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ON THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS AND
COMMUTATOR ARGUMENTS FOR SOLVING STOKES CONTROL PROBLEMS∗

JOHN W. PEARSON†

Abstract. The development of preconditioners for PDE-constrained optimization problems is a field of numerical
analysis which has recently generated much interest. One class of problems which has been investigated in particular
is that of Stokes control problems, that is, the problem of minimizing a functional with the Stokes (or Navier-Stokes)
equations as constraints. In this manuscript, we present an approach for preconditioning Stokes control problems
using preconditioners for the Poisson control problem and, crucially, the application of a commutator argument. This
methodology leads to two block diagonal preconditioners for the problem, one of which was previously derived by
W. Zulehner in 2011 [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 536–560] using a nonstandard norm argument for
this saddle point problem, and the other of which we believe to be new. We also derive two related block triangular
preconditioners using the same methodology and present numerical results to demonstrate the performance of the four
preconditioners in practice.
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1. Introduction. Decades ago, a significant area of research in numerical analysis was the
numerical solution of the Stokes and Navier-Stokes equations, two partial differential equations
(PDEs) that are crucial to the field of fluid dynamics. Preconditioned Krylov subspace methods
for the solutions of the saddle point systems relating to each of these problems are given
in [24] and [10], respectively, for instance. Since then, a further area of numerical analysis
has become prominent: that of PDE-constrained optimization, which involves minimizing a
functional with one or more PDEs as constraints. Consequently, the development of solvers
for Stokes control problems, one of the most fundamental such problems, has itself become a
well researched area.

There has been much success in this field: iterative solvers for a class of these problems
that are independent of the mesh-size h have been devised for the time-independent problem
in [19] and the time-dependent problem in [23]. Further, a multigrid solver constructed in [8]
is shown to be itself independent of h. However, generating Krylov subspace solvers that are
robust with respect to the regularization parameter as well as the mesh-size has proved to be a
more difficult task—one notable exception is the preconditioned MINRES approach derived
in [26] using a nonstandard norm argument, which does exhibit this independence.

In this manuscript, we consider the time-independent Stokes control problem where the
velocity and the control variable are included in the cost functional but the pressure is not. We
consider these problems using fundamental saddle point theory and explain how it is possible
to use this to construct preconditioners for the Stokes control problem using a Poisson control
preconditioner along with a commutator argument, the concept of which we shall describe.

There are many reasons why we believe such an investigation is of considerable interest.
Firstly, it enables us to re-derive the preconditioner of Zulehner [26] within a pure saddle point
framework. We are also able to derive a new block diagonal preconditioner for this problem
that is robust with respect to mesh-size and the control regularization coefficient, as well as two
block triangular preconditioners which appear to have the same property. Finally, and perhaps
most intriguingly, we believe that the theory outlined in this paper can be applied to the much
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harder Navier-Stokes control problem, which we will address in a future manuscript [16]. We
are also able to use the methodology presented here to explain why the choice of whether or
not to regularize the pressure is crucial from a preconditioning point of view.

This manuscript is structured as follows. In Section 2, we detail two areas of background
which we will make use of: those of saddle point theory and preconditioners for Poisson control
problems. In Section 3, we combine these with the theory of commutator arguments to derive
the four aforementioned preconditioners for Stokes control problems (two block diagonal and
two block triangular). We also state the dominant computational operations required to apply
our preconditioners and discuss the importance of the inclusion or omission of a pressure term
in the cost functional. In Section 4, we provide numerical results to demonstrate how the
preconditioners perform in practice, and in Section 5, we make some concluding remarks.

2. Background. In this section, we introduce two fundamental subject areas which we
utilize in the remainder of this manuscript. Firstly, in Section 2.1, we outline some basic
properties of saddle point systems which we make use of. Secondly, in Section 2.2, we detail
the theory of solving Poisson control problems, which we also exploit.

2.1. Saddle point systems. The matrix systems that we consider the iterative solution
of in the remainder of this manuscript are all of saddle point form, that is, of the form[

Φ ΨT

Ψ −Θ

]
︸ ︷︷ ︸

Λ

[
x1

x2

]
=

[
b1

b2

]
,(2.1)

where Φ ∈ Rm×m, Ψ ∈ Rp×m, p ≤ m, have full row rank and Θ ∈ Rp×p. In the problems
that we study, Φ and Θ are also symmetric. A comprehensive review of systems of saddle
point type is given in [1].

We are seeking preconditioners for equations of the form (2.1). Therefore we utilize the
observations that if we precondition Λ with P̄1, P̄2, or P̄3, where

P̄1 =

[
Φ 0
0 Θ + ΨΦ−1ΨT

]
, P̄2 =

[
Φ 0
Ψ Θ + ΨΦ−1ΨT

]
,

P̄3 =

[
Φ 0
Ψ −Θ−ΨΦ−1ΨT

]
,

then the non-zero eigenvalues of P̄−1
2 Λ and P̄−1

3 Λ are given by

λ(P̄−1
2 Λ) = {±1}, λ(P̄−1

3 Λ) = {1}

for any choice of Θ, and the non-zero eigenvalues of P̄−1
1 Λ are given by

λ(P̄−1
1 Λ) =

{
1,

1

2
(1±

√
5)

}
,

provided Θ = 0. The above results are given in [12, 13] in the case Θ = 0; the eigenvalue
results for P̄−1

2 Λ and P̄−1
3 Λ in the case Θ 6= 0 are shown in [9].

Now, the matrices P̄−1
1 Λ and P̄−1

2 Λ are diagonalizable but P̄−1
3 Λ is not, so consequently

a Krylov subspace method for the solution of (2.1) with ‘ideal’ preconditioners P̄1, P̄2, and P̄3

should converge in 3, 2, and 2 iterations, respectively [13], in the relevant cases provided that Λ
is non-singular.1 Naturally, we are not explicitly constructing P̄1, P̄2, and P̄3 as this would be

1In the problem we will consider, the matrix is singular, however, the preconditioners described are often effective
for such systems also.
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computationally wasteful but instead construct approximations P̂1, P̂2, and P̂3 such that the
actions of the inverses of our preconditioners may be applied efficiently. Having developed
these preconditioners, one may consider the MINRES algorithm [14] with preconditioners of
the form P̂1 and preconditioners of the form P̂2 and P̂3 used in conjunction with solvers such
as GMRES [20] and the Bramble-Pasciak Conjugate Gradient method [3].

