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THE FAST BISECTION EIGENVALUE METHOD

FOR HERMITIAN ORDER ONE QUASISEPARABLE MATRICES

AND COMPUTATIONS OF NORMS∗
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Abstract. Since we can evaluate the characteristic polynomial of an N ×N order one quasiseparable Hermitian

matrix A in less than 10N arithmetical operations by sharpening results and techniques from Eidelman, Gohberg, and

Olshevsky [Linear Algebra Appl., 405 (2005), pp. 1–40], we use the Sturm property with bisection to compute all or

selected eigenvalues of A. Moreover, linear complexity algorithms are established for computing norms, in particular,

the Frobenius norm ‖A‖F and ‖A‖∞, ‖A‖1, and other bounds for the initial interval to be bisected. Upper and

lower bounds for eigenvalues are given by the Gershgorin Circle Theorem, and we describe an algorithm with linear

complexity to compute them for quasiseparable matrices.
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1. Introduction. The bisection method is one of the most customary tools to compute

all or selected eigenvalues of a matrix. The application of this method to Hermitian matrices

is essentially based on the Sturm sequence property, which means that for any given real

number λ, the number of sign changes in the sequence of the characteristic polynomials of

the principal leading submatrices of an N × N Hermitian matrix A equals the number of

eigenvalues which are less than that λ. We will denote the polynomials in such a sequence by

(1.1) γ0(λ) ≡ 1, γ1(λ), γ2(λ), . . . , γN (λ).

For rank-structured matrices there exist fast algorithms to evaluate the polynomials in (1.1)

in O(N) arithmetic operations and subsequently to compute the roots of γN , i.e., the eigenval-

ues of A, in a fast way. Realizations of this method for symmetric tridiagonal matrix can be

found, for instance, in the monograph [9, Section 8.4.1] or in the paper [1].

Other implementations for tridiagonal symmetric matrices use the LDLT approach

with gains in both stability and speed compared to approaches based on the computation of

polynomial values; see [4, p. 231]. However, the recursion formula which is obtained in this

way is identical to the recursion already obtained by other means in [1]. In the present paper

we extend the approach suggested in [1] to Hermitian quasiseparable matrices.

Related results for semiseparable matrices are contained in [12, Section 9.7.2], where

an algorithm using the Sturm property and bisection is devised based on the computation of

polynomial values as done in [7].

In this paper we present a complete algorithm using this method for the much broader

class of (order one) quasiseparable matrices; see [7]. Because Hermitian matrices have only

real eigenvalues and since (also by using techniques from [7]) for a given such matrix A and a

given real λ, we succeed in evaluating all the polynomials in the sequence (1.1)—in particular

the characteristic polynomial γN of A itself—in less than 6N additions (subtractions) and less

than 4N multiplications (divisions), it is entirely feasible to find the roots of this polynomial

(the eigenvalues of A) by Sturm plus bisection.

For comparison, one can count in [9, Formula (8.4.2)] that for symmetric tridiagonal

matrices, 5N arithmetical operations are needed as well in order to compute the sequence (1.1).
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All the other costs, such as the few arithmetic or comparison operations for managing and

coordinating the bisection mechanism and especially the second half of each and every

bisection step, i.e., finding the number of sign alternations (involving O(N) operations), are

exactly the same for the simpler case of symmetric tridiagonal matrices as well as for the

broader case presented here. Thus, the 5N extra operations multiplied by the number of

bisections that we need are a dwarfish supplement, yielding an inexpensive O(N2) algorithm

in the present case.

The Sturm property with bisection is also most suited when we want only a few eigen-

values, especially if we want particular ones like, for instance, the last (largest) k < N
eigenvalues. However, the low complexity compared to other existing methods for general

Hermitian matrices makes the present method appropriate for such matrices even when the

complete set of eigenvalues and not only selected ones are to be computed. In Section 3.4 of

the current paper, we show that finding only the largest eigenvalue can be done in linear time.

Similarly as it was done in the paper [1] for tridiagonal matrices, we use here the ratios

Dk(λ) =
γk(λ)

γk−1(λ)
instead of the polynomials γk(λ) in order to avoid overflow or underflow

in the computing process. The recurrences relations for Dk(λ) are computed for Hermitian

quasiseparable matrices in Section 3.

Also for the same reason, for matrix sizes larger than 150, we have to scale the matrix (i.e.,

to divide some of its quasiseparable generators by the Frobenius norm ‖A‖F of the matrix)

to temporarily obtain smaller eigenvalues with absolute values in the unit interval and thus

smaller polynomial ratios. This latter technique has not been used in [1] and permits to reduce

overflow for matrices of any size. Without it, even for matrices of the size of tens, the bisection

method does not work. See step 5 in Section 3.3 for further details. The scaling and subsequent

descaling of the eigenvalues are operations with linear complexity in time. In particular, in

Section 4 we describe how to obtain the Frobenius norm in linear time. If we use instead of

the Sturm polynomials, ratios of consecutive polynomials and additionally employ scaling,

then the algorithm works well for practically any matrix size.

To start with the bisection method, one should determine at first bounds for the eigenvalues

of a matrix. Thus, in a natural way, we are led to the problem of developing fast algorithms for

computing the norms and other bounds for eigenvalues of order one quasiseparable matrices.

Lower and upper bounds for the initial, larger interval to be bisected can be found by the

Gershgorin Circle Theorem (see [9]), which we translate in Section 4.2 into an O(N)-algorithm

for finding eigenvalue bounds for general quasiseparable matrices. Also, such bounds could

be found by the more general Ostrowski Circle Theorem, and several matrix norms such as the

Frobenius norm ‖A‖F (as we decided to do), the absolute values norm, the 1-norm ‖A‖1, or

the ∞-norm ‖A‖∞ can be computed for quasiseparable matrices in low, linear complexity, as

we show indeed in Sections 4 and 5.

Numerical experiments in Section 6 compare the bisection method with two other methods

for Hermitian order one quasiseparable matrices: implicit QR after a reduction to tridiagonal

form and divide and conquer. They show that the bisection is the method of choice since it is

the fastest (even faster than divide and conquer) and much more accurate. Implicit QR is just

at least as accurate, but it is even slower than Matlab.

2. Notation, definitions, and preliminaries. For a scalar N ×N matrix A, we denote

by Aij or by A(i, j) its element in row 1 ≤ i ≤ N and in column 1 ≤ j ≤ N and by

A(i : j, p : q) the submatrix containing the entries in the rows with index from i to j,
1 ≤ i ≤ j ≤ N, and in the columns with index from p to q, 1 ≤ p ≤ q ≤ N . If i = j, then

we succinctly write A(i, p : q), and similar for i ≤ j, p = q, we write A(i : j, p).
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2.1. Semiseparable structure (of order one). Matrices with a semiseparable structure

include, among others, tridiagonal matrices or companion matrices and are an important

example of quasiseparable matrices. According definitions and more can be found, for

instance, in Part I of the book [5].

Let A = {Aij}Ni,j=1 be a matrix with scalar entries Aij . Assume that these are represented

in the form

Aij =











p(i)q(j), 1 ≤ j < i ≤ N,

d(i), 1 ≤ i = j ≤ N,

g(i)h(j), 1 ≤ i < j ≤ N.

Here p(i), g(i), i = 2, . . . , N, q(j), h(j), j = 1, . . . , N − 1, and d(i), i = 1, . . . , N, are

(possibly complex) numbers.

2.2. Quasiseparable structure (of order one). The class of matrices with quasisepa-

rable structure contains, among others, unitary upper Hessenberg matrices and inverses of

certain semiseparable matrices. The following definitions can be found, for instance, in Part I

of the book [5].

Following [7, p. 7], let A = {Aij}Ni,j=1 be a matrix with scalar entries Aij . Assume that

these are represented in the form

(2.1) Aij =











p(i)a>ijq(j), 1 ≤ j < i ≤ N,

d(i), 1 ≤ i = j ≤ N,

g(i)b<ijh(j), 1 ≤ i < j ≤ N.

