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HIGH-ORDER MODIFIED TAU METHOD FOR NON-SMOOTH SOLUTIONS OF

ABEL INTEGRAL EQUATIONS∗

PAYAM MOKHTARY†

Abstract. In this paper, the spectral Tau method and generalized Jacobi functions are fruitfully combined to

approximate Abel integral equations with solutions that may have singularities (non-smooth solutions) at the origin.

In an earlier work of P. Mokhtary and F. Ghoreishi [Electron. Trans. Numer. Anal., 41 (2014), pp. 289–305], a

regularization process was used to handle the high-order Tau method based on classical Jacobi polynomials for the

numerical solution of Abel integral equations. However, it was found that this scheme makes the resulting equation

and its Tau approximation more complicated. In this work, we introduce and analyze a new modified Tau method for

the numerical solution of Abel integral equations with non-smooth solutions. The main advantage of this method is

that it gains a high order of accuracy without adopting any regularization process. Illustrative examples are included

to demonstrate the validity and applicability of the proposed technique.
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1. Introduction. In this paper we introduce and analyze a modified Tau method for the

numerical solution of the Abel integral equation

(1.1) y(t) = f(t) + λ

∫ t

0

K(t, s)√
t− s

y(s) ds, t ∈ Λ = [0, 1].

Here, the sufficiently smooth functions f(t) and K(t, s) are given with K(t, t) 6= 0 for

t ∈ Λ. The unknown function y(t) is non-smooth, and λ is a generic constant. In the following

lemma we give a regularity result for (1.1).

LEMMA 1.1 ([2]). Assume that f(t) ∈ Cm(Λ) and K(t, s) ∈ Cm(Λ × Λ) with

K(t, t) 6= 0 and m ≥ 1. The regularity of the unique solution of (1.1) is described by

y(t) ∈ Cm(0, 1]
⋂

C(Λ) with |y′(t)| ≤ C√
t

for t ∈ (0, 1],

and the solution y(t) can be written in the form

y(t) =
∑

(j,k)

γj,kt
j+ k

2 + Ym(t), t ∈ Λ,

where (j, k) :=
{

(j, k); j, k ∈ N0, j +
k
2 < m

}

and Ym(.) ∈ Cm(Λ). The coefficients γj,k
are known constants, and N0 = N

⋃{0}, where N is the set of all natural numbers.

The above lemma concludes that the Abel integral equation (1.1) typically has a solution

whose first derivative is unbounded at the origin and behaves like y′(t) ≃ 1√
t
.

Spectral methods have been studied intensively in the last two decades because of their

good approximation properties. Global spectral methods use a representation of the function

u(t) throughout the domain via a truncated series expansion with suitable basis functions.

This series is then substituted into a functional equation, and upon the minimization of the

residual function, the unknown coefficients are computed. Spectral methods can be broadly
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classified into three categories, pseudospectral or collocation, Galerkin, and Tau methods.

The Tau method has found extensive application in the numerical solution of many operator

equations in recent years. It involves the projection of the residual function onto the span of

some appropriate set of basis functions, typically arising as eigenfunctions of a singular Sturm-

Liouville problem. The auxiliary conditions are imposed as constraints on the expansion

coefficients. It is well known that the spectral Tau method based on the classical Jacobi

polynomials (Jacobi Tau method) allows the approximation of infinitely smooth solutions

of operator equations such that the truncation error approaches zero faster than any negative

power of the number of basis functions used in the approximation as that number tends to ∞.

This phenomenon is usually referred to as spectral accuracy; see [5, 6, 7, 8, 9].

From Lemma 1.1 we can conclude that in (1.1) some derivatives of the exact solution

have a discontinuity at the left endpoint of the interval of integration. Thus, the numerical

solution of (1.1) using the Jacobi Tau method leads to very poor convergence results. Of the

various methods proposed as extensions of the Jacobi Tau method for the numerical solution

of (1.1), a regularization approach is usually followed. The main characteristic behind this

approach is that the original equation is transformed into a new integral equation that possesses

a smooth solution by applying a suitable coordinate transformation. After this process, the

Jacobi Tau method can be implemented in a straightforward manner with a satisfactory order

of convergence (regularized Jacobi Tau method). However, it is found that this scheme makes

the resulting equation and its Jacobi spectral approximation more complicated; see [7].