We note that the quantity S := Θ + ΨΦ−1ΨT is important in all three of the above
preconditioners; this term is commonly known as the (negative) Schur complement of Λ,
and much emphasis will be placed on approximating this quantity of the matrix systems we
consider.

2.2. Optimal control of Poisson’s equation. In literature including [18, 21, 26], the
iterative solution of the matrix system resulting from the distributed Poisson control problem

min
y,u

1

2
‖y − ŷ‖ 2

L2(Ω) +
β

2
‖u‖2L2(Ω)

s.t. −4y = u, in Ω,

y = g, on ∂Ω,

is considered. Here, the domain on which we are working is denoted as Ω ⊂ Rd, d ∈ {2, 3},
with boundary ∂Ω. Moreover, y denotes the state variable (with ŷ some desired state), u the
control variable, and β a regularization parameter (or Tikhonov parameter). The symbol4
denotes the Laplacian operator.

Discretizing the above problem using equal-order finite element basis functions for y, u,
and p leads to the 2× 2 matrix system [18][

M K
K − 1

βM

] [
y
p

]
=

[
M ŷ + c

d

]
,(2.2)

where y and ŷ are the discretized versions of y and ŷ, respectively, c and d are vectors
corresponding to the boundary conditions, and p is the discretized version of the adjoint
variable (or Lagrange multiplier) p, which is related to u by βu− p = 0. Here M denotes a
finite element mass matrix and K a finite element stiffness matrix, two frequently used types
of matrices, both of which are positive definite.

Two preconditioners which are robust for all values of the mesh-size h and the regulariza-
tion parameter β, and which we denote PP1 and PP2 here, have been developed and tested for
the matrix system (2.2) in [26] and [18], respectively:

PP1 =

[
M +

√
βK 0

0 1
β (M +

√
βK)

]
,

PP2 =

[
M 0

0
(
K + 1√

β
M
)
M−1

(
K + 1√

β
M
)]

.

These two preconditioners have been derived in very different ways: PP1 was obtained using
a nonstandard norm argument in [26] and PP2 using the saddle point theory described in
Section 2.1.1 Each of these preconditioners for the Poisson control problem may be extended
to an effective preconditioner for Stokes control problems as we demonstrate in Section 3.

1The crucial step in constructing PP2 is that of approximating the Schur complement of (2.1), KM−1K + 1
β
M .

In [18], it is shown that if we approximate this by
(
K + 1√

β
M

)
M−1

(
K + 1√

β
M

)
, then the eigenvalues of the

preconditioned Schur complement are all contained within the interval
[
1
2
, 1

]
.
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3. Optimal control of the Stokes equations. The problem that we consider for the
majority of this section is the following distributed Stokes control problem:

min
v,u

1

2
‖v − v̂‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t. −4v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v = g, on ∂Ω.

Again we work on a domain Ω ⊂ Rd, d ∈ {2, 3}, with boundary ∂Ω and with a regularization
parameter β. Here, v denotes the velocity in d dimensions and p the pressure term, both of
which are state variables in this problem. u is the control variable in d dimensions. We also
introduce at this point the adjoint variables λ (which is equal to βu) and µ.

Discretizing this problem results in the matrix system [26]


M 0 K BT

0 0 B 0
K BT − 1

βM 0

B 0 0 0



v
p
λ
µ

 =


M v̂ + c

0
d
f

 ,(3.1)

where M and K here denote d × d block matrices with mass and stiffness matrices from
the velocity space on the block diagonals,1 and B represents the negative of the divergence
operator on the finite element space in matrix form. The vector v̂ corresponds to the target
function v̂, λ and µ are related to the adjoint variables λ and µ, and the vectors c, d, and f take
account of boundary conditions. We note at this point that this matrix is in general singular, as
it is well known that the vector of ones is a member of the nullspace of BT (see [6, Chapter
5] for instance)—the matrix in (3.1) therefore has two zero eigenvalues (one corresponding
to each appearance of BT ).2 However, this may be avoided by restricting the pressure space
to the orthogonal complement of the nullspace as in this case the matrix BT will clearly no
longer have a nullspace.

We also note that in the construction of the functional being minimized in this optimal
control problem, we have not regularized the pressure term—the problem where pressure
is regularized was considered in [19, 23], for instance. This is extremely important from a
preconditioning point of view, and in Section 3.4 we explain why this makes a major difference.

We consider discretizing this problem using the well-studied (inf-sup stable) Taylor-Hood
finite element basis functions, that is, discretizing the velocity v using Q2-basis functions and
the pressure p using Q1-basis functions. We discretize the control u and adjoint variable λ
using Q2-functions and the adjoint variable µ using Q1-functions.

It is not immediately obvious how the preconditioners derived for the Poisson control
problem in the previous section can be applied to the more difficult Stokes control problem. In
this section, we explain how this may be achieved.

1Note that this definition of M and K is slightly different from the definition used in Section 2.2 where these
terms simply denoted a single mass or stiffness matrix.

2On the continuous level, the zero eigenvalues arise from the fact that an arbitrary constant may be added to the
solution of the pressure p or the adjoint variable µ yielding another solution.
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3.1. Derivation of block diagonal preconditioners. To commence our derivation, we
reorder the matrix system (3.1) so that we are dealing with the system

M K BT 0
K − 1

βM 0 BT

B 0 0 0
0 B 0 0


︸ ︷︷ ︸

A


v
λ
µ
p

 =


M v̂ + c

d
f
0

 .(3.2)

This is a saddle point system of the form (2.1) with

Φ =

[
M K
K − 1

βM

]
, Ψ =

[
B 0
0 B

]
, Θ =

[
0 0
0 0

]
.