Here

(2.2)

p(i), i = 2, . . . , N, q(j), j = 1, . . . , N − 1, a(k), k = 2, . . . , N − 1,

g(i), i = 1, . . . , N − 1, h(j), j = 2, . . . , N, b(k), k = 2, . . . , N − 1,

d(i), i = 1, . . . , N,

are (possibly complex) numbers. Also, the operations a>ij and b<ji are defined for positive

integers i, j, i > j as a>ij = a(i − 1) · . . . · a(j + 1), for i > j + 1, and a>j+1,j = 1 and

b<ji = b(j + 1) · . . . · b(i− 1), for i > j + 1, and b<j,j+1 = 1. It is easy to see that

a>ij = a>ika
>
k+1,j , i > k ≥ j,(2.3)

and

b<ij = b<i,k+1b
<
k,j , i ≤ k < j.(2.4)

The matrix A is called order one quasiseparable, or simply quasiseparable. The represen-

tation of a matrix A in the form (2.1) is called a quasiseparable representation. The elements

in (2.2) are called quasiseparable generators of the matrix A. The elements p(i), q(j), a(k)
and g(i), h(j), b(k) are called lower quasiseparable generators and upper quasiseparable

generators, respectively, of the matrix A.

For a Hermitian matrix, the diagonal entries d(k), k = 1, . . . , N, are real numbers and

the upper quasiseparable generators can be obtained from the lower ones by taking

g(k) = q(k), h(k) = p(k), b(k) = a(k), k = 2, . . . , N − 1,

g(1) = q(1), h(N) = p(N).
(2.5)
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2.3. The Sturm sequences property for a quasiseparable Hermitian matrix. This

property yields information on the location of the eigenvalues of matrices being order one

quasiseparable. More details can be found, e.g., in [6, Part I]. Following [7, p. 15] we have an

analog of the well-known Sturm property for the characteristic polynomials of the principal

leading submatrices.

THEOREM 2.1. Let A be a Hermitian matrix with scalar entries with the quasiseparable

generators as in (2.2) with orders equal to one. Assume that p(k)h(k) 6= 0, k = 2, . . . , N −2.

Let γ0(λ) ≡ 1 and γk(λ) = det(A(1 : k, 1 : k) − λI), k = 1, . . . , N, be the characteristic

polynomials of the principal leading submatrices of the matrix A. Let ν(λ) be the number of

sign changes in the sequence

γN (λ), γN−1(λ), . . . , γ1(λ), γ0(λ),(2.6)

and let (α, β) be an interval on the real axis such that γN (α) 6= 0, γN (β) 6= 0. Then

1. ν(β) ≥ ν(α), and

2. the difference ν(β)− ν(α) equals the number of eigenvalues of the matrix A in the

interval (α, β) counting each eigenvalue in accordance with its multiplicity.

2.4. Recursive relations for the characteristic polynomials. These are useful for com-

puting the sequence of N + 1 Sturm polynomials of Section 2.3 in linear time. The following

results are taken from [7, pp. 10–12]. Consider the characteristic polynomials

γk(λ) = det(A(1 : k, 1 : k)− λI), k = 1, 2, . . . , N, γ0(λ) ≡ 1

of the principal submatrices of a matrix A being order one quasiseparable.

THEOREM 2.2. Let A be an N ×N matrix with scalar entries with the given quasisepa-

rable generators as in (2.2) with orders equal to one. With these generators, determine the

following expressions linear in λ:

ck(λ) = (d(k)− λ) a(k)b(k)− q(k)p(k)b(k)− h(k)g(k)a(k), k = 2, . . . , N − 1.

(2.7)

Let γk(λ) = det(A(1 : k, 1 : k) − λI) be the characteristic polynomials of the principal

submatrices of the matrix A. Then the following recursive relations hold:

γ1(λ) = d(1)− λ, f1(λ) = q(1)g(1),

γk(λ) = (d(k)− λ)γk−1(λ)− p(k)h(k)fk−1(λ), k = 2, . . . , N − 1,

fk(λ) = ck(λ)fk−1(λ) + q(k)g(k)γk−1(λ), k = 2, . . . , N − 1,

γN (λ) = (d(N)− λ)γN−1(λ)− p(N)h(N)fN−1(λ).

Moreover, if p(k) 6= 0, h(k) 6= 0, k = 2, . . . , N − 1, then

γk(λ) = Ψk(λ)γk−1(λ)− Φk(λ)γk−2(λ), k = 3, . . . , N,(2.8)

where

Ψk(λ) = d(k)− λ+
p(k)h(k)

p(k − 1)h(k − 1)
ck−1(λ),(2.9)

Φk(λ) =
p(k)h(k)

p(k − 1)h(k − 1)
lk−1(λ)δk−1(λ),(2.10)

lk−1(λ) = (d(k)− λ)a(k)− q(k)p(k),(2.11)

δk−1(λ) = (d(k)− λ)b(k)− h(k)g(k),(2.12)
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and

(2.13) (d(k)− λ)ck(λ) = lk(λ)δk(λ)− q(k)p(k)h(k)g(k).

2.5. The bisection method. Following [9, Section 8.4.1], for symmetric tridiagonal

matrices, if we consider the integer ν(λ) from Section 2.3 and want to compute λ = λk(A),
the kth largest eigenvalue of A for some prescribed k, and if bL, bU are a lower and an upper

bound for the range of the eigenvalues, then we can use the bisection method. Namely, if we

start with z = bU , y = bL, and perform repeatedly (until we attain machine precision) the

assignment λ = z+y
2 and then z = λ if ν(λ) ≥ k and y = λ otherwise, then this will yield the

desired eigenvalue.

2.6. Matrix norms. In order to apply the bisection method just described, we a priori

need a lower and an upper bound for the eigenvalues. The following matrix norms equipped

with appropriate ± signs could be used for that purpose.

Upon [10, Chapter 5], consider the Frobenius norm, namely

‖A‖F =

√

√

√

√

N
∑

i=1

N
∑

j=1

|Aij |2,(2.14)

which is like the other mentioned norms a bound for the eigenvalues. This norm is used, for

instance, in [9, Subsection 11.2.2 and Section 12.3].

The maximum value over all columnwise sums of matrix entries is

‖A‖1 = max
1≤j≤N

N
∑

i=1

|Aij |,(2.15)

which is also called the absolute values norm of a matrix or the 1-norm..

The ∞-norm is the maximum of all rowwise sum of the entries, i.e.,

‖A‖∞ = max
1≤i≤N

N
∑

j=1

|Aij |.(2.16)

The condition number (see also [3]), which indicates the number of significant digits of a solu-

tion x of the system Ax = b, is computed in this norm as it is given by κ∞ = ‖A‖∞‖A−1‖∞.

2.7. The Gershgorin Circle Theorem. The same linear complexity algorithms that we

will present for computing matrix norms can be used to compute quantities needed for some

other theorems. Here is a particular case, namely that of the Gershgorin Circle Theorem;

see [9, p. 341, Theorem 7.2.1, Section 7.2.1].

THEOREM 2.3. If A = D + F where D = diag(d(1), . . . , d(N)) and F has zero

diagonal entries, then the eigenvalues of A lie in the union of the circles Di, i = 1, . . . , N,
where

Di = {z ∈ C : |z − d(i)| ≤
N
∑

j=1

|Fij |}.
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This theorem has been generalized by Ostrowski as follows:

THEOREM 2.4. If A = D + F where D = diag(d(1), . . . , d(N)) and F has zero

diagonal entries and α ∈ [0, 1], then the eigenvalues of A lie in the union of the circles Di,
i = 1, . . . , N, where

(2.17) Di =







z ∈ C : |z − d(i)| ≤





N
∑

j=1

|Fij |





α
(

N
∑

i=1

|Fij |
)1−α







.

