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Abstract. In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite
volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the
discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the
other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the
preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to
the mesh size.

Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element,
GMRES

AMS subject classifications. 65F10, 65N22, 65N30, 63N55

1. Introduction. We introduce and analyze two variants of the additive Schwarz method

(ASM) for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order

elliptic partial differential equations with discontinuous coefficients, where the discontinuities

may be across subdomain boundaries. Problems of this type play an important role in scientific

computing. Discontinuities or jumps in the coefficient cause the performance of any standard

iterative method to deteriorate as the jump increases. The resulting system, which is in

general nonsymmetric, is solved using the preconditioned generalized minimal residual (or

preconditioned GMRES) method. We consider two variants of the ASM preconditioner, i.e., a

symmetric and a nonsymmetric variant. The proposed methods are almost optimal in the sense

that the convergence of the GMRES iterations in both cases depends only poly-logarithmically

on the ratio of the subdomain size to the mesh size.

The finite volume method divides the computational domain into a set of control volumes

whose centroids typically correspond to the nodal points of a finite difference or a finite

element discretization. Unlike the finite difference and the finite element method, the solution

from a finite volume discretization ensures conservation of certain quantities such as mass,

momentum, energy and species. This property is satisfied exactly for each control volume

in the domain as well as the whole of the computational domain, connecting the solution

to the physics of the system, and, as a consequence, making the method more attractive.

There are two types of finite volume methods: one which is based on the finite difference

discretization (also known as the finite volume method), and one which is based on the finite

element discretization (also known as the finite volume element (FVE) method). In the later

case the approximation of the solution is sought in a finite element space, and therefore it can

be considered as a Petrov-Galerkin finite element method. Typically, the finite element space

is defined on a mesh, called the primal mesh, and the equations are discretized on a mesh

which is dual to the primal mesh.

The CRVFE method is a variant of the FVE method, where the solution is sought in the

Crouzeix-Raviart (CR) or the P1 nonconforming finite element spaces, as opposed to, say, the
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linear conforming or the P1 conforming finite element spaces, which have been commonly

used in the earlier works on FVE methods. Although the primal meshes are the same in these

two methods, their dual meshes differ significantly since the degrees of freedom of a CR finite

element are associated with the edge midpoints and that of a P1 conforming finite element

are associated with the vertices. The CRFVE method, which we use in this paper, has been

introduced in [6]. For an overview on recent developments of the FVE method, we refer

to [15].

Additive Schwarz methods are considered among the most powerful iterative methods

for the numerical solution of partial differential equations. There exist quite many works on

additive Schwarz methods for symmetric systems arising from the finite element discretizations

of second-order elliptic problems; see, e.g., [23, 24] for a complete overview. There are also

quite a few works on such methods for the symmetric system resulting from the CR finite

element discretization of the problem, some of which can be found in, e.g., [2, 17, 20, 22].

Works on additive Schwarz methods for the nonsymmetric system arising from the FVE

discretization of the problem, on the other hand, have been very limited. We refer to [8,16,26]

for the very few that exist in the literature.

The purpose of this paper is therefore to propose two new algorithms based on the

additive Schwarz method for the CRFVE method. The algorithms are based on the edge-

based discrete space decomposition, and their analysis is done using the abstract Schwarz

framework developed in [18], i.e., an extension of the original abstract Schwarz framework

for FE discretization to the FVE discretization. The proposed decomposition of the discrete

space is similar to the ones considered in [17] for a nonmatching discretization and in [9]

for a discontinuous Galerkin discretization; see also [1, 19, 24] for further references. The

proposed methods differ from each other as they use different bilinear forms, i.e., a symmetric

and a nonsymmetric bilinear form of the finite element and the finite volume formulations,

respectively.

We prove an almost optimal convergence rate for the GMRES iteration applied to the

resulting preconditioned systems by showing that one of the two GMRES parameters, which

describes the convergence of the GMRES iteration, is bounded above by a constant and the

other one, which is the eigenvalue of the symmetric part of the preconditioned system, grows

like (1 + log(H/h))−2, where H is the maximal diameter of the subdomains and h is the

mesh size.

The rest of this paper is organized as follows. In Section 2, we present the differential

problem and the nonconforming finite volume element discretization. In Section 3 we briefly

describe the GMRES method and the corresponding parameters describing its convergence

rate. In Section 4 we introduce the two variants of the edge-based Schwarz preconditioner for

the CRFVE method and a theorem describing their GMRES convergence rate. In Section 5 we

show some numerical results which confirm the theory developed in the previous sections. We

also present numerical results to illustrate cases which are not covered by our convergence

analysis, namely the cases where the coefficients may have jumps inside subdomains or along

subdomain boundaries. Nevertheless the methods seem to work well.

For convenience we use the following notations. For positive constants c and C, indepen-

dent of h and the coefficients, we define u ≍ v, x � y and w � z as

cu ≤ v ≤ Cu, x ≥ cy and w ≤ Cz,

respectively. Here u, v, x, y, w, and z are norms of some functions.
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2. Preliminaries.

2.1. The model problem. We consider the following elliptic boundary value problem

−∇ · (A(x)∇u) = f in Ω,(2.1)

u = 0 on ∂Ω,

where Ω is a bounded convex domain in R
2 and f ∈ L2(Ω).

The corresponding standard variational (weak) formulation is: find u ∈ H1
0 (Ω) such that

a(u, v) =

∫

Ω

fv dx ∀v ∈ H1
0 (Ω),

where

a(u, v) =

N
∑

k=1

∫

Ωk

∇uTA(x)∇v dx.

