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Abstract. We review our two-level and multilevel methods with aggressive coarsening and polynomial smoothing.
These methods can be seen as a less expensive and more flexible (in the multilevel case) alternative to domain
decomposition methods. The polynomial smoothers employed by the reviewed methods consist of a sequence of
Richardson iterations and can be performed using up to n processors, where n is the size of the considered matrix,
thereby allowing for a higher level of parallelism than domain decomposition methods.
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1. Introduction. In general, domain decomposition methods (see, e.g., [1, 2, 3, 4, 10, 12,
16] and for a comprehensive list of references see the monograph [18]) can be, in a multigrid
terminology ([5, 13, 26]), viewed as two-level multigrid methods with a small coarse space
and a massive smoother that uses local subdomain solvers. The size of the subdomains and the
size of the coarse space are closely (and inversely) related, which has important implications
for the parallel scalability of such methods. From both a theoretical and practical viewpoint,
domain decomposition methods are sought whose convergence rate is independent or nearly
independent of the mesh size and the subdomain size. Some of the most successful types of
domain decomposition methods—substructuring methods such as BDDC [17], FETI [12],
and FETI-DP [11] class methods and overlapping Schwarz methods—satisfy this property.
There are, however, several disadvantages common to these domain decomposition algorithms
when it comes to parallel scalability, and conflicting objectives are encountered. The local
subdomain solvers are, especially for 3D problems, relatively expensive and scale unfavorably
with respect to the subdomain size. Since only a small number of processors can be used
efficiently by each subdomain solver, massive parallelism may also be limited. Both of these
issues lead to a preference for small subdomains. However, using small enough subdomains
gives rise to an undesirably large coarse-space problem, which destroys parallel scalability.

The goal of this paper is to review our two-level and multilevel methods with aggressive
coarsening (i.e., leading to small coarse problems) and massive smoothing that do not have the
above disadvantages. Instead of smoothers that are based on local subdomain solvers, we use
special polynomial smoothers that are based on the properties of Chebyshev polynomials and
are a sequence of Richardson iterations. In our most general result, assuming that the mesh
size on the level l can be characterized by hl and employing a carefully designed polynomial
smoother as a multigrid relaxation process, we prove (for a general multigrid V-cycle) a
convergence result independent of the ratio hl+1/hl, provided that the degree of our smoother
is greater than or equal to Chl+1/hl. A Richardson iteration can be performed in parallel
using n processors, where n is the size of the considered matrix. Thus, our methods are
asymptotically much less expensive than the domain decomposition methods that use direct
subdomain solvers and allow for a finer-grained parallelism.
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It is generally believed that when assuming no regularity, it is not useful to perform more
than O(1) multigrid smoothing steps. One of the key objectives of this paper is to demonstrate
that this is not the case. Our earlier methods are based on smoothed aggregation and show
a significant acceleration compared to the use of O(1) smoothing steps if the number of
multigrid smoothing steps is approximately equal to the number of prolongator smoothing
steps. Finally, our most general result is multilevel and fully independent of the smoothing of
the prolongator.

This review paper covers a relatively large time span of research and is organized as
follows. Four methods (frameworks) are described in four key sections. Two-level methods
(Sections 3 and 4) are based on the smoothed-aggregation concept. It is shown that it makes
sense to perform a number of multigrid smoothing iterations that is approximately equal
to the number of prolongator smoothing steps. The method reviewed in Section 3 shows
a significant acceleration if multiple prolongator smoothing and multigrid smoothing steps
are performed, but it does not achieve a fully optimal convergence, that is, independent of
both the fine resolution characterized by the mesh size h and the coarse-space resolution
characterized by the subdomain size H for the cost of O(H/h) multigrid smoothing steps. On
the other hand, the two-level method of Section 4 is fully optimal. Section 5 reviews a two-
level method that is fully optimal and also allows for a multilevel extension. A convergence
rate independent of the resolutions of the first two levels is established. (That is, aggressive
coarsening between level 1 and level 2 can be performed and is fully compensated by the
smoothing). The method presented here is in spirit close to smoothed aggregation. The most
general framework is described and analyzed in Section 6. A general (abstract) multigrid
method with our polynomial smoother is considered. We stress that the analyzed method does
not have to be based on smoothed aggregation. As stated above, for the cost of a number
of multigrid smoothing iterations that is greater than or equal to chl+1/hl, a convergence
rate independent of the resolutions hl on all levels is proved. The convergence estimates are
confirmed numerically in Section 7. The results are summarized in Section 8.

2. Two-level variational multigrid. The solution of a system of linear algebraic equa-
tions

(2.1) Ax = f ,

where A is a symmetric positive definite n × n matrix that arises from a finite element
discretization of an elliptic boundary value problem, is considered. To define a variational two-
level method, two algorithmic ingredients are required: a linear prolongator, P : Rm → R

n,
m < n, and a smoothing procedure. In this paper, polynomial smoothers that can be expressed
as a sequence of Richardson iterations

(2.2) x← (I − ωA)x+ ωf

are considered. Note that a particular case of interest is that of a small coarse space, that is,
m≪ n. Let ν1 and ν2 be integers. A variational two-level method proceeds as follows:

ALGORITHM 1.
1. For i = 1, . . . , ν1 do x← (I − αiA)x+ αif .
2. Set d = Ax− f .
3. Restrict d2 = PTd.
4. Solve the coarse problem A2v = d2, where A2 = PTAP ,
5. Correct x← x− Pv,
6. For i = 1, . . . , ν2 do x← (I − βiA)x+ βif .
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Throughout Sections 3 and 4, the tentative prolongator p is assumed to be constructed by
a generalized unknowns aggregation method [22]. This is strictly because of considerations
of algorithmic complexity. A simple example of a (non-generalized) aggregation method is
presented below in Example 2.1. For a standard finite element discretization of a scalar elliptic
problem, the generalized aggregation method coincides (up to a scaling) with a standard
unknowns aggregation method [22]. The resulting prolongator p is an orthogonal matrix [22].

The final prolongator P is obtained by polynomial smoothing [19, 20, 22, 23, 24]

(2.3) P = Sp, S = (I − ω1A) · · · (I − ωνA),

where ν is a positive integer. The coefficients αi, βi, and ωi are chosen carefully and kept in a
close relationship. The tentative prolongator p is responsible for the approximation properties
of the coarse-space Range(P ). The prolongator smoother S enforces smoothness of the
coarse-space functions.

EXAMPLE 2.1. Consider a one-dimensional Laplace equation discretized on a uniform
mesh that consists of n = mN nodes. A simple unknowns aggregation prolongator can be
constructed as follows. Let the nodes be numbered in the usual way from left to right. The
aggregates are formed as disjoint sets of N consecutive nodes, i.e.,

{Ai}mi=1 =
{

{1, 2, . . . , N}, {N + 1, N + 2, . . . , 2N}, . . . ,
{(m− 1)N + 1, . . . ,mN − 1,mN}

}

.
(2.4)

The corresponding prolongator is given by

(2.5) pij =

{

1 iff i ∈ Aj ,

0 otherwise,

that is, the j-th column is created by restricting a vector of ones onto the j-th aggregate with
zeroes elsewhere. In matrix form,

(2.6) p =
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The action of the prolongator corresponds to a disaggregation of the j-th R
m-variable into

N R
n-variables forming the aggregate Aj . Thus, p can be thought of as a discrete piecewise

constant interpolation. The prolongator becomes an orthogonal matrix by the scaling

p← 1√
N

p ·
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For scalar problems (such as Example 2.1), the columns of the prolongator p have a disjoint
nonzero structure. This can also be viewed as the discrete basis functions of the coarse-space
Range(p) having disjoint supports. For non-scalar elliptic problems, several fine-level vectors
are restricted to each of the aggregates. For example, for a discretization of the equations of
linear elasticity, six rigid-body modes are restricted to each of the aggregates giving rise to six
columns with the same nonzero structure. Such a set of columns is labeled a super-column and
the corresponding set of coarse-level degrees of freedom (each associated with one column)
a super-node. The super-columns have a disjoint nonzero structure corresponding to the
disjoint nonzero structure of the aggregates. Thus, in general, it is assumed that the discrete
coarse-space basis functions (columns of the prolongator p) are non-overlapping unless they
belong to the same aggregate.

A key assumption to prove convergence of a two-level method is that the prolongator
satisfies the weak approximation condition

(2.7) ∀e ∈ R
n ∃v ∈ R

m : ‖e− pv‖2 ≤ CA

̺(A)

(

H

h

)2

‖e‖2A .

Here, h is a characteristic element size of the fine-level discretization (assuming the quasi-
uniformity of the mesh), and H is a characteristic diameter of the aggregates (understood as a
set of finite element nodal points). For a scalar elliptic second-order problem, (2.7) was proved
in [22]. For the case of linear elasticity in 3D, the reader is referred to [23]. A simple example
is given below.

EXAMPLE 2.2. To illustrate the verification of property (2.7), consider a one-dimensional
model example: for a given f ∈ L2((0, 1)), find u ∈ H1

0 ((0, 1)) such that

(u′, v′)L2((0,1)) = (f, v)L2((0,1)), ∀v ∈ H1
0 ((0, 1)).

The model problem is discretized by P1-elements on a uniform grid of mesh size h = 1
mN+1 .

The discretization leads to a system (2.1) of n = mN linear algebraic equations. Each equation
corresponds to one unconstrained node in the interval (0, 1). The tentative prolongator p is
based on an aggregation of groups of N neighboring nodes as depicted in Figure 2.1 and
described in Example 2.1. This yields (2.5) or equivalently the matrix form (2.6).

1 2 nN

ΩΩ1 m

AA m1

ff

FIG. 2.1. Aggregates of N nodes.

Consider a finite element interpolator Πh : x = (x1, . . . , xn)
T 7→∑

i xiϕi. The tentative
prolongator p applied to a vector v = (v1, . . . , vm)T returns the value vi in all the variables
of the aggregate Ai. Hence, for the corresponding finite element function we have

(2.8) Πhpv = vi on Ωi,

where Ωi is the subinterval of (0, 1) corresponding to the aggregate Ai; see Figure 2.1.



ETNA
Kent State University

http://etna.math.kent.edu

MULTILEVEL METHODS WITH AGGRESSIVE COARSENING 405

Let H denote the length of the intervals Ωi. The verification of (2.7) consists in a
straightforward application of the scaled Poincaré inequality on the subintervals Ωi,

(2.9) min
q∈R

‖u− q‖L2(Ωi) ≤ CH|u|H1(Ωi), ∀u ∈ H1(Ωi),

and the equivalence of the discrete and continuous L2-norms for finite element functions [9],

(2.10) ch−1‖Πhu‖2L2(Ωi)
≤ ‖u‖2l2(Ωi)

≡
∑

j∈Ai

u2
j ≤ Ch−1‖Πhu‖2L2(Ωi)

.

From (2.8), (2.9), and (2.10), it follows that for every u ∈ R
n, there exists a coarse-level

vector v = (v1, . . . , vm)T such that

‖u− pv‖2 =
m
∑

i=1

‖u− pv‖2l2(Ωi)
≤ Ch−1

m
∑

i=1

‖Πhu− vi‖2L2(Ωi)

= Ch−1
m
∑

i=1

min
qi∈R

‖Πhu− qi‖2L2(Ωi)
≤ C

H2

h

m
∑

i=1

|Πhu|2H1(Ωi)

≤ C
H2

h
|Πhu|2H1((0,1)) .

Therefore, since ̺(A) ≤ Ch−1 (cf. [9]) and |Πhu|H1((0,1)) = ‖u‖A, it follows that there
exists a mapping QC : Rn → Range(p) such that

‖u−QCu‖ ≤ C
H

h
√

̺(A)
‖u‖A, ∀u ∈ R

n.

This shows (2.7).
The proof can be easily extended to multiple dimensions as well as to the case of unstruc-

tured domains Ωi as long as the domains are shape regular (the constant in the scaled Poincaré
inequality is uniformly bounded). This requirement can be also weakened by encapsulating
the domains Ωi into balls with bounded overlap [22].

The constant in the weak approximation condition (2.7) depends on the ratio H
h . As a

result, the convergence of the straightforward two-level method depends on the same ratio.
More specifically, assuming (2.7), the variational two-level method with the prolongator p and
a single Jacobi post-smoothing step converges with the rate of convergence

(2.11) ‖Ee‖2A ≤
(

1− C

(

h

H

)2
)

‖e‖2A,

where E is the error propagation operator of the method. The objective of the methods reviewed
in this paper is to eliminate this dependence of the convergence of a two-level method on
the ratio H

h with a minimal possible cost. Domain decomposition methods strive toward the
same goal. A typical domain decomposition method can be viewed as a two-level multigrid
method with a small coarse space whose local resolution corresponds to the subdomain size
and a block-smoother that uses direct subdomain solvers. The subdomain solvers are relatively
expensive. Here, methods with a much lower cost that also open the room for a higher level of
fine-grain parallelism are described and analyzed.

A two-level method is labeled optimal if, for a second-order elliptic problem discretized
on a mesh with the mesh size h, it yields a small, sparse coarse space characterized by the
diameter H and an H/h-independent rate of convergence for the cost of O(H/h) elementary



ETNA
Kent State University

http://etna.math.kent.edu

406 J. BROUSEK, et al.

TABLE 2.1
Fine-level cost of an optimal two-level multigrid method and a domain decomposition method based on direct

(banded and sparse) subdomain solvers. The coarse-level setup and solve are not included.

Method Space Subdomain Bandwidth Total cost
dim. d problem size

DD+banded 2 O((H/h)2) O(H/h) O(n(H/h)2)
DD+banded 3 O((H/h)3) O((H/h)2) O(n(H/h)4)
DD+sparse 2 O((H/h)2) – O(n(H/h))
DD+sparse 3 O((H/h)3) – O(n(H/h)3)
Optimal TMG any d – – O(n(H/h))

smoothing steps. Generally, a Richardson iteration sweep given by (2.2) is considered as an
elementary smoothing step. One cannot possibly expect a better result, i.e., a coarse-space
size independent convergence with fewer than O(H/h) smoothing steps since that many steps
are needed to establish essential communication within the discrete distance O(H/h), that is,
the continuous distance O(H).