2.8. Strictly diagonal dominant matrices. By the same means we can decide in linear

time when a quasiseparable matrix satisfies the following definition.

DEFINITION 2.1 ([9, p. 119]). A matrix A is called strictly diagonal dominant if

(2.18) |d(i)| >
N
∑

i 6=j=1

|Aij |, i = 1, . . . , N.

3. Sturm property with bisection for eigenvalues of Hermitian quasiseparable ma-

trices. We aim at finding the eigenvalues of an N × N scalar Hermitian (order one) qua-

siseparable matrix A with given lower quasiseparable generators and diagonal entries. To this

end, we use the Sturm sequence property of the polynomials (2.6) and the bisection method

described in Section 2.5.

The eigenvalues are found one by one in the form

λ1 ≤ λ2 ≤ . . . ≤ λN

starting with the largest (from k = N to k = 1). First we need to find a lower bound bL ≤ λ1

and an upper bound bU ≥ λN , but we address this problem in detail in Sections 4 and 5. We

suppose for the present section that this task has been completed.

The important rudiments for this method, Sturm property with bisection, appeared first

in 1962 in [13]. However, in our method, when finding an eigenvalue, we keep relevant data

which are obtained during the search for λk for further use when finding neighboring smaller

eigenvalues λp, 1 ≤ p < k. To this end, like in [1], we write the continuously improving

left and right bounds for a certain eigenvalue into two arrays with N entries each, called

left and right. Finally when a stopping criterion is met, the procedure outputs the values

right(k), k = 1, 2, . . . , N, starting from k = N , which are approximations to the respective

eigenvalues λk. This is reasonable since both left and right margins are in the end almost equal

to each other and to the eigenvalue which is in between them.

We now describe the algorithm starting with the inner operations. The remaining part of

this section is divided into three subsections. In the first one, Section 3.1, the quasiseparable

generators of a matrix A are used for finding the number ν(λ) of eigenvalues of A smaller

than a given value λ. Then in Section 3.2, the eigenvalues themselves are found one by one in

a for loop, and in Section 3.3, we describe how to prepare data for the loop and put everything

together.

3.1. Finding the ratios of consecutive Sturm polynomials and the number ν(λ) of

eigenvalues of A smaller than a given λ. The task is to find ν(λ) for a given λ which is not

an eigenvalue itself. We will succeed to compute the sequence of characteristic polynomi-

als (2.6) in less than 10N arithmetic operations (additions and multiplications only) as opposed

to about half this number which is needed for the simpler case of a symmetric tridiagonal

matrix (one can count them in [9, Formula (8.4.2)]). Moreover, only these 5N operations
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are added after all, since for both mentioned cases (the previously known case of symmetric

tridiagonal matrices and the present case of general quasiseparable Hermitian matrices), once

the sequence (2.6) is computed, all the other operations required to find ν(λ) are the same

and so is the small number of remaining operations needed to manage the bisection step itself.

These facts permit to generalize the bisection method from the particular case of symmetric

tridiagonal matrices to the much broader case of Hermitian quasiseparable matrices in an inex-

pensive way. Thus, for general Hermitian quasiseparable matrices, the number of arithmetic

operations needed increases only by 5N for each bisection step.

The modified recursions which we use result from the fact that, like in [1], when trying

to compute (2.6), we encountered heavy overflow (i.e., certain numbers are too large for the

computer to handle) in the vicinity of the upper and lower bounds of the possible eigenvalue

range and, on the other hand, underflow in regions with many eigenvalues, where the values

in (2.6) are too low. For that reason we divide the relation (2.8) by γk−1(λ) and make other

obvious changes to obtain new recursive relations but now for the ratio Dk(λ) = γk(λ)
γk−1(λ)

.

It is easy to see that the number of sign changes in the sequence (2.6) equals the number of

negative values in the sequence Dk(λ).

PROPOSITION 3.1. Let A = {Aij}Ni,j=1 be a scalar Hermitian matrix with diagonal

entries d(k) and order one lower quasiseparable generators p(i) 6= 0, q(i), a(i) as in (2.2).

The number of eigenvalues of A situated at the left of a given real value λ is equal to the

number ν(λ) of negative elements in the sequence

(3.1) D1(λ) = d(1)− λ, Dk(λ) = Ψk(λ)−
Φk(λ)

Dk−1(λ)
, k = 2, . . . , N,

where Ψk(λ),Φk(λ) are given by

Ψ2(λ) = d(2)− λ,

Ψk(λ) = d(k)− λ+
|p(k)|2

|p(k − 1)|2 ck−1(λ), k = 3, . . . , N,
(3.2)

Φ2(λ) = |p(2)|2|q(1)|2,

Φk(λ) =
|p(k)|2

|p(k − 1)|2
(

d(k − 1)− λ)ck−1(λ) + |q(k − 1)|2|p(k − 1)|2
)

,

k = 3, . . . , N,

(3.3)

where

(3.4) ck(λ) = (d(k)− λ)|a(k)|2 − 2Re
(

q(k)p(k)a(k)
)

, k = 2, . . . , N − 1.

Proof. If we divide formula (2.8) by γk−1(λ), then we obtain (3.1), where Ψk(λ),Φk(λ)
are given by (2.9), (2.10). By (2.5), the relations (2.9), (2.10) become formulas (3.2),

Φk(λ) =
|p(k)|2

|p(k − 1)|2 |lk−1(λ)|2 ,(3.5)

and (3.3), where we also use that the left-hand side in (2.11) and (2.12) are conjugate (complex)

numbers. The same argument shows that (2.13) becomes

(d(k)− λ)ck(λ) = |lk(λ)|2 − |q(k)|2|p(k)|2 .
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Now we use this formula with k − 1 instead of k in order to replace |lk(λ)|2 in (3.5) since we

anyhow compute ck−1(λ) in (3.2). We thus obtain from (3.5) the formula (3.3). Changes in

formula (2.7) in order to reach (3.4) are similar to the ones mentioned above.

The formulas (3.2), (3.3) contain a number of operations which do not involve the value λ,

so that these operations can be executed in advance, such that in practice less operations are

required for each bisection.

Since it is needed for each of the many bisection steps for each eigenvalue, we have to

repeatedly evaluate the sequence in (3.1) for numerous values of λ. Several coefficients in the

recursion have to be computed only once for the given matrix A, for instance, the squares of the

absolute values of all the lower quasiseparable generators. By doing so, we succeed to compute

the recursive sequence Dk(λ), k = 1, . . . , N, in less than 10N arithmetical operations. In

Lemma 3.2 we detail the computations which have to be performed only once to prepare

suitable data for the fast computation of ν(λ) in Theorem 3.1.

LEMMA 3.2. Let A = {Aij}Ni,j=1 be a scalar Hermitian matrix as in Proposition 3.1.

Compute the numbers

α(k), π(k), η(k), β(k), k = 2, . . . , N − 1,

π(N), η(1), µ(2),

µ(k), ω(k) k = 3, . . . , N,

(3.6)

via the following algorithm:

1. Compute η(1) = q(1)q(1).
2. For k = 2, . . . , N − 1, compute

α(k) = a(k)a(k), π(k) = p(k)p(k), η(k) = q(k)q(k),

δ(k) = q(k)p(k)a(k), δR(k) = δ(k) + δ(k),
(3.7)

β(k) = α(k)d(k)− δR(k),

µ(k) = η(k − 1)π(k),

ω(k) = π(k)/π(k − 1).

(3.8)

3. Compute

µ(N) = η(N − 1)π(N), π(N) = p(N)p(N), and

ω(2) = 0, ω(N) = π(N)/π(N − 1).

Then the values Φk(λ),Ψk(λ) satisfy the relations

Ψk(λ) = d(k)− λ+ χk(λ), k = 2, . . . , N,

Φk(λ) = (d(k − 1)− λ)χk(λ) + µ(k),

where

χ2(λ) = 0, χk(λ) = (β(k − 1)− α(k − 1)λ)ω(k), k = 3, . . . , N − 1.