Note that the (1, 1)-block Φ is of the form of the matrix system (2.2) relating to the Poisson
control problem. We will use this to motivate two block diagonal preconditioners related to
two preconditioners for Poisson control detailed in Section 2.2. These preconditioners will be
of the form

P =

[
Φ̂ 0
0 (ΨΦ−1ΨT )approx

]
.(3.3)

Such a strategy also leads to block triangular preconditioners of the form

P =

[
Φ̂ 0
Ψ (ΨΦ−1ΨT )approx

]
or
[

Φ̂ 0
Ψ −(ΨΦ−1ΨT )approx

]
.(3.4)

We will derive two such block triangular preconditioners in Section 3.2.

3.1.1. First preconditioner. We motivate our first preconditioner for the Stokes control
system (3.2) using the preconditioner PP1 for the Poisson control problem of Section 2.2. We
first note that the (1, 1)-block of the Stokes control problem (3.2) is of the form of the matrix
involved in the Poisson control problem, so we write, in the notation of (3.3),

Φ =

[
M K
K − 1

βM

]
≈
[
M +

√
βK 0

0 1
β (M +

√
βK)

]
=: Φ̂.

Here, the notation Φ ≈ Φ̂ indicates that Φ̂ has been constructed with the aim that the singular
values of Φ̂−1Φ are bounded within a fixed (small) interval.

The next step is to find a good approximation to the Schur complement ΨΦ−1ΨT of the
matrix system (3.3); we justify a potential approximation by writing

ΨΦ−1ΨT =

[
B 0
0 B

] [
M K
K − 1

βM

]−1 [
BT 0
0 BT

]
≈
[
B 0
0 B

] [
M +

√
βK 0

0 1
β (M +

√
βK)

]−1 [
BT 0
0 BT

]
=: ΨΦ̂−1ΨT

=

[
B(M +

√
βK)−1BT 0
0 βB(M +

√
βK)−1BT

]
.

We highlight the fact that, in general, the approximate identity Φ̂ ≈ Φ does not necessarily
tell us that ΨΦ̂−1ΨT ≈ ΨΦ−1ΨT (unless Ψ is a square and invertible matrix, which is not
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the case here). However, this seems to be a reasonable motivation for an approximation which
is potentially effective, and we indeed find that this strategy does lead to a good approximation
of ΨΦ−1ΨT for this problem. Furthermore, an eigenvalue analysis carried out in [11] for this
preconditioner verifies its potency for the Stokes control problem.

At this point, as it is done in [26], we may approximate B(M +
√
βK)−1BT by

(
√
βM−1

p +K−1
p )−1 in the above expression,1 where Mp and Kp denote finite element

mass and stiffness matrices, respectively, of the pressure space. Hence, we may write that

ΨΦ−1ΨT ≈
[

(
√
βM−1

p +K−1
p )−1 0

0 β(
√
βM−1

p +K−1
p )−1

]
=: (ΨΦ−1ΨT )approx.

Therefore, putting all of the above working together, we postulate that

P1 =


M +

√
βK 0 0 0

0 1
β (M +

√
βK) 0 0

0 0 (
√
βM−1

p +K−1
p )−1 0

0 0 0 β(
√
βM−1

p +K−1
p )−1


is an effective preconditioner for A. This is exactly the preconditioner proposed by Zulehner
in [26] using a nonstandard norm argument. We will demonstrate the effectiveness of this
preconditioner by displaying numerical results in Section 4.

3.1.2. Second preconditioner. We are also able to derive a new block diagonal precondi-
tioner for the Stokes control system (3.2) using the preconditioner PP2 for the Poisson control
problem. We treat the (1, 1)-block of the Stokes control system by using the preconditioner
for Poisson control, writing (in the notation of (3.3))

Φ =

[
M K
K − 1

βM

]
≈
[
M 0
0 KM−1K + 1

βM

]
≈

[
M 0

0
(
K + 1√

β
M
)
M−1

(
K + 1√

β
M
)]

=: Φ̂.

We now again search for a good approximation to the Schur complement—we proceed as
follows:

ΨΦ−1ΨT ≈
[
B 0
0 B

] [
M 0
0 KM−1K + 1

βM

]−1 [
BT 0
0 BT

]

=

[
BM−1BT 0

0 B
(
KM−1K + 1

βM
)−1

BT

]
.

Once more, we have assumed in the above working that Φ̂ being a good approximation to Φ
leads to ΨΦ̂−1ΨT approximating ΨΦ−1ΨT well; for this problem we find that this heuristic
does indeed lead to an effective approximation.

We do not yet have a feasible preconditioner as the matrices BM−1BT and

B
(
KM−1K + 1

βM
)−1

BT cannot be inverted without computing the inverses of M or

KM−1K + 1
βM . However, it is well known that BM−1BT may be well approximated

1This may be done by applying the commutator argument of Section 3.1.2 with L := −
√
β4 + I . This is

carried out in a very similar fashion in [23] for matrices of this form for time-dependent Stokes control problems.
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by Kp (see [6, Chapter 8]),1 so we use this for the first block of our Schur complement
approximation.

We therefore now seek an idea for approximating Σ := B
(
KM−1K + 1

βM
)−1

BT so
that we obtain a cheap and invertible approximation to the Schur complement. We do this
by using a commutator argument, a type of which is described in [6] for the Navier-Stokes
equations, for instance. We examine the commutator

E = (L)∇−∇(L)p,

where L =42 + 1
β I . This is an operator carefully chosen to give us a matrix that we can use

to approximate Σ.
Now, discretizing this commutator using finite elements gives

Eh = (M−1L)M−1BT −M−1BT (M−1
p Lp),

where L = KM−1K + 1
βM . Pre-multiplying by BL−1M and post-multiplying by L−1

p Mp,

where Lp = KpM
−1
p Kp + 1

βMp, then gives

BM−1BTL−1
p Mp ≈ BL−1BT ,

where, crucially, we assume that the commutator Eh is small.
We may now use the fact that BM−1BT ≈ Kp and substitute in the expression for L to

obtain that2

Σ = B

(
KM−1K +

1

β
M

)−1

BT ≈ KpL
−1
p Mp,

and therefore that

Σ−1 ≈M−1
p LpK

−1
p = M−1

p

(
KpM

−1
p Kp +

1

β
Mp

)
K−1
p = M−1

p KpM
−1
p +

1

β
K−1
p .

We note that such an argument has been used a number of times before—we give a brief
summary of some applications in Section 5.

