‖R̂−1‖2‖XR̂−1‖2‖∆X‖F + ‖R̂−1‖22‖∆X‖2F .

As it is clear from equations (3.6) and (3.9), the upper bounds on ‖E1‖2 and ‖E2‖2 that were
used in equation (3.25) are also bounds on ‖E1‖F and ‖E2‖F . Thus, the same bound given
in equation (3.27) holds for the Frobenius norm as well. We summarize this observation as a
corollary as follows.

COROLLARY 3.4. The matrix Ẑ obtained by applying CholeskyQR2 in floating point
arithmetic to X satisfies the following inequality.

(3.28) ‖Ẑ>Ẑ − I‖F ≤ 6(mnu + n(n+ 1)u).

3.3. Preparation for evaluating the residual. Let the matrices B, S, Z, and U , com-
puted by floating point arithmetic, be denoted by B̂ = fl(Ŷ >Ŷ ), Ŝ = fl(chol(B̂)),
Ẑ = fl(Ŷ Ŝ−1), and Û = fl(ŜR̂), respectively. Then we have

B̂ = Ŷ >Ŷ + E3,

Ŝ>Ŝ = B̂ + E4 = Ŷ >Ŷ + E3 + E4,

ẑ>i = ŷ>i (Ŝ + ∆Ŝi)
−1, i = 1, 2, . . . ,m,(3.29)

Û = ŜR̂+ E5.(3.30)

Here, ẑ>i is the ith row vector of Ẑ, E3 and E5 are the forward errors of the matrix mul-
tiplications Ŷ >Ŷ and ŜR̂, respectively, while E4 is the backward error of the Cholesky
decomposition of B̂. The matrix ∆Ŝi is the backward error introduced in solving the linear
simultaneous equation z>i Ŝ = ŷ>i by forward substitution.

As a preparation to evaluating the residual, we first give estimates for the norms of R̂, Ŝ,
∆Ŝi, E5 and Ẑ.

3.3.1. Evaluation of R̂. From equation (3.16), we have

(3.31)
‖R̂‖2
‖X‖2

≤

√
1 + γmn

1− γn+1n
≤

√√√√ 1 + mnu
1−mu

1− n(n+1)u
1−(n+1)u

≤

√√√√√1 +
1
64

1− 1
11

1−
1
64

1− 1
11

=

√
651

629
≤ 1.1.

3.3.2. Evaluation of Ŝ. Noticing that ‖Ŷ ‖2 ≤
√
69
8 from equation (3.26), we can obtain

an upper bound on the norm of Ŝ by multiplying the bound of equation (3.31) by
√
69
8 . Thus,

‖Ŝ‖2 ≤
√

651

629
·
√

69

8
≤ 1.1.

3.3.3. Evaluation of ∆Ŝi. Similarly, multiplying the bound of equation (3.17) by
√
69
8

leads to the following bound on ∆Ŝi

‖∆Ŝi‖2 ≤
√

69

8
· 1.2n

√
nu ≤ 1.3n

√
nu.
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3.3.4. Evaluation of E5. By using the error bound on matrix multiplication given in
equation (3.4), we have

|E5| ≤ γn|Ŝ| |R̂|.

Hence,

‖E5‖2 ≤ ‖ |E5| ‖F ≤ γn‖ |Ŝ||R̂| ‖F ≤ γn‖ |Ŝ| ‖F ‖ |R̂| ‖F = γn‖Ŝ‖F ‖R̂‖F

≤ nγn‖Ŝ‖2‖R̂‖2 ≤ n · 1.1nu ·
√

651

629
·
√

69

8
·
√

651

629
‖X‖2 ≤ 1.2n2u‖X‖2.

3.3.5. Evaluation of Ẑ. From equation (3.26), we have ‖Ŷ ‖F ≤
√
69
8

√
n. This is a

bound that does not depend on ‖X‖2, so it holds also for ‖Ẑ‖F . Hence,

‖Ẑ‖F ≤
√

69

8

√
n ≤ 1.1

√
n.

3.4. Bounding the residual. Based on the above results, we evaluate the residual of the
pair (Ẑ, Û). The following theorem holds, which is also one of our main results.