We partition Ω into a set of nonoverlapping subdomains, Ωi, open and connected Lipschitz

polytopes such that Ω =
⋃N

i=1 Ωi, and assume that they form a coarse triangulation of the

domain which is shape-regular with the subdomain sizeH = maxkHk, whereHk = diam Ωk.

Let Γ =
⋃

i ∂Ωi \ ∂Ω be the global interface.

The coefficient matrix A restricted to Ωk, i.e., Ak = A|Ωk
, is in W 1,∞(Ωk), bounded,

and symmetric and positive definite, i.e.,

∃mk > 0 ∀x ∈ Ωk ∀ξ ∈ R
2 ξTA(x)ξ ≥ mk|ξ|

2(2.2)

∃Mk > 0 ∀x ∈ Ωk ∀ξ, µ ∈ R
2 µTA(x)ξ ≤Mk|µ||ξ|.(2.3)

Here |ξ| =
√

ξT ξ. We can always scale the matrix functions A in such a way that mk ≥ 1,

for all k = 1, . . . , N . We also assume that the following bounds hold : ‖Ak‖W 1,∞(Ωk) ≤ C1,

and Mk ≤ C2mk, with C1, C2 positive constants, i.e., we assume that the coefficient matrix

locally is smooth, isotropic, and not too much varying.

2.2. Basic notations. Throughout this paper we will use the following notation for the

Sobolev spaces. The space of functions with generalized derivatives of orders up to s in the

space L2(G) is denoted by Hs(G). The norm on the space Hs(G) is defined as

‖u‖Hs(G) =





∫

G

∑

|α|≤s

|Dαu|2 dx





1/2

.

The space of functions with bounded weak derivatives of orders up to s is denoted byW s,∞(G)
with the corresponding norm defined as

‖u‖W s,∞(G) = max
0≤|α|≤s

‖Dαu‖L∞(G).

The subspace of H1(Ω) with functions vanishing on the boundary ∂Ω in the sense of traces is

denoted by H1
0 (Ω).

We assume that there exists a sequence of quasiuniform triangulations Th = Th(Ω) = {τ}
of Ω, such that any element τ of Th is contained in only one subdomain, consequently, any
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FIG. 2.1. Control volume be (shaded region) associated with the edge e which is a common edge of the two

elements τ1 and τ2 of the triangulation Th.

subdomain Ωk inherits a sequence of local triangulations, Th(Ωk) = {τ}τ⊂Ωk,τ∈Th
. With this

triangulation Th(Ω), we define the broken H1(Ω) norm and seminorm respectively as

‖v‖H1

h
(Ω) =





∑

τ∈Th(Ω)

‖v‖2H1(τ)





1/2

and |v|H1

h
(Ω) =





∑

τ∈Th(Ω)

|v|2H1(τ)





1/2

.

Let h = maxτ∈Th(Ω) diam(τ) be the mesh size parameter associated with the triangu-

lation. We introduce the following sets of Crouzeix-Raviart (CR) nodal points or nodes:

Ωh, ∂Ωh, Ωh,k, ∂Ωh,k, Γh, and Γkl,h are the sets of edge midpoints of Th, which belong to

Ω, ∂Ω,Ωk, ∂Ωk, Γ, and Γkl, respectively. Here Γkl is an interface, which is an open edge

shared by the two subdomains Ωk and Ωl. Note that Γh =
⋃

Γkl⊂Γ Γkl,h.

FIG. 2.2. The degrees of freedom of the Crouzeix-Raviart finite element.

Now we define a triangulation T ∗
h which is dual to Th. Let e be an edge common to τ1 and

τ2, two elements of the triangulation Th, such that e = ∂τ1 ∩ ∂τ2. For k = 1, 2, let Vk ⊂ τk
be the triangle obtained by connecting the two endpoints of e to the centroid (barycenter) of

τk. The control volume associated with the edge e is then be = V1 ∪ e ∪ V2; cf. Figure 2.1. If

e is an edge on the boundary ∂Ω, then the control volume be associated with the edge will be

the triangle obtained by connecting the two endpoints of e with the centroid of the τ for which

e ⊂ ∂τ . Then T ∗
h = {be}e∈Eh

forms the dual triangulation with Eh being the set of all edges

of elements in the triangulation Th.

2.3. Discrete problem. In this section we present the Crouzeix-Raviart finite element

(CRFE) and the Crouzeix-Raviart finite volume element (CRFVE) discretizations of a model

second-order elliptic problem with discontinuous coefficients across subdomain boundaries.

The corresponding discrete spaces are defined as follows,

Vh := {v ∈ L2(Ω) : v|τ ∈ P1, τ ∈ Th, v is continuous in Ωh,

v(m) = 0, m ∈ ∂Ωh},

V ∗
h := {v ∈ L2(Ω) : v|be ∈ P0, be ∈ T ∗

h , v(m) = 0 m ∈ ∂Ωh}.
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Vh is the classical Crouzeix-Raviart finite element space, whose degrees of freedom are

associated with the edge midpoints; cf. Figure 2.2 for an illustration. V ∗
h is the space of

functions that are piecewise constant over the control volumes and zero on the boundary of the

domain. Both spaces are contained in L2(Ω).

Let {φm}m∈Ω
h

be the standard CR nodal basis of Vh and {ψm}m∈Ω
h

be the standard

basis of V ∗
h consisting of characteristic functions of the control volumes.

We also introduce the two interpolation operators, Ih and I∗h defined as follows: for any

function u with properly defined and unique values at the edge midpoints m ∈ Ωh, we have

Ih(u) =
∑

m∈Ω
h

u(m)φm, I∗h(u) =
∑

m∈Ω
h

u(m)ψm.