Thus, a second possible preconditioner for A is

P2 =


M 0 0 0

0
(
K + 1√

β
M
)
M−1

(
K + 1√

β
M
)

0 0

0 0 Kp 0

0 0 0
(
M−1
p KpM

−1
p + 1

βK
−1
p

)−1

 ,
which we postulate being an effective preconditioner. We again verify that this is the case by
numerical results presented in Section 4.

We note at this point that this preconditioner is a more “flexible one” as we find that a
preconditioner of this form may be applied to the more difficult and general linearizations

1The approximation BM−1BT ≈ Kp may be justified by the observations that −∇ · ∇ = −4 on the
continuous level, and that the matrices Kp, B, M, and BT relate to the continuous operators −4, −∇·, I, and∇,
respectively.

2An approximation of the form BL−1BT ≈ KpL−1
p Mp was first introduced by Cahouet and Chabard in [4]

for the forward Stokes problem. Such arguments have since been used to develop iterative solvers for a variety of
fluid dynamics problems.
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of the Navier-Stokes control problem [16]. In more detail, when a Picard-type iteration is
applied to this problem, we may rearrange the matrix system obtained so that we have as the
(1, 1)-block a matrix corresponding to the convection-diffusion control problem as opposed to
a Poisson control problem here. Using a preconditioner derived for the convection-diffusion
control problem in [17], we may apply a similar commutator argument to approximate the
Schur complement of the matrix systems for Navier-Stokes control—for this problem, we find

that we need to approximate BM−1BT and B
(
FM−1FT + 1

βM
)−1

BT , where F arises
from the differential operator relating to the Navier-Stokes equations. By doing this we arrive
at iterative solvers for the Navier- Stokes control problem. It is likely that such strategies could
also be applied to the linear systems obtained when Newton iteration is applied to the problem.

3.2. Block triangular preconditioners. A useful aspect of our approach is that we may
consider developing robust preconditioners for the Stokes control problem that are not of
the block diagonal form of P1 and P2. We do this by considering various block triangular
preconditioners of the Poisson control matrix system.

Firstly, we may consider a preconditioner of the form
[

Φ̂ 0
Ψ (ΨΦ−1ΨT )approx

]
stated

in (3.4) that is in some sense analogous to P1 as derived in Section 3.1.1. We could in fact
consider the same approximations Φ̂ and (ΨΦ−1ΨT )approx as we did to construct P1,

Φ̂ =

[
M +

√
βK 0

0 1
β (M +

√
βK)

]
,

(ΨΦ−1ΨT )approx =

[
(
√
βM−1

p +K−1
p )−1 0

0 β(
√
βM−1

p +K−1
p )−1

]
,

to develop the following block triangular preconditioner for A:

P3 =


M +

√
βK 0 0 0

0 1
β (M +

√
βK) 0 0

B 0 (
√
βM−1

p +K−1
p )−1 0

0 B 0 β(
√
βM−1

p +K−1
p )−1

 ,

which may be applied within the GMRES algorithm.

In addition to this preconditioner, we may form a block lower triangular preconditioner for
the Stokes control problem that is based on the following block triangular preconditioner PP3
for the Poisson control problem:

PP3 =

[
M 0

K −
(
K + 1√

β
M
)
M−1

(
K + 1√

β
M
)]

,

which was shown to be effective for that problem in [18]. We may, once again, use this as an
approximation to the (1, 1)-block of the Stokes control matrix A.
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Let us consider how we may precondition the Schur complement of A while using this
approximation of the (1, 1)-block. We write, in the notation of (3.4),

ΨΦ−1ΨT =

[
B 0
0 B

] [
M K
K − 1

βM

]−1 [
BT 0
0 BT

]
≈
[
B 0
0 B

] [
M 0

K −ŜP

]−1 [
BT 0
0 BT

]
=

[
B 0
0 B

] [
M−1 0

Ŝ−1
P KM−1 −Ŝ−1

P

] [
BT 0
0 BT

]
=: ΨΦ̂−1ΨT

=

[
BM−1BT 0

BŜ−1
P KM−1BT −BŜ−1

P BT

]

≈

[
Kp 0

BŜ−1
P KM−1BT −

(
M−1
p KpM

−1
p + 1

βK
−1
p + 2√

β
M−1
p

)−1

]
=: (ΨΦ−1ΨT )approx,

where

ŜP =

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
.

In the working above, we have again used the approximation BM−1BT ≈ Kp. To approxi-
mate the matrix BŜ−1

P BT , we have used the same commutator argument as in Section 3.1.2
except with L = ŜP = KM−1K + 1

βM + 2√
β
K and Lp = KpM

−1
p Kp + 1

βMp + 2√
β
Kp.

Therefore, applying the (block triangular) saddle point theory of Section 2.1, we arrive at
a block triangular preconditioner for A, namely,

P4 =


M 0 0 0

K −ŜP 0 0
B 0 Kp 0

0 B BŜ−1
P KM−1BT −

(
M−1
p KpM

−1
p + 1

βK
−1
p + 2√

β
M−1
p

)−1

 .
Of course, we would not be able to apply the MINRES algorithm with the preconditioners P3

or P4; instead we would use the GMRES algorithm of [20]. However, numerical tests indicate
that P3 and P4 are effective preconditioners for A nevertheless—we refer to Section 4 for a
demonstration of this assertion.

3.3. Further comments. We now wish to make some further observations about the
preconditioners which we have proposed. Firstly, it is natural to consider the effectiveness of
the new commutator arguments we have introduced as such arguments are heuristic in nature.
We therefore carry out numerical tests on our approximations; in particular we look for the
maximum and minimum (non-zero) eigenvalues of[

M−1
p KpM

−1
p +

1

β
K−1
p

]
B

(
KM−1K +

1

β
M

)−1

BT ,(3.5) [
M−1
p KpM

−1
p +

1

β
K−1
p +

2√
β
M−1
p

]
B

(
KM−1K +

1

β
M +

2√
β
K

)−1

BT ,(3.6)

which relate to the two new commutator arguments introduced in this paper, and which are
utilized in the preconditioners P2 and P4, respectively. In Table 3.1, we provide eigenvalues
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TABLE 3.1
Maximum and minimum (non-zero) eigenvalues for the commutator approximation (3.5) used in the block

diagonal preconditioner for different values of h and β.