An optimal two-level method is significantly less expensive than a domain decomposition
(DD) method based on local subdomain solvers. A DD method needs to solve (1/H)d

subdomain linear problems of size O((H/h)d). This is reflected in a comparison of the
complexity of the optimal two-level method shown in Table 2.1. Whether a direct banded or a
direct sparse solver is used for the Cholesky decomposition of the local matrices in the DD
method, the cost of the optimal two-level method is significantly lower in three dimensions.
Furthermore, an optimal two-level method is more amenable to massive parallelism. In this
method, the smoothing using O(H/h) Richardson sweeps (2.2), which constitutes a bottleneck
of the entire procedure, can be performed using up to n processors. On the other hand, in
a DD method, subdomain-level- and therefore much coarser-grained parallelism is natural,
where typically only O(m) processors can be utilized, where m is the number of subdomains.

3. Naive beginning. In this section, a two-level method of [14] is described and analyzed.
Even though it does not have a fully optimal convergence, it still has a practical value. For the
cost of O(H/h) smoothing steps in the smoothed prolongator and O(H/h) standard multigrid
smoothing steps, the rate of convergence of the straightforward method (2.11) is improved as

‖Ee‖2A ≤
(

1− C
h

H

)

‖e‖2A.

When the algorithm is used as a conjugate gradient method preconditioner, the convergence
improves to

(3.1) ‖Ee‖2A ≤
(

1− C

√

h

H

)

‖e‖2A.

Thus, when the coarse-space characteristic diameter H is increased 10 times (making the
coarse problem 100 times smaller for a two-dimensional problem and 1000 times smaller for
a three-dimensional problem) and the number of smoothing steps is increased 10 times, the
expression

√

H/h in the estimate (3.1) grows only by a factor of
√
10 = 3.162.

On the theoretical side, the method justifies the use of O(H/h) multigrid smoothing steps.
It was generally believed that under the regularity-free assumption (2.7), it is impossible to
improve the convergence by adding more pre- or post-smoothing steps. One of the main
objectives of this paper is to show that this is not the case. The results in Sections 3 and 4
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justify using as many pre- or post-smoothing steps as there are prolongator smoothing steps

in (2.3). In Section 6 it is proven that, for a general multilevel method, it makes sense to use
O(H/h) smoothing steps even for a method that does not use prolongator smoothing.

The two-level method of [14] uses the components described in the previous section—
a tentative prolongator p obtained by the generalized unknowns aggregation, a smoothed
prolongator P = Sp as in (2.3) with the following choice

ωi =
ω

̺(A)
, i = 1, . . . , ν, ω ∈ (0, 2),

and a post-smoother given by step 6 of Algorithm 1 with

ν2 = ν + 1, βi =
ω

̺(A)
, i = 1, . . . , ν + 1.

The number of steps is assumed to satisfy the condition ν ≥ CH
h , and ν ≈ 1

2
H
h is a recom-

mended value. Here, H is a characteristic diameter of the aggregates. We will also consider a
symmetrized version of this method in which the pre-smoother (step 1 of Algorithm 1) and the
post-smoother coincide.

Under reasonable assumptions on the aggregates, the prolongator smoothing by S estab-
lishes natural overlaps of the coarse-space basis functions (columns of P ) and leads to a sparse
coarse-level matrix PTAP ([14]). This is illustrated in the following example.

EXAMPLE 3.1. Consider the discretization of the scalar elliptic problem given in Exam-
ple 2.2, i.e., the weak form of a one-dimensional Poisson equation on (0, 1) with homogeneous
Dirichlet boundary conditions and its discretization by P1-elements on a uniform mesh. The
resulting stiffness matrix A is tridiagonal and its pattern follows, aside from the Dirichlet
boundary condition, the three-point scheme

1

h
[−1, 2,−1] .

Let the aggregates be N consecutive nodes as given by (2.4) and illustrated in Figure 2.1, the
tentative prolongator be given by (2.5), the prolongator smoother be

S =

(

I − ω

̺(A)
A

)⌊N/2⌋
,

and the final prolongator P = Sp. The standard finite element interpolator Πh can be written
as

Πh : x ∈ R
n 7→

n
∑

i=1

xiϕi,

where {ϕi}ni=1 is the standard P1- (piecewise-linear) finite element basis. Then, interpolants
of the coarse-space vectors given by the prolongator p are

ϕ2
i = Πhpei, i = 1, . . . ,m,

where ei is the i-th canonical basis vector of Rm and m is the number of aggregates (see
the top of Figure 3.1). Similarly, continuous basis functions corresponding to the smoothed
prolongator are given by

ϕ2,S
i = ΠhPei = Πh

(

I − ω

̺(A)
A

)⌊N/2⌋
pei, i = 1, . . . ,m.
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The overlap of the supports of the unsmoothed basis functions is only minimal as depicted
in Figure 3.1 (top). Each smoothing step, i.e., the multiplication by I − ω/̺(A)A, adds to
the support one element on each side. Since H = (N − 1)h, the recommended value implies
ν ≈ 1

2H/h = (N − 1)/2 ≈ ⌊N/2⌋. Figure 3.1 (bottom) shows that for aggregates of N = 7
nodes, the recommended value is ν ≈ 3, and the smoothing steps then establish a natural
overlap of the smoothed basis functions. Finally, the coarse-level matrix A2 = PTAP satisfies

{(A2)ij}mi,j=1 = {(APei, Pej)}mi,j=1

=
{

(∇ΠhPei,∇ΠhPej)L2((0,1))

}m

i,j=1

=
{

(∇ϕ2,S
i ,∇ϕ2,S

j )L2((0,1))

}m

i,j=1
.

The entry (A2)ij can be nonzero only if the supports of the basis functions ϕ2,S
i and ϕ2,S

j

overlap. Thus, the coarse-space matrix is sparse. This is true with the recommended choice
of ν under reasonable conditions on the aggregates in general.

supp ϕ2,S
i

FIG. 3.1. Non-smoothed (above) and smoothed (below) continuous basis functions.

The convergence proof below takes advantage of the observation that the next smoothing
iteration is never more efficient than the preceding one. Consider a linear smoothing iteration
method with the error propagation operator M that is A-symmetric and a nonzero error
vector e such that Me 6= 0. Comparing the contraction ratios in the A-norm of one iteration
to the next, it holds that

(3.2) q1 ≡
‖Me‖A
‖e‖A

≤ q2 ≡
‖M(Me)‖A
‖Me‖A

.

Indeed, the A-symmetry of M and the Cauchy-Schwarz inequality imply

‖Me‖2A = 〈AMe,Me〉 = 〈AM(Me), e〉 ≤ ‖M(Me)‖A‖e‖A.
Dividing the above estimate by ‖Me‖A‖e‖A yields (3.2). The observation can be applied
recursively to infer that the effect of ν + 1 smoothing iterations can be estimated using the
effect of the least efficient last smoothing iteration: assume for the time being that M ie 6= 0,
for i = 0, . . . , ν + 1. Thus, for the A-symmetric error propagation operator M , (3.2) gives

‖M ie‖A
‖M i−1e‖A

≤ ‖M
ν+1e‖A

‖Mνe‖A
, i = 1, . . . , ν,

that is,

(3.3)
‖Mν+1e‖A
‖e‖A

=
‖Mν+1e‖A
‖Mνe‖A

‖Mνe‖A
‖Mν−1e‖A

· · · ‖Me‖A
‖e‖A

≤
(‖Mν+1e‖A
‖Mνe‖A

)ν+1

·

If Mνe = 0, then ‖Mν+1e‖A/‖e‖A = 0, and the estimate above is not needed.
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It is well-known [6] that the error propagation operator of the variational two-level method
with a prolongator P and ν+1 post-smoothing iterations with the error propagation operator M
is given by

E = Mν+1
[

I − P (PTAP )−1PTA
]

.

The following abstract lemma provides an estimate for ‖E‖A.
LEMMA 3.2. Assume there is a constant C > 0 such that the tentative prolongator p

satisfies

(3.4) for all fine u ∈ R
n, there is a coarse v ∈ R

m : ‖u− pv‖ ≤ C
√

̺(A)
‖u‖A.

Then the variational two-level method with the smoothed prolongator P = Mνp and ν + 1
post-smoothing steps with the error propagation operator M = I − ω/̺(A)A satisfies

(3.5)
∥

∥Mν+1
[

I − P (PTAP )−1PTA
]
∥

∥

2

A
≤
[

1− ω(2− ω)

C2

]ν+1

.

Moreover, for the symmetrized version, the following estimate holds

(3.6)
∥

∥Mν+1
[

I − P (PTAP )−1PTA
]

Mν+1
∥

∥

2

A
≤
[

1− ω(2− ω)

C2

]2(ν+1)

.

Proof. The matrix P (PTAP )−1PTA is an A-orthogonal projection onto Range(P ).
The complementary projection Q = I − P (PTAP )−1PTA is an A-orthogonal projection
onto Range(P )⊥A , where the symbol Range(P )⊥A denotes an A-orthogonal complement of
Range(P ). It holds that

(3.7) Range(Q) = Range(P )⊥A = Ker(PTA).

The operator norm’s submultiplicativity, (3.7), and the fact that ‖Q‖A = 1, since Q is an
A-orthogonal projection, give

‖Mν+1Q‖A ≤ sup
x∈Ker(PTA)\{0}

‖Mν+1x‖A
‖x‖A

‖Q‖A ≤ sup
x∈Ker(PTA)\{0}

‖Mν+1x‖A
‖x‖A

.(3.8)

Note that the above estimate originates in [6]. The key idea of the proof follows. Since
P = Mνp, where M is a polynomial in A, M and A commute, hence Ker(PTA) can be also
characterized as

Ker(PTA) = Ker((Mνp)TA) = Ker(pTMνA) = Ker(pTAMν).

Thus, Mνx ∈ Ker(pTA) for x ∈ Ker(PTA). This fact together with the estimates (3.3)
and (3.8) yield

‖Mν+1Q‖A ≤ sup
x∈Ker(PTA)\{0}

‖Mν+1x‖A
‖x‖A

≤ sup
x∈Ker(PTA)\{0}

(‖Mν+1x‖A
‖Mνx‖A

)ν+1

= sup
x∈Ker(pTA)\{0}

(‖Mx‖A
‖x‖A

)ν+1

=

(

sup
x∈Ker(pTA)\{0}

‖Mx‖A
‖x‖A

)ν+1

.(3.9)
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The rest of the proof is again standard [6]. The term

sup
x∈Ker(pTA)\{0}

‖Mx‖A
‖x‖A

, M = I − ω

̺(A)
A,

is estimated using an orthogonality trick from the proof of Céa’s lemma. First, for any x ∈ R
n,

it holds that

‖Mx‖2A =

〈

A

(

I − ω

̺(A)
A

)

x,

(

I − ω

̺(A)
A

)

x

〉

= ‖x‖2A − 2
ω

̺(A)
〈Ax, Ax〉+

(

ω

̺(A)

)2
〈

A2x, Ax
〉

≤ ‖x‖2A − 2
ω

̺(A)
〈Ax, Ax〉+ ω2

̺(A)
〈Ax, Ax〉

=

[

1− ω(2− ω)

̺(A)

(‖Ax‖
‖x‖A

)2
]

‖x‖2A.(3.10)

Thus, the smoother is (for ω ≈ 1) efficient provided that

‖Ax‖2
‖x‖2A

≈ ̺(A).

Next, let x ∈ Range(p)⊥A = Ker(pTA). The assumption (3.4) guarantees the existence of v
such that

‖x‖2A = 〈Ax,x〉 = 〈Ax,x− pv〉 ≤ ‖Ax‖ ‖x− pv‖ ≤ ‖Ax‖ C
√

̺(A)
‖x‖A,

which follows along the lines of the proof of Céa’s lemma and using the Cauchy-Schwarz
inequality. Dividing the above inequality by C√

̺(A)
‖x‖2A, squaring the result, and substituting

into (3.10) yields

‖Mx‖2A ≤
[

1− ω(2− ω)

C2

]

‖x‖2A, ∀x ∈ Range(p)⊥A .

This and (3.9) give the result (3.5).
Since Q is an A-orthogonal projection, it hold that Q2 = Q, and therefore it follows that

Mν+1QMν+1 = Mν+1Q2Mν+1 and

‖MνQMνe‖2A
‖e‖2A

=
‖MνQ2Mνe‖2A

‖e‖2A
≤ ‖Mνe‖2A

‖QMνe‖2A
‖e‖2A

= ‖MνQ‖2A
〈AQMνe, QMνe〉

‖e‖2A
= ‖MνQ‖2A

〈AQMνe,Mνe〉
‖e‖2A

= ‖MνQ‖2A
〈AMνQMνe, e〉

‖e‖2A
≤ ‖MνQ‖2A

‖MνQMνe‖A‖e‖A
‖e‖2A

= ‖MνQ‖2A
‖MνQMνe‖A
‖e‖A

·
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Dividing the above inequality by ‖MνQMνe‖A/‖e‖A yields

(3.11) ‖MνQMν‖A ≤ ‖MνQ‖2A.

The symmetrized result (3.6) follows from this estimate and (3.5), thus completing the proof.