Note that IhI
∗
hu = u for any u ∈ Vh and I∗hIhu = u for any u ∈ V ∗

h . Let the

nonconforming finite volume element bilinear form ah : Vh × V ∗
h → R be defined as:

aCRFV (u, v) = −
∑

e∈Ein
h

v(me)

∫

∂be

A(s)∇u · n ds,

where n is the outward unit normal vector to ∂be, me is the midpoint of the edge e, and Ein
h is

the set of all interior edges, i.e., those which are not on ∂Ω.

Then our discrete CRFVE problem is to find uFV ∈ Vh such that

(2.4) aFV (uFV , v) = f(I∗hv) ∀v ∈ Vh,

for aFV (u, v) := aCRFV (u, I∗hv). In general this problem is nonsymmetric unless the

coefficient matrix is a piecewise constant matrix over the elements of Th(Ω). One can prove

that there exists an h0 > 0 such that for all h ≤ h0 the form aFV (u, v) is positive definite over

Vh; cf [18]. Thus, this problem has a unique solution. Some error estimates are also proven;

cf. [16] for the case of discontinuous coefficients and [6] for the case of smooth coefficients.

The corresponding symmetric nonconforming finite element problem is defined as: find

uFE ∈ Vh such that

ah(u
FE , v) = (f, v) , v ∈ Vh,

where the bilinear form ah(·, ·) is defined as

ah(u, v) =
∑

τ∈Th

∫

τ

∇uTA(x)∇v dx, u, v ∈ Vh.

The bilinear form ah(·, ·) also induces the so called energy norm which is defined as

‖ · ‖a =
√

ah(·, ·).

The next lemma is crucial for the analysis of our method. It relates the two bilinear forms.

The proof can be found in [16].

LEMMA 2.1. For the bilinear forms ah(u, v) and aFV (u, v), there exists an h0 > 0 such

that, if h ≤ h0, then the following holds:

|ah(u, v)− aFV (u, v)| � h‖u‖a‖v‖a, ∀u, v ∈ Vh.
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3. The GMRES method. The linear system of equations which arises from prob-

lem (2.4) is in general nonsymmetric. We may solve such a system using a preconditioned

GMRES method; cf. Saad and Schultz [21], and Eistenstat, Elman and Schultz [11]. This

method has proven to be quite powerful for a large class of nonsymmetric problems. The

method, which was originally developed in the Euclidean norm, cf. [11], extends easily to the

energy norm; cf. [4, 5].

In this paper, we use the GMRES method to solve the linear system of equations

Tu = g,

where T is a non-singular nonsymmetric operator, g ∈ Vh is the right-hand side, and u ∈ Vh
is the solution vector.

The main idea of the GMRES method is to solve a least-squares problem at each iteration.

At step m we approximate the exact solution u∗ = T−1g by a vector um ∈ Km which

minimizes the norm of the residual, where Km is the m-th Krylov subspace defined as

Km = span
{

r0, T r0, · · ·T
m−1r0

}

,

r0 = g − Tu0 the initial residual, and u0 the initial guess. Equivalently if zm solves

min
z∈Km

‖g − T (u0 + z)‖a,

then the m-th iterate becomes um = u0 + zm.

The convergence rate of the GMRES method is usually expressed in terms of the following

two parameters,

(3.1) cp = inf
u 6=0

a(Tu, u)

‖u‖2a
and Cp = sup

u 6=0

‖Tu‖a
‖u‖a

,

where cp corresponds to the smallest eigenvalue of the symmetric part of T andCp corresponds

to the largest eigenvalue of T tT . The convergence is given in the following theorem.

THEOREM 3.1 (Eisenstat-Elman-Schultz). If cp > 0, then the GMRES method converges,

and after m steps the norm of the residual is bounded by

‖rm‖a ≤

(

1−
c2p
C2

p

)m/2

‖r0‖a,

where rm = g − Tum is the m-th residual.

The two parameters describing the convergence rate of the GMRES method for the

proposed preconditioners will be estimated in Theorem 4.4.

4. The additive Schwarz method. In this section, we introduce the two variants of the

additive Schwarz method for the discrete problem (2.4), the symmetric and the nonsymmetric

variant, and provide estimates of their convergence rate following the abstract framework

of [18]. For each subdomain Ωk, define the restriction of Vh onto Ω̄k, and the corresponding

subspace with zero boundary conditions as

Vh(Ωk) :=
{

v|Ω̄k
: v ∈ Vh

}

and

Vh,0(Ωk) :=
{

v ∈ Vh(Ωk) : v(m) = 0 for m ∈ ∂Ωh,k

}

⊂ Vh(Ωk),
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respectively. These local spaces are equipped with the bilinear form

ak(u, v) =
∑

τ∈Th(Ωk)

∫

τ

∇uTA(x)∇v dx.

Now let Pk : Vh(Ωk) → Vh,0(Ωk) be the orthogonal projection of a function u ∈ Vh onto

Vh,0(Ωk), such that

ak(Pku, v) = ak(u, v) ∀v ∈ Vh,0(Ωk),

and let Hku = u− Pku be the discrete harmonic counterpart of u, that is

(4.1)
ak(Hku, v) = 0 ∀v ∈ Vh,0(Ωk),

Hku(m) = u(m) m ∈ ∂Ωh,k.

A function u ∈ Vh(Ωk) is locally discrete harmonic if Hku = u. We say that u ∈ Vh is

discrete harmonic if it is locally discrete harmonic in all subdomains, that is, if

u|Ωk
= Hku|Ωk

for k = 1, . . . , N.