β

10 10−2 10−5 10−8

λ2 λmax λ2 λmax λ2 λmax λ2 λmax

h

2−2 0.0584 1.3315 0.1271 1.2617 0.4537 0.9776 0.4975 1.0096

2−3 0.0400 1.3495 0.0843 1.3245 0.2988 0.9591 0.5000 1.0090

2−4 0.0295 1.3730 0.0560 1.3560 0.1721 1.1442 0.4876 0.9994

2−5 0.0227 1.3645 0.0396 1.3624 0.1065 1.2964 0.3872 0.9968

TABLE 3.2
Maximum and minimum (non-zero) eigenvalues for the commutator approximation (3.6) used in the block

triangular preconditioner for different values of h and β.

β

10 10−2 10−5 10−8

λ2 λmax λ2 λmax λ2 λmax λ2 λmax

h

2−2 0.0653 1.3211 0.1541 1.1475 0.3922 0.9171 0.4924 1.0026

2−3 0.0446 1.3443 0.1048 1.2563 0.2881 0.9550 0.4812 0.9839

2−4 0.0326 1.3694 0.0699 1.3167 0.1951 1.0707 0.4355 0.9876

2−5 0.0249 1.3633 0.0487 1.3466 0.1294 1.2051 0.3418 0.9968

of the matrix (3.5) for a range of mesh-sizes and values of β, and in Table 3.2, we present
the same results for (3.6). For the results in both tables, an evenly spaced grid with Taylor-
Hood elements was used with the values of h stated corresponding to the distance between
Q2-nodes. We can see that the approximations are effective ones for a range of parameter
values, especially for smaller values of β. We note a benign dependence of the effectiveness
of the approximations on h, but the results obtained are still very reasonable.

Another pertinent question is how cheap it is to apply our proposed preconditioners. We
therefore detail the main computational operations required to approximate P−1

1 , P−1
2 , P−1

3 ,
and P−1

4 (excluding matrix multiplications, which are comparatively cheap). For the purposes
of these descriptions, we view the preconditioners as 4× 4 block matrices and refer to each
block in this way.

• Operations needed to apply P−1
1 :

-(1, 1): 1 multigrid operation for M +
√
βK,

-(2, 2): 1 multigrid operation for M +
√
βK,

-(3, 3): 1 Chebyshev semi-iteration for Mp and 1 multigrid operation for Kp,
-(4, 4): 1 Chebyshev semi-iteration for Mp and 1 multigrid operation for Kp,
-total: 2 Chebyshev semi-iterations and 4 multigrids.

• Operations needed to apply P−1
2 :

-(1, 1): 1 Chebyshev semi-iteration for M ,
-(2, 2): 2 multigrid operations for K + 1√

β
M ,

-(3, 3): 1 multigrid operation for Kp,
-(4, 4): 2 Chebyshev semi-iterations for Mp and 1 multigrid operation for Kp,
-total: 3 Chebyshev semi-iterations and 4 multigrids.
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• Operations needed to apply P−1
3 : these are the same as for P−1

1 and hence in total:
-total: 2 Chebyshev semi-iterations and 4 multigrids.

• Operations needed to apply P−1
4 :

-(1, 1): 1 Chebyshev semi-iteration for M,
-(2, 2): 2 multigrid operations for K + 1√

β
M,

-(3, 3): 1 multigrid operation for Kp,
-(4, 3): 1 Chebyshev semi-iteration for M and 2 multigrid operations for

K + 1√
β
M ,

-(4, 4): 2 Chebyshev semi-iterations for Mp and 1 multigrid operation for Kp,
-total: 4 Chebyshev semi-iterations and 6 multigrids.

We can see from this list of operations that the application of each preconditioner (espe-
ciallyP1,P2, andP3) is fairly cheap, and therefore that our methods should be computationally
effective ones.

Finally, an important question arising from this work relates to whether the methodology
can be applied to other problems of Stokes control type. In more detail, rather than considering
distributed control problems of the form described in this manuscript, one could examine
formulations where the control is only applied on the boundary or within some subdomain.
It is likely that much of the methodology within this paper could be applied to these more
diverse problems, however, two major issues will inevitably arise:

• A robust approximation Φ̂ of the (1, 1)-block Φ will become harder to construct.
In particular deriving an approximation to the Schur complement of the Poisson
control problem, which is involved in the construction of Φ̂, will become heuristic in
nature when subdomain problems are considered [15, Chapter 4], as opposed to the
rigorous nature of the preconditioners for the Poisson control problem on the whole
domain [18, 26] used in Sections 3.1.1 and 3.1.2.
• The application of commutator arguments to build Schur complement approxima-

tions Ŝ becomes more troublesome as such arguments have not been so widely
tested on subdomain problems. The Schur complement approximations will also be
impacted by the less robust (1, 1)-block approximation Φ̂.

In summary, whereas we believe this work has the potential to be extended to more complex
problems of Stokes and Navier-Stokes control type, it is clear that significant investigation
will need to be carried out in relation to the validity of the (1, 1)-block and Schur complement
approximations before such an approach could be reliably applied.

3.4. Penalty term applied to pressure. In this section we briefly consider the Stokes
control problem

min
v,p,u

1

2
‖v − v̂‖2L2(Ω) +

α

2
‖p− p̂‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t. −4v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v = g, on ∂Ω,

which is identical to the problem we have studied in the previous sections, except that we
impose an additional term in the cost functional relating to the pressure (with α being the
corresponding penalty parameter).



ETNA
Kent State University

http://etna.math.kent.edu

64 J. W. PEARSON

It is useful to consider preconditioning of the resulting matrix system [19]

(3.7)


M K BT 0
K − 1

βM 0 BT

B 0 0 0
0 B 0 αMp


︸ ︷︷ ︸

B


v
λ
µ
p

 =


M v̂ + c

d
f

αMpp̂



in light of the framework discussed in this paper, in particular, whether it is possible to
precondition the problem arising from the Stokes control problem with a pressure penalty term
in the same way as it is done to precondition the system arising without this pressure term.