Recently, Chen et al. [3] introduced generalized Jacobi functions, which are orthogonal

with respect to a suitable weight function. These functions are of non-polynomial nature.

The attractive fractional calculus properties and remarkable approximability to functions with

singular behavior at boundaries are two main advantages of these functions. Hence, we can

consider these functions as basis functions for developing modified spectral methods for the

numerical solutions of operator equations that have a singular behavior at boundaries. In this

work, we shall demonstrate that the modified Tau solution of (1.1) using generalized Jacobi

functions as basis functions produces a solution with a high order of accuracy for (1.1) without

applying any regularization process.

The paper is organized as follows. In the next section, we first give some preliminaries

required for our subsequent development. Afterward, we define generalized Jacobi functions

and investigate their basic properties. In Section 3, we outline the modified Tau method for

the numerical solution of (1.1) with generalized Jacobi functions as basis functions. Section 4

is devoted to its convergence analysis. In this section, the error estimate of the proposed

modified Tau scheme is obtained. In Section 5, we present numerical approximations of

selected problems.

2. Preliminaries. In this section we review some basic definitions that will be required

in the sequel. In particular, we define the generalized Jacobi functions and give their important

properties; see [3].

For q ∈ R
+(R+ is the set of all positive real numbers), we define the Riemann-Liouville

fractional derivative of order q as ([4])

(2.1) Dqu(t) =
d⌈q⌉

dt⌈q⌉

(

I⌈q⌉−qu

)

,

where the symbol ⌈q⌉ is the smallest integer greater than or equal to q. Γ(.) is the gamma

function, and Iρu denotes the fractional integral of order ρ and is defined as

(

Iρu
)

(t) =
1

Γ(ρ)

∫ t

0

(t− s)ρ−1u(s) ds.
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We consider the following weighted L2
α,β-norm of a function u(t) over Λ:

‖u‖2α,β = (u, u)α,β =

∫

Λ

u2(t)wα,β(t) dt < ∞,

where wα,β(t) = 2α+β(1− t)αtβ with parameters α, β is the shifted Jacobi weight function

on Λ, and (., .)α,β is the well-known inner product formula; see [9].

We denote generalized Jacobi functions by Gα,β
n (t) and define

(2.2) Gα,−β
n (t) = (2t)βJα,β

n (t), α ∈ R, β > −1,

where Jα,β
n (t) are the classical shifted Jacobi polynomials on Λ; see [3]. These functions are

of non-polynomial nature, and Gα,−β
n (t) ∈ span{tβ , tβ+1, . . . , tβ+n}. It follows from [3] that

for α, β > −1, these functions are mutually orthogonal with respect to the weight function

wα,−β(t), i.e.,

∫

Λ

Gα,−β
n (t)Gα,−β

m (t)wα,−β(t) dt = γα,β
n δnm,

where

(2.3) γα,β
n =

2α+βΓ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n!Γ(n+ α+ β + 1)
·

Considering the L2
α,−β(Λ)-orthogonal projection Πα,−β

N u ∈ Pα,−β
N defined by

(2.4)
(

Πα,−β
N u− u, vN

)

α,−β
= 0, ∀vN ∈ Pα,−β

N ,

with

Pα,−β
N := span{Gα,−β

0 (t),Gα,−β
1 (t), . . . ,Gα,−β

N (t)}, α > −1, β > 0,

and by the orthogonality of
{

Gα,−β
n

}

n≥0
, we can expand any u(t) ∈ Lα,−β(Λ) as

u(t) =

∞
∑

n=0

unGα,−β
n (t), with un =

(

u,Gα,−β
n

)

γ
α,β
n

·

Concerning the truncation error of a generalized Jacobi series, the following estimate

holds (see [3, Theorem 4.3])

(2.5) ‖Πα,−β
N u− u‖α,−β ≤ CN−β

√

(N − l + 1)!