For any function u ∈ Vh, this gives a decomposition of u into locally discrete har-

monic parts and local projections, i.e., u = Hu + Pu, where Hu = (H1u, . . . ,HNu) and

Pu = (P1u, . . . ,PNu).
Discrete harmonic functions satisfy the minimal energy property, that is,

u = Hku ∈ Vh(Ωk) has the minimal energy among all functions which are equal to u
on ∂Ωh,k, that is,

ak(u, u) = min
{

ak(v, v) : v(p) = u(p) ∀p ∈ ∂Ωh,k

}

.

By (4.1) the values of a discrete harmonic functions at the interior CR nodal points of the

subdomains are completely determined by the values on ∂Ωh,k.

4.1. Decomposition of Vh. To define our additive Schwarz method we first need to

introduce a decomposition of the space Vh into subspaces equipped with local bilinear forms.

The space Vh is decomposed into the following subspaces: a coarse space V0, local edge

spaces Vkl for Γkl ⊂ Γ, and local subdomain spaces Vk for k = 1, . . . , N .

We start by defining special edge functions that we will use to build our coarse space.

DEFINITION 4.1. Let Γkl ⊂ Γ be the edge common to Ωk and Ωl, and let θkl ∈ Vh be

the corresponding discrete harmonic function defined by its values at the CR nodal points of

Γh as follows,

• θkl(p) = 1 p ∈ Γkl,h,

• θkl(p) = 0 p ∈ Γh \ Γkl,h.

The support of the edge function θkl is Ωk ∪ Γkl ∪ Ωl; cf. Figure 4.1.

The coarse space is then defined as the span of all edge functions θkl associated with

Γkl ⊂ Γ, that is,

V0 = span{θkl}Γkl⊂Γ ⊂ Vh.

The local edge space Vkl associated with the edge Γkl, where Γkl ⊂ Γ, is defined as the

space of discrete harmonic functions determined by their values at the CR nodal points of

Γkl,h and may be nonzero only at the nodal points of Ωk,h ∪ Γkl,h ∪ Ωl,h.
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l

kl

k

FIG. 4.1. Support of an edge function θkl corresponding to the interface Γkl.

The local subdomain space Vk associated with the subdomain Ωk, where k = 1, . . . , N ,

is the space Vh,0(Ωk) extended by zero to the remaining subdomains.

We have the following decomposition of our discrete space Vh,

Vh = V0 +
∑

Γkl⊂Γ

Vkl +

N
∑

k=1

Vk.

We now introduce the following symmetric projection-like operators based on the sym-

metric bilinear form ah(·, ·). For i = 0, . . . , N, the projection-like operators T sym
i : Vh → Vi

associated with the coarse space and the local subdomain spaces are defined as

ah(T
sym
i u, v) = aFV (u, v) ∀v ∈ Vi,

while the projection-like operators T sym
kl : Vh → Vkl, associated with the edge Γkl for Γkl ⊂ Γ,

are defined as

ah(T
sym
kl u, v) = aFV (u, v) ∀v ∈ Vkl.

We note that computing T sym
i u and T sym

kl u corresponds to solving local symmetric CRFE

Dirichlet problems, and the solutions are unique.

The nonsymmetric projection-like operators based on the nonsymmetric bilinear form

aFV (·, ·) are defined analogously. For i = 0, . . . , N, the corresponding projection-like

operators Tnsym
i :Vh→Vi associated with the coarse space and the local subdomain spaces

are defined as

aFV (Tnsym
i u, v) = aFV (u, v) ∀v ∈ Vi,

while the projection-like operators Tnsym
kl : Vh → Vkl, associated with the edge Γkl for

Γkl ⊂ Γ, are defined as

aFV (Tnsym
kl u, v) = aFV (u, v) ∀v ∈ Vkl.

Again, computing Tnsym
i u and Tnsym

kl u corresponds to solving local nonsymmetric CRVFE

Dirichlet problems, the solutions of which are unique.
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We now introduce the additive Schwarz operator T type as

T type :=
∑

Γkl⊂Γ

T type
kl +

N
∑

k=0

T type
k ,

where the super-index type denotes either sym or nsym, referring to the operator as symmetric

or nonsymmetric, respectively. We can now replace the original problem (2.4) with the

equivalent preconditioned system of equations

T typeuFV = gtype.(4.2)

where gtype is defined as

gtype = gtype0 +
∑

Γkl⊂Γ

gtypekl +
N
∑

k=1

gtypek

with gtype0 = T type
0 uFV , and gtypekl = T type

kl uFV , gtypek = T type
k uFV . Note that gtypei can be

computed without knowing the solution uFV ; cf., e.g., [23, 24].

4.2. Analysis. Before we state our main theorem on the convergence of our proposed

method, we mention two main lemmas which are needed in our analysis in order to estimate

the parameters describing the GMRES convergence. For their proofs, we refer to [17].

LEMMA 4.2. Let Γkl ⊂ Γ be an edge, and θkl the corresponding edge function from

Definition 4.1. Then for any u ∈ Vh we have

|θkl|
2
H1

h
(Ωk)

�

(

1 + log

(

Hk

h

))

,(4.3)

|ukl|
2
H1

h
(Ωk)

�

(

1 + log

(

Hk

h

))2

(H−2
k ‖u‖2L2(Ωk)

+ |u|2H1

h
(Ωk)

),

where ukl is a function taking the same values as θklu at the CR nodal points on ∂Ωk.

LEMMA 4.3. For any u =
∑

Γkl
uklθkl ∈ V0 the following holds

ak(u, u) �Mk

(

1 + log

(

Hk

h

))





∑

Γkl 6=Γik

(ukl − uik)
2



 ,

where Mk is from (2.3), ukl = u|Γkl
, and the sum is taken over all pairs of edges Γkl,

Γik⊂∂Ωk.