For brevity, we simply consider developing a preconditioner of the form P1 for the matrix
system (3.7) (we find that the same issues arise when trying to construct preconditioners of the
form P2, P3, and P4). We may construct an approximation of the (1, 1)-block of B exactly as
we did for the matrix system A in Section 3.1.1 (as the (1, 1)-blocks of A and B are the same).
When we attempt to construct an approximation of the Schur complement of B in a similar
way for A, in the derivation of P1, we obtain the following:

SB =−
[

0 0
0 αMp

]
+

[
B 0
0 B

] [
M K
K − 1

βM

]−1 [
BT 0
0 BT

]
≈−

[
0 0
0 αMp

]
+

[
B 0
0 B

] [
M +

√
βK 0

0 1
β (M +

√
βK)

]−1 [
BT 0
0 BT

]
=

[
B(M +

√
βK)−1BT 0
0 −αMp + βB(M +

√
βK)−1BT

]
.

At this point we face a problem—the (2, 2)-block of our proposed Schur complement approx-
imation could be positive definite, negative definite, or indefinite, depending on the values
of α, β, and h used, thus creating major issues when attempting to construct a positive def-
inite preconditioner (which we require for use with MINRES). Even if the values of α, β,
and h were such that −αMp + βB(M +

√
βK)−1BT is positive definite, it is far from clear

how we may efficiently approximate this matrix in a similar way as βB(M +
√
βK)−1BT

was approximated in Section 3.1.1. We are therefore unable to derive a parameter-robust
preconditioner using our approach.

We therefore conclude that the Stokes control problem involving a penalty term for
the pressure is a harder problem to solve robustly than the problem without, at least if the
methodology discussed in this manuscript is considered. We point the reader to [19] for a
solver for the time-independent problem with pressure penalty term that is independent of the
mesh-size h (but not the penalty parameter β) and to [23] for an extension of this solver to the
time-dependent case.

4. Numerical experiments. Having motivated the theoretical potential of our approach,
we now seek to demonstrate how our preconditioners perform in practice. To do this, we
consider two test problems. The first problem we look at is an optimal control analogue of the
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FIG. 4.1. Plots of the computed velocity solution to the first test problem for different β.
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FIG. 4.2. Plots of the computed pressure solution to the first test problem for different β.

lid-driven cavity problem on the domain Ω = [−1, 1]2:

min
v,u

1

2
‖v‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t. −4v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v =

{
[1, 0]

T on [−1, 1]× {1},
[0, 0]

T on ∂Ω\ ([−1, 1]× {1}) .

We wish to observe how well the four preconditioners presented in this paper perform when
solving the matrix system relating to this problem. In Table 4.1, we display the number
of MINRES iterations and CPU times1 for solving this problem with preconditioner P1 to a
tolerance of 10−6 for a variety of h and β. In Table 4.2, the number of iterations and CPU times
for solving the same problem using MINRES with preconditioner P2 to the same tolerance is
given. Finally in Tables 4.3 and 4.4, we report the iteration count and CPU times for solving

1The CPU times include the time taken to construct the matrices Mp and Kp involved in the preconditioner. We
construct these matrices in the same way as in the Incompressible Flow & Iterative Solver Software (IFISS) package
[5, 22]. Where appropriate, we follow the recipe detailed in [6, Chapter 8] of imposing a Dirichlet boundary condition
in the matrix Kp at the node on the velocity space corresponding to the inflow boundary condition.
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TABLE 4.1
Number of iterations and CPU times (in seconds) when applying MINRES to the first test problem with

preconditioner P1 for a variety of h and β.

β

SIZE 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
80 80 60 44 36 (32)∗ (26)∗

0.281 0.283 0.216 0.189 0.156 (0.290) (0.232)

2−4 4, 934
84 85 66 52 37 (32)∗ (26)∗

0.755 0.766 0.601 0.488 0.475 (1.59) (1.38)

2−5 19, 078
88 90 70 58 44 32 (28)∗

3.03 3.08 2.41 2.04 2.05 1.54 (7.42)

2−6 75, 014
86 90 74 62 50 33 (28)∗

12.6 13.6 11.0 10.3 7.96 8.39 (40.1)

2−7 297, 478
86 88 76 66 54 40 26

62.0 58.8 53.5 46.2 39.3 29.2 28.1

TABLE 4.2
Number of iterations and CPU times (in seconds) when applying MINRES to the first test problem with

preconditioner P2 for a variety of h and β.

β

SIZE 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
112 107 85 59 42 (30)∗ (25)∗

0.502 0.480 0.388 0.317 0.222 (0.316) (0.249)

2−4 4, 934
125 123 97 68 48 (33)∗ (25)∗

1.51 1.49 1.18 0.847 0.768 (1.87) (1.52)

2−5 19, 078
142 137 102 75 60 39 (27)∗

6.68 6.42 4.79 3.59 3.54 2.37 (7.33)

2−6 75, 014
156 148 106 80 67 48 (29)∗

32.5 30.9 22.3 17.2 14.1 17.0 (46.5)

2−7 297, 478
165 160 106 84 72 54 34
141 138 91.2 80.5 61.9 49.4 89.6

the problem to the same tolerance with the GMRES algorithm used in the Incompressible Flow
& Iterative Solver Software (IFISS) package2 [5, 22], preconditioned with the matrices P3

and P4. In Figures 4.1 and 4.2, we display solutions to the test problem for velocity and
pressure for different values of β. In each of the tables and figures, the value of h indicated
corresponds to the spacing between Q2-nodes.

When generating these results, we use 20 steps of Chebyshev semi-iteration to approx-
imate the inverses of mass matrices; see [25] for more details. To approximate the inverses
of Kp, M +

√
βK, and K + 1√

β
M in our preconditioners (note that the last two matrices

are the same up to a multiplicative factor), we employ the algebraic multigrid (AMG) routine
HSL MI20 from the Harwell Subroutine Library (HSL) [2], using 2 V-cycles with 2 pre- and
post- (relaxed Jacobi) smoothing steps to approximate each matrix inverse. In all tables in this

2All results in Tables 4.1–4.6 are obtained using a tri-core 2.5 GHz workstation.
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TABLE 4.3
Number of iterations and CPU times (in seconds) when applying GMRES to the first test problem with precondi-

tioner P3 for a variety of h and β.