THEOREM 3.5. Assume that an m× n real matrix X (m ≥ n) satisfies equation (2.1).
Then the matrices Ẑ and Û obtained by applying the CholeskyQR2 algorithm in floating point
arithmetic to X satisfy the following inequality

(3.32)
‖ẐÛ −X‖F
‖X‖2

≤ 5n2
√
nu.

Proof. Expanding ẑ>i Û − x>i by the equations (3.30), (3.29), and (3.3), leads to

‖ẑ>i Û − x>i ‖= ‖ẑ>i (ŜR̂+ E5)− ẑ>i (Ŝ + ∆Ŝi)(R̂+ ∆R̂i)‖
= ‖ẑ>i ŜR̂+ ẑ>i E5 − ẑ>i ŜR̂− ẑ>i Ŝ∆R̂i − ẑ>i ∆Ŝi R̂− ẑ>i ∆Ŝi ∆R̂i‖
≤ ‖ẑ>i ‖(‖E5‖2 + ‖Ŝ‖2‖∆R̂i‖2 + ‖∆Ŝi‖2‖R̂‖2 + ‖∆Ŝi‖2‖∆R̂i‖2)

≤ ‖ẑ>i ‖(1.2n2u + 1.1 · 1.2n
√
nu + 1.3n

√
nu · 1.1

+1.3n
√
nu · 1.2n

√
nu)‖X‖2

≤ ‖ẑ>i ‖ ‖X‖2 · 4n2u.(3.33)

Hence,

‖ẐÛ −X‖F
‖X‖2

=

√∑n
i=1 ‖ẑ>i Û − x̂>i ‖2

‖X‖2
≤ 4n2u

√√√√ n∑
i=1

‖ẑ>i ‖2 = 4n2u‖Ẑ‖F

≤ 5n2
√
nu.

4. Numerical results. In this section we evaluate the numerical stability of CholeskyQR2
and compare it with the stability of other popular QR decomposition algorithms, namely,
Householder QR, classical and modified Gram-Schmidt (CGS and MGS; we also run them
twice, shown as CGS2 and MGS2), and Cholesky QR. To this end, we generate test matrices
with a specified condition number by X := UΣV ∈ Rm×n, where U is an m × n random
orthogonal matrix, V is an n× n random orthogonal matrix, and

Σ = diag(1, σ
1

n−1 , · · · , σ
n−2
n−1 , σ).
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Here, 0 < σ < 1 is some constant. Thus ‖X‖2 = 1 and the 2-norm condition number of X is
κ2(X) = 1/σ. We vary κ2(X), m, and n, and investigate the dependence of the orthogonality
and residual on them. All computations were done on Matlab R2012b, using IEEE standard
754 binary64 (double precision) so that u = 2−53 ≈ 1.11× 10−16, on a computer running
Mac OS X version 10.8, equipped with a 2GHz Intel Core i7 Duo processor.

In Figures 4.1 through 4.6 we show the orthogonality and residual measured by the
Frobenius norm under various conditions. Figures 4.1 and 4.2 show the orthogonality ‖ẐT Ẑ−
I‖F and residual ‖ẐÛ −X‖F , respectively, for the case m = 10000, n = 100, and varying
κ2(X). In Figures 4.3 and 4.4, κ2(X) = 105, n = 100, and m varies from 1000 to 10000. In
Figures 4.5 and 4.6, κ2(X) = 105, m = 1000, and n varies from 100 to 1000.

It is clear from Figures 4.1 and 4.2 that both the orthogonality and residual are independent
of κ2(X) and are of order O(u), as long as κ2(X) is at most O(u−

1
2 ). This is in good

agreement with the theoretical prediction and is in marked contrast to the results of CGS,
MGS, and Cholesky QR, for which the deviation from orthogonality increases in proportion
to κ2(X) and (κ2(X))2, respectively. As it can be seen from Figures 4.3 through 4.6, the
orthogonality and residual increase only mildly with m and n, which is also in agreement with
the theoretical results, although they are inevitably overestimates. Compared with Householder
QR, it was observed that CholeskyQR2 generally produces smaller orthogonality and residual.
From these results, we can conclude that CholeskyQR2 is stable for matrices with condition
number at most O(u

1
2 ). As is well-known, Gram-Schmidt type algorithms perform well when

repeated twice.