We are now ready to state the main theorem for the convergence rate of our additive

Schwarz method applied to nonsymmetric problem (2.4).

THEOREM 4.4. There exists an h0 > 0 such that for all h < h0, k = 1, 2, and u ∈ Vh,

we have

‖T typeu‖a � ‖u‖a,

ah(T
typeu, u) �

(

1 + log

(

H

h

))−2

ah(u, u),

Proof. Following the framework of [18] we need to prove three key assumptions; cf. Ap-

pendix A.
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ASSUMPTION 1’. There exists an h0 > 0 such that, if h ≤ h0, for all u, v ∈ Vh, then the

following holds

|ah(u, v)− aFV (u, v)| � h‖u‖a‖v‖a,

This is exactly Lemma 2.1.

ASSUMPTION 2’. For all u ∈ Vh there exists a constant C > 0 such that there is a

representation u = u0 +
∑N

i=1 ui +
∑

kl ukl, with u0 ∈ V0, ui ∈ Vi, ukl ∈ Vkl, such that

ah(u0, u0) +

N
∑

i=1

ah(ui, ui) +
∑

kl

ah(ukl, ukl) ≤ C

(

1 + log

(

H

h

))2

ah(u, u).

This assumption is the same as what is known as the “stable decomposition” or the

“Assumption 1” in the abstract Schwarz framework; cf. [23, 24]. To verify the assumption we

first need to define a decomposition of the function u ∈ Vh. Following the lines of the proof

of Lemma 6.1 in [17], we start by letting u0 ∈ V0 be defined as u0 =
∑

kl ūklθkl, where ūkl
is the average of u over Γkl.

Next, let w = u− u0, and for each k = 1, . . . , N , define uk ∈ Vk as uk = Pkw on Ωk

and zero outside the subdomain Ωk. Note that Pkw = Pku since u0 is discrete harmonic and

also w −
∑N

k=1 uk is discrete harmonic in each subdomain. Now define ukl ∈ Vkl at the CR

nodal points of Γkl,h as

ukl(p) = θkl(p)w(p), ∀p ∈ Γkl,h.

Clearly u = u0 +
∑N

i=1 ui +
∑

kl ukl.
To validate Assumption 2’ we start by estimating ah(u0, u0). From Lemma 4.3 and the

Schwarz inequality we have

ah(u0, u0) �
N
∑

k=1

Mk

(

1 + log

(

Hk

h

))

∑

Γkl,Γik⊂∂Ωk

|ūkl − ūik|
2

�

N
∑

k=1

Mk

(

1 + log

(

Hk

h

))

1

H

∑

Γkj⊂∂Ωk

‖u− ūkl‖
2
L2(Γkj)

,

where Γkl is an arbitrary edge of Ωk. Applying standard trace theorem arguments, Poincaré’s

inequality for nonconforming elements, cf. [2, 3, 22], and (2.2)–(2.3), we get

ah(u0, u0) �

N
∑

k=1

Mk

mk

(

1 + log

(

Hk

h

))

ak(u, u)(4.4)

�

(

1 + log

(

Hk

h

))

ah(u, u).

Next, we estimate the term ah(uk, uk) for uk ∈ Vk, for k = 1, . . . , N . Using the fact that Pk

is an orthogonal projection with respect to the local bilinear form ak(·, ·) and Lemma 4.3, we

have

N
∑

k=1

ah(uk, uk) =

N
∑

k=1

ak(Pkw,Pkw) ≤ ah(w,w),

� ah(u0, u0) + ah(u, u).
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From (4.4) it then follows that

(4.5)

N
∑

k=1

ah(uk, uk) �

(

1 + log

(

Hk

h

))

ah(u, u).

Finally, we estimate the term ak(ukl, ukl) for ukl ∈ Vkl, for Γkl ⊂ Γ. Using (4.3) in

Lemma 4.2, the Poincaré inequality for nonconforming finite elements, and (2.2)–(2.3), we get

ak(ukl, ukl) ≤Mk|ukl|
2
H1

h
(Ωk)

,

�Mk

(

1 + log

(

Hk

h

))2(
1

H2
k

‖u− ūkl‖
2
L2(Ωk)

+ |u− ūkl|
2
H1

h
(Ωk)

)

�Mk

(

1 + log

(

Hk

h

))2

|u|2H1

h
(Ωk)

�
Mk

mk

(

1 + log

(

Hk

h

))2

ak(u, u)

�

(

1 + log

(

Hk

h

))2

ak(u, u)

Summing the above estimate over all edges Γkl ⊂ Γ, we get

∑

kl

ak(ukl, ukl) �

N
∑

k=1

(

1 + log

(

Hk

h

))2

ak(u, u),(4.6)

≤

(

1 + log

(

H

h

))2

ah(u, u).

Summing (4.4), (4.5) and (4.6) completes the proof.

For Assumption 3, which is the same as what is known as the “strengthened Cauchy-

Schwarz inequalities” in the standard abstract Schwarz framework, cf. [23, 24], it follows

immediately from the standard coloring argument that the constants from these inequalities

are bounded. The proof of the theorem now follows from the abstract framework.

REMARK 4.5. In our analysis, we have used several technical tools, e.g., the trace

theorem and the Poincaré inequality for the CR finite element, Lemmas 4.3 and 4.2. They are

all based on the assumption that the subdomains are regular polygons. Therefore, we cannot

straightforwardly apply our analysis to the case of subdomains with less regular boundaries.