β

SIZE 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
64 62 53 44 39 (33)∗ (28)∗

0.238 0.247 0.195 0.188 0.184 (0.287) (0.263)

2−4 4, 934
65 63 56 50 41 (38)∗ (31)∗

0.671 0.674 0.573 0.516 0.565 (1.98) (1.65)

2−5 19, 078
63 63 56 53 48 38 (35)∗

2.54 2.53 2.26 2.11 2.81 2.27 (9.42)

2−6 75, 014
63 61 57 54 51 41 (37)∗

13.7 12.5 13.1 11.5 10.9 13.8 (58.1)

2−7 297, 478
63 62 56 52 52 48 39

60.8 62.8 55.3 45.1 51.8 43.8 45.5

TABLE 4.4
Number of iterations and CPU times (in seconds) when applying GMRES to the first test problem with precondi-

tioner P4 for a variety of h and β.

β

SIZE 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
91 85 67 46 26 (19)∗ (14)∗

0.755 0.675 0.529 0.415 0.238 (0.376) (0.261)

2−4 4, 934
107 101 79 59 34 (24)∗ (15)∗

2.55 2.38 1.84 1.38 1.02 (2.47) (1.63)

2−5 19, 078
123 114 88 73 47 29 (21)∗

11.7 10.8 8.20 6.75 5.42 3.42 (11.7)

2−6 75, 014
138 131 99 81 62 37 (25)∗

63.5 58.5 43.7 37.0 27.6 24.1 (74.8)

2−7 297, 478
156 150 109 89 73 48 30
327 287 224 161 130 92.3 148

section, the symbol ∗ denotes that the coarsening of the AMG routine failed when applied
to M +

√
βK or K + 1√

β
M—this occurs in the specific and impractical parameter regime

where h is large and β is small and is caused by the presence of positive off-diagonal entries.
In these cases, we present results obtained using direct solves rather than AMG.

To test our methods further, we also consider the following second test problem on
Ω = [−1, 1]2:

min
v,u

1

2
‖v − v̂‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t. −4v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v = v̂, on ∂Ω,
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FIG. 4.3. Plots of the computed solution to the second test problem with β = 10−4.

where

v̂ =


[
−
(

1
2 − x2

)
x1(1 + x1),

(
1
2 + x1

)
x2(1− x2)

]T
in [−1, 0]× [0, 1],[

−
(

1
2 − x2

)
x1(1− x1),

(
1
2 − x1

)
x2(1− x2)

]T
in [0, 1]× [0, 1],[

−
(

1
2 + x2

)
x1(1 + x1),

(
1
2 + x1

)
x2(1 + x2)

]T
in [−1, 0]× [−1, 0],[

−
(

1
2 + x2

)
x1(1− x1),

(
1
2 − x1

)
x2(1 + x2)

]T
in [0, 1]× [−1, 0],

and x = [x1, x2]
T denotes the spatial coordinates. The target state v̂ within this problem setup

corresponds to a recirculating flow with symmetry built into the problem. In Figure 4.3, we
display solution plots for this problem, and in Tables 4.5 and 4.6, we present numerical results
for solving this problem using MINRES preconditioned with P1 and P2. Although we do not
present results for our GMRES-based solvers for this problem, we note that the numerical
features of these solvers are similar to those when tested on the first test problem.

The results shown in Tables 4.1–4.6 indicate that the four preconditioners discussed in this
manuscript are robust with respect to mesh-size and regularization parameter.1 The iteration
count is low for all four solvers considering the complexity of the problems. In many practical
problems, the value of β is within the range [10−6, 10−1]; all methods perform well in this
regime. We note that the block diagonal preconditioner P1 (introduced in [26]) and the block
triangular preconditioner P3 based on it solve the problem in the shortest time in all cases

1The only parameter regime where we do not observe complete robustness is that of very small β, when we
observe some degradation in the performance of the AMG routine used.
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TABLE 4.5
Number of iterations and CPU times (in seconds) when applying MINRES to the second test problem with

preconditioner P1 for a variety of h and β.

β

SIZE 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
50 58 58 46 38 (32)∗ (26)∗

0.181 0.222 0.221 0.204 0.201 (0.337) (0.240)

2−4 4, 934
54 62 62 50 39 (32)∗ (26)∗

0.518 0.594 0.590 0.491 0.532 (1.72) (1.61)

2−5 19, 078
56 64 64 54 42 32 (24)∗

2.05 2.36 2.31 1.97 2.09 1.71 (7.15)

2−6 75, 014
54 68 68 58 44 30 (22)∗

8.96 11.3 10.4 9.69 7.07 8.63 (39.3)

2−7 297, 478
52 68 70 60 46 28 21

39.4 51.8 51.8 42.2 32.4 22.1 28.4

TABLE 4.6
Number of iterations and CPU times (in seconds) when applying MINRES to the second test problem with

preconditioner P2 for a variety of h and β.

β

SIZE 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
89 90 79 58 42 (31)∗ (25)∗

0.423 0.440 0.376 0.315 0.235 (0.341) (0.276)

2−4 4, 934
100 100 85 65 49 (31)∗ (25)∗

1.26 1.26 1.07 0.835 0.813 (1.87) (1.54)

2−5 19, 078
106 107 86 70 56 34 (23)∗

5.14 5.16 4.17 3.43 3.42 2.17 (7.36)

2−6 75, 014
116 116 89 74 58 35 (21)∗

25.0 25.2 19.4 16.1 12.7 11.7 (39.3)

2−7 297, 478
125 125 95 78 59 33 23
120 124 94.1 76.9 58.6 35.6 57.3

considered and with the lowest iteration count in most cases. However, the strategy involved
in constructing these preconditioners is highly specific to this problem. We believe that the
flexibility in the methodology used to construct P2 and P4 would enable us to consider the
more general and much harder Navier-Stokes control problem, and therefore it is important
to note that these preconditioners also seem to achieve robustness, albeit with larger iteration
counts and CPU times than P1 and P3.