The estimate for the symmetrized method, i.e., that with the error propagation operator
Esym = Mν+1

[

I − P (PTAP )−1PTA
]

Mν+1, is up to a constant the same as that of the
nonsymmetric one with the error propagation operator E = Mν+1

[

I − P (PTAP )−1PTA
]

.
However, the symmetrized method can be used as a conjugate gradient method preconditioner.
For ν = O(H/h), the estimate (3.6) and the assumption (2.7) give

‖Mν+1
[

I − P (PTAP )−1PTA
]

Mν+1‖2A

≤
[

1− ω(2− ω)

C2
(3.4)

]2(ν+1)

≤
[

1− ω(2− ω)

C1

(

h

H

)2
]C2

H

h

≤ 1− ω(2− ω)

C3

h

H
·

If the symmetrized method with the error propagation operator Esym is used as a conjugate
gradient method preconditioner, the resulting condition number of the preconditioned system is

cond ≤ 1

1− ‖Esym‖A
= O

(

H

h

)

,

and the convergence of the resulting method is guided by the factor

√
cond− 1√
cond + 1

= 1− 1

C4

√

h

H
·

4. A fully optimal two-level method. In this section, an optimal two-level method of
[23] is described and analyzed. In this method, the final prolongator is given by P = Sp, where
S is a prolongator smoother and p is a tentative prolongator given by the generalized unknowns
aggregation. The prolongator smoother is a polynomial in A that is an error propagation
operator of an A-non-divergent smoother. Denote

AS = S2A.

Two related algorithms are considered, namely a nonsymmetric and an AS-symmetric
variant. The nonsymmetric algorithm proceeds as follows:

ALGORITHM 2 (nonsymmetric).
• Repeat

1. Pre-smooth x← S(x, f), where S(., .) is a single step of a linear iteration with
the error propagation operator S.

2. Solve PTAPv = PT (Ax− f).
3. Update x← x− Pv.
4. Post-smooth

(4.1) x←
(

I − ω

¯̺(AS)
AS

)

x+
ω

¯̺(AS)
S2f

until convergence in the AS-norm.
• Post-process x← S(x, f).
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By reordering the terms, the step (4.1) can be performed more efficiently as

x← x− ω

¯̺(AS)
S2(Ax− f).

The symmetric variant modifies the first step of Algorithm 2 to make it AS-symmetric:
ALGORITHM 3 (AS-symmetric).
• Repeat

1. Pre-smooth
(a) x← S(x, f),
(b) x←

(

I − ω

¯̺(AS)
AS

)

x+
ω

¯̺(AS)
S2f ,

(c) x← S(x, f).
2. Solve PTAPv = PT (Ax− f).
3. Update x← x− Pv.
4. Post-smooth

x←
(

I − ω

¯̺(AS)
S2A

)

x+
ω

¯̺(AS)
S2f

until convergence in the AS-norm.
• Post-process x← S(x, f).

In order to justify the use of the above algorithms, the well-posedness of their coarse-level
problems needs to be inspected. In summary, the coarse-level problems of Algorithms 2 and 3
have a solution for all relevant right-hand sides, and the prolongated and smoothed coarse-level
problem solution does not depend on the choice of the pseudo-inverse since

Ker(pTSASp) = Ker(Sp).

In more detail, it is clear from Algorithms 2 and 3 that all admissible right-hand sides have the
form

(Sp)TASe = pTSASe, e ∈ R
n.

Such right-hand sides are orthogonal to the possible kernel of the coarse-level matrix since for
u ∈ Ker(pTSASp) = Ker(Sp), it holds that

〈pTSASe,u〉 = 〈ASe, Spu〉 = 0.

Thus, the coarse-level problem has a solution. This solution is unique up to a component that
belongs to Ker(pTS2Ap) = Ker(Sp). Thus, the prolongated and smoothed solution (that is,
Pv = Spv) is unique and independent of the choice of the pseudoinverse.

Denote S′ = I − ω
¯̺(AS)AS . By a direct computation, the error propagation operator of

Algorithm 2 can be written as

E = S′(I − P (PTAP )+PTA)S = S′(I − Sp((Sp)TASp)+(Sp)TA)S

= S′S(I − p((Sp)TASp)+(Sp)TAS) = S′S(I − p(pTASp)
+pTAS)

(4.2)

since A commutes with S. Similarly, the error propagation operator of Algorithm 3 is

(4.3) Esym = ESS′ = S′S(I − p(pTASp)
+pTAS)SS

′.

Since S and S′ are symmetric and commute with AS , making them also AS-symmetric, and
I − p(pTASp)

+pTAS is an AS-symmetric projection, the error propagation operator Esym is
also AS-symmetric.
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The error e ∈ Ker(S) is eliminated by the first smoothing step of Algorithms 2 and 3.
Therefore, it is sufficient to establish convergence bounds for the errors e ⊥ Ker(S).

THEOREM 4.1. Let ω ∈ [0, 2], ¯̺(AS) ≥ ̺(AS) be an upper bound and S be a polynomial

in A that satisfies ̺(S) ≤ 1. Assume there exists a constant C > 0 such that: for every fine

vector u ∈ R
n, there is a coarse vector v ∈ R

m that satisfies

(4.4) ‖u− pv‖2 ≤ C

¯̺(AS)
‖u‖2A.

Then the error propagation operator E of one iteration of Algorithm 2 and the error propaga-

tion operator Esym of one iteration of Algorithm 3 satisfy

(4.5) ‖E‖2AS
≤ q(C, ω),

and

(4.6) ‖Esym‖AS
≤ q(C, ω),

respectively, where

q(C, ω) = 1− ω(2− ω)

C + ω(2− ω)
·

Here, the AS-operator norm is defined as

‖B‖AS
= max

x∈Rn∩(Ker(S))⊥\{0}

‖Bx‖AS

‖x‖AS

·

Furthermore, for any positive integer ν, it holds that

(4.7) ‖SEν‖2A ≤ qν(C, ω) and ‖SEν
sym‖A ≤ qν(C, ω).

REMARK 4.2. The function q(., ω) in Theorem 4.1 is minimized by ω = 1, which gives
q(C, 1) = 1− 1

C+1 .
REMARK 4.3. The estimates (4.7) justify the use of the post-processing step in Algo-

rithms 2 and 3, respectively.
Proof of Theorem 4.1. First consider the analysis of Algorithm 2. It is easy to verify that

Q = I − p(pTASp)
+pTAS

is an AS-orthogonal projection onto T ≡ (Range(p))⊥AS . Hence, ‖Q‖AS
= 1. Using (4.2)

yields

‖E‖AS
= ‖S′SQ‖AS

≤ max
x∈T∩(Ker(S))⊥\{0}

‖S′Sx‖AS

‖x‖AS

‖Q‖AS

= max
x∈T∩(Ker(S))⊥\{0}

‖S′Sx‖AS

‖x‖AS

.

Since S, S′, and AS are polynomials in A, they commute, and S and S′ are AS-symmetric.
Furthermore, since ̺(S) ≤ 1 and ̺(S′) ≤ 1, it holds that

‖S′Sx‖AS
≤ ‖S′x‖AS

and ‖S′Sx‖AS
≤ ‖Sx‖AS

.
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Therefore,

‖E‖AS
= max

x∈T∩(Ker(S))⊥\{0}

‖S′Sx‖AS

‖x‖AS

≤ max
x∈T∩(Ker(S))⊥\{0}

min

{‖Sx‖AS

‖x‖AS

,
‖S′x‖AS

‖x‖AS

}

.

(4.8)

It is shown below that, for x ∈ T ∩ (Ker(S))⊥, when the smoother S fails to reduce the
error in the AS-norm (‖Sx‖AS

/‖x‖AS
≈ 1), the performance of the smoother S′ is improved.

More specifically, for all x ∈ T ∩ (Ker(S))⊥, x 6= 0,

(4.9)
‖S′x‖2AS

‖x‖2AS

≤ 1− ω(2− ω)

C

‖Sx‖2AS

‖x‖2AS

·

First, the term ‖S′x‖2AS
is estimated as follows

‖S′x‖2AS
=

∥

∥

∥

∥

(I − ω

¯̺(AS)
AS)x

∥

∥

∥

∥

2

AS

= ‖x‖2AS
− 2

ω

¯̺(AS)
‖ASx‖2 +

(

ω

¯̺(AS)

)2

‖ASx‖2AS

≤ ‖x‖2AS
− 2

ω

¯̺(AS)
‖ASx‖2 +

ω2

¯̺(AS)
‖ASx‖2

= ‖x‖2AS

(

1− ω(2− ω)

¯̺(AS)

‖ASx‖2
‖x‖2AS

)

.(4.10)

Recall that AS = AS2 and A and S commute. Hence ‖S2x‖2A = ‖Sx‖2AS
, and

(4.11)
‖ASx‖2
‖x‖2AS

=
‖ASx‖2
‖S2x‖2A

‖S2x‖2A
‖x‖2AS

=
‖AS2x‖2
‖S2x‖2A

‖Sx‖2AS

‖x‖2AS

·

Next, a lower bound for the first fraction on the right-hand side of (4.11) is established. To this
end, an orthogonality trick known from the proof of Céa’s lemma is used. First, denote

T = (Range(p))⊥AS = Ker(p)TAS = Ker(p)TAS2.

Hence,

∀x ∈ T : S2x ∈ Ker(p)TA = (Range(p))⊥A .

Thus, for any x ∈ T , using assumption (4.4) with u = S2x and the Cauchy-Schwarz inequality
gives

‖S2x‖2A = 〈AS2x, S2x〉 = 〈AS2x, S2x− pv〉 ≤ ‖AS2x‖‖S2x− pv‖

≤ C1/2

¯̺(AS)1/2
‖AS2x‖‖S2x‖A.

Dividing both sides by ‖S2x‖2A yields the desired coercivity bound,

(4.12)
‖AS2x‖
‖S2x‖A

≥
√

¯̺(As)

C
, ∀x ∈ T ∩ (Ker(S))⊥.

Combining (4.12), (4.11), and (4.10) proves (4.9).
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By substituting (4.9) into (4.8) and taking into account that 0 ≤ ‖Sx‖2AS
/‖x‖2AS

≤ 1,
the final estimate (4.5) is obtained as follows

‖E‖2AS
≤ max

x∈T∩(Ker(S))⊥\{0}
min

{‖Sx‖2AS

‖x‖2AS

, 1− ω(2− ω)

C

‖Sx‖2AS

‖x‖2AS

}

≤ max
t∈[0,1]

min

{

t, 1− ω(2− ω)

C
t

}

= 1− ω(2− ω)

C + ω(2− ω)
·

Equation (4.3) shows that the error propagation operator of Algorithm 3 is given by
Esym = S′SQSS′ . Then, since Q is an AS-orthogonal projection, (3.11) yields

‖Esym‖AS
≤ ‖E‖2AS

,

proving(4.6).
Finally, using ̺(S) ≤ 1 and (4.5), we have for any x ⊥ Ker(S) that

‖SEνx‖A
‖x‖A

=
‖Eνx‖AS

‖x‖A
=
‖Eνx‖AS

‖x‖AS

‖x‖AS

‖x‖A
≤ ‖E

νx‖AS

‖x‖AS

≤ qν/2(C, ω),

proving the first part of (4.7). The second part is obtained from (4.6) analogously.
In view of Theorem 4.1, a smoothing polynomial S is desired that is an error propagation

operator of an A-non-divergent smoother and makes ̺(S2A) as small as possible. A polyno-
mial smoother S = pol(A) with such a minimizing property is described below. Specifically,
the polynomial smoother satisfies

(4.13) ̺(S2A) ≤ ̺(A)

(1 + 2deg(S))2
, ̺(S) ≤ 1.

LEMMA 4.4 ([7]). For any ̺ > 0 and integer d > 0, there is a unique polynomial p of

degree d that satisfies the constraint p(0) = 1 and minimizes the quantity

max
0≤λ≤̺

p2(λ)λ .

This polynomial is given by

(4.14) p(λ) =

(

1− λ

r1

)

· · ·
(

1− λ

rd

)

, rk =
̺

2

(

1− cos
2kπ

2d+ 1

)

,

and satisfies

max
0≤λ≤̺

p2(λ)λ =
̺

(2d+ 1)2
, and(4.15)

max
0≤λ≤̺

|p(λ)| = 1.(4.16)

Proof. If p2(λ)λ can be written as the linearly transformed Chebyshev polynomial of
order 2n+ 1,

(4.17) p2(λ)λ = q(λ) =
c

2
(1− T2n+1(1− 2λ/L)), c = max

0≤λ≤L
p2(λ)λ,

then it follows from minimax properties of Chebyshev polynomials that p is the sought
polynomial. The zeros of q(λ) are the points λ where T2n+1(1 − 2λ/L) = 1, that is,
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1− 2λ/L = cos 2kπ
2n+1 . The value k = 0 gives the simple root λ = 0 of q, while k = 1, . . . , n,

yield double roots of q given by (4.14). This proves that p is indeed the polynomial (4.14).
To prove (4.15), we determine the quantity c in (4.17) from the condition that p(0) = 1.

This condition implies that the linear term of p2(λ)λ is one, hence from (4.17) it follows that
1 = (p2(λ)λ)′(0) = (c/L)T ′

2n+1(1). Therefore, c = L/T ′
2n+1(1) = L/(2n+ 1)2.

It remains to prove (4.16). First, (4.16) is equivalent to p2(λ) ≤ 1, for all λ, 0 ≤ λ ≤ 1.
Using (4.17), this is equivalent to

(4.18)
L(1− T2n+1(1− 2λ/L))

2λT ′
2n+1(1)

≤ 1, for all λ, 0 ≤ λ ≤ L.

Using the substitution 1− 2λ/L = x, (4.18) becomes by a simple manipulation

T2n+1(x) ≥ 1 + T ′
2n+1(1)(x− 1), for all x, −1 ≤ x ≤ 1,

which is the well-known fact that the graph of a Chebyshev polynomial lies above its tangent
at x = 1.

We choose S to be the polynomial (4.14) in A with ̺ = ̺(A). Using the spectral mapping
theorem, (4.15), and (4.16), we get (4.13).

THEOREM 4.5. Assume that the tentative prolongator p satisfies (2.7). Let the final

prolongator be constructed as P = Sp, where the prolongator smoother is S = p(A) and p(·)
is the polynomial (4.14) with ρ = ̺(A). Assume the degree of S satisfies

(4.19) deg(S) ≥ c
H

h
,

and ω ∈ (0, 2). Then, Algorithms 2 and 3 converge with

q(ω) = 1− 1

C(ω)
,

where C(ω) > 0 is a constant independent of both h and H (cf. Theorem 4.1).