However, we think that using the results from [10, 14, 25], it will be possible to extend our

analysis to the case of less regular subdomains.

5. Numerical results. In this section, we present some numerical results for the proposed

method. All experiments are done for the model problem (2.1) on the unit square domain

Ω = [0, 1]2, using the symmetric and the nonsymmetric variant of the method, i.e., for

type = {sym, nsym}. For the numerical experiments under consideration, the coefficient

A will be strongly varying with possible discontinuities across subdomain boundaries. For

completeness, in the last two numerical experiments, we allow the coefficient A to also have

discontinuities inside the subdomains and along the subdomain boundaries. The right-hand

side for all the numerical experiments under consideration is chosen as f = 1. We have

used direct solvers for the coarse and the subspace solves. We note that if the same exact

solver (based on for instance the LU factorization) is used for both the symmetric and the

nonsymmetric case, the two variants of the preconditioner will have the same computational

cost if the number of iterations are the same. In the case when one uses a direct solver

(based on the Cholesky factorization) exploiting the symmetric property of the local systems,
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the symmetric variant of the preconditioner will be slightly more computationally effective

than the nonsymmetric variant. This effect is very marginal for the numerical experiments

considered here.

The numerical solution is found by using the generalized minimal residual (GMRES)

method accelerated with either the symmetric or the nonsymmetric preconditioners. We run

the method until the l2 norm of the initial residual is reduced by a factor of 106, that is, until

‖ri‖2/‖r0‖2 ≤ 10−6. For all the numerical experiments under consideration we report the

number of iterations and the estimate for the smallest eigenvalue of the symmetric part of

the preconditioned operator T , i.e., the smallest eigenvalue of 1
2 (T

t + T ), with respect to the

a-inner product. This is the parameter cp in (3.1), which describes the convergence rate of the

GMRES method; cf. Theorem 3.1. In our case, it is also the main parameter describing the

GMRES convergence rate since both our analysis and numerical experiments have shown that

the other parameter Cp in (3.1) is a constant independent of the underlying mesh parameters

and the coefficient A.

5.1. Regular subdomains.
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(a) Test problem 1.
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(b) Test problem 2.

FIG. 5.1. Test problems 1 and 2. The red (shaded) regions are where α1 equals α̂1. The fine mesh consists of

48× 48 rectangular blocks, while the coarse mesh consists of 4× 4 rectangular subdomains.
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(b) Test problem 2.

FIG. 5.2. Relative residual norms versus GMRES iteration (minimizing the a-norm) for different values of α̂1.

These values, as shown in the figure legends, are listed against α1.

We first consider two test problems with the fine mesh size h = 1/48 and the coarse mesh

size H = 1/4 and discontinuities across subdomain boundaries. The coefficient A is equal

to α1(2 + sin(100πx) sin(100πy)). The parameter α1 is piecewise constant and equal to α̂1

in the regions (subdomains) marked with red (shaded) and 1 elsewhere; cf. Figure 5.1. In

other words, α1 describes where the coefficient A has jumps. The preconditioner we employ
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TABLE 5.1
Number of GMRES iterations until convergence for the solution of (2.4), with different values of α̂1 describing

the coefficient A = α1(2 + sin(100πx) sin(100πy)) in the red (shaded) regions; cf. Figure 5.1.

α̂1 Problem 1: Problem 2:

100 18 (2.15e-1) 18 (2.15e-1)

101 25 (2.14e-1) 26 (2.09e-1)

102 26 (2.14e-1) 27 (2.07e-1)

103 27 (2.14e-1) 27 (2.06e-1)

104 27 (2.14e-1) 27 (2.06e-1)

105 27 (2.14e-1) 28 (2.06e-1)

106 28 (2.14e-1) 28 (2.06e-1)

for these experiments is the symmetric variant, i.e., for type = sym in (4.2). The number of

iterations is reported in Table 5.1 with estimates of the smallest eigenvalue of the symmetric

part of the preconditioned system (4.2) in parentheses next to the iteration count. In Figure 5.2

we have plotted the relative residuals for these problems, measured in the l2 norm.

We see from the number of iterations and the eigenvalue estimates in Table 5.1 that they

reflect well the theoretical results developed in Section 4.2. We do not see any dependency on

the contrast in the coefficient A, where the jumps are across subdomain boundaries.

FIG. 5.3. Test problem 3. The red (shaded) regions are where α1 equals α̂1 and 1 elsewhere. The fine mesh

consists of 48× 48 rectangular blocks, while the coarse mesh consists of 16 irregular subdomains.

5.2. Irregular subdomains. Here we show a test case to illustrate that the method can

be applied to problems with less regular subdomains such as the ones stemming from a mesh

partitioning software, like METIS [13] or SCOTCH [7]. For this example we have used

METIS for the partitioning of Ω into subdomains. The coefficient distributions are as shown

in Figure 5.3, and the number of iterations and estimates of the smallest eigenvalues are given

in Table 5.2.

We see from the results that, although the iteration numbers are slightly higher than in

the regular case, both variants of the method seem robust with respect to the jumps in the

coefficient across subdomain boundaries.
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TABLE 5.2
Test problem 3. Number of GMRES iterations until convergence for different values of α̂1 in the coefficient

A = α1(2 + sin(100πx) sin(100πy)); cf. Figure 5.3.

Symmetric variant Non-symmetric variant

α̂1 ♯ iter. ♯ iter.