(N + l + 1)!
‖Dβ+lu‖α+β+l,l,

where 0 ≤ l ≤ N,α > −1, β > 0, and ‖Dβ+lu‖α+β+l,l < ∞. Throughout the paper, C will

denote a generic positive constant that is independent of N .

3. Modified Tau method. In this section, we develop the modified Tau method that

combines the spectral Tau method with the generalized Jacobi functions to present a numerical

solution for (1.1). Consider (1.1). From Lemma 1.1 we can see that the first derivative of

the exact solution y(t) behaves like 1√
t
, thus y(t) ≃

√
t. Hence, from (2.2) we can consider
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{G0,− 1

2

n (t); n ≥ 0} as suitable basis functions in the Tau method for (1.1). Thus, we seek

an approximated solution yN (t) of the form

(3.1) yN (t) =

∞
∑

i=0

aiG0,− 1

2

i (t), ai = 0 for i > N.

The N + 1 equations for the unknown expansion coefficients {ai}Ni=0 are determined

from (1.1) by requiring the residual

RN (t) = yN (t)− f(t)− λ

∫ t

0

K(t, s)√
t− s

yN (s) ds

to be orthogonal to the basis of P0,− 1

2

N under the weight function w0,− 1

2 (t). In other words,

the modified Tau formulation of (1.1) is defining yN ∈ P0,− 1

2

N such that

(3.2)
(

yN ,G0,− 1

2

j

)

0,− 1

2

=
(

f,G0,− 1

2

j

)

0,− 1

2

+ λ
(

KyN ,G0,− 1

2

j

)

0,− 1

2

, j = 0, 1, . . . , N,

where KyN =
∫ t

0
K(t,s)√

t−s
yN (s) ds. Substituting (3.1) in (3.2) yields

∞
∑

i=0

ai

{

(

G0,− 1

2

i ,G0,− 1

2

j

)

0,− 1

2

− λ
(

KG0,− 1

2

i ,G0,− 1

2

j

)

0,− 1

2

}

=
(

f,G0,− 1

2

j

)

0,− 1

2

,

for j = 0, 1, . . . , N .

Using the orthogonality property of {G0,− 1

2

i }i≥0, we can rewrite the equation above as

(3.3) ajγ
0, 1

2

j − λ

N
∑

i=0

ai
(

KG0,− 1

2

i ,G0,− 1

2

j

)

0,− 1

2

=
(

f,G0,− 1

2

j

)

0,− 1

2

, j = 0, 1, . . . , N,

where γ
0, 1

2

j is defined in (2.3). Now, it is sufficient that we calculate
(

KG0,− 1

2

i ,G0,− 1

2

j

)

0,− 1

2

.

To this end, we assume that

K(t, s) =

∞
∑

l=0

∞
∑

v=0

klvG0,0
l (t)G0,0

v (s),

which can be rearranged as

K(t, s) =

∞
∑

l=0

∞
∑

v=0

k̃lvt
lsv,

and in a similar manner we have G0,− 1

2

i (t) =
∑i

k=0 gkt
k+ 1

2 . Thereby we obtain

(3.4) KG0,− 1

2

i =

i
∑

k=0

∞
∑

l=0

∞
∑

v=0

gkk̃lvt
l

∫ t

0

s
1

2
+k+v

√
t− s

ds, i ≥ 0.

Using the relation [7]

∫ t

0

sj√
t− s

ds = tj+
1

2B(j + 1, 1
2 ),
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we can rewrite (3.4) as

KG0,− 1

2

i =

i
∑

k=0

∞
∑

l=0

∞
∑

v=0

gkk̃lvBvkt
l+k+v+1, i ≥ 0,

with Bvk = B( 32 +k+v, 1
2 ), where B(., .) denotes the beta function. From the equation above

we have

(

KG0,− 1

2

i ,G0,− 1

2

j

)