5. Discussion. We discuss now four topics related to the stability of CholeskyQR2. First,
we compare the orthogonality and residual bounds of CholeskyQR2 given in Theorems 3.4
and 3.5, respectively, with known bounds for Householder QR [11] and CGS2 [9]. Second,
we consider how to examine the applicability of CholeskyQR2 for a given matrix. Third, we
show that CholeskyQR2 is not only norm-wise stable, but also column-wise stable. Finally,
we discuss row-wise stability of CholeskyQR2, which cannot be proved, but is nearly always
observed in practice.

5.1. Comparison with the error bounds of Householder QR and CGS2.

5.1.1. Orthogonality. For Householder QR, the Q factor is computed by applying n
Householder transformations to I1:m,1:n, an m× n matrix consisting of the first n columns
of the identity matrix of order m. Hence, from Lemma 19.3 of [11], the computed Q factor
satisfies

Q̂ = P>(I1:m,1:n + ∆I),

where P is some m×m exactly known orthogonal matrix, and ∆I is an m× n matrix whose
column vectors have a norm bounded by nγcm, where c is a small positive constant. From
this, it is easy to derive the bound

‖Q̂>Q̂− I‖F ≤ n
√
nγc′m ' c′mn

√
nu.

For CGS2, Giraud et al. show the following bound for deviation from orthogonality under
the assumption that κ2(X)m2n3u = O(1) [9].

‖Q̂>Q̂− I‖2 ≤ c′′mn
√
nu.

Although this assumption is hard to satisfy for large matrices (notice that κ2(X)m2n3 is 1019

for the largest matrix appearing in Figure 4.3), it has been observed that CGS2 produces
near-orthogonal matrices in many cases where this condition is violated [14].
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FIG. 4.1. Orthogonality ‖Ẑ>Ẑ − I‖F versus κ2(X), for test matrices with m = 10000, n = 100.
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FIG. 4.2. Residual ‖ẐÛ −X‖F versus κ2(X), for test matrices with m = 10000, n = 100.
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FIG. 4.3. Orthogonality ‖Ẑ>Ẑ − I‖F versus m, for test matrices with κ2(X) = 105, n = 100.
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FIG. 4.4. Residual ‖ẐÛ −X‖F versus m, for test matrices with κ2(X) = 105, n = 100.
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FIG. 4.5. Orthogonality ‖Ẑ>Ẑ − I‖F versus n, for test matrices with κ2(A) = 105, m = 1000.
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FIG. 4.6. Residual ‖ẐÛ −X‖F versus n, for test matrices with κ2(A) = 105, m = 1000.
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Comparing these bounds with equation (3.28), we observe that the error bound of
CholeskyQR2 is smaller by a factor

√
n. This is in qualitative agreement with the results of

the numerical experiments given in the previous section.
Note, however, that this difference should not be overemphasized, because these are

merely upper bounds. In fact, the Givens QR algorithm admits an error bound that is smaller
than that of Householder QR by a factor n, but no difference in accuracy has been observed in
practice [11, p. 368].

5.1.2. Residual. According to [11, Sec. 19.3], the upper bound on the residual of the
Householder QR algorithm can be evaluated as O(mn

√
nu). As for CGS2, it is not difficult

to derive a bound of the same order using the results given in [9]. Thus, we can say that the
CholeskyQR2 algorithm has a smaller bound also in terms of the residual. This is related
to the fact that in the CholeskyQR2 algorithm the computation of Y from X , and Z from
Y , is done by row-wise forward substitution. Thus, the backward errors introduced there, or
their sum of squares, which is one of the main sources of the residual, do not depend on m
when ‖X‖2 is fixed. In addition, the forward error in the computation of ŜR̂, which is another
source of residual, also involves only n. Thus, the residual depends only on n, which is in
marked contrast to Householder QR.