Proof. Using (3.2), (3.3), we get

Ψ2(λ) = d(2)− λ,

Ψk(λ) = d(k)− λ+ w(k)ck−1(λ), k = 3, . . . , N − 1,

Φ2(λ) = µ(2),

Φk(λ) = w(k) (d(k − 1)− λ)ck−1(λ) + π(k − 1)η(k − 1))

= (d(k − 1)− λ)w(k)ck−1(λ) + µ(k), k = 3, . . . , N − 1.
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Hence it only remains to prove that

ck−1(λ) = β(k − 1)− α(k − 1)λ.(3.9)

Indeed using (3.4), we get

ck−1(λ) = (d(k − 1)− λ)αk−1 − δR(k),

which implies (3.9).

The complexity of step 2 of the algorithm in Lemma 3.2 is 16(N−2) arithmetic operations

(additions, multiplications, and conjugations). The overall complexity is c0 = 16N − 27.

Therefore we concentrate much of the complexity into the steps of Lemma 3.2, which are

performed only once for a matrix A. Later we work with the numbers (3.6) instead of the lower

quasiseparable generators of the matrix A. These numbers could be called generator-derived

Sturm parameters.

THEOREM 3.1 (findNu(λ, generators)). Let A = {Aij}Ni,j=1 be a Hermitian (order one)

quasiseparable matrix with scalar entries which has diagonal entries d(k), k = 1, . . . , N,
and the generator-derived Sturm parameters

π(i), i = 2, . . . , N, η(j), j = 1, . . . , N − 1, α(k), β(k), k = 2, . . . , N − 1,

ω(k), k = 3, . . . , N, µ(k), k = 2, . . . , N,

given by formulas (3.7), (3.8) using the lower quasiseparable generators of the matrix A. Let λ
be a real number which is not an eigenvalue of A. Then the integer ν(λ) of the eigenvalues

of A which are less than λ is obtained via the following algorithm:

1. Compute the the ratios of consecutive pairs of Sturm sequence of polynomials (2.6).

1.1. Compute

(3.10) D1(λ) = d(1)− λ, χ2(λ) = 0.

1.2. For k = 2, . . . , N − 1, compute t = k − 1 and

χk(λ) = (β(t)− α(t)λ)ω(k),

Ψk(λ) = d(k)− λ+ χk(λ),

Φk(λ) = (d(t)− λ)χk(λ) + µ(k),

and if Dt(λ) > ǫ (the machine precision), then

Dk(λ) = Ψk(λ)−
Φk(λ)

Dt(λ)
.

2. Find the number of sign changes in the Sturm sequence of polynomials (2.6) which

is in fact equal to the number of negative Dk(λ), k = 1, . . . , N, that have been just

obtained since these are ratios of pairs of consecutive Sturm polynomials. To this

end perform the following steps:

2.1. Set ν = 0.

2.2. For k = 1, . . . , N, do: if Dk(λ) < 0, then set ν = ν + 1.

2.3. Set ν(λ) = ν.
The complexity of step 1 of the algorithm in Theorem 3.1 is dominated by the operations

in step 1.2, namely 3 multiplications, one division, and 6 additions or subtractions, which

are performed each of them N − 1 times. Therefore the overall complexity of step 1 is

c1 = 10N − 9, half of them additions and (almost) half of them multiplications.
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Step 2 of the algorithm requires only cheap additions by 1 in half of the cases and cheap

comparisons with 0 when the sign (the first bit) is checked. In total, the complexity of one

bisection step in the present theorem is

(3.11) cB ≤ 11.5N − 8.

In the semiseparable (of order one) case in Lemma 3.2, one does not need to compute

α(k) = a(k)a(k), k = 2, . . . , N − 1, in formula (3.7) since all these numbers are equal to

one. In formula (3.8) one does not have to multiply with these numbers twice. Therefore the

complexity of the algorithm is 4N − 8 arithmetical operations less.

In Theorem 3.1, which is used in the following to find the number ν(λ), formula (3.10)

requires one multiplication less for the semiseparable case, and this is why the bisection

algorithm works 10% faster than for quasiseparable matrices.

3.2. Finding the kth largest eigenvalues one by one. We will find each eigenvalue λk,
k = N,N − 1, . . . , 1, by repeated bisection: after we have determined a lower bound L and

an upper bound U, we choose λ in the middle, and if our eigenvalue is in the left interval,

then we set U = λ, otherwise L = λ, so that in either case in the next step the bisection

interval in which the eigenvalue lies is of half size. We continue the bisection until we reach

the previously determined machine precision, denoted ǫ. The corresponding while loop can be

described as follows:

• While abs(U −L) > ǫ, set λ = (U +L)/2, and we find ν for this λ by the algorithm

in Section 3.1, in particular by Theorem 3.1.

• If ν = k, then U = λ since the new eigenvalue λk is leftwards of λ, otherwise, i.e.,

if ν < k, set L = λ.

In this latter case we also keep this λ as a left bound for the eigenvalue λν+1, and

(if ν 6= 0) we also keep it as a right bound for λν . To this end, like in [1], we have

previously defined two arrays with N entries each called left and right.
The complete loop of the bisection step is illustrated in the following. The function

ν = findNu(λ, generators) in the algorithm below gathers the operations in Theorem 3.1

for finding the number ν of sign changes in the Sturm sequence. This is a simplified—but still

well working—version of the algorithm in [1].

The first two lines, before the call to this function, perform 2 arithmetical operations each,

and the last 3 lines perform all 3, yielding in total an average of 3.5 arithmetical operations.

So one bisection step costs (mostly because of (3.11)), 12N − 3 arithmetical operations.

Bisection.

1. while |U − L| > ǫ
2. λ = (U + L)/2
3. ν = findNu(λ, generators)
4. if ν = k
5. set U = λ
6. end if

7. else

8. L = λ, left(ν + 1) = λ
9. if ν 6= 0

10. set right(ν) = λ.

11. end if

12. end else

13. end while

Now we describe how to find the eigenvalues of A themselves in a for loop which includes

the just introduced while loop. When a new eigenvalue λk is to be found, this means that,
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if there exist λk+1, λk+2, . . . , λN rightwards, then they have been found already. We must

therefore start again with the left margin L of the bisection interval from the general lower

bound of all the eigenvalues, namely bL. Concerning the right margin U , we might improve

it if in right(k) a better (smaller) value has been written. Now is also the moment to make

use of the data written in the array left, but here, since we wrote in there left(ν + 1) for

ν < k, which might be very low, we have to improve L with a larger margin by seeking all of

left(1), left(2), . . . , left(N). This is all we have to do before the while loop.

After the while loop we only have to write down the recently found λk into right(k).
Hence, the complete for loop reads as follows.

Bisection for all eigenvalues.

1. for k = N,N − 1, . . . , 1,
2. set L = bL
3. for j = 1, . . . , k
4. if L < left(j)
5. set L = left(j)
6. end if

7. end for

8. if U > right(k)
9. set U = right(k)

10. end if

11. while (. . . , . . .)
12. set right(k) = L+U

2 λk = right(k)
13. end for

In the above for loop, at most 2N comparisons and assignments are required. If we do

not count, as usual, assignments, and if we take in average k = N
2 , then only N

2 operations

count. Only 5 other operations are performed outside the while loop for each k. Since

k = N,N − 1, . . . , 1 we have a total complexity of N2

2 + 5N arithmetical operations outside

the inner while loop.

3.3. Preparations for the loop and putting everything together. In order to prepare

the loops in Section 3.2, we first need to perform the following:

1. Find a lower bound bL and an upper bound bU for the set of eigenvalues on the real

line; this is described in Section 4.