Proof. The statement (4.13) and the assumption (4.19) give

̺(S2A) ≤ ¯̺(S2A) ≡ ̺(A)

(1 + 2deg(S))2
≤ C

(

h

H

)2

̺(A).

Substituting this into (2.7) yields

∀e ∈ R
n ∃v ∈ R

m : ‖e− pv‖2 ≤ C

¯̺(S2A)
‖e‖2A.

The result now follows from Theorem 4.1.

5. An alternative with a multilevel extension. The optimal two-level framework de-
scribed in Section 4 requires the exact solution of the coarse-level problem. In this section, we
describe a method that is a modification of the one given in [15]. The framework we use here
allows for employing more than two levels with aggressive coarsening between the first two of
them.

Let us consider first the two-level case. The content of this section is based on the following
key observation: assume that for a particular error e, the following weak approximation

condition holds,

(5.1) for the error e, there exists a coarse v such that ‖e− pv‖ ≤ C
√

ρ(A)
‖e‖A.
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Then, assuming a reasonable smoother, a single iteration of a two-level method (with an error
propagation operator E) satisfies

‖Ee‖A ≤
(

1− 1

q(C)

)

‖e‖A.

Here q(C) ≥ 1 is a monotonous function growing with growing C. Thus we observe that
the two-level error estimate holds, so to speak, point by point. If the weak approximation
condition is satisfied for a particular error e, then the error estimate gives the contraction
number for this particular error. In what follows, we will refer to this property of the estimate
as a pointwise convergence property. This is by no means easy to prove. We will provide
such a proof, based on [5], in Lemma 5.4. The convergence proof of [5] satisfies, under some
restrictions when certain arguments are avoided, the pointwise convergence property.

Our first goal is to guarantee a coarse-space size independent rate of convergence for
a two-level method with O(H/h) smoothing iterations. The convergence of a two-level
method is guided by condition (5.1). One obvious way how to make (5.1) weaker (and thereby
allowing for a small coarse space) is to reduce ρ(A). This can be achieved by solving instead
a transformed problem

(5.2) S2Ax = S2f ,

where S = (I − α1A) · · · (I − αdA) is a polynomial in A such that ̺(S) ≤ 1 and
̺(S2A)≪ ρ(A). In other words, we use a polynomial S being an error propagation op-
erator of a non-divergent polynomial iterative method such that ̺(S2A)≪ ρ(A). In this case,
however, the weak approximation condition (5.1) becomes,

(5.3) ‖e− pv‖ ≤ C
√

ρ(S2A)
‖e‖S2A.

The norm on the right-hand side is generally smaller than the A-norm. For a given
continuous problem to be solved, such a condition is difficult to verify. The goal of this section
is to prove uniform convergence of a two-level method assuming the weak approximation
condition with a reduced spectral bound ̺(S2A) and the original A-norm on the right-hand
side, that is,

(5.4) ‖e− pv‖ ≤ C
√

ρ(S2A)
‖e‖A.

In fact, assuming that

̺(S2A) ≤ C

(

h

H

)2

̺(A),

(which was proved in Section 4 assuming deg(S) ≥ cH/h), condition (5.4) follows from our
general assumption (2.7). To be able to prove uniform convergence under assumption (5.4)
(that is, to prove (5.3) based on (5.4)), we have to compensate for the loss of the following
coercivity condition:

(5.5) ‖e‖S2A ≥ q‖e‖A, 0 < q < 1.

Here, the number q ∈ (0, 1) is the threshold we choose. Let the reader imagine, for example,
q = 0.5. For a given error vector e ∈ R

n, we consider two possible cases: 1. the coerciv-
ity (5.5) holds, or 2. the coercivity (5.5) fails. Given a threshold q ∈ (0, 1), assume (5.5) holds
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for a specific error e. Then the weak approximation condition (5.3) follows from (5.4) with
C (5.3) = C (5.4)/q. In this case, the two-level procedure for the transformed problem (5.2) is
efficient. Let us take a look at the opposite case. If ‖e‖S2A ≤ q‖e‖A, q < 1, then equivalently
‖Se‖A ≤ q‖e‖A. In other words the loss of coercivity (5.5) makes the iterative method with
the error propagation operator S efficient. Summing up, if the coercivity (5.5) holds then (5.3)
follows from (5.4). In case of loss of coercivity, the iterative method with the error propagation
operator S is efficient. So, under (5.4) either the two-level method for solving the transformed
problem (5.2) or the iterative method with an error propagation operator S is efficient.

Thus, we will base our method on two basic elements: 1. solving the transformed
problem (5.2) by a two-level method, or 2. employing the outer iteration for solving the
original problem Ax = f using the iterative method with an error propagation operator S.
Recall that

S = (I − α1A) · · · (I − ανA), α1, . . . , αν ∈ R
n,

and

(5.6) ̺(S) ≤ 1.

We start with an investigation of the nonsymmetric algorithm. The estimate for the
symmetric version will later follow by a trivial argument. In what follows, we will prove a
general convergence bound for the following algorithm:

ALGORITHM 4.
1. Perform a single iteration of the multilevel method for solving the problem

(5.7) ASx = fS , AS = S2A, fS = S2f .

2. For i = 1, . . . , d do x← (I − αiA)x+ αif .
Note that in the context of a multilevel method, the matrix AS is never constructed and

only its action is evaluated.

5.1. Analysis of the nonsymmetric algorithm. The error propagation operator E of
Algorithm 4 has the form

(5.8) E = SES ,

where ES is an error propagation operator corresponding to step 1.
THEOREM 5.1. For every t ∈ [0, 1], define a set

(5.9) V (t) = {v ∈ R
n : ‖v‖AS

≥ t‖v‖A}.

Then

(5.10) ‖E‖A ≤ sup
t∈[0,1]

{

t sup
v∈V (t)

‖ESv‖AS

‖v‖AS

}

.

REMARK 5.2. Note that S is a polynomial in A such that ̺(S) ≤ 1, hence ‖·‖AS
≤ ‖·‖A,

and V (t) is a set of vectors v ∈ R
n such that the norm equivalence

t‖v‖A ≤ ‖v‖S2A ≤ ‖v‖A,

holds. (V (t) ≡ {v ∈ R
n : ‖v‖AS

≥ t‖v‖A} = {v ∈ R
n : t‖v‖A ≤ ‖v‖AS

≤ ‖v‖A}.)
Therefore, for vectors u ∈ V (t), the desired weak approximation condition (5.3) follows from
the weakened approximation condition (5.4) with a constant C1 = C2/t.
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Proof of Theorem 5.1. Clearly, since E = SES (see (5.8)), it holds for every e ∈ R
n that

(5.11)
‖Ee‖A
‖e‖A

=
‖SESe‖A
‖Se‖A

· ‖Se‖A‖e‖A
=
‖ESe‖AS

‖e‖AS

· ‖e‖AS

‖e‖A
·

Let us set

t =
‖e‖AS

‖e‖A
·

Then, trivially, e ∈ V (t). Hence by (5.11) and t ∈ [0, 1] it follows that

‖Ee‖A
‖e‖A

≤ ‖e‖AS

‖e‖A
· ‖ESe‖AS

‖e‖AS

≤ t sup
v∈V (t)

‖ESv‖AS

‖v‖AS

≤ max
t∈[0,1]

{

t sup
v∈V (t)

‖ESv‖AS

‖v‖AS

}

,

proving (5.10).
We further investigate the case when step 1 of Algorithm 4 is given by the following

nonsymmetric two-level procedure:
ALGORITHM 5. Let ¯̺(AS) be an upper bound of ̺(AS).

1. Perform x ← x − p(pTASp)
+pT (fS − ASx), where x ∈ R

n, p : Rm → R
n is a

full-rank linear mapping, m < n, and fS = S2f . Here, the symbol + denotes the
pseudoinverse.

2. Perform the following smoothing procedure:

(5.12) x←
(

I − ω

¯̺(AS)
AS

)

x+
ω

¯̺(AS)
fS , ω ∈ (0, 1).

REMARK 5.3. Algorithm 5 is implemented as follows (assuming the coarse-level matrix
is regular): first, the auxiliary smoothed prolongator pS = Sp = (I − α1A) · · · (I − ανA)p
is evaluated. This is done by setting p0 = p and evaluating

pi = (I − ωiA)p
i−1, i = 1, . . . , ν.

Then we set pS = pν . Further, we calculate the coarse-level matrix AS
2 = (pS)

TApS . Note
that AS

2 = pTASp = pTS2Ap. We decompose the matrix AS
2 by a Cholesky decomposition

and, in each iteration, evaluate the action of the inverse of AS
2 = pTASp in the usual way by

double backward substitution.
Note that the application that we have in mind deal with S = pol(A) having degree about

1
2
H
h and a prolongator p given by generalized aggregation. Here, h is the resolution of a

finite element mesh and H the characteristic diameter of the aggregates. In Example 3.1 we
have demonstrated on a model example that such a construction leads to a sparse coarse-level
matrix pTS2Ap.

The error propagation operator of Algorithm 5 is

E =

(

I − ω

¯̺(AS)
AS

)

(I − p(pTASp)
+pTAS).

The following lemma is a two-level variant of the multilevel estimate of [5]. Its proof is
basically a routine simplification of the original, where certain technicalities have been taken
care of. Unlike the original convergence theorem of [5], this lemma gives an estimate satisfying
the pointwise convergence property. Further, our lemma avoids the assumption of ‖ · ‖A-
boundedness of the interpolation operator Q : u ∈ R

n 7→ pv ∈ Range(p) in (5.4), that is, this
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lemma gives the estimate based solely on the weak approximation condition (and of course,
the assumption on the smoother). Note that the simplest error estimate for a two-level method,
that is, the estimate by Achi Brandt in [6] based on the orthogonality trick of Céa, does not
satisfy the pointwise convergence property.

LEMMA 5.4. Let A be a symmetric positive semidefinite matrix, ¯̺(A) ≥ ̺(A), and p an

n ×m full-rank matrix with m < n. Further, let R be a symmetric positive definite n × n
matrix such that

(5.13) K ≡ I −R−1A

is positive semidefinite in the A-inner product. (Note that from the symmetry of R, the A-

symmetry of K follows.) We assume there is a constant CR > 0 such that for all w ∈ R
n it

holds that

(5.14)
1

¯̺(A)
‖w‖2 ≤ CR(R

−1w,w).

Let V ⊂ R
n. Assume further there is a constant CA = CA(V ) > 0 such that for every u ∈ V ,

there exists a vector v ∈ R
m such that

(5.15) ‖u− pv‖2 ≤ CA

¯̺(A)
‖u‖2A.

Then for every error e ∈ V and the error propagation operator of the nonsymmetric two-level

method,

E = K[I − p(pTAp)+pTA] = (I −R−1A)[I − p(pTAp)+pTA],

it holds that

(5.16) ‖Ee‖2A ≤
(

1− 1

1 + CACR

)

‖e‖2A .

Proof. We start with introducing some notations. First, let P2 be an A-orthogonal
projection onto Range(p). Further, we set

T = I −K = R−1A, E2 = I − P2;

see (5.13). Note that

(5.17) E = (I − T )E2.

Let u ∈ V . Then (5.15) holds for u. Our goal is to prove that

‖Eu‖2A ≤
(

1− 1

C

)

‖u‖2A,

where C is a positive constant dependent on CA and CR. Instead, we will prove an equivalent
estimate

(5.18) (u,u)A ≤ C[(u,u)A − (Eu, Eu)A].

Our first step will be to establish

(5.19) (u,u)A − (Eu, Eu)A ≥ (P2u,u) + (TE2u, E2u)A.
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Clearly, we have that I = E2+P2. Since P2 is an A-orthogonal projection, the decomposition
w = w1 +w2, w1 = E2w = (I − P2)w, w2 = P2w is A-orthogonal, that is, taking into
account that (P2u, P2u)A = (P2u,u)A,

(5.20) (u,u)A = (E2u, E2u)A + (P2u,u)A.

Further, we notice that from (5.17) it follows that E2 = TE2 + E. Using this identity, (5.17),
and the fact that T = R−1A is A-symmetric, we have

(E2u, E2u)A = ((TE2 + E)u, (TE2 + E)u)A

= (Eu, Eu)A + 2(TE2u, Eu)A + (TE2u, TE2u)A

= (Eu, Eu)A + 2(TE2u, (I − T )E2u)A + (TE2u, TE2u)A

= (Eu, Eu)A + 2(T (I − T )E2u, E2u)A + (T 2E2u, E2u)A

= (Eu, Eu)A + (T (I − T )E2u, E2u)A + ([T (I − T ) + T 2]E2u, E2u)A

= (Eu, Eu)A + (T (I − T )E2u, E2u)A + (TE2u, E2u)A.

By assumption, K = I − R−1A = I − T is positive semidefinite in the A-inner product.
Further, since R−1 is positive definite, R−1A is positive semidefinite in the A-inner product.
Hence, it follows that the spectrum of T = R−1A is contained in [0, 1] and T (I − T ) is
A-positive semidefinite. Therefore, (T (I − T )E2u, E2u)A ≥ 0, and the previous identity
becomes

(5.21) (E2u, E2u)A ≥ (Eu, Eu)A + (TE2u, E2u)A.

Now, (5.20) and (5.21) yield

(u,u)A ≥ (Eu, Eu)A + (TE2u, E2u)A + (P2u,u)A,

proving (5.19).
Using (5.19), we will now establish the inequality

(5.22) (u,u)A ≤ C[(P2u,u)A + (TE2u, E2u)A],

where C = C(CA, CR) > 0. Note that from (5.22), the desired result (5.18) and in turn
also the final statement (5.16) follow. Indeed, since P2 = I −E2 and E2 is an A-orthogonal
projection, we have

(P2u,u)A + (TE2u,u)A = (u,u)A − (E2u,u)A + (TE2u, E2u)A

= (u,u)A − (E2u, E2u)A + (TE2u, E2u)A

= (u,u)A − ((I − T )E2u, E2u)A

= (u,u)A − (Eu, E2u)A.