A few more comments are in order regarding the bound (3.32). A close examination
of equation (3.33) shows that the highest order term in the residual comes from the forward
error of the matrix multiplication ŜR̂, which we denoted by E5. This implies that if we
compute this matrix multiplication using extended precision arithmetic, we can reduce the
upper bound on the residual to O(n2u) with virtually no increase in the computational cost
(when m� n). Moreover, in a situation where only the orthogonal factor Ẑ is needed, as in
the orthogonalization of vectors, we can leave the product ŜR̂ uncomputed and say that the
triplet (Ẑ, Ŝ, R̂) has residual O(n2u).

5.2. Applicability of CholeskyQR2 for a given matrix. There are some cases in which
the condition number of X is known in advance to be moderate. An example is orthogonaliza-
tion of vectors in first-principles molecular dynamics [3]. In this application, we are interested
in the time evolution of an orthogonal matrix X(t) ∈ Rm×n, whose column vectors are an
orthogonal basis for the space of occupied-state wave functions. To obtain X(t+ ∆t), we first
compute X̃ = X(t) − F (X)∆t, where F (X) ∈ Rm×n is some nonlinear matrix function
of X , and then compute X(t + ∆t) by orthogonalizing the columns of X̃ . Since X(t) is
orthogonal, we can easily evaluate the deviation from orthogonality of X̃ by computing the
norm of F (X)∆t. Usually, the time step ∆t is small enough to ensure that κ2(X̃)� u−

1
2 .

In some cases, however, the condition number of X cannot be estimated in advance and
one may want to examine the applicability of CholeskyQR2 from intermediate quantities that
are computed in the algorithm. This is possible if R̂ has been computed without breakdown
in the Cholesky decomposition. Given R̂, one can estimate its largest and smallest singular
values using the power method and inverse power method on R>R, respectively. Indeed the
MATLAB condition number estimator condest first computes the LU factorization of the
input matrix, then applies a few iterations of power method to obtain a reliable estimate of the
1-norm condition number. This should not cost too much because R̂ is triangular and each
step of both methods requires only O(n2) work. After that, one can evaluate the condition
number of X by using the relations (3.1) and (3.2), the bounds (3.7) and (3.13) on ‖E1‖2 and
‖E2‖2, respectively, and the Bauer-Fike theorem.

5.3. Column-wise stability of CholeskyQR2. Thus far, we have investigated the norm-
wise residual of CholeskyQR2. Sometimes the columns of X have widely varying norms, and
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one may wish to obtain the more stringent column-wise backward stability, which requires

‖x̃j − Q̂r̂j‖/‖x̃j‖ = O(u), j = 1, . . . , n.

Here, x̃j and r̂j denote the jth columns of X and R̂, respectively. In this subsection, we prove
that CholeskyQR2 is indeed column-wise backward stable.

To see this, we first consider a single Cholesky QR and show that the computed ‖r̂j‖ is of
the same order as ‖x̃j‖. Let us recall equations (3.1) through (3.3). From equation (3.5), we
have

(5.1) |E1|jj ≤ γm|x̃j |>|x̃j | = γm‖x̃j‖2.

By considering the (j, j)th element of equation (3.2) and substituting equations (5.1) and (3.8),
we obtain

‖r̂j‖2 ≤ |Âjj |+ γn+1|r̂j |>|r̂j | ≤ ‖x̃j‖2 + γm‖x̃j‖2 + γn+1‖r̂j‖2.

Hence,

(5.2) ‖r̂j‖ ≤

√
1 + γm

1− γn+1
‖x̃j‖ = ‖x̃j‖ ·O(1).

Now we demonstrate the column-wise backward stability of a single Cholesky QR. Let
the jth column of Ŷ be denoted by ỹj . From equation (3.3), we have

Xij = ŷ>i (r̂j + ∆r̂
(i)
j ).

Here, ∆r̂
(i)
j is the jth column of ∆R̂i. Thus,

|Xij − ŷ>i r̂j | ≤ |ŷ>i ∆r̂
(i)
j | ≤ ‖ŷi‖ ‖∆r̂

(i)
j ‖ ≤ γn‖ŷi‖ ‖r̂j‖.

Squaring both sides and summing over i leads to

‖x̃j − Ŷ r̂j‖2 ≤ γ2n‖Ŷ ‖2F ‖r̂j‖2.