2. Initialize with bL the array left(1 : N), which contains the larger last known in-

dividual left margins of the eigenvalues λk, k = 1, . . . , N, and with bU the array

right(1 : N) containing the smaller last known right margins of the same eigenvalues.

3. Initialize once and for all the upper bound U of the current interval to be bisected by

U = bU .

4. Receive from another program or compute the machine precision epsilon ǫ.
5. Scale the problem as explained below.

6. Use the algorithm contained in Lemma 3.2 in order to obtain and prepare better

coefficients, which are then used to compute the values in

γ0(λ) = 1, γ2(λ), . . . , γN−1(λ), γN (λ)

for many values of the real number λ as fast as possible.

We yet need to explain step 5. Since computing the values (1.1) gives underflow, especially

in the vicinity of eigenvalues of A, and overflow for λ large enough (say close to bL or bU
whichever is farther from the diagonal entries of A) and for large values of N , we scale the
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matrix A and thus the eigenvalues. Both the underflow and the overflow problems have been

pointed out in [1] for symmetric tridiagonal matrices as well.

The problem with overflow is harder, so we scale the lower quasiseparable generators

p(i), i = 2, . . . , N, and d(j), j = 1, . . . , N, by dividing them by the Frobenius norm ‖A‖F of

the matrix A. Hence, the Frobenius norm of the resulting matrix will be 1 and the eigenvalues

satisfy |λk| ≤ 1. Thus, we can take the upper bound bU = 1 and the lower bound bL = −1 for

the eigenvalues. This is because the Frobenius norm is the square root of the sum of the square

of the singular values, while the eigenvalues are bounded already by the largest singular value

alone. The scaling amounts in fact (and is equivalent to) diminishing the entries of A if we

had worked with the N2 matrix entries and not with the few quasiseparable generators. Of

course, after solving the problem we will descale back the eigenvalues that we found, this time

by multiplying each of them by the Frobenius norm ‖A‖F . The scaling is intended to assure

that the algorithm works for larger N as addressed in Section 6, where we also indicate the

typical size of N .

3.4. Bisection for selected eigenvalues and finding the spectral norm ‖A‖2 for a

general N × N matrix A whenever A
∗
A is quasiseparable. The spectral norm (the 2-

norm ‖B‖2) of a general matrix B is the largest singular value of that matrix, which in turn

is the square root of the largest eigenvalue of the Hermitian matrix A = B∗B. Since by the

bisection method which we use for Hermitian matrices, it is easy to find only one desired

eigenvalue of our choice, we can find ‖B‖2 in linear time whenever A = B∗B happens to

be quasiseparable and we have its lower quasiseparable generators and its diagonal entries

available.

To this end we choose the lower bound L of the interval to be bisected as
‖Bx‖2

‖x‖2

for an

arbitrary vector x 6= 0 and the upper bound L of that interval as ‖A‖F , and we compute the

generator-derived Sturm parameters (3.6) by Lemma 3.2. Then we only perform the following

loop instead of the large for loop above.

Bisection for one eigenvalue.

1. while |U − L| > ǫ
2. λ = (U + L)/2
3. ν = findNu(λ, generators)
4. if ν = N
5. set U = λ
6. else

7. L = λ
8. end if else

9. end while

10. set ‖A‖2 =
√

U+L
2

In the case when B itself is a Hermitian quasiseparable matrix, ‖B‖2 equals the maximal

absolute value of its eigenvalues. This means that

‖B‖2 = max{|λ1|, |λN |} ,

and if moreover B is positive definite, then ‖B‖2 = λN and we can apply the above algorithm

using B itself instead of A = B∗B.

4. The Frobenius ‖A‖F norm of an order one quasiseparable matrix. In the algo-

rithm presented above, we use as initial bounds for the eigenvalues

bL = −‖A‖F , bU = ‖A‖F .
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In this section we derive fast algorithms to compute the Frobenius norm for an order one

quasiseparable matrix.

Computation in linear time of the Frobenius norm for a proper represented (in the G-d,

Givens vector representation) semiseparable symmetric matrix can be found in [11]. In the

following, we extend this to the larger class of quasiseparable matrices in two ways.

Using (2.14) we have

(4.1) ‖A‖2F =
∑

1≤j<i≤N

|Aij |2 +
N
∑

i=1

|Aii|2 +
∑

1≤i<j≤N

|Aij |2.

We derive a backward and a forward recursion algorithms to compute this value in O(N)
operations.

4.1. The backward recursion algorithm. In this subsection we rewrite (4.1) in the form

(4.2) ‖A‖2F =
N−1
∑

j=1

N
∑

i=j+1

|Aij |2 +
N
∑

i=1

|Aii|2 +
N−1
∑

i=1

N
∑

j=i+1

|Aij |2.

THEOREM 4.1. Let A = {Aij}Ni,j=1 be a scalar matrix with diagonal entries d(k) and

lower and upper quasiseparable generators p(i), q(j), a(k), g(i), h(j), b(k) as in (2.2) all of

order one. Then the Frobenius norm n of the matrix A is obtained via the following algorithm:

1. For k = N initialize

sU (N − 1) = |h(N)|2, sL(N − 1) = |p(N)|2 and(4.3)

n = |d(N)|2.(4.4)

2. For k = N − 1, . . . , 2, perform the following steps: compute

n = n+ |q(k)|2sL(k) + |d(k)|2 + |g(k)|2sU (k),(4.5)

sU (k − 1) = |h(k)|2 + |b(k)|2sU (k),(4.6)

sL(k − 1) = |p(k)|2 + |a(k)|2sL(k).(4.7)

3. Compute

n = n+ |q(1)|2sL(1) + |d(1)|2 + |g(1)|2sU (1),(4.8)

n =
√
n.(4.9)

Proof. Inserting (2.1) in (4.2) we get

‖A‖2F =

N−1
∑

j=1





N
∑

i=j+1

|p(i)|2|a>ij |2


 |q(j)|2

+

N
∑

i=1

|d(i)|2 +
N−1
∑

i=1

|g(i)|2




N
∑

j=i+1

|b<ij |2|h(j)|2


 ,

(4.10)

i.e.,

(4.11) ‖A‖2F =

N−1
∑

j=1

(

sL(j)|q(j)|2 + |d(j)|2 + |g(j)|2sU (j)
)

+ |d(N)|2,
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with

sL(j) =

N
∑

i=j+1

|p(i)|2|a>ij |2, sU (j) =

N
∑

i=j+1

|b<ji|2|h(i)|2.

One has sL(N − 1) = |p(N)|2, and from (2.3) and a>j+1,j = 1, it follows that sL(j) satisfies

the recursive relations

sL(j − 1) =

N
∑

i=j

|p(i)|2|a>i,j−1|2 = |p(j)|2 +
N
∑

i=j+1

|p(i)|2|a>ij |2|a(j)|2

= |p(j)|2 + sL(j)|a(j)|2, j = N − 1, . . . , 2.

Similarly, one has sU (N − 1) = |h(N)|2, and from (2.4) and b>j,j+1 = 1, the recursion

for sU (j) follows:

sU (j − 1) =
N
∑

i=j

|b<j−1,i|2|h(i)|2 = |h(j)|2 +
N
∑

i=j+1

|b(j)|2|b<ji|2|h(i)|2

= |h(j)|2 + |b(j)|2|sU (j), j = N − 1, . . . , 2.

Hence the recursive relations (4.3), (4.6), and (4.7) hold. Next, the relations (4.4), (4.5), (4.8)

follow directly from (4.11). The equality (4.9) is obvious.

The complexity of step 1 of the algorithm in Theorem 4.1 involves 6 arithmetic operations,

where additions, multiplications, and conjugation (since |z|2 = z · z) are counted. The

complexity of step 2 in formula (4.5) is 11(N − 2) operations; the complexity of formulas

(4.6) and (4.7) is 6(N − 2) operations each. Together with 12 operation in step 3, the overall

complexity of this algorithm is 23N − 28 arithmetical operations. For the particular case of

Hermitian quasiseparable matrices, we obtain roughly half the complexity.