Further, since I − T = I −R−1A is an A-symmetric operator with the spectrum contained in
the interval [0, 1], we also have

(Eu, Eu)A = ((I − T )E2u, (I − T )E2u)A ≤ ((I − T )E2u, E2u)A = (Eu, E2u)A.

Thus,

(P2u,u)A + (TE2u,u)A ≤ (u,u)A − (Eu, Eu)A,

and (5.18) follows from (5.22). Thus, it remains to establish (5.22).
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Let Q2 : u ∈ V 7→ pv, v ∈ R
m, be an operator fulfilling (5.15), that is, Q2 : u 7→ pv,

u ∈ V, v ∈ R
m, such that

‖u− pv‖2 = ‖(I −Q2)u‖2 ≤
CA

¯̺(A)
‖u‖2A.

Since E2 = I − P2, we have I = E2 + P2, and therefore

(u,u)A = (P2u,u)A + (E2u,u)A

= (P2u,u)A + (E2u, (I −Q2)u)A + (E2u, Q2u)A

= (P2u,u)A + (E2u, (I −Q2)u)A,(5.23)

because it holds that (E2u, Q2u)A = 0, which is a consequence of Range(Q2) = Range(p)
and Range(E2) = Range(I − P2) = Range(p)⊥A . By the Cauchy-Schwarz inequality and
assumptions (5.15) and (5.14), we get

(E2u, (I −Q2)u)A ≤ ‖AE2u‖‖(I −Q2)u‖
≤ C

1/2
A ¯̺(A)−1/2‖u‖A‖AE2u‖

≤ (CACR)
1/2‖u‖A(R−1E2u, AE2u)

1/2

= (CACR)
1/2‖u‖A(TE2u, AE2u)

1/2.

By substituting the above estimate into (5.23), using the Cauchy-Schwarz inequality
a1b1 + a2b2 ≤ (a21 + a22)

1/2(b21 + b22)
1/2, and the inequality (P2u,u)A ≤ (u,u)A, we get

(u,u)A ≤ (P2u,u)A + (CACR)
1/2‖u‖A(TE2u, AE2u)

≤ (u,u)
1/2
A (P2u,u)

1/2
A + (CACR)

1/2‖u‖A(TE2u, AE2u)

≤ ‖u‖A
(

1 · (P2u,u)
1/2 + (CACR)

1/2(TE2u,u)A)
1/2
A

)

≤ ‖u‖A(1 + CACR)
1/2[(P2u,u)A + (TE2u, E2u)A]

1/2,

proving (5.22) with C = 1 + CACR. Using (5.19), the estimate (5.18) follows from (5.22),
and in turn the statement (5.16).

Next we analyze the nonsymmetric Algorithm 4 with step 1 given by Algorithm 5.
Summing up, we analyze the following abstract method:

ALGORITHM 6. Let ¯̺(AS) ≥ ̺(AS) be an available upper bound.

1. Perform x ← x − p(pTASp)
+pT (fS − ASx), where x ∈ R

n, p : Rm → R
n is a

full-rank linear mapping, m < n, and fS = S2f . Here the symbol + denotes the
pseudoinverse.

2. Perform the following smoothing procedure:

x←
(

I − ω

¯̺(AS)
AS

)

x+
ω

¯̺(AS)
fS , ω ∈ (0, 1).

3. For i = 1, . . . , d do x← (I − αiA)x+ αif . Here (I − α1A) · · · (I − αdA) = S.
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THEOREM 5.5. Let ¯̺(AS) ≥ ̺(AS). Assume that there is a constant C > 0 such that

(5.24) ∀u ∈ R
n ∃v ∈ R

m : ‖u− pv‖2 ≤ C

¯̺(AS)
‖u‖2A.

Then the error propagation operator E of the nonsymmetric Algorithm 4 with step 1 given by

Algorithm 5 (that is, Algorithm 6) satisfies

‖E‖2A ≤ 1− 1

1 + C
ω

< 1.

Proof. In view of Theorem 5.1, we need to estimate

‖E‖A ≤ sup
t∈[0,1]

{

t sup
u∈V (t)

‖ESu‖AS

‖u‖AS

}

,

where V (t) is given by (5.9). By (5.24) and (5.9),

(5.25) ∀u ∈ V (t) ∃v ∈ R
n : ‖u− pv‖2 ≤ C/t2

¯̺(AS)
‖u‖2AS

.

Clearly, the smoother (5.12) can be written in the form x← (I −R−1AS)x+R−1fS with
the A-symmetric positive definite error propagation operator

K = I −R−1AS = I − ω

¯̺(AS)
AS , ω ∈ [0, 1],

and therefore,

R−1 =
ω

¯̺(AS)
I.

Thus, (5.14) is satisfied with a constant CR = 1/ω. By this, all assumptions of Lemma 5.4
applied to Algorithm 5 are satisfied for all u ∈ V (t) with constants CA = C/t2 (see (5.25))
and CR = 1/ω. Hence, by Lemma 5.4, choosing V = V (t), it follows that

sup
u∈V (t)

‖ESu‖2AS

‖u‖2AS

≤ 1− 1

1 + C
ωt2

, ω ∈ [0, 1],

and Theorem 5.1 gives

‖E‖2A ≤ sup
t∈[0,1]

{

t2

(

1− 1

1 + C
ωt2

)}

.

It remains to evaluate the maximum of the function

φ(t) = t2

(

1− 1

1 + C
ωt2

)

, t ∈ [0, 1].

By inspecting the first and second derivative, we find that the function φ(t), t ∈ R, does
not attain its maximum in the interval (0, 1). Thus, the function φ(t), t ∈ [0, 1], attains its
maximum for t = 1, proving our statement.
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5.2. Analysis of the symmetrization. The error propagation operator of Algorithm 6
can be written as

E = SES = SS′Q, S′ = I − ω

¯̺(AS)
AS , Q = I − p(pTASp)

+pTAS .

The operator Q is an AS-orthogonal projection onto (Range(p))⊥AS . Our goal is to derive the
operator Esym = E∗E, where E∗ is the A-adjoint operator. Since S and S′ are polynomials
in A, AS = S2A, and Q is AS-symmetric, we have for any x,y ∈ R

n,

〈AE∗Ex,y〉 = 〈AEx, Ey〉 = 〈ASS′Qx, SS′Qy〉
= 〈ASS

′Qx, S′Qy〉 = 〈ASQ(S′)2Qx,y〉 = 〈AS2Q(S′)2Qx,y〉.

Thus, we conclude that

Esym = S2Q(S′)2Q.

One can easily see that the above error propagation operator corresponds to the following
algorithm:

ALGORITHM 7. Let ¯̺(AS) ≥ ̺(AS) be an available upper bound.
1. Perform x ← x − p(pTASp)

+pT (fS − ASx), where x ∈ R
n, p : Rm → R

n is a
full-rank linear mapping, m < n, and fS = S2f . Here the symbol + denotes the
pseudoinverse.

2. Perform twice the following smoothing procedure:

x←
(

I − ω

¯̺(AS)
AS

)

x+
ω

¯̺(AS)
fS , ω ∈ (0, 1).

3. Perform x← x− p(pTASp)
+pT (fS −ASx).

4. Perform twice: for i = 1, . . . , d do x ← (I − αiA)x + αif . Here,
(I − α1A) · · · (I − αdA) = S.

The following convergence bound for ‖Esym‖A is a trivial consequence of Theorem 5.5.
THEOREM 5.6. Let ¯̺(AS) ≥ ̺(AS). Assume there is a constant C > 0 such that

∀u ∈ R
n ∃v ∈ R

m : ‖u− pv‖2 ≤ C

¯̺(AS)
‖u‖2A.

Then the error propagation operator Esym of the symmetric Algorithm 7 satisfies

‖Esym‖A = ‖E‖2A ≤ 1− 1

1 + C
ω

< 1.

Proof. By Esym = E∗E and Theorem 5.5 we have

〈AEsyme, e〉 = ‖Ee‖2A ≤
(

1− 1

1 + C
ω

)

‖e‖2A.

Since the operator Esym is A-symmetric positive semidefinite, it immediately follows that

‖Esym‖A = λmax(Esym) = ‖E‖2A ≤ 1− 1

1 + C
ω

,

completing the proof.
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THEOREM 5.7. Assume the prolongator p satisfies the assumption (2.7) and the smoother

S is given by S = p(A), with p(.) defined by (4.14), where ̺ = ̺(A). We set

¯̺(AS) =
̺(A)

(1 + 2deg(S))2
·

Assume that there is a constant c > 0 such that

deg(S) ≥ c
H

h
·

Then the error propagation operator E of Algorithm 6 and the error propagation opera-

tor Esym of Algorithm 7 satisfy

‖Esym‖A = ‖E‖2A ≤ 1− 1

C
,

where C > 1 is independent of both h and H .

Proof. By assumption (2.7), we have

(5.26) ∀e ∈ R
n ∃v ∈ R

m : ‖e− pv‖2 ≤ CA

̺(A)

(

H

h

)2

‖e‖2A.

Further, since we assume deg(S) ≥ cHh , the statement (4.13) gives

̺(S2A) ≤ ¯̺(S2A) ≡ ̺(A)

(1 + 2deg(S))2
≤ C

(

h

H

)2

̺(A).

Substituting the above estimate into (5.26) yields

∀u ∈ R
n ∃v ∈ R

m : ‖u− pv‖2 ≤ C

¯̺(AS)
‖u‖2A.

The proof now follows from Theorem 5.6.

5.3. A multilevel extension. In this section we investigate the case when step 1 of
Algorithm 4 uses a multigrid solver for solving the transformed problem (5.7). Our goal is
to prove the result independent of the first- and second-level resolution. Note that in this
section we consider the nonsymmetric Algorithm 4. The extension to a symmetric algorithm
is possible by following the arguments of Section 5.2.

We consider a standard variational multigrid with prolongators (full-rank linear mappings)

(5.27) P l
l+1 : R

nl+1 → R
nl , n1 = n, nl+1 < nl, l = 1, . . . , L,

that is, multigrid with coarse-level matrices

AS
l = (P 1

l )
TASP

1
l , P 1

l = P 1
2 · · ·P l−1

L , P 1
1 = I,

and restrictions given by the transpose of the prolongators. Here, L denotes the number of
levels. The particular case of interest is n2 ≪ n1.

For the sake of brevity we assume simple Richardson pre- and post-smoothers

(5.28) xl ←
(

I − ω

̺(AS
l )

AS
l

)

xl +
ω

̺(AS
l )

fl, xl, fl ∈ R
nl ,
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on all levels l = 1, . . . , L− 1. We define nested coarse spaces and associated norms,

Ul = range(P 1
l ), ‖ . ‖l : P 1

l x 7→ (xTx)1/2, x ∈ R
nl , l = 1, . . . , L.

THEOREM 5.8 ([5]). Let ES be the error propagation operator of a variational multigrid

V- or W-cycle algorithm for solving the problem (5.7) with the prolongators (5.27) and pre-

and/or post-smoothers (5.28) on all levels l = 1, . . . , L − 1. Let V ⊂ U1. We assume that

there are constants C1, C2 > 0 and linear mappings Ql : U1 → Ul, l = 2, . . . , L, Q1 = I,
such that for every u ∈ V,

(5.29) ‖(Ql −Ql+1)u‖2l ≤
C1

̺(AS
l )
‖u‖2AS

, l = 1, . . . , L− 1,

and

(5.30) ‖Qlu‖2AS
≤ C2‖u‖2AS

, l = 1, . . . , L.

Then for every u ∈ V,

‖ESu‖2AS
≤
(

1− 1

CL

)

‖u‖2AS
, where C =

(

1 + C
1/2
2 +

(

C1

ω

)1/2
)2

.

Proof. The proof follows by minor modifications of the original one of [5].
THEOREM 5.9. Let E be the error propagation operator of Algorithm 4 with ES (the

error propagation operator corresponding to step 1 of Algorithm 4) given by variational

multigrid as described in this section. Assume that there are positive constants Ca , Cs and

linear mappings Ql, l = 1, . . . , L, Q1 = I, such that for every u ∈ U1,

(5.31) ‖(Ql −Ql+1)u‖2l ≤
Ca

̺(AS
l )
‖u‖2A, l = 1, . . . , L− 1,

and

(5.32) ‖SQlu‖2A ≤ Cs‖u‖2A, ∀u ∈ U1.

Then

‖E‖2A = ‖SES‖2A ≤ q < 1,

where q depends only on Ca, Cs, and ω in (5.28). The value of q is given by the formula

(5.33) q = sup
t∈[0,1]

{

t2
(

1− 1

C(t)L

)}

, C(t) =

(

1 +

(

Cs

t2

)1/2

+

(

Ct

t2ω

)1/2
)2

.

Proof. By Theorem 5.1, we have

‖E‖A ≤ sup
t∈[0,1]

{

t sup
u∈V (t)

‖ESu‖AS

‖u‖AS

}

,

where ES is the error propagation operator of variational multigrid for solving the transformed
problem (5.2). From the definition of the set V (t) and ̺(S) ≤ 1, we have,

(5.34) t‖u‖A ≤ ‖u‖AS
≤ ‖u‖A, ∀u ∈ V (t).
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Hence, for u ∈ V (t), (5.34), (5.31), and (5.32) imply (5.29) and (5.30) with C1 = Ca/t
2 and

C2 = Cs/t
2. Then by Theorem 5.8, choosing V = V (t),

sup
u∈V (t)

‖ESu‖2AS

‖u‖2AS

≤
(

1− 1

C(t)L

)

, where C(t) =

(

1 +

(

Cs

t2

)1/2

+

(

Ct

t2ω

)1/2
)2

,

and by Theorem 5.1,

‖E‖2A ≤ sup
t∈[0,1]

{

t2
(

1− 1

C(t)L

)}

,

proving (5.33). It is easy to see that the above supremum is smaller than one and depending
only on Ca,Cs, and ω.