100 28 (1.93e-1) 28 (1.92e-1)

101 32 (1.60e-1) 31 (1.60e-1)

102 33 (1.37e-1) 32 (1.37e-1)

103 34 (1.34e-1) 33 (1.35e-1)

104 35 (1.34e-1) 33 (1.35e-1)

105 35 (1.34e-1) 35 (1.34e-1)

106 36 (1.34e-1) 35 (1.34e-1)

5.3. Scalability. In the following experiments we show the asymptotic dependence of

the parameter cp on the mesh parameters H and h. For the purpose, we use two test cases

where the coefficient A is equal to 2 + sin(10πx) sin(10πy) and 2 + sin(100πx) sin(100πy),
respectively. The number of iterations and the estimates of the smallest eigenvalue are reported

in Tables 5.3 and 5.4 for the symmetric variant of the preconditioner. For comparison, we

also report in Table 5.5 the asymptotic dependency on the mesh parameters H and h for the

nonsymmetric variant of the preconditioner. The distribution of A here is the same as for the

problem considered in Table 5.4.

By looking at the number of iterations and the eigenvalue estimates in Tables 5.3–5.4,

we see that they change very slowly with respect to the change in h and H . This suggest a

logarithmic bound that is in line with our theory which states that the parameters describing

the convergence rate of the GMRES method depend poly-logarithmically on the mesh ratio
H
h . Also, by comparing Table 5.4 and 5.5, we see that the difference in the behavior of

the symmetric and the nonsymmetric preconditioner is negligible. The two preconditioners

perform almost identically for the problem at hand, both with respect to the iteration number

and the behavior of the smallest eigenvalue.

TABLE 5.3
Iteration number and estimate of the smallest eigenvalue for the for the symmetric preconditioner for increasing

values of h and H with A = 2 + sin(10πx) sin(10πy).

h/H 1/4 1/8 1/16 1/32 1/64 1/128

1/8 13 (5.31e-1)

1/16 16 (3.47e-1) 17 (4.86e-1)

1/32 17 (2.26e-1) 20 (3.44e-1) 17(4.85e-1)

1/64 19 (1.62e-1) 24 (2.51e-1) 20 (3.46e-1) 17 (4.85e-1)

1/128 21 (1.24e-1) 28 (1.86e-1) 24 (2.60e-1) 20 (3.45e-1) 16 (4.85e-1)

1/256 24 (9.84e-2) 32 (1.41e-1) 29 (1.90e-1) 23 (2.63e-1) 19 (3.47e-1) 16 (4.85e-1)

5.4. Jumps inside subdomains and along subdomain boundaries. Here we consider

two test problems for the symmetric and the nonsymmetric variant of the preconditioner where

the coefficients have large and possibly different jumps inside the subdomains and along the

subdomain boundaries. The motivation for these experiments is to show that even though our

convergence analysis does not cover these cases, both the symmetric and the nonsymmetric

variants of the method work well for the two examples given. For both experiments, the
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TABLE 5.4
Iteration number and estimate of the smallest eigenvalue for the symmetric preconditioner for increasing values

of h and H with A = 2 + sin(100πx) sin(100πy).

h/H 1/4 1/8 1/16 1/32 1/64 1/128

1/8 12 (5.32e-1)

1/16 14 (3.64e-1) 17 (4.85e-1)

1/32 16 (2.64e-1) 19 (3.45e-1) 18 (4.73e-1)

1/64 19 (1.87e-1) 22 (2.60e-1) 21 (3.36e-1) 18 (4.73e-1)

1/128 22 (1.39e-1) 28(1.82e-1) 25 (2.52e-1) 22 (3.37e-1) 20 (4.65e-1)

1/256 24 (1.07e-1) 35(1.26e-1) 34 (1.66e-1) 25 (2.56e-1) 25 (3.26e-1) 19 (4.78e-1)

TABLE 5.5
Iteration number and estimate of the smallest eigenvalue for the nonsymmetric preconditioner for increasing

values of h and H with A = 2 + sin(100πx) sin(100πy).

h/H 1/4 1/8 1/16 1/32 1/64 1/128

1/8 11 (5.35e-1)

1/16 13 (3.67e-1) 15 (4.98e-1)

1/32 15 (2.62e-1) 19 (3.48e-1) 17 (4.71e-1)

1/64 18 (1.88e-1) 22 (2.53e-1) 21 (3.31e-1) 17 (4.81e-1)

1/128 21 (1.39e-1) 29 (1.75e-1) 26 (2.45e-1) 21 (3.41e-1) 19 (4.73e-1)

1/256 24 (1.07e-1) 36 (1.24e-1) 33 (1.61e-1) 26 (2.58e-1) 24 (3.24e-1) 18 (4.83e-1)

coefficient is given as A = α1 (2 + sin(10πx) sin(10πy)) where α1 is shown in Figures 5.4–

5.5. The parameter α1 is piecewise constant and equal to α̂1 in the regions marked with colors

(shaded) and 1 elsewhere.

For the first of the two problems, we allow α̂1 to have three different values inside

the subdomains: these are regions marked with the colors red (squares), blue (horizontal

rectangles), and black (vertical rectangles); cf. Figure 5.4. In Table 5.6, we show the number

of iterations and estimates of the smallest eigenvalue in parentheses next to the iteration count.

The numerical results show that the two preconditioners work well for this case. This is

not so surprising. It is well known that domain decomposition methods with coarse spaces

based on functions which are discrete harmonic extension of some prescribed boundary values

are robust for problems with jumps inside the subdomains; cf. [12] or [16] for the case of

average extension. This has also been confirmed with extensive numerical testing for the two

methods considered in this paper.

In the last numerical experiments, we allow A to have large jumps along the subdomain

boundaries in addition to having jumps inside the subdomains. We see from the Table 5.7

that even for this coefficient distribution, the two preconditioners behave well in this case.