COROLLARY 4.1. Let A = {Aij}Ni,j=1 be a scalar Hermitian matrix with diagonal

entries d(k) and order one lower quasiseparable generators p(i), q(j), a(k) as in (2.2). Then

the Frobenius norm n of the matrix A is obtained via the following algorithm:

1. For k = N initialize

sL(N − 1) = |p(N)|2, n = d(N)2.

2. For k = N − 1, . . . , 2, perform the following steps: compute

n = n+ 2|q(k)|2sL(k) + d(k)2,(4.12)

sL(k − 1) = |p(k)|2 + |a(k)|2sL(k).

3. Compute

n = n+ 2|q(1)|2sL(1) + d(1)2,

n =
√
n.

The complexity of step 1 of the algorithm in Corollary 4.1 involves 3 arithmetic operations

where additions, multiplications, modulus, and initializations are counted. The complexity of

step 2, formula (4.12), is 7(N − 2) operations, the complexity of formula (4.7) is 6(N − 2)
operations. Together with 8 operation in step 3, the overall complexity of this algorithm is

13N − 15 arithmetical operations.
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4.2. The forward recursion algorithm. We can also compute the Frobenius norm using

the representation

‖A‖2F =

N
∑

i=2

i−1
∑

j=1

|Aij |2 +
N
∑

i=1

|Aii|2 +
N
∑

j=2

j−1
∑

i=1

|Aij |2

instead of (4.2) and, respectively, the formula

‖A‖2F =

N
∑

i=2

|p(i)|2




i−1
∑

j=1

|a>ij |2|q(j)|2


+

N
∑

i=1

|d(i)|2 +
N
∑

j=2

(

j−1
∑

i=1

|g(i)|2|b<ij |2
)

|h(j)|2

instead of (4.10). As a result we obtain the following algorithm.

THEOREM 4.2. Let A = {Aij}Ni,j=1 be a scalar matrix with diagonal entries d(k) and

lower and upper quasiseparable generators p(i), q(j), a(k), g(i), h(j), b(k) as in (2.2) all of

order one. Then the Frobenius norm n of the matrix A is obtained via the following algorithm:

1. For k = N initialize

sU (2) = |g(1)|2, sL(2) = |q(1)|2 and

n = |d(1)|2.

2. For k = 2, . . . , N − 1 perform the following: compute

n = n+ |p(k)|2sL(k) + |d(k)|2 + |h(k)|2sU (k),
sU (k + 1) = |g(k)|2 + |b(k)|2sU (k),
sL(k + 1) = |q(k)|2 + |a(k)|2sL(k).

3. Compute

n = n+ |p(N)|2sL(N) + |d(N)|2 + |h(N)|2sU (N),

n =
√
n.

The overall complexity of this algorithm is 23N − 28 arithmetical operations.

COROLLARY 4.2. Let A = {Aij}Ni,j=1 be a scalar Hermitian matrix with diagonal

entries d(k) and order one lower quasiseparable generators p(i), q(j), a(k) as in (2.2). Then

the Frobenius norm n of the matrix A is obtained via the following algorithm:

1. For k = 1 initialize

sL(2) = |q(1)|2, n = d(1)2.

2. For k = 2, . . . , N − 1 perform the following: compute

n = n+ 2|p(k)|2sL(k) + d(k)2,

sL(k + 1) = |q(k)|2 + |a(k)|2sL(k).

3. Compute

n = n+ 2|p(N)|2sL(N) + d(N)2,

n =
√
n.
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The overall complexity of this algorithm is 13N − 15 arithmetical operations.

For the semiseparable case, the norm-algorithms work about 10% faster than for quasisep-

arable matrices since, for instance, in Theorem 4.1 for the Frobenius norm, the number of

operations is reduced by three in both formulas (4.6) and (4.7).

Similar algorithms, but without the equations that involve the diagonal entries d(k) also

permit the calculation of the Frobenius norm of the matrix ‖A − D‖F , where

D = diag(d(1), . . . , d(N)). The central idea behind Jacobi’s method in [9, Section 8.5]

is to systematically reduce this quantity (called off(A) there), the "norm" of the off-diagonal

entries of A.

5. Other norms and applications. Here we present O(N)-algorithms to compute the

1-norm in (2.15) and the ∞-norm in (2.16) for an order one quasiseparable matrix. The proofs

are similar to the ones for the Frobenius norm in the preceding section, and we skip them.

5.1. The ‖A‖1 norm.

THEOREM 5.1. Let A = {Aij}Ni,j=1 be a scalar matrix with diagonal entries d(k) and

lower and upper quasiseparable generators p(i), q(j), a(k), g(i), h(j), b(k) as in (2.2) all of

order one. Then the norm n1 = ‖A‖1 of the matrix A is obtained via the following algorithm:

1. Compute the sums of the absolute values of the upper portion of the columns.

1.1. Set

sU = |g(1)|, u(1) = 0.

1.2. For k = 2, . . . , N − 1, perform the following: compute

u(k) = sU |h(k)|, sU = |g(k)|+ sU |b(k)|.

1.3. Set

u(N) = sU |h(N)|.

2. Compute the sums of the absolute values of the lower portion of the columns.

2.1. Set

sL = |p(N)|, w(N) = 0.

2.2. For k = N − 1, . . . , 2, perform the following: compute

w(k) = sL|q(k)|, sL = |p(k)|+ sL|a(k)|.

2.3. Set

w(1) = sL|q(1)|.

3. Find the maximal column.

3.1. Set

n1 = 0.

3.2. For k = 1, . . . , N, perform the following: compute

c = u(k) + w(k) + |d(k)|,

and set n1 = c whenever c > n1.
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Step 1 of this algorithm comprises the steps 1.1, 1.2, and 1.3, which involve

1 + 6(N − 2) + 2 arithmetic operations each, where additions, multiplications, or modu-

lus are counted as one. Step 2 comprises steps 2.1, 2.2, and 2.3 which have 1 + 6(N − 2) + 2
arithmetic operations each. The complexity of step 3.2 involves 5N arithmetic operations

respectively, where additions, multiplications, comparisons, or modulus are counted once. In

total, the complexity of the algorithm in Theorem 5.1 is 17N − 18 arithmetic operations.

5.2. The ‖A‖∞ norm.

THEOREM 5.2. Let A = {Aij}Ni,j=1 be a scalar matrix with diagonal entries d(k) and

lower and upper quasiseparable generators p(i), q(j), a(k), g(i), h(j), b(k) as in (2.2) all of

order one. Then the norm ni = ‖A‖∞ of the matrix A is obtained via the following algorithm:

1. Compute the sums of the absolute values of the upper triangular portion of the rows.

1.1. Set

sU = |h(N)|, u(N) = 0.

1.2. For k = N − 1, . . . , 2, perform the following: compute

u(k) = sU |g(k)|, sU = |h(k)|+ sU |b(k)|.

1.3. Set

u(1) = sU |g(1)|.

2. Compute the sums of the absolute values of the lower triangular portion of the rows.

2.1. Set

sL = |q(1)|, w(1) = 0.

2.2. For k = 2, . . . , N − 1, perform the following: compute

w(k) = sL|p(k)|, sL = |q(k)|+ sL|a(k)|.

2.3. Set

w(1) = sL|p(N)|.

3. Find the maximal row.

3.1. Set

ni = 0.

3.2. For k = 1, . . . , N, perform the following: compute

c = u(k) + w(k) + |d(k)|

and set ni = c whenever c > ni.

In total, the complexity of the algorithm in Theorem 5.2 is 17N−18 arithmetic operations.

5.3. Lower and upper bounds for the eigenvalues. By an application of Gershgorin’s

and Ostrowski’s theorem and using the steps of Theorems 5.1 and 5.2 for the computation

of (2.17), we obtain the following two theorems.