In what follows we verify the assumptions of the theory developed in this section for a
model example. In particular, we prove that our multilevel method converges independently of
the first- and second-level resolution.

We consider the following model example: let Ω = (0, 1)×(0, 1). For a given f ∈ L2(Ω),
find u ∈ H1

0 (Ω) such that

a(u, v) ≡ (∇u,∇v)L2(Ω) = (v, f)L2(Ω), ∀v ∈ H1
0 (Ω).

We assume a system of nested regular triangulations τhl
with mesh sizes hl, where

h2 = Nh1, hl+1 = 2hl, l = 2, . . . , L− 1,

and N,L are integers N > 2, L ≥ 2. Let nl be the number of interior vertices of τhl
. On each

level we consider the standard P1 finite element basis {ϕl
i}nl

i=1 and denote the corresponding
finite element space by Vhl

. We assume the standard scaling ‖ϕl
i‖L∞(Ω) = 1. It is well

known [9] that the corresponding stiffness matrices satisfy

(5.35) ̺
{

a(ϕl
l, ϕ

l
j)
}nl

i,j=1
≤ C.

Here and in what follows, c, C are positive constants independent of the mesh size on any level
and the number of levels. We assume that the prolongators P 1

2 , P
2
3 , . . . , P

L−1
L are constructed

by a natural embedding of coarse spaces,

ΠhP
1
l e

l
i = ϕl

i, i = 1, . . . , nl, Πh : u ∈ R
n1 7→

n1
∑

i=1

xiϕ
1
i .

Here, eli denotes the i-th canonical basis vector of Rnl .
REMARK 5.10. One can easily see that the following relations are equivalent to the

above assumption on the prolongation operators,

ϕl
i = ΠhP

1
l e

l
i = ΠhP

1
l−1P

l−1
l eli = Πhl−1

P l−1
l eli.

In other words,

Π−1
hl−1

ϕl
i = P l−1

l eli.

Thus, our assumption on the prolongators means that the i-th column of P l−1
l (that is, P l−1

l eli)
is the representation of the finite element basis function ϕl

i with respect to the finer basis
{ϕl−1

j }
nl−1

j=1 .
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If the smoother S is the identity, all coarse-level matrices AS
l are finite element stiffness

matrices

Ahl
=
{

a(ϕl
i, ϕ

l
j)
}nl

i,j=1
.

In a finite element stiffness matrices, aij can be nonzero only if the vertex j belongs to an
element adjacent to the vertex i. The usage of a smoother S of degree 1 causes that the fill-in
of all coarse-level matrices AS

l increases; the entry aij of AS
l , l = 2, . . . , L, becomes nonzero

if the vertex j of τhl
belongs to two layers of elements adjacent to the vertex i. We choose

the smoother S of largest degree such that the coarse-level matrices AS
l , l > 1, have such a

pattern. It is routine to verify that such a degree is the nearest integer that is smaller or equal
to 1

2h2/h1. Then deg(S) ≥ Ch2/h1, and (4.13) together with (5.35) give

(5.36) ̺(AS
1 ) = ̺(AS) ≤ C

(

h1

h2

)2

.

For l > 1, we have by (5.6) and (5.35),

̺(AS
l ) = sup

u∈R
nl

(P 1
l u)

TAS2(P 1
l u)

uTu
≤ sup

u∈R
nl

(P 1
l u)

TA(P 1
l u)

uTu

= ̺((P 1
l )

TAP 1
l ) = ̺(Ahl

) ≤ C.

In what follows, we verify assumptions (5.31) and (5.32) of Theorem 5.9. We choose Ql,
l = 2, . . . , L, so that ΠhQl is the L2(Ω)-orthogonal projection onto Vhl

. The following are
well-known properties of finite element functions ([9]):

chl‖u‖l ≤ ‖Πhu‖L2(Ω) ≤ Chl‖u‖l, u ∈ Ul,(5.37)

‖Πh(I −Ql)u‖L2(Ω) ≤ Chl|Πhu|H1(Ω), u ∈ U1,(5.38)

|ΠhQlu|H1(Ω) ≤ C|Πhu|H1(Ω), u ∈ U1.(5.39)

Clearly,

(5.40) |Πhu|2H1(Ω) = a(Πhu,Πhu) = ‖u‖2A = |Πhu|2H1(Ω), u ∈ U1.

From (5.39), (5.40), and ‖S‖A = ̺(S) ≤ 1 (see (4.13)), it follows that

‖SQlu‖A ≤ ‖Qlu‖A = |ΠhQlu|H1(Ω) ≤ C|Πhu|H1(Ω) ≤ C‖u‖A,
proving (5.32). Using well-known properties of the L2(Ω)-orthogonal projections ΠhQl, we
have,

‖Πh(I −Ql+1)u‖2L2(Ω) = ‖Πh(I −Ql)u‖2L2(Ω) + ‖Πh(Ql −Ql+1)u‖2L2(Ω)

≥ ‖Πh(Ql −Ql+1)u‖2L2(Ω).

Therefore, by (5.38),

‖Πh(Ql −Ql+1)u‖L2(Ω) ≤ ‖Πh(I −Ql+1)u‖L2(Ω) ≤ Chl+1|Πhu|H1(Ω).

Hence, by (5.37) and (5.40),

‖(Ql −Ql+1)u‖l ≤ C
hl+1

hl
‖u‖A.

The last inequality together with (5.36) give (5.31) for l = 1. The last inequality, (5.37), and
hl+1 = 2hl prove (5.31) for l = 2, . . . , L− 1.

Since both assumptions (5.31) and (5.32) of Theorem 5.9 are satisfied, Algorithm 4
with step 2 given by the multigrid method described in this section converges with a rate of
convergence independent of both the coarse- and fine-level resolutions.
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6. A general multilevel result. In this section, we give a nearly optimal convergence
result for general variational multigrid with aggressive coarsening and special polynomial
smoothing. The results presented here are based on [21], and the smoother analysis is a minor
generalization of the estimate in [8]. In this method, we allow for aggressive coarsening
between any of two consecutive levels and prove a convergence rate independent of the degree
of coarsening. In case of multigrid based on the hierarchy of nested quasiuniform meshes with
characteristic resolution hl, to guarantee a convergence result independent of the degree of
coarsening (that is, independent of hl+1/hl), we need to perform on each level a number of
Richardson smoothing steps that is greater than or equal to chl+1/hl. Here, c is a positive
constant independent of the level l.

6.1. General estimates based on the XZ-identity by Xu and Zikatanov. Consider the
standard variational multigrid V-cycle in the form

x← (I −R−1
mgmA)x+R−1

mgmf , x, f ∈ R
n1 , n1 = n,

with injective linear prolongators

P l
l+1 : Rnl+1 → R

nl , nl+1 < nl, l = 1, . . . , L− 1,

that is, a multigrid algorithm with restriction operators given by the transpose of the prolonga-
tors, and coarse-level matrices given by

Al = (P l−1
l )TAl−1P

l−1
l = (P 1

l )
TAP 1

l , P 1
l ≡ P 2

1 . . . P l−1
l , A1 = A.

We assume that the pre-smoothers are of the form

(6.1) x← (I −R−1
l Al)x+R−1

l f ,

and the post-smoothers have the form

(6.2) x← (I −R−T
l Al)x+R−T

l f .

Here, f ∈ R
nl is a right-hand side and Rl is an invertible nl × nl matrix.

Our estimates are based on the following general XZ-identity (Xu and Zikatanov [26]).
Its proof, in the form we use it, can be found in [25].

THEOREM 6.1. Consider the symmetric variational V-cycle multigrid with the compo-

nents as described at the beginning of this section. Assume the matrices RT
l + Rl − Al,

l = 1, . . . , L− 1, are positive definite. Then the following identity holds:

〈Av,v〉 ≤ 〈Rmgmv,v〉

= inf
{vl}

{

‖vL‖2AL
+

L−1
∑

l=1

‖RT
l v

f
l +AlP

l
l+1vl+1‖2(RT

l
+Rl−Al)−1

}

,(6.3)

v1 = v, v
f
l ≡ vl − P l

l+1vl+1.

The infimum here is taken over the components {vl} of all possible decompositions of v ∈ R
n

obtained as follows: starting with v1 = v, for l ≥ 1, vl = v
f
l + P l

l+1vl+1, i.e., choosing

vl+1 ∈ R
nl+1 arbitrary, we then let v

f
l = vl − P l

l+1vl+1.

REMARK 6.2. The requirement that the matrices Rl +RT
l −Al are positive definite is

equivalent to the smoothers (6.1) and (6.2) being Al-convergent.
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We define the hierarchy of coarse spaces VL ⊂ . . . ⊂ V2 ⊂ V1 and the associated norms
‖ · ‖Vl

, l = 1, . . . , L, by

Vl = Range(P 1
l ), ‖ · ‖Vl

: P 1
l x 7→ ‖x‖ ≡

√
xTx, l = 1, . . . , L.(6.4)

Further, we define

(6.5) λk,l = sup
x∈R

nk\{0}

〈

AP 1
kx, P

1
kx
〉

‖P 1
kx‖2Vl

, k = 1, . . . , L, 1 ≤ l ≤ k.

REMARK 6.3. Definition (6.5) allows the following interpretation: The spectral bound

̺(Ak) = sup
x∈R

nk\{0}

〈Akx,x〉
‖x‖2 = sup

x∈R
nk\{0}

〈

AP 1
kx, P

1
kx
〉

‖P 1
kx‖2Vk

indicates the smoothness of the space Vk with respect to the norm ‖ · ‖Vk
. The quantity

λk,l ≡ sup
x∈R

nk\{0}

〈

AP 1
kx, P

1
kx
〉

‖P 1
kx‖2Vl

= sup
x∈R

nk\{0}

〈

AP 1
kx, P

1
kx
〉

‖P 1
l P

l
kx‖2Vl

= sup
x∈R

nk\{0}

〈

AP 1
kx, P

1
kx
〉

‖P l
kx‖2

,

(6.6)

for l < k, indicates the smoothness of the space Vk with respect to the finer space norm ‖·‖Vl
.

THEOREM 6.4. Consider the symmetric variational V-cycle multigrid with the components

as described at the beginning of this section. Let λ̄l+1,l ≥ λl+1,l, l = 1, . . . , L− 1, be upper

bounds. We assume the existence of linear mappings Ql : V1 → Vl, l = 1, . . . , L, Q1 = I ,

such that for all finest-level vectors v ∈ V1 and all levels l = 1, . . . , L− 1, it holds that

(6.7) ‖(Ql −Ql+1)v‖Vl
≤ Ca
√

λ̄l+1,l

‖v‖A ,

and for all levels l = 1, . . . , L,

(6.8) ‖Ql‖A ≤ Cs.

Here Ca and Cs are positive constants independent of the level. Further, we assume that our

smoothers, Rl, l = 1, . . . , L− 1, satisfy

(6.9) RT
l +Rl −Al ≥ α Al,

and the symmetrized smoothers R̄l defined by

(6.10) I − R̄−1
l Al = (I −R−T

l A)(I −R−1
l Al)

satisfy

(6.11) ‖v‖2R̄l
≤ β

(

λ̄l+1,l‖v‖2 + ‖v‖2Al

)

, ∀v ∈ R
nl .

Then the resulting multigrid operator Rmgm is nearly spectrally equivalent to A, or, more

precisely,

〈Av,v〉 ≤ 〈Rmgmv,v〉 ≤
[

C2
s + 2(L− 1)

(

β(C2
a + 4C2

s ) +
1

α
C2

s

)]

〈Av,v〉,

for all v ∈ V1.
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REMARK 6.5. Condition (6.9) represents a minimal requirement on the smoother that
is usually not difficult to satisfy. Consider, for example, Richardson iteration with the error
propagation operator I − 1/̺(Al)Al. Then, Rl = RT

l = ̺(Al)I, and condition (6.9) is
satisfied with α = 1.

REMARK 6.6. The difference to the results based on the theory in [5] is in our use of the
weak approximation condition (6.7). The original theory instead relied on the condition

(6.12) ‖(Ql −Ql+1)v‖Vl
≤ Ca
√

̺(Al)
‖v‖A,

and the approximation properties of the space Vl+1 are thus measured against the smoothness
of the space Vl (because of ̺(Al)). In typical applications, the approximation on the left-
hand side of (6.12) is guided by hl+1, while the spectral bound of Al and the scaling of the
‖ · ‖Vl

-norm are guided by hl. To prove (6.12), the ratio hl+1/hl has to be bounded, and the
resolutions of the spaces Vl and Vl+1 have to be comparable.

In our case, the approximation properties of the space Vl+1 are measured against (the
upper bound of)

λl+1,l ≡ sup
x∈Range(P l

l+1
)\{0}

〈Alx,x〉
‖x‖2 ≤ ̺(Al),

that is, against the smoothness of the space Vl+1 (measured with respect to the norm ‖ · ‖Vl

used on the left-hand side of (6.7)). Therefore the resolutions of the spaces Vl and Vl+1 do
not have to be comparable. The current estimate thus allows us to prove a convergence result
independent of the coarsening ratio. The cost of the uniform convergence result when the
coarsening ratio becomes large (λl+1,l ≪ ̺(Al)) is a stronger condition on the smoother
which arises through the smoothing condition (6.11).

Proof of Theorem 6.4. It is easy to prove that the symmetrized smoothers R̄l defined
in (6.10) have the form

(6.13) R̄l = Rl

(

RT
l +Rl −Al

)−1
RT

l .