By using ‖Ŷ ‖F = O(1) (see Lemma 3.1) and equation (5.2), we can establish the column-wise
backward stability of Cholesky QR as follows

‖x̃j − Ŷ r̂j‖
‖x̃j‖

≤ γn‖Ŷ ‖F ·
‖r̂j‖
‖x̃j‖

= γn ·O(1) ·

√
1 + γm

1− γn+1
.(5.3)

To apply the above result to CholeskyQR2, we consider the backward errors in the second
QR decomposition Y = ZS and the product of the two upper triangular factors U = SR.
These backward errors, which we denote by ∆Ŷ and ∆Ŝ, respectively, satisfy

Ŷ + ∆Ŷ = ẐŜ,

ûj = (Ŝ + ∆Ŝ)r̂j .

Here, ûj is the j th column of Û . To evaluate ∆Ŷ , we note the following inequality, which
can be obtained in the same way as equation (5.3)

‖ỹj − Ẑ ŝj‖2 ≤ γ2n‖Ẑ‖2F ‖ŝj‖2.
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Summing both sides over i and taking the square root gives

(5.4) ‖∆Ŷ ‖F = ‖Ŷ − ẐŜ‖F ≤ γn‖Ẑ‖F ‖Ŝ‖F = γn ·O(1).

As for ∆Ŝ, the standard result on the error analysis of matrix-vector product, combined with
‖Ŝ‖F ' ‖Ŷ ‖F = O(1), leads to

(5.5) ‖∆Ŝ‖F ≤ γn‖Ŝ‖F = γn ·O(1).

On the other hand,

x̃j − Ẑûj = x̃j − Ẑ(Ŝ + ∆Ŝ)r̂j

= x̃j − (Ŷ + ∆Ŷ + Ẑ∆Ŝ)r̂j

= (x̃j − Ŷ r̂j)− (∆Ŷ + Ẑ∆Ŝ)r̂j .(5.6)

By substituting equations (5.3), (5.4), and (5.5) into equation (5.6), we finally obtain the
column-wise backward stability of CholeskyQR2 as follows.

‖x̃j − Ẑûj‖
‖x̃j‖

≤ ‖x̃j − Ŷ r̂j‖
‖x̃j‖

+ (‖∆Ŷ ‖F + ‖Ẑ‖F ‖∆Ŝ‖F ) · ‖r̂j‖
‖x̃j‖

= γn ·O(1).

5.4. Row-wise stability of CholeskyQR2. In this subsection, we investigate the row-
wise stability of CholeskyQR2, which is defined as

(5.7) ‖x>i − q̂>i R̂‖/‖x>i ‖ = O(u), i = 1, . . . ,m.

Here x>i and q̂>i denote the ith rows of the matrices.
The requirement (5.7) is strictly more stringent than the normwise stability, and indeed

the standard Householder QR factorization does not always achieve (5.7). It is known [11,
Ch. 19] that when row sorting and column pivoting are used, Householder QR factorization
gives row-wise stability. However, pivoting involves an increased communication cost and is
best avoided in high-performance computing.

Having established the normwise and column-wise stability of CholeskyQR2, we now
examine its row-wise stability. To gain some insight we first run experiments with a semi-
randomly generated matrix X , whose row norms vary widely. Specifically, we generate a
random m × n matrix via the MATLAB command X = randn(m,n), then left-multiply
a diagonal matrix X := DX , with Djj = 2

j
2 for j = 1, . . . ,m. Here we set m = 100

and n = 50; the matrix thus has rows of exponentially growing norms and κ2(X) ≈ u−
1
2 .

Figure 5.1 shows the row-wise residuals of three algorithms: standard Householder QR,
Householder QR employing row sorting and column pivoting, and CholeskyQR2.

We make several observations from Figure 5.1. First, we confirm the known fact that
the standard Householder QR factorization is not row-wise backward stable, but this can be
cured by employing row sorting and column pivoting. Second, CholeskyQR2 gives row-wise
stability comparable to Householder QR with row sorting and column pivoting; this is perhaps
surprising, considering the fact that CholeskyQR2 employs no pivoting or sorting.