Here, the situation is less clear. The exact relation between the contrast in the coefficient and

the convergence estimate for the case where the coefficient has jumps along the subdomain

boundaries for this method, is unknown. The numerical testing carried out so far has shown

that, as long as the inclusions are away from the vertices/corner points of the subdomains or the

inclusions do not form a channel touching two or more of the interfaces between subdomains,

the two variants of the preconditioners work very well.

The extension of our convergence analysis to multiscale problems will be the topic of

further research.
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FIG. 5.4. Test problem 4. The colored (shaded) regions, including the red (squared) regions, the blue (horizontal

rectangular) regions, and the black (vertical rectangular) regions, are regions where α1 equals α̂1 and 1 elsewhere.

α̂1 takes different values in different colored (geometrical) regions. The fine mesh consists of 64× 64 rectangular

blocks, while the coarse mesh consists of 8× 8 rectangular subdomains.

TABLE 5.6
Test problem 4. Number of GMRES iterations until convergence for different values of α̂1 in the coefficient

A = α1(2 + sin(10πx) sin(10πy)); cf. Figure 5.4.

α̂1 Symmetric variant Non-symmetric variant

Red: Blue: Black: ♯ iter. ♯ iter.

100 10−2 10−3 32 (1.63e-1) 32 (1.62e-1)

101 10−1 10−2 31 (1.83e-1) 31 (1.82e-1)

102 100 10−1 27 (2.27e-1) 27 (2.25e-1)

103 101 100 24 (3.00e-1) 24 (2.98e-1)

104 102 101 22 (3.32e-1) 22 (3.31e-1)

105 103 102 22 (3.36e-1) 22 (3.35e-1)

106 104 103 22 (3.37e-1) 22 (3.36e-1)

Appendix A. The abstract framework for FVE discretization; cf. [18]. Consider a

family of finite dimensional finite element subspaces Vh with mesh parameter h, an inner

product a(·, ·) on Vh, and a family of discrete problems. Find uh ∈ Vh such that

(A.1) aFV (uh, v) = f(v) ∀v ∈ Vh,

where aFV (u, v) is a nonsymmetric finite volume bilinear form.

Continuing, we decompose Vh into subspaces as follows,

Vh(Ω) = V0 +

N
∑

i=1

Vi,

where Vi ⊂ Vh for i = 0, . . . , N .

For each subspace Vi, we introduce a projection-like operators Ti : Vh(Ω) → Vi, such

that

(A.2) a(Tiu, v) = aFV (u, v) ∀v ∈ Vi,
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FIG. 5.5. Test problem 5. The red (shaded) regions are where α1 equals α̂1 and 1 elsewhere. The fine mesh

consists of 64× 64 rectangular blocks, while the coarse mesh consists of 8× 8 rectangular subdomains.

TABLE 5.7
Test problem 5. Number of GMRES iterations until convergence for different values of α̂1 in the coefficient

A = α1(2 + sin(10πx) sin(10πy)); cf. Figure 5.5.

Symmetric variant Non-symmetric variant

α̂1 ♯ iter. ♯ iter.

100 24 (2.51e-1) 24 (2.50e-1)

101 22 (3.33e-1) 22 (3.32e-1)

102 22 (3.46e-1) 22 (3.45e-1)

103 22 (3.47e-1) 22 (3.46e-1)

104 22 (3.47e-1) 22 (3.46e-1)

105 22 (3.47e-1) 22 (3.46e-1)

106 22 (3.47e-1) 22 (3.46e-1)

and the symmetric additive operator

T := T0 + T1 + · · ·+ TN .

We replace the original problem (A.1) by the following operator equation

Tuh = g,

where g =
∑N

i=0 gi and gi = Tiuh, which can be computed without knowing the solution u.

The nonsymmetric version of the operator T can be constructed completely analogously

by replacing the form a(·, ·) by aFV (·, ·) in (A.2).

ASSUMPTION 1. There exist positive constants CE , h0 such that, if h ≤ h0, then for all

u, v ∈ Vh the following holds

|a(u, v)− aFV (u, I∗hv)| ≤ CEh‖u‖a‖v‖a.

ASSUMPTION 2. There exists a positive constant C0 such that for all u ∈ Vh there exists

a representation u =
∑N

i=0 ui, ui ∈ Vi, such that

N
∑

i=0

a(ui, ui) ≤ C2
0a(u, u).
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ASSUMPTION 3. Let 0 ≤ Eij ≤ 1 be the minimal values that satisfy

a(ui, uj) ≤ Eij‖ui‖a‖uj‖a, ∀ui ∈ Vi, ∀uj ∈ Vj i, j = 1, . . . , N.

We let ρ(E) be the spectral radius of the symmetric matrix E = {Eij}
N
i,j=1.

Assumption 1 yields that there exists 0 < h1 ≤ h0 such that the bilinear form aFV (·, ·) is

Vh-elliptic and Vh-bounded for h ≤ h1, i.e., there exist positive constants α,M such that

aFV (u, u) ≥ α‖u‖2a ∀u ∈ Vh,

|aFV (u, v)| ≤M‖u‖a‖v‖a ∀u, v ∈ Vh.

With these assumptions satisfied, the estimates of the parameters describing the GMRES

convergence are given in the following theorem.

THEOREM A.1. There exists an h1 ≤ h0 such that, if h ≤ h1, then

a(Tu, Tu) ≤ β2
2a(u, u),

a(Tu, u) ≥ β1a(u, u),

where β2 = (2M(1 + ρ(E))) and β1 = (α2C−2
0 − β2CEh).
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