We use the triangle inequality, the trivial inequality (a+ b)2 ≤ 2(a2 + b2), a, b ∈ R, (6.13),
and the assumption (6.9) to estimate

L−1
∑

l=1

‖RT
l v

f
l +AlP

l
l+1vl+1‖2(RT

l
+Rl−Al)−1

≤ 2

L−1
∑

l=1

‖Rlv
f
l ‖2(RT

l
+Rl−Al)−1 + 2

L−1
∑

l=1

‖AlP
l
l+1vl+1‖2(RT

l
+Rl−Al)−1

≤ 2

L−1
∑

l=1

‖vf
l ‖2Rl

+
2

α

L−1
∑

l=1

‖AlP
l
l+1vl+1‖2A−1

l

= 2

L−1
∑

l=1

‖vf
l ‖2Rl

+
2

α

L−1
∑

l=1

‖P l
l+1vl+1‖2Al

= 2
L−1
∑

l=1

‖vf
l ‖2Rl

+
2

α

L−1
∑

l=1

‖vl+1‖2Al+1

= 2
L−1
∑

l=1

‖vf
l ‖2Rl

+
2

α

L
∑

l=2

‖vl‖2Al
.(6.14)
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Thus, based on (6.3) and (6.14), we conclude that in order to get the estimate for the mutual
condition number of A and Rmgm, it is sufficient to find a particular decomposition v 7→ {vi}
such that

(6.15) ‖vL‖2AL
+ 2

L−1
∑

l=1

‖vf
l ‖2R̄l

+
2

α

L
∑

l=2

‖vl‖2Al
≤ C‖v‖2A.

Indeed, from (6.3), (6.14), and (6.15), it follows that

(6.16) 〈Av,v〉 ≤ 〈Rmgmv,v〉 ≤ C〈Av,v〉, ∀v ∈ R
n.

We write the linear mappings Ql in the form Ql = P 1
l Q̃l and choose vl = Q̃lv. Hence,

v
f
l = (Q̃l − P l

l+1Q̃l+1)v.

First, we have ‖vl‖Al
= ‖Q̃lv‖Al

= ‖P 1
l Q̃lv‖A = ‖Qlv‖A. Hence, by (6.8), we have

(6.17) ‖vL‖2AL
≤ C2

s‖v‖2A,
L
∑

l=2

‖vl‖2Al
≤ C2

s (L− 1)‖v‖2A.

Further, we estimate using assumptions (6.11), (6.7), (6.8), and definition (6.4),

‖vf
l ‖2R̄l

= ‖(Q̃l − P l
l+1Q̃l+1)v‖2R̄l

≤ β(λ̄l+1,l‖(Q̃l − P l
l+1Q̃l+1)v‖2 + ‖(Q̃l − P l

l+1Q̃l+1)v‖2Al
)

= β(λ̄l+1,l‖P 1
l (Q̃l − P l

l+1Q̃l+1)v‖2Vl
+ ‖P 1

l (Q̃l − P l
l+1Q̃l+1)v‖2A)

= β(λ̄l+1,l‖(Ql −Ql+1)v‖2Vl
+ ‖(Ql −Ql+1)v‖2A)

≤ β(λ̄l+1,l‖(Ql −Ql+1)v‖2Vl
+ 2(‖(Ql‖2A + ‖Ql+1)v‖2A))

≤ β(C2
a + 4C2

s )‖v‖2A.(6.18)

Substituting (6.17) and (6.18) into the left-hand side of (6.15) yields (6.15) with

C = C2
s + 2(L− 1)

(

β(C2
a + 4C2

s ) +
1

α
C2

s

)

.

The proof is now completed by (6.16).

6.2. The smoother and its analysis. Let A be a symmetric positive definite n×n matrix.
We investigate the smoother with the error propagation operator

(6.19) I −R−TA = I −R−1A = Sγ

(

I − 1

¯̺(AS)
AS

)

,

where S is a polynomial in A satisfying ̺(S) ≤ 1 and AS = S2A, ¯̺(AS) ≥ ̺(AS) is an
available upper bound, and γ is a positive integer. The implementation of this smoother for a
specific S we use can be found in Remark 6.10.

Clearly, for a smoother Ā introduced in (6.13), we have

(6.20) I − R̄−1A ≡ (I −R−TA)(I −R−1A) = S2γ

(

I − 1

¯̺(AS)
AS

)2

.
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Therefore,

(6.21) R̄−1 = A−1

[

I −
(

I − 1

¯̺(AS)
AS

)2

S2γ

]

.

The following lemma states a key result about our smoother.
LEMMA 6.7. Let A be a symmetric positive definite n× n matrix, S a polynomial in A

satisfying ̺(S) ≤ 1 and AS = S2A, ¯̺(AS) ≥ ̺(AS) an available upper bound, and γ > 0
an integer. Then, for every q ∈ (0, 1), the symmetrized smoother R̄ given by (6.21) satisfies

(6.22) ‖x‖2R̄ ≤
1

1− q2γ
‖x‖2A +

¯̺(AS)

q2
‖x‖2, ∀x ∈ R

n.

Proof. Let {vi}ni=1 be eigenvectors of A. Since S is a polynomial in A, the eigenvectors vi
are also eigenvectors of S. We choose an arbitrary q ∈ (0, 1) and define

U1 = {span{vi} : λi(S) ≤ q}, U2 = {span{vi} : λi(S) > q}.

First we prove that

(6.23) ‖x‖2R̄ ≤
1

1− q2γ
‖x‖2A, ∀x ∈ U1.

By (6.21) and ̺(I − 1/ ¯̺(AS)AS) ≤ 1, we have for x ∈ U1

〈R̄−1x,x〉 = 〈A−1x,x〉 −
〈

A−1

(

I − 1

¯̺(AS)
AS

)2

S2γx,x

〉

≥ 〈A−1x,x〉 −
〈

A−1S2γx,x
〉

≥ (1− q2γ)〈A−1x,x〉.

Since U1 is an invariant subspace of both R̄ and A and both R̄ and A are symmetric positive
definite on U1, the above estimate gives (6.23).

Similarly, we prove

(6.24) ‖x‖2R̄ <
¯̺(AS)

q2
‖x‖2, ∀x ∈ U2.

Let x ∈ U2. We estimate using the identity (6.21), ̺(S) ≤ 1, and 0 ≤ I − 1/ ¯̺(AS)AS ≤ I ,

〈R̄−1x,x〉 = 〈A−1x,x〉 −
〈

A−1

(

I − 1

¯̺(AS)
AS

)2

S2γx,x

〉

≥ 〈A−1x,x〉 −
〈

A−1

(

I − 1

¯̺(AS)
AS

)

x,x

〉

=
1

¯̺(AS)
〈S2x,x〉 > q2

¯̺(AS)
‖x‖2.

Since U2 is an invariant subspace of R̄, which is symmetric positive definite on U2, the above
estimate gives (6.24).

Clearly, the sets U1 and U2 form an orthogonal decomposition of Rn, that is, there is a
unique mapping

x ∈ R
n 7→ [x1,x2] ∈ U1 × U2 : x = x1 + x2 and 〈x1,x2〉 = 0.
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Since U1 and U2 are invariant subspaces of R̄ and A, the decomposition is also R̄- and
A-orthogonal. Thus, using the above decomposition, (6.23), and (6.24), we can estimate

‖x‖2R̄ = ‖x1‖2R̄+‖x2‖2R̄ ≤
1

1− q2γ
‖x1‖2A+

¯̺(AS)

q2
‖x2‖2 ≤

1

1− q2γ
‖x‖2A+

¯̺(AS)

q2
‖x‖2,

proving (6.22).
LEMMA 6.8. Let S = p(A), where p is the polynomial given by (4.14) with ̺ = ¯̺(A).

Here ¯̺(A) ≥ ̺(A) is an available upper bound. Further, let γ be a positive integer, AS = S2A,

and

(6.25) ¯̺(AS) =
¯̺(A)

(1 + deg(S))2
.

Then ̺(AS) ≤ ¯̺(AS), and the symmetrized smoother R̄ given by (6.20) satisfies for all

x ∈ R
n,

(6.26) ‖x‖2R̄ ≤
[

inf
q∈(0,1)

max

{

1

1− q2γ
,
1

q2

}](

‖x‖2A +
¯̺(A)

(1 + 2deg(S))2
‖x‖2

)

.

Proof. First we prove ̺(AS) ≤ ¯̺(AS). We estimate using AS = S2A, S = p(A), the
spectral mapping theorem, ¯̺(A) ≥ ̺(A), and (4.15),

̺(AS) = ̺(S2A) = max
t∈σ(A)

p2(t)t ≤ max
t∈[0, ¯̺(A)]

p2(t)t =
¯̺(A)

(1 + 2deg(S))2
·

The estimate ¯̺(AS) ≥ ̺(AS) now follows by (6.25).
The main statement (6.26) is a consequence of the statement (6.22) in Lemma 6.7 and

¯̺(AS) ≥ ̺(AS).
REMARK 6.9. For γ = 1, using the minimizer q̂ = 1/

√
2, we have (see (6.26))

min
q∈(0,1)

max

{

1

1− q2γ
,
1

q2

}

= 2.

Similarly, for γ = 2, using the minimizer q̂ =

√

−1+
√
5

2 , we get

(6.27) min
q∈(0,1)

max

{

1

1− q2γ
,
1

q2

}

=
2

−1 +
√
5

.
= 1.618034.

REMARK 6.10 (Implementation of the smoother). To implement the action of S, we
perform the sequence of Richardson sweeps

for i = 1, . . . , deg(S) do
x← x− ¯̺(A)

ri
(Ax− f),

ri =
¯̺(A)
2

(

1− cos 2iπ

2deg(S)+1

)

;

see (4.14). The smoothing step with the linear part I − 1
¯̺(AS)AS , AS = S2A, is then

performed as

x← x− 1

¯̺(AS)
S2(Ax− f).
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6.3. The final abstract result. In this section we summarize the results of Section 6.1
and Section 6.2 in the form of a theorem.

THEOREM 6.11. Let λ̄l+1,l ≥ λl+1,l and ¯̺(Al) ≥ ̺(Al), l = 1, . . . , L − 1, be upper

bounds. (The upper bounds ¯̺(Al) must be available.) We assume that there are linear

mappings Ql : V1 → Vl, l = 1, . . . , L, that satisfy the assumptions (6.7) and (6.8) with

positive constants Ca and Cs independent of the level l. Further, we assume that on each

level, the linear part of both pre- and post-smoother is given by (6.19) with γ = 2, A = Al,

S = p(Al), where p(·) is the polynomial (4.14) with ̺ = ¯̺(Al) and its degree d satisfying

(6.28) d ≥ Cdeg

√

¯̺(Al)

λ̄l,l+1
·

In (6.19), we use ¯̺(AS) given by (6.25). Then, for every v ∈ V1, the equivalence

〈Av,v〉 ≤ 〈Rmgmv,v〉 ≤
[

C2
s + 2(L− 1)

(

β(C2
a + 4C2

s ) +
1

α
C2

s

)]

〈Av,v〉

holds with α = 1 and

(6.29) β =
2

−1 +
√
5
max

{

1,
1

4C2
deg

}

·

Proof. The proof consists in the verification of the assumptions of Theorem 6.4. The
assumptions (6.7) and (6.8) are also assumptions of this theorem. Thus, it remains to find the
bounds for α in (6.9) and β in (6.11).

To get the estimate for α, we have to verify (6.9) for a smoother with the linear part
given by (6.19) with γ = 2. From (6.19), ¯̺(AS) ≥ ̺(AS), ̺(S) ≤ 1, and the fact that S is a
polynomial in A, we get

R−1 = R−T = 〈A−1x,x〉 −
〈

A−1

(

I − 1

¯̺(AS)
AS

)

S2x,x

〉

≤ 〈A−1x,x〉, ∀x.

Here, AS = S2A and ¯̺(AS) ≥ ̺(AS) is a given upper bound based on ¯̺(A) ≥ ̺(A)
by (6.25). Thus, R = RT ≥ A and (6.9) holds with α = 1. To estimate β, we use Lemma 6.8
and assumption (6.28). By (6.26), (6.27), and (6.28), we have for any x ∈ R

nl ,

‖x‖2R̄l
≤ 2

−1 +
√
5

(

‖x‖2Al
+

¯̺(Al)

(1 + 2deg(Sl))2
‖x‖2

)

≤ 2

−1 +
√
5

(

‖x‖2Al
+

¯̺(Al)

4deg2(Sl)
‖x‖2

)

≤ 2

−1 +
√
5

(

‖x‖2Al
+

1

4C2
deg

λ̄l+1,l‖x‖2
)

≤ 2

−1 +
√
5
max

{

1,
1

4C2
deg

}

(

‖x‖2Al
+ λ̄l+1,l‖x‖2

)

,

proving (6.11) with β as in (6.29).
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6.4. A model example. Let Ω ⊂ R
d, d = 2 or 3, be a polygon or polytope. Consider a

model elliptic problem with the H1
0 -equivalent form

find u ∈ H1
0 (Ω) : a(u, v) = (f, v)L2(Ω), ∀v ∈ H1

0 (Ω).

Here a(·, ·) is a bilinear form satisfying

c|u|2H1(Ω) ≤ a(u, u) ≤ C|u|2H1(Ω), ∀u ∈ H1
0 (Ω),

and f ∈ L2(Ω).
Assume a quasiuniform triangulation of Ω and a hierarchy of quasiuniform triangulations

obtained by its successive refinement. The finest triangulation will be denoted by τh1
, the

second finest by τh2
, etc. Here, hl is a characteristic resolution of a triangulation τhl

. The case
of interest is hl ≪ hl+1. Let L denote the number of triangulations. The P1 finite element
space corresponding to the triangulation τhl

will be denoted by Vhl
and its basis by {ϕl

i}nl

i=1.
Realizing the Dirichlet constraints (i.e., by removing the basis functions corresponding to the
vertices located at δΩ) results in a hierarchy of nested spaces

H1
0 (Ω) ⊃ Vh1

⊃ Vh2
⊃ . . . ⊃ VhL

.

The interpolation operators are defined in the usual way,

Πhl
: x ∈ R

nl 7→
nl
∑

i=1

xiϕ
l
i.