THEOREM 5.3. Let A = {Aij}Ni,j=1 be a scalar matrix with diagonal entries d(k) and

lower and upper quasiseparable generators p(i), q(j), a(k), g(i), h(j), b(k) as in (2.2) all

of order one. Then a lower bound bL and an upper bound bU for the absolute values of the

eigenvalues of the matrix A is obtained via the following algorithm:
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1. Perform step 1 from Theorem 5.1.

2. Perform step 2 from Theorem 5.1.

3. Find the bounds.

3.1. Set

bU = d(1) + u(1) + w(1), bL = d(1)− u(1)− w(1).

3.2. For k = 2, . . . , N perform the following: compute

s = w(k) + u(k),

c(k) = d(k) + s, e(k) = d(k)− s,

and set bU = c(k) whenever c(k) > bU and bL = e(k) whenever e(k) < bL.

In total the complexity of the algorithm in Theorem 5.3 is 19N −21 arithmetic operations.

THEOREM 5.4. Let A = {Aij}Ni,j=1 be a scalar matrix with diagonal entries d(k) and

lower and upper quasiseparable generators p(i), q(j), a(k), g(i), h(j), b(k) as in (2.2) all of

order one. Then a lower bound b̃L and an upper bound b̃U for the eigenvalues of the matrix A
is obtained via the following algorithm:

1. Perform step 1 from Theorem 5.2.

2. Perform step 2 from Theorem 5.2.

3. Find the lower and the upper bounds.

3.1. Set

b̃U = d(1) + u(1) + w(1). b̃L = d(1)− u(1)− w(1).

3.2. For k = 2, . . . , N perform the following: compute

s = w(k) + u(k),

c(k) = d(k) + s, e(k) = d(k)− s,

and set b̃U = c(k) whenever c(k) > b̃U and b̃L = e(k) whenever e(k) < b̃L.

In total, the complexity of the algorithm in Theorem 5.4 is 19N−21 arithmetic operations.

Note that we can apply Ostrowski’s theorem as in (2.17) to quasiseparable matrices in a similar

manner.

Summing up, a lower bound for the eigenvalues of a matrix is

max{−‖A‖F ,−‖A‖1,−‖A‖∞, bL, b̃L},

and an upper bound for the eigenvalues of a matrix is

min{‖A‖F , ‖A‖1, ‖A‖∞, bU , b̃U}.

5.4. Strictly diagonal dominant order one quasiseparable matrices. We now deter-

mine when an order one quasiseparable matrix is strictly diagonal dominant as in (2.18);

see, [9, p. 119]. Note that this property can ensure a nice, non-pivoting LU factorization, as

‖D−1(L+ U)‖∞ = max
1≤i≤N

N
∑

i 6=j=1

|Aij |
|d(i)| < 1,

where D = diag(d(1), . . . , d(N)).
THEOREM 5.5. Let A = {Aij}Ni,j=1 be a matrix with diagonal entries d(k) and lower

and upper quasiseparable generators p(i), q(j), a(k), g(i), h(j), b(k) as in (2.2) all of order

one. Then the fact that the matrix A is strictly diagonal dominant is obtained as the value of y
in the following algorithm:
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1. Perform step 1 from Theorem 5.2.

2. Perform step 2 from Theorem 5.2.

3. Check the condition (2.18).

3.1. Set y = 1.
3.2. For k = 1, . . . , N, perform the following: set y = 0, and break the loop

whenever u(k) + w(k) ≥ |d(k)|.
In total, the complexity of the algorithm in Theorem 5.5 is 15N−18 arithmetic operations.

6. Numerical experiments. All the numerical experiments have been performed on a

laptop with an Intel i5-3470 processor, 3 gigabyte of memory, and the machine precision

epsilon 1.8e-16.

A structure containing random quasiseparable generators is built. For each matrix size N ,

20 random quasiseparable matrices and 20 random semiseparable matrices are considered. For

a Hermitian matrix, complex lower quasiseparable generators a(k), p(k), q(k) are built by

using twice the Matlab function rand (once for the real part and once for the complex part).

Diagonal entries d(k) are created as real numbers. The mean and the deviation of the numbers

generated by rand are 0.5. For semiseparable matrices, p(k) and q(k) are build in a similar

way.

For each of the 20 random quasiseparable matrices of each size, 21 parameters are

computed and written into an Excel file for statistical postprocessing. For semiseparable

matrices, we stored only 10 parameters since we do not keep the results of the computations

of norms, except the Frobenius norm. The reason being that the other norms for semiseparable

matrices give results similar to the quasiseparable case.

Among the parameters are those which show the average or the maximum of the absolute

values of the differences between our N eigenvalues compared to the eigenvalues found

by Matlab. The computation of these parameters is simplified by the fact that both sets of

eigenvalues are already sorted in ascending order. The Matlab results are considered the exact

ones.

We describe how we measure the errors in the computation of the eigenvalues for the

numerical experiments. If we denote by λ(k) and λM (k), k = 1, . . . , N, the eigenvalues

found by the bisection method and, respectively, the Matlab eigenvalues, then the mean relative

error for 20 matrices is

(6.1)
1

20

20
∑

i=1

1

N

∑N

k=1 |λ(k)− λM (k)|
|λM (k)| ,

while the worst relative error is computed by

(6.2)
1

20

20
∑

i=1

max
1≤k≤N

|λ(k)− λM (k)|
|λM (k)| ·

Absolute errors are stored as well.

We note that when we use Matlab to compute the eigenvalues, we explicitly form the

matrix from the generators, which is then passed on to Matlab for the eigenvalue computation.

It can be shown that there can occur an instability in the step of converting generators to the

quasiseparable matrix. This is a cause of concern since different algorithms for forming the

quasiseparable matrix may give slightly different entries.

Figure 6.3 displays the average relative errors of the eigenvalues over 20 matrices of

fixed size, where the size N is a power of 2 between 32 and 2048, for the algorithms Sturm

bisection, divide and conquer, and reduction to tridiagonal plus implicit QR. The computed
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FIG. 6.1. Average and worst absolute error in finding eigenvalues by Sturm bisection as compared to Matlab

eigenvalues, which are considered the exact ones.
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FIG. 6.2. Time in seconds for Sturm bisection compared to Matlab for 1100 order one quasiseparable Hermitian

matrices with 20 matrices for each size 50, 100, . . . , 2750. From 750 on, Sturm bisection is already twice more

powerful. For matrices of size 2750, it works 12 times faster.
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FIG. 6.3. Average relative errors of 20N eigenvalues of 20 matrices of size N, where N is a power of 2 between

32 and 2048, for Sturm bisection, divide and conquer, and reduction to tridiagonal plus implicit QR as compared to

Matlab eigenvalues.
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FIG. 6.4. The average time for finding all the eigenvalues of 20 matrices of size N, where N is a power of 2

between 32 and 2048, for Sturm bisection, divide and conquer (including eigenvectors), and reduction to tridiagonal

plus implicit QR as compared to Matlab (either only eigenvalues or all eigendata).
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FIG. 6.5. Error in computing the Frobenius norm ‖A‖F and ‖A‖∞.

eigenvalues are compared to Matlab eigenvalues λM (k), k = 1, . . . , N, which are considered

to be the exact ones. For each of the 20N eigenvalues, we compute the absolute value of

the difference between it and the corresponding Matlab eigenvalue divided by its absolute

value. The average over 20N eigenvalues of the maximal error of Matlab as announced by its

developers is also plotted, and it is worse compared to any of the other 3 methods. The worst

error over all of the 81, 000 eigenvalues obtained in our experiment was 1.15868e-09.

Also, Figure 6.1 displays the average and worst absolute error in finding eigenvalues for

Sturm bisection as compared to the Matlab eigenvalues, which are considered the exact ones.