0,− 1

2

=

i
∑

k=0

∞
∑

l=0

∞
∑

v=0

gkk̃lvBvk

∫

Λ

tl+k+vJ
0, 1

2

j (t) dt := Ãji,(3.5)

for i ≥ 0 and j = 0, 1, . . . , N. Now, by substituting (3.5) in (3.3), we can obtain a linear

algebraic system Aã = f̃ with

A :=

(

Aji

)

i≥0,j=0,1,...,N

:=

{

γ
0, 1

2

j − λÃji, j = i,

−λÃji, j 6= i,

ã =[a0, a1, . . . , aN , 0, 0, . . . ]T ,(3.6)

f̃ =
[

(

f,G0,− 1

2

0

)

0,− 1

2

,
(

f,G0,− 1

2

1

)

0,− 1

2

, . . . ,
(

f,G0,− 1

2

N

)

0,− 1

2

]T

,

which when solved gives us the unknown coefficients {ai}Ni=0.

For a special case of (1.1) with K(t, s) = 1, the implementation process can be presented

in a very simple manner. To this end, from the relation (see [3])

Iρ

(

Gα,−β
i

)

=
Γ(i+ β + 1)

Γ(i+ β + ρ+ 1)
2βtβ+ρJ

α−ρ,β+ρ
i (t), ρ ∈ R

+, i ≥ 0, α ∈ R, β > −1,

we can conclude that

KG0,− 1

2

i =

∫ t

0

G0,− 1

2

i (s)√
t− s

ds = Γ

(

1

2

)

I 1

2G0,− 1

2

i =

√
2πΓ(i+ 3

2 )

Γ(i+ 2)
tJ

− 1

2
,1

i (t), i ≥ 0

and thus,

(

KG0,− 1

2

i ,G0,− 1

2

j

)

0,− 1

2

=

√
2πΓ(i+ 3

2 )

Γ(i+ 2)

∫

Λ

tJ
− 1

2
,1

i (t)G0,− 1

2

j (t)(2t)−
1

2 dt

=

√

π

2

Γ(i+ 3
2 )

Γ(i+ 2)

(

J
− 1

2
,1

i , J
0, 1

2

j

)

0,1

:= ˜̃Aji,(3.7)

i ≥ 0, j = 0, 1, . . . , N.

Finally, substituting (3.7) in (3.3) we obtain a linear algebraic system Ãã = f̃ with

Ã :=

(

Ãji

)

i≥0,j=0,1,...,N

:=

{

γ
0, 1

2

j − λ
˜̃Aji, j = i,

−λ
˜̃Aji, j 6= i,

and entries that can be obtained in a very simple manner in comparison with the ones in (3.6).
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4. Convergence analysis. The main topic of this section is to derive an error estimate

for the proposed modified Tau scheme which theoretically justifies convergence of this method

when approximating non-smooth solutions of (1.1).

In the sequel the symbol
(

W k(Λ× Λ), ‖.‖Wk(Λ×Λ)

)

will refer to the Sobolev space of

order k over Λ× Λ. Supplementary information of this Hilbert space can be found in [9]. In

our analysis we shall apply Hardy’s and Gronwall’s inequality (see [7]):

LEMMA 4.1 (Generalized Hardy inequality). For a measurable function g ≥ 0, the

following generalized Hardy inequality

(

∫ b

a

|(N g)(t)|qw1(t) dt

)1/q

≤ C

(

∫ b

a

|g(t)|pw2(t) dt

)1/p

,

holds if and only if

sup
a<t<b

(

∫ b

t

w1(t) dt

)1/q
(
∫ t

a

w
1−p′

2 (t) dt

)1/p′

< ∞, p′ =
p

p− 1
,

for 1 < p ≤ q < ∞. Here, N is an operator of the form

(N g)(t) =

∫ t

a

N(t, s)g(s) ds,

with given kernel N(t, s) and weight functions w1(t), w2(t), for −∞ ≤ a < b ≤ ∞.

LEMMA 4.2 (Gronwall’s inequality). Assume that u(t) is a non-negative, locally inte-

grable function defined on Λ that satisfies

u(t) ≤ b(t) +B

∫ t

0

(t− s)msnu(s) ds, s ∈ Λ,

where m,n > −1, b(t) ≥ 0, and B ≥ 0. Then there exists a constant C such that

u(t) ≤ b(t) + C

∫ t

0

(t− s)msnb(s) ds, s ∈ Λ.