Let Qhl
denote the L2(Ω)-orthogonal projection onto Vhl

. We will use the following
well-known properties of the finite element functions [9]:

‖(I −Qhl
)u‖L2(Ω) ≤ Chl|u|H1(Ω), ∀u ∈ H1

0 (Ω),(6.30)

|Qhl
u|H1(Ω) ≤ C|u|H1(Ω), ∀u ∈ H1

0 (Ω),(6.31)

c‖Πhl
x‖2L2(Ω) ≤ hd

l ‖x‖2 ≤ C‖Πhl
x‖2L2(Ω), ∀x ∈ R

nl ,(6.32)

chd−1
l ≤ ̺(Al) ≤ Chd−2

l .(6.33)

As in Section 5.3, we define the prolongation operators P l
l+1 by the natural embedding of

the spaces Vhl
, that is,

(6.34) P l
l+1 = Π−1

hl
Πhl+1

.

Further we set

(6.35) Q̃l = Π−1
hl

Qhl
Πh1

, Ql = P 1
l Q̃l, l = 1, . . . , L.

Our goal is to verify the assumptions of Theorem 6.11 for the linear operators Ql.
By (6.6),

(6.36) λl+1,l = sup
x∈R

nl+1\{0}

〈Al+1x,x〉
‖P l

l+1x‖2
·

Further, using the estimate (6.32) and definition (6.34), we get

‖P l
l+1x‖2 ≥ ch−d

l ‖Πhl
P l
l+1x‖2L2(Ω) = ch−d

l ‖Πhl+1
x‖2L2(Ω) ≥ c

(

hl+1

hl

)d

‖x‖2.
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Substituting the above estimate into (6.36) and using (6.33) yields

λl+1,l ≤ C

(

hl

hl+1

)d

̺(Al+1) ≤ Chd
l h

−2
l+1.

Thus, there is a positive constant C such that that

(6.37) λ̄l+1,l ≡ Chd
l h

−2
l+1 ≥ λl+1,l, ∀l = 1, . . . , L− 1.

As ¯̺(Al) ≥ ̺(Al), we take

¯̺(Al) = max
i=1,...,nl

nl
∑

j=1

|(Al)ij |.

This bound satisfies chd−2
l ≤ ¯̺(Al) ≤ Chd−2

l . Thus we conclude that

(6.38) c

(

hl+1

hl

)2

≤ ¯̺(Al)

λ̄l+1,l
≤ C

(

hl+1

hl

)2

.

As required by Theorem 6.11, we assume that on each level, the linear part of both pre-
and post-smoother is given by (6.19) with γ = 2, A = Al, S = p(Al), where p(·) is the
polynomial (4.14) with ̺ = ¯̺(Al) and its degree d satisfying

(6.39) d ≥ C
hl+1

hl
·

In (6.19), ¯̺(AS) given by (6.25) is used. From (6.39) and (6.38), we have (6.28). The
properties (6.7) and (6.8) are now consequences of (6.30), (6.31), (6.32), the definitions (6.35),
(6.34), (6.4), and the estimate (6.37). Let u = Πh1

u, u ∈ V1. Using (6.31), (6.31), (6.32),
and (5.40), we get

‖(Ql −Ql+1)u‖2Vl
= ‖P 1

l (Q̃l − P l
l+1Q̃l+1)u‖2Vl

= ‖(Q̃l − P l
l+1Q̃l+1)u‖2

≤ Ch−d
l ‖Πhl

(Q̃l − P l
l+1Q̃l+1)Π

−1
h1

u‖2L2(Ω)

= Ch−d
l ‖(Πhl

Q̃l −Πhl+1
Q̃l+1)Π

−1
h1

u‖2L2(Ω)

= Ch−d
l ‖(Qhl

−Qhl+1
)u‖2L2(Ω) = Ch−d

l ‖(I −Qhl+1
)Qhl

u‖2L2(Ω)

≤ Ch−d
l h2

l+1|Qhl
u|2H1(Ω) ≤ Ch−d

l h2
l+1|u|2H1(Ω) ≤

C

λ̄l+1,l
‖u‖2A,

proving (6.7).
To prove (6.8), we estimate using (5.40),

‖Qlu‖A ≤ C|Πh1
P 1
l Q̃lΠ

−1
h1

u|H1(Ω) = C|Πhl
Q̃lΠ

−1
h1

u|H1(Ω)

= C|Qhl
u|H1(Ω) ≤ C|u|H1(Ω) ≤ C‖u‖A.
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We summarize our result in form of a theorem.
THEOREM 6.12. Consider the model problem and a hierarchy of nested finite element

spaces as described in this section. We assume the prolongators are given by (6.34). Further,

we assume that on each level, the linear part of both pre- and post-smoother is given by (6.19)
with γ = 2, A = Al, S = p(Al), where p(·) is the polynomial (4.14) with ̺ = ¯̺(Al) and its

degree d satisfying

d ≥ C
hl+1

hl
.

In (6.19), ¯̺(AS) given by (6.25) is used. Then the resulting multigrid V-cycle converges in the

A-norm, and its rate of convergence is estimated by

1− C

L
,

where the constant C is independent of the resolutions hl, l = 1, . . . , L.

7. Numerical illustration. In this section, the most general multilevel smoothed aggre-
gation method of Section 6 is chosen to demonstrate the efficiency of the strategy of aggressive
coarsening combined with massive polynomial smoothing in general and to illustrate numeri-
cally the validity of the convergence bounds. Numerical experiments comparing the efficiency
of all the presented methods (of increasing generality) and other domain decomposition meth-
ods, preferably on a parallel platform, are beyond the scope of this theoretical paper. This
section closely follows [8].

A numerical solution of the Poisson equation is considered in two and three dimensions.
For the former case, finite element discretizations using two successively refined unstructured
meshes (labeled Mesh7 and Mesh8) of a square in 2D are used. A Dirichlet boundary condition
is imposed at all 1924 and 3844 boundary nodes, respectively. For the 3D case, a mesh of a
deformed cubic domain discretized using over 1.3 million degrees of freedom is considered.
Dirichlet boundary conditions are imposed only on one of the boundary faces.

In all of the experiments, the smoothed aggregation method is used as a preconditioner in
the conjugate gradient method. In particular, in the symmetric positive definite case that is
considered here, the preconditioned conjugate gradient method is employed. The following
stopping criterion is used

√

zTk rk

zT0 r0
≤ ε
√
κ,

where rk = f − Axk denotes the residual at iteration k, zk = B−1rk denotes the precondi-
tioned residual at iteration k, κ is an estimate of the condition number of the preconditioned
system, and ε = 10−6.

The condition number estimates provided in the tables below are approximations obtained
from 1/(1− ̺) where ̺ is the value

(

√

zTnit
rnit

zT0 r0

)1/nit

.

Here, nit is the iteration count k when the stopping criterion is reached. Aggressive coarsening
is employed only between the first two levels—higher order polynomial degrees νP1 and νR1
are used for the smoothed prolongator and the relaxation method, respectively, whereas νk = 1
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TABLE 7.1
Results for the 2D unstructured problem with 205 761 degrees of freedom (Mesh7).

1st coarse # νP1 νR1 Setup Iter. # Cond. Oper.
level size levels time time iterations # cmplx.

289 3 12 12 2.220 4.645 9 2.693 1.00282
289 3 12 11 2.232 4.287 9 2.917 1.00282
289 3 12 10 2.218 4.331 10 3.337 1.00282
289 3 9 11 1.597 4.658 10 3.578 1.00199
289 3 9 10 1.591 4.631 11 3.834 1.00199
289 3 9 9 1.607 4.233 11 4.276 1.00199
289 3 9 8 1.594 4.174 12 4.972 1.00199

2500 4 6 6 1.757 2.353 8 2.530 1.03879
2500 4 6 5 1.754 2.313 9 2.625 1.03879
2500 4 6 4 1.759 1.919 9 2.554 1.03879
2500 4 6 3 1.732 1.902 11 3.643 1.03879

22500 5 3 3 2.386 1.922 9 2.682 1.55218
22500 5 3 2 2.345 1.557 9 2.713 1.55218
22500 5 3 1 2.347 1.228 9 2.545 1.55218
22500 5 2 2 1.457 1.643 10 3.457 1.37477
22500 5 2 1 1.453 1.249 10 3.174 1.37477
22500 5 1 1 1.220 1.100 10 2.906 1.19465

17271 5 1 1 1.020 1.310 10 3.692 1.10914
17271 5 1 1 1.022 1.243 14 5.741 1.10914

for k > 1. Details of the aggregation procedure can be found in [8]. All experiments are
carried out on a laptop equipped with a 2 GHz Intel Core2 Duo P7350 CPU and 4 GB of
RAM.

The results for the two-dimensional problems are summarized in Tables 7.1 and 7.2. The
results for the three-dimensional problem are tabulated in Table 7.3. The first column in the
tables reports the size of the first coarse-level problem. The last column reports the operator
complexity, a standard algebraic multigrid measure defined as the sum of the numbers of
nonzero entries of the matrices at all coarsening levels divided by the number of nonzero
entries of the fine-grid matrix. The last 2 lines in the tables correspond to a standard SA solver
with the default aggregation of [24] and the Gauss-Seidel and Jacobi relaxation, respectively,
used on all levels with νk = 1.

The tables clearly demonstrate that the multilevel smoothed aggregation method with
aggressive coarsening performs as expected. In particular, the condition number and the
number of iterations are well controlled when the problem size or the first-level coarse-space
size are varied. This confirms the uniform convergence bounds proved in the previous section.
The setup and iterative solution time rise as the degree of coarsening is increased. This is
due to the fact that the experiments are performed on a serial architecture. The aggressive
coarsening and massive smoothing is the right choice on a massively parallel machine that can
exploit the parallelism enabled by the additive nature of polynomial smoothers. The results for
the Gauss-Seidel smoother are provided for comparison only; the polynomial smoothers and
the (scaled) Jacobi smoother are straightforward to parallelize and hence of more practical
interest.
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TABLE 7.2
Results for the 2D unstructured problem with 821 121 degrees of freedom (Mesh8).

1st coarse # νP1 νR1 Setup Iter. # Cond. Oper.
level size levels time time iterations # cmplx.

144 3 30 30 17.876 46.878 9 3.210 1.00028
144 3 30 25 17.669 42.745 10 4.059 1.00028
144 3 30 20 17.669 41.570 12 5.582 1.00028

1156 4 13 13 9.728 21.462 9 2.889 1.00324
1156 4 13 12 9.743 20.038 9 2.891 1.00324
1156 4 13 11 9.700 18.432 9 3.035 1.00324
1156 4 13 10 9.647 18.460 10 3.527 1.00324

10201 4 6 6 7.178 11.344 9 3.048 1.04092
10201 4 6 5 7.121 9.781 9 3.023 1.04092
10201 4 6 4 7.087 8.284 9 3.020 1.04092
10201 4 6 3 7.049 8.135 11 3.652 1.04092
10201 4 6 2 7.132 8.621 15 6.757 1.04092

10201 5 2 2 5.930 7.741 11 3.900 1.38440
10201 5 2 1 5.930 5.899 11 3.571 1.38440
10201 5 1 1 4.798 7.741 10 3.072 1.19946

90434 5 1 1 4.891 6.655 11 5.076 1.1787
90434 5 1 1 4.950 6.669 15 9.007 1.1787

TABLE 7.3
Results for the 3D problem with 1 367 631 degrees of freedom.

1st coarse # νP1 νR1 Setup It. # Cond. Oper.
level levels time time iterations # Cmplx.

64 3 8 8 30.174 30.799 7 2.118 1.00003
64 3 8 7 30.132 31.044 8 2.453 1.00003
64 3 8 6 30.059 30.131 9 3.045 1.00003
64 3 8 5 30.047 31.231 11 4.074 1.00003
64 3 6 6 23.425 29.974 9 3.192 1.00003
64 3 6 5 23.359 31.061 11 4.117 1.00003

1680 4 4 4 27.344 17.737 7 2.266 1.00159
1680 4 4 3 27.339 14.569 7 1.927 1.00159
1680 4 4 2 27.499 14.178 9 2.557 1.00159
1680 4 4 1 27.441 15.475 14 6.172 1.00159
1680 4 3 3 20.595 18.053 9 2.673 1.00111
1680 4 3 2 20.620 14.005 9 2.644 1.00111
1680 4 3 1 20.585 14.978 14 6.159 1.00111

46248 4 2 2 44.717 11.461 6 1.560 1.14223
46248 4 2 1 44.426 8.494 6 1.492 1.14223
46248 4 1 1 22.701 8.551 7 1.935 1.04375

51266 4 1 1 27.214 16.372 7 2.394 1.10982
51266 4 1 1 27.106 11.467 10 3.449 1.10982
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8. Concluding remarks. We started with a smoothed aggregation method based on a
two-level method with aggressive coarsening that justifies the usage of multiple smoothing
steps under regularity-free conditions. For this method, however, we were unable to prove
fully optimal convergence. Compared to the standard two-level framework with a single
smoothing step, the dependence on the degree of coarsening was reduced but not eliminated.
This drawback was fixed in Section 4, where a more sophisticated smoother (and a prolongator
smoother) was used and the optimal convergence bound was established for this two-level
method. Our result assumed that the coarse-level problem was solved exactly. In Section 5,
we extended the result of Section 4 to the case where the coarse-level problem is solved by a
multigrid V-cycle without aggressive coarsening. Thus, we proved fully optimal convergence
for a multilevel smoothed aggregation method with aggressive coarsening between the first
two levels. This result is new and the convergence proof is completely different to that of
Section 4. The most general result of Section 6 establishes a generalization into two important
directions. Unlike in the preceding cases, it is fully independent of the smoothed aggregation
framework and allows for aggressive coarsening between any two adjacent levels. Numerical
results presented in Section 7 confirm the convergence estimates.

It is the opinion of the authors that the theoretical tools presented in this paper allow to
control convergence properties of the methods with aggressive coarsening and polynomial
smoothing satisfactorily. The future focus will be on a high-performance parallel implementa-
tion.
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