Of the two preconditioners P2 and P4, we note that the preconditioner P4 solves the
problem in fewer iterations than P2 but greater CPU time due to the added complexity of the
GMRES algorithm (though this could partially be offset by using restarts within the GMRES
method). We find that in the Navier-Stokes control case, using preconditioners of the form P2

and P4 would result in convergence to the solution of the matrix systems involved in similar
CPU times [16] because a non-symmetric solver such as GMRES has to be used in both cases
as both equivalent preconditioners would be non-symmetric in the Navier-Stokes case. We also
note that in the parameter regime of small β, the iteration count when the preconditioner P4 is
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TABLE 4.7
Comparison of the H1-norms of the iterative solution v(`) and the direct solution v(`,dir) for the state v and

the L2-norms of the iterative solution u(`) and the direct solution u(`,dir) for the control u when applying MINRES
to the first test problem with the preconditioner P2. Results are given for a variety of mesh levels ` (which correspond
to h = 2−`) and values of β.

Level β

` 1 10−2 10−4

∣∣∣∣‖v(`)‖
H1(Ω)

−‖v(`,dir)‖
H1(Ω)

‖v(`,dir)‖
H1(Ω)

∣∣∣∣
2 2.024× 10−7 6.845× 10−8 1.298× 10−4

3 9.952× 10−8 5.910× 10−7 6.215× 10−7

4 2.029× 10−6 3.520× 10−8 8.645× 10−8

5 2.443× 10−6 2.576× 10−6 2.115× 10−6

6 4.912× 10−6 7.606× 10−6 6.178× 10−6

∣∣∣∣‖u(`)‖
L2(Ω)

−‖u(`,dir)‖
L2(Ω)

‖u(`,dir)‖
L2(Ω)

∣∣∣∣
2 4.883× 10−7 9.289× 10−7 1.180× 10−3

3 2.206× 10−6 6.080× 10−7 1.550× 10−6

4 3.295× 10−6 4.870× 10−7 1.873× 10−7

5 1.061× 10−6 4.897× 10−7 1.799× 10−6

6 4.621× 10−6 1.618× 10−6 4.714× 10−8

TABLE 4.8
Comparison of the H1-norms of the iterative solution v(`) and the direct solution v(`,dir) for the state v and

the L2-norms of the iterative solution u(`) and the direct solution u(`,dir) for the control u when applying GMRES to
the first test problem with the preconditioner P4. Results are given for a variety of mesh levels ` (which correspond to
h = 2−`) and values of β.

Level β

` 1 10−2 10−4

∣∣∣∣‖v(`)‖
H1(Ω)

−‖v(`,dir)‖
H1(Ω)

‖v(`,dir)‖
H1(Ω)

∣∣∣∣
2 5.318× 10−7 2.569× 10−6 1.395× 10−4

3 8.897× 10−8 4.512× 10−7 3.290× 10−7

4 3.892× 10−7 2.327× 10−6 2.199× 10−7

5 7.023× 10−7 6.723× 10−7 2.187× 10−7

6 1.038× 10−6 9.806× 10−7 2.037× 10−7

∣∣∣∣‖u(`)‖
L2(Ω)

−‖u(`,dir)‖
L2(Ω)

‖u(`,dir)‖
L2(Ω)

∣∣∣∣
2 1.086× 10−6 6.335× 10−7 7.720× 10−4

3 2.962× 10−6 1.121× 10−6 1.825× 10−7

4 2.411× 10−7 9.819× 10−7 4.723× 10−7

5 3.867× 10−7 6.506× 10−6 6.987× 10−7

6 3.532× 10−7 8.998× 10−9 1.373× 10−6

used is even smaller than that when P1 (or indeed P2) is applied. We believe that to extend this
methodology to obtain an effective solver for the analogous Navier-Stokes control problem, a
preconditioner of the form of either P2 or P4 can therefore be considered.

When testing our new methods, it is also desirable to ascertain whether the solutions
obtained are accurate reflections of the “true” solutions and are reasonably unaffected by
the stopping criteria within MINRES and GMRES (which by definition are related to the
preconditioners used). In Tables 4.7 and 4.8 we therefore compare the values of

∥∥v(`)
∥∥
H1(Ω)

and
∥∥u(`)

∥∥
L2(Ω)

for the iterative solution of v and u on each mesh level ` with the values∥∥v(`,dir)
∥∥
H1(Ω)

and
∥∥u(`,dir)

∥∥
L2(Ω)

obtained using a direct method (for the mesh levels where
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we find using a direct method to be feasible and computationally non-prohibitive). We present
these results for the first test problem, using the new preconditioners P2 (with MINRES) and P4

(with GMRES) for a range of mesh levels and values of β. In these tables we find that the
scaled norms are largely around 10−6 as expected and depend very little on the mesh level
and value of β (and hence the changing preconditioner). This gives a good indication that our
iterative schemes are solving the problem well and are presenting accurate solutions to the
linear systems tested.

5. Concluding remarks. The use of commutator arguments has been an extremely
valuable tool when developing iterative methods for problems in fluid dynamics. In [10] for
instance, such an argument was applied in order to develop a solver for the Navier-Stokes
equations which performed well for a wide range of values of mesh-size and viscosity. Since
then, such arguments have also been applied to good effect when deriving iterative schemes
for PDE-constrained optimization problems, for example in [23] to obtain mesh-independent
solvers for time-dependent Stokes control and in [26] to arrive at a mesh- and regularization-
robust solver for a class of Stokes control problems. Also, in [7], commutator arguments for the
Navier-Stokes equations are analyzed for a range of boundary conditions. In this manuscript,
we have used new commutator arguments to derive further mesh- and regularization-robust
solvers for these problems: block diagonal and block triangular.

We have also explained the role of saddle point theory and that of preconditioners for the
Poisson control problem in generating solvers for the more difficult Stokes control problem.
We provided numerical results to justify the potency of this approach and explained the
importance of the pressure regularization term (or lack of it) from an iterative solver point of
view. We believe that the arguments we have introduced in this manuscript may be extended
to generate robust solvers for a class of the harder Navier-Stokes control problems—we will
discuss this in a future paper [16]. In addition, future research in this area could include
the application of these techniques to problems with state or control constraints, boundary
control problems, or time-dependent Stokes-type problems, as well as tackling optimal control
problems derived specifically from real-world data.
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