THEOREM 4.3 (Convergence). Let y(t) be the exact solution of (1.1), which is as-

sumed to be non-smooth. Let the approximated solution yN (t) be obtained by using the

modified Tau scheme proposed in the previous section. If D 1

2
+ly ∈ L2

1

2
+l,l

(Λ) for l ≥ 0 and

K(t, s) ∈ W l1(Λ× Λ) for l1 ≥ 1, then for sufficiently large N , we have the following error

estimate

‖eN‖0,− 1

2

≤ C

(

N− 1

2

√

(N−l+1)!

(N+l+1)!
‖D 1

2
+ly‖ 1

2
+l,l +N

3

4
−l1‖K(t, s)‖W l1 (Λ×Λ)‖y‖0,− 1

2

)

,

where eN (t) = y(t)− yN (t) denotes the error function.

Proof. According to the previous section and (2.4), the modified Tau solution yN (t)
for (1.1) satisfies the following operator equation:

(4.1) yN = Π
0,− 1

2

N f + λΠ
0,− 1

2

N KNyN .
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Here KNyN =
t
∫

0

(

Π0,0

N
K(t,s)

)

yN (s)
√
t−s

ds. Subtracting (1.1) from (4.1) yields

(4.2) eN (t) = e
0,− 1

2

N f + λ

(

Ky −Π
0,− 1

2

N KNyN

)

,

where e
0,− 1

2

N f = f −Π
0,− 1

2

N f is the truncation error of the generalized Jacobi series. Using

some simple manipulations we can obtain

λ

(

Ky −Π
0,− 1

2

N KNyN

)

= λ

(

e
0,− 1

2

N Ky +Π
0,− 1

2

N

(

Ky −KNyN

))

= λ

(

e
0,− 1

2

N Ky +Π
0,− 1

2

N

(

KeN −
∫ t

0

e
0,0
N K(t, s)√

t− s
yN (s) ds

))

= λ

(

e
0,− 1

2

N Ky +KeN − e
0,− 1

2

N KeN −Π
0− 1

2

N

∫ t

0

e
0,0
N K(t, s)√

t− s
yN (s) ds

)

(4.3)

= e
0,− 1

2

N

(

y − f

)

+ λ

(

KeN − e
0,− 1

2

N KeN −Π
0− 1

2

N

∫ t

0

e
0,0
N K(t, s)√

t− s
yN (s) ds

)

.

Substituting (4.3) in (4.2) we get

eN (t) = e
0,− 1

2

N y + λ

(

KeN − e
0,− 1

2

N KeN −Π
0− 1

2

N

∫ t

0

e
0,0
N K(t, s)√

t− s
yN (s) ds

)

,

and, hence

|eN | ≤ |λ|
(

K|eN |
)

+

(

|e0,−
1

2

N y|

+ |λ|
(

|e0,−
1

2

N KeN |+
∣

∣

∣

∣

Π
0− 1

2

N

∫ t

0

e
0,0
N K(t, s)√

t− s
yN (s) ds

∣

∣

∣

∣

))

.

(4.4)

Using Gronwall’s inequality (Lemma 4.2) in (4.4), we have

‖eN‖0,− 1

2

≤ C1

(

‖e0,−
1

2

N y‖0,− 1

2

+ ‖e0,−
1

2

N KeN‖0,− 1

2

+

∥

∥

∥

∥

Π
0− 1

2

N

∫ t

0

e
0,0
N K(t, s)√

t− s
yN (s) ds

∥

∥

∥

∥

0,− 1

2

)

.