The size N of the matrices in our numerical experiments is a multiple of 50 ranging from

50 to 2750. For each of the N eigenvalues for an N ×N matrix, we compute the absolute

value of the difference between it and the corresponding Matlab eigenvalue. Then the average

error for a fixed matrix size N is computed as the mean over 20 random matrices of the

average of the errors of its N eigenvalues as in (6.1) and (6.2). The worst result over all 1.54
million eigenvalues obtained in our experiment was 1.45e-09. We computed this number as

the following maximum over 1100 matrices max1≤j≤1100 max1≤k≤N |λ(k)− λM (k)|; this

number is not plotted. The worst condition number out of the N eigenvalues is computed for

each matrix, and the time used by our algorithm, by Matlab, and by our checking program is

stored for each matrix.

For large matrices, the computation time of our eigenvalues algorithm is much less than the

corresponding time of Matlab. Both of them are given in Figure 6.2. Also, Figure 6.4 displays

the time for divide and conquer, for reduction to tridiagonal plus implicit QR, bisection, and

Matlab, while explicit QR is not plotted since it is the slowest and the less accurate.

For each matrix we also compute 11 norms and the Gershgorin and Ostrowski bounds for

the eigenvalues which are all of them obtained from the quasiseparable structure in order to

verify the algorithms, and we also give the total time of these computations. Some of them

are equal to each other, for instance, for any matrix, the Frobenius norm computed by rows
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FIG. 6.6. Absolute error of eigenvalues in semiseparable matrices.
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FIG. 6.7. The range of the eigenvalues (at left) and (at right) the worst condition numbers for the N eigenvalues

of semiseparable versus quasiseparable matrices.
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coincides with the one computed by columns, while for Hermitian matrices this value also

equals the norm computed by the shorter algorithms in Corollaries 4.1, 4.2. For the 1100
semiseparable matrices, only the Frobenius norm is stored. Figure 6.5 displays the error

in computing the Frobenius ‖A‖F and the ‖A‖∞ norm. Computing these norms using the

quasiseparable generators involves much less operations than building the entire matrix and

then computing again the corresponding norm with Matlab, so that in this case, the error comes

from building the large matrix or from Matlab and not from our algorithm. The Frobenius

norm is much more stable. Since we took only one matrix for each size, a multiple of 50 up to

3, 500, the results for ‖A‖∞, which sometimes is strongly influenced by a single larger matrix

entry, do not vary in a nice way proportionately to the size of the matrix.

Moreover, we computed many other parameters, such as the minimum, the maximum, the

mean, and the standard deviation for each of the 40 different matrices for a certain instance

out of the 55 sizes. This gives us the possibility to display the average, the worst case, and the

best case out of the 20 matrices of a certain size and type.

We also computed more parameters, like, for instance, the numbers ‖A‖∞ and ‖A‖F
divided by norm2 (which we obtained by using the Matlab function norm(A)) in order to find

out how well the ∞-norm or Frobenius norm approximate the range were the eigenvalues are

(i.e., the interval [−norm2, norm2] since we work with Hermitian matrices only).

Calculating the results for all the 2200 matrices, which involves our fast Sturm bisection

algorithm, and building the matrices from their generators in order to run the Matlab function

condeig and making many other computations, took more more than five days on an average

laptop.

The whole N ×N matrices are computed out of their quasiseparable generators in order

to use the Matlab function condeig. However, for large matrices, say of size 2000, there are

differences of up to 0.00008 in the same entry of the matrix when the large matrix is computed

from its quasiseparable generators twice, once starting with the diagonal, as we finally decided

to do, and another time starting from the first row. This comes in favor of the Matlab condeig

function since we then compare its result with ours and Matlab always uses the N ×N matrix.

Finally, we want to underline the fact that for general quasiseparable matrices with

random generators between 0 and 1, the range of the eigenvalues is very small as compared

to semiseparable matrices, so that the absolute errors in finding eigenvalues are much higher.

Figure 6.6 displays absolute (and not relative) errors of the eigenvalues in the semiseparable

case, i.e., the average and worst errors in finding eigenvalues for Sturm bisection as compared

to the Matlab eigenvalues. Again we consider the Matlab eigenvalues the exact ones. For each

of the N eigenvalues of an N ×N matrix, we compute the absolute value of the difference

between it and the corresponding Matlab eigenvalue. Then the average is computed for

each matrix size N as the mean over 20 random semiseparable matrices of the average of

the errors of its N eigenvalues as in (6.1) and (6.2). The worst error of an eigenvalue for

semiseparable matrices over all 1, 54 million eigenvalues obtained in our experiment was

1.08e-04 away from the corresponding Matlab eigenvalue. We computed this number as the

following maximum over 1100 matrices max1≤j≤1100 max1≤k≤N |λ(k) − λM (k)|. Also,

Figure 6.7 displays the range of the eigenvalues (at left), computed as 1
20

∑20
i=1(λmax,i−λmin,i)

for quasiseparable matrices compared to semiseparable matrices. This figure shows that

semiseparable matrices are harder to deal with. At the right-hand side, the worst condition

numbers 1
20

∑20
i=1 1/(max1≤j≤N (sj) ∗ norm(Ai)) for the N eigenvalues of quasiseparable

matrices and semiseparable matrices are given. This figure shows that semiseparable matrices

have a poorer condition number. In the above formula, sj is the condition number for the

eigenvalue λj , j = 1, . . . , N, and norm(Ai) is the absolute value of the largest singular value

of a certain matrix.



ETNA
Kent State University

http://etna.math.kent.edu

366 Y. EIDELMAN AND I. HAIMOVICI

REFERENCES

[1] W. BARTH, R. S. MARTIN, AND J. H. WILKINSON, Calculations of the eigenvalues of a symmetric tridiagonal

matrix by the method of bisection, Numer. Math., 9 (1967), pp. 386–393.

[2] F. L. BAUER AND C. T. FIKE, Norms and exclusion theorems, Numer. Math., 2 (1960), pp. 137–141.

[3] A. K. CLINE, C. B. MOLER, G. W. STEWART, AND J. H. WILKINSON, An estimate for the condition number

of a matrix, SIAM J. Numer. Anal., 16 (1979), pp. 368–375.

[4] J. DEMMEL, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[5] Y. EIDELMAN, I. GOHBERG, AND I. HAIMOVICI, Separable Type Representations of Matrices and Fast

Algorithms. Vol I., Birkhäuser, Basel, 2013.

[6] , Separable Type Representations of Matrices and Fast Algorithms. Vol II., Birkhäuser, Basel, 2013.

[7] Y. EIDELMAN, I. GOHBERG, AND V. OLSHEVSKY, Eigenstructure of order-one-quasiseparable matrices.

Three-term and two-term recurrence relations, Linear Algebra Appl., 405 (2005), pp. 1–40.

[8] Y. EIDELMAN AND I. HAIMOVICI, Divide and conquer method for eigenstructure of quasiseparable matrices

using zeroes of rational matrix functions, in A Panorama of Modern Operator Theory and Related Topics,

H. Dym, M. A. Kaashoek, P. Lancaster, H. Langer, and L. Lerer, eds., Operator Theory: Advances and

Applications, 218, Birkhäuser, Basel, 2012, pp. 299–328.

[9] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 3rd. ed., The Johns Hopkins University Press,

Baltimore, 1996.

[10] R. A. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge, 1990.

[11] N. MASTRONARDI, M. VAN BAREL, AND R. VANDEBRIL, Computing the rank revealing factorization of

symmetric matrices by the semiseparable reduction, Tech. Report TW 418, Dept. of Computer Science,

Katholieke Universiteit Leuven, Leuven, 2005.

[12] R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, Matrix Computations and Semiseparable Matrices.

Vol. II., The Johns Hopkins University Press, Baltimore, 2008.

[13] J. H. WILKINSON, Calculation of the eigenvalue of a symmetric tridiagonal matrix by the method of bisection,

Numer. Math., 4 (1962), pp. 362–367.