To illustrate the situation, we examine the first step of CholeskyQR2. Recall that q̂>i =

fl(x>i R̂
−1). Hence ‖x>i − q̂>i R̂‖2 = ‖x>i − fl(x>i R̂−1)R̂‖2, and by standard triangular

solve there exist ∆Ri for i = 1, . . . ,m such that

fl(x>i R̂
−1)(R̂+ ∆Ri) = x>i , ‖∆Ri‖ = O(u)‖R̂‖.
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FIG. 5.1. Row-wise residual ‖x>i − q̂>i R̂‖2/‖x>i ‖2.

Hence for row-wise stability we need ‖fl(x>i R̂−1)∆Ri‖ = O(u)‖x>i ‖. Since

‖fl(x>i R̂−1)∆Ri‖ ≤ O(u) ‖R̂‖ ‖fl(x>i R̂−1)‖,

a sufficient condition is

(5.8) ‖fl(x>i R̂−1)‖ = O(‖x>i ‖/‖R̂‖).

Since the general normwise bound for ‖y>R−1‖ is ‖y>R−1‖ ≤ ‖y‖/‖R‖κ2(R), the condi-
tion (5.8) is significantly more stringent when R is ill-conditioned.

Even so, as illustrated in the example above, in all our experiments with random matrices
the condition (5.8) was satisfied with ‖x>i − q̂>i R̂‖/‖x>i ‖ < nu for all i. We suspect that
this is due to the observation known to experts that triangular linear systems are usually
solved to much higher accuracy than the theoretical bound suggests [11, 20]. However, as
with this classical observation, counterexamples do exist in our case: For example, taking
R to be the Kahan matrix [11], which is an ill-conditioned triangular matrix known to have
special properties, the bound ‖fl(y>R−1)‖ = O(‖y>‖/‖R‖) is typically tight for a randomly
generated y>, which means (5.8) is significantly violated. In view of this we form X so that
the Cholesky factor R of X>X is the Kahan matrix. This can be done by taking X = QR
for an m × n orthogonal matrix Q. To introduce large variation in the row norms of X we
construct Q as the orthogonal factor of a matrix as generated in the example above. For every
such X with varying size n, (5.8) was still satisfied. Finally, we then appended a row of
random elements at the bottom of X , with much smaller norm than the rest, and repeated
the experiment. Now the row-wise residual for the last row was significantly larger than
O(u‖x>i ‖), indicating row-wise stability does not always hold. Employing pivoting in the
Cholesky factorization did not improve the residual.

A referee has suggested more examples for which CholeskyQR2 fails to have row-wise
backward stability. One example is the following: take X to be the off-diagonal parts of the
6× 6 Hilbert matrix and set the (3, 3) element to 5e6.

Experiments suggest nonetheless that cases in which CholeskyQR2 is not row-wise stable
are extremely rare.

6. Conclusion. We performed a roundoff error analysis of the CholeskyQR2 algorithm
for computing the QR decomposition of an m× n real matrix X , where m ≥ n. We showed
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that if X satisfies equation (2.1), the computed Q and R factors, which we denote by Ẑ and
Û , respectively, satisfy the following error bounds.

‖Ẑ>Ẑ − I‖F ≤ 6(mnu + n(n+ 1)u),

‖ẐÛ −X‖F /‖X‖2 ≤ 5n2
√
nu.(6.1)

The bounds shown here are of a smaller order than the corresponding bounds for the House-
holder QR algorithm. Furthermore, it was shown that when only the Q factor is required, the
right-hand side of equation (6.1) can be reduced to O(n2u). Numerical experiments support
our theoretical analysis. CholeskyQR2 is also column-wise backward stable, as Householder
QR. We also observed that the row-wise stability, which is a more stringent condition than the
norm-wise stability shown by equation (6.1), nearly always holds in practice, though it cannot
be proved theoretically.

In this paper, we focused on the stability of CholeskyQR2. Performance results of
CholeskyQR2 on large scale parallel machines, along with comparison with other QR decom-
position algorithms and detailed performance analysis, are given in our recent paper [8].

When the matrix is nearly square, it might be more efficient to partition the matrix into
panels and apply the CholeskyQR2 algorithm to each panel successively. Development of
such an algorithm remains as future work.
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