(4.5)

Since Π
0,− 1

2

N is an orthogonal projection, then ‖Π0,− 1

2

N ‖0,− 1

2

= 1; see [1]. Thus, we can

rewrite (4.5) as

‖eN‖0,− 1

2

≤ C1

(

‖e0,−
1

2

N y‖0,− 1

2

+ ‖e0,−
1

2

N KeN‖0,− 1

2

+

∥

∥

∥

∥

∫ t

0

e
0,0
N K(t, s)√

t− s
yN (s) ds

∥

∥

∥

∥

0,− 1

2

)

≤ C1

(

‖e0,−
1

2

N y‖0,− 1

2

+ ‖e0,−
1

2

N KeN‖0,− 1

2

+ ‖e0,0N K(t, s)‖∞
∥

∥

∥

∥

∫ t

0

yN (s)√
t− s

ds

∥

∥

∥

∥

0,− 1

2

)

.

(4.6)
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Using the generalized Hardy inequality (Lemma 4.1) in (4.6), we can conclude

‖eN‖0,− 1

2

≤ C1

(

‖e0,−
1

2

N y‖0,− 1

2

+ ‖e0,−
1

2

N KeN‖0,− 1

2

+ ‖e0,0N K(t, s)‖∞‖yN‖0,− 1

2

)

≤ C1

(

‖e0,−
1

2

N y‖0,− 1

2

+ ‖e0,−
1

2

N KeN‖0,− 1

2

+ ‖e0,0N K(t, s)‖∞
(

‖y‖0,− 1

2

+ ‖eN‖0,− 1

2

))

.

(4.7)

Applying estimate (2.5) in (4.7) yields

‖eN‖0,− 1

2

≤C2N
− 1

2

(

√

(N − l + 1)!

(N + l + 1)!
‖D 1

2
+ly‖ 1

2
+l,l + ‖D 1

2KeN‖ 1

2
,0

)

+ C1‖e0,0N K(t, s)‖∞
(

‖y‖0,− 1

2

+ ‖eN‖0,− 1

2

)

.

(4.8)

Now we try to find a suitable upper bound for ‖D 1

2KeN‖ 1

2
,0. To this end, using (2.1), we

can write

‖D 1

2KeN‖ 1

2
,0 =

1√
π

∥

∥

∥

∥

d

dx

∫ x

0

∫ s

0

(x− s)−
1

2K(s, t)eN (t) dt ds

∥

∥

∥

∥

1

2
,0

=
1√
π

∥

∥

∥

∥

d

dx

∫ x

0

∫ x

t

(x− s)−
1

2K(s, t)eN (t) ds dt

∥

∥

∥

∥

1

2
,0

=
1√
π

∥

∥

∥

∥

d

dx

∫ x

0

K̄(x, t)eN (t) dt

∥

∥

∥

∥

1

2
,0

=
1√
π

∥

∥

∥

∥

∫ x

0

∂

∂x
K̄(x, t)eN (t) dt

∥

∥

∥

∥

1

2
,0

,(4.9)

where K̄(x, t) =
∫ x

t
(x− s)−

1

2K(s, t) ds. Applying Hardy’s inequality (Lemma 4.1) with

w1(t) = w
1

2
,0(t) and w2(t) = w0,− 1

2 (t) in (4.9) yields

‖D 1

2KeN‖ 1

2
,0 ≤ C3‖eN‖0,− 1

2

.

Inserting this into (4.8), we obtain

‖eN‖0,− 1

2

≤C4N
− 1

2

(

√

(N − l + 1)!

(N + l + 1)!
‖D 1

2
+ly‖ 1

2
+l,l + ‖eN‖0,− 1

2

)

+ C1‖e0,0N K(t, s)‖∞
(

‖y‖0,− 1

2

+ ‖eN‖0,− 1

2

)

.

(4.10)

By applying the following estimate (see [10])

‖e0,0N K(t, s)‖∞ ≤ CN
3

4
−l1‖K(t, s)‖W l1 (Λ×Λ)

in (4.10), the desired result is obtained for sufficiently large N .

REMARK 4.4. From Lemma 1.1 we conclude that if f(t) and K(t, s) are sufficiently

smooth functions, then the exact solution of (1.1) behaves like y(t) ≃
√
t. It can be easily

seen that in this case D 1

2
+ly is a sufficiently smooth function (see [4]), and then l and l1 are

sufficiently large numbers in Theorem 4.3. Thus, Theorem 4.3 implies that the proposed

modified Tau method gives a high order of convergence in approximating (1.1) with solutions

that may have the given regularity property in Lemma 1.1.
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5. Numerical results. In this section we apply a program written in Mathematica for two

numerical examples to demonstrate the accuracy of the method and effectiveness of applying

the modified Tau method. The obtained numerical results will be compared with the Jacobi

Tau and regularized Jacobi Tau methods, which were proposed in [7] for the numerical solution

of (1.1). The numerical error always refers to the weighted L2
0,− 1

2

-norm of the obtained error

function.

EXAMPLE 5.1. Consider the following Abel integral equation

y(t) = t
7

2 +
35πt4

128
−
∫ t

0

y(s)√
t− s

ds, t ∈ Λ,

with the exact non-smooth solution y(t) = t3
√
t.

From [3, Remark 4.3] we can deduce that D 1

2
+l(t3

√
t) is analytic for any l ∈ N0, so with

l = N and by Theorem 4.3 we have spectral accuracy in the numerical solution of this problem

using the modified Tau method. We solve this problem by the modified Tau scheme and

present the obtained results in Table 5.1. It can be seen from Table 5.1 that the modified Tau

method finds the exact solution for N = 3 while the Jacobi Tau method gives poor numerical

results and the regularized Jacobi Tau method provides a suitable approximate solution for

N ≥ 7. Thus, we can conclude that our algorithm has a significant advantage over the methods

in [7]. In particular, we can see that the modified Tau method provides a good approximation

of the exact solution with a smaller value of N in comparison with the regularized Jacobi Tau

method proposed in [7].

TABLE 5.1

Comparison of errors obtained from our method and the numerical schemes in [7] for Example 5.1.

Numerical Errors

N Jacobi Tau method Regularized Jacobi Tau method Modified Tau method

1 2.35× 10−1 4.24× 10−1 8.34× 10−2

3 3.81× 10−3 7.95× 10−2 0
5 3.77× 10−5 3.12× 10−3 0
7 2.82× 10−6 9.78× 10−15 0
9 4.46× 10−7 1.08× 10−16 0

EXAMPLE 5.2 ([7]). Consider the following Abel integral equation

y(t) = f(t)− 1

2

∫ t

0

y(s)√
t− s

ds, t ∈ I,

where f(t) = sin (t)√
t

+ π
2 sin t

2J0(
t
2 ), with J0(t) the Bessel function. The exact solution of the

problem is y(t) = sin (t)√
t

.

The asymptotic behavior of the exact solution is y(t) ≃ √
x−

√
x5

6 +
√
x9

120 +O(
√
t11).

Trivially, D 1

2
+ly is analytic for l ≥ 0. Thus, according to Theorem 4.3, the errors decay

exponentially as N → ∞. Numerical errors obtained by solving this problem with the

modified Tau method are given in Table 5.2 and Figure 5.1. In Table 5.2, the obtained errors

of the modified Tau method are compared with the numerical errors obtained by solving this

problem using the methods proposed in [7]. From Table 5.2, we can deduce that our scheme

is more powerful and gives more reliable results. In particular, the results for the modified

Tau method have clear superiority over those obtained by using the regularized Jacobi Tau
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method. In Figure 5.1, we can deduce an exponential rate of convergence for the modified

Tau approximation of this problem since in this semi-log representation, one observes that the

error variation is essentially linear versus the degree of approximation.

TABLE 5.2

Comparison of errors obtained from our method and the numerical schemes in [7] for Example 5.2.

Numerical Errors

N Jacobi Tau method Regularized Jacobi Tau method Modified Tau method

2 1.44× 10−3 1.15× 10−3 1.60× 10−4

6 1.06× 10−4 5.54× 10−7 4.94× 10−10

10 2.39× 10−5 6.09× 10−11 1.67× 10−16

14 8.58× 10−6 5.65× 10−15 1.52× 10−23
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FIG. 5.1. Errors of Example 5.2 for various values of N .
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