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LAMINAR-TURBULENT TRANSITION IN PIPE FLOW:

WALL EFFECTS AND CRITICAL REYNOLDS NUMBER∗

HIDESADA KANDA†

Abstract. This article describes possible causes of natural laminar–turbulent transition in circular pipe flow. Our

starting points are the observations that under natural disturbance conditions, transition appears to take place only

in the developing entrance region, as observed in Reynolds’ color-band experiments, and that the critical Reynolds

number Rc has a minimum value of about 2000 when using a sharp-edged uniform radius pipe, as observed in

our earlier color-band experiments. The entrance region is defined as the region from the pipe inlet to the point

where the inlet flow fully develops into Hagen-Poiseuille flow for a sharp-edged entrance pipe. In the case of a

bell-mouth entrance pipe, the entrance region includes the bell-mouth entrance region. We derive for the entrance

region a new ratio of the increase in kinetic energy flux (∆KE flux) to a wall effect, where the wall effect is the radial

wall power (R-Wall-Power) exerted on the wall by the radial component of the viscous term in the Navier-Stokes

equations. In dimensionless form, ∆KE flux is a constant, although R-Wall-Power decreases as the Reynolds number

Re increases. Our previous calculations for the case of a sharp-edged entrance pipe indicate that ∆KE flux ≈ total

R-Wall-Power (T-R-Wall-Power) at Re ≈ 2000. Accordingly, our hypothesis is that Rc can be derived from the

relation between ∆KE flux and T-R-Wall-Power. We discuss, moreover, whether or not this criterion can apply to

different entrance geometries such as the bell-mouth entrances considered by Reynolds.

Key words. hydrodynamic stability, mesh refinement, thermodynamics

AMS subject classifications. 76E05, 65M50, 80A05

1. Introduction.

The notations used in this paper are given in Appendix A at the end of this paper.

1.1. The Reynolds problem. The laminar–turbulent transition in circular pipe flow is

one of the fundamental problems of fluid dynamics. In particular, a major unsolved problem is

to theoretically obtain the minimum critical Reynolds number Rc,min ≈ 2050, which was first

observed by Osborne Reynolds in 1883 [19]. Ever since the pioneering experimental work of

Reynolds, the problem has intrigued scientists, mathematicians, and engineers alike [13].

Reynolds proposed the formula Re = ρDVm/µ, where ρ is the density, D is the circular

pipe diameter, Vm is the mean axial velocity, and µ is the viscosity. He also found two

critical values: an upper critical Reynolds number Rc = 12,800 by using the color-band

method and a lower critical Reynolds number Rc,min ≈ 2050, which he called the real

critical value, by the pressure-loss method. The precise Rc,min value has not yet been agreed

upon unanimously; it has been reported in a range from 1760 [17] to 2320 [21]. Avila et al.

reported Rc,min = 2040 ± 10 using the mean lifetime method for decaying and spreading

turbulence [2]. In this present study, Rc,min is assumed to be about 2050, as measured by

Reynolds. It was furthermore observed by us in color-band experiments that under natural

disturbance conditions, Rc takes a minimum value of about 2050 when using a sharp-edged

entrance pipe [12].

Accordingly, in this paper, we address the following challenges as the Reynolds problems

of laminar-turbulent transition in circular pipe flow:

(1) to theoretically determine a possible cause and reason why the Reynolds number itself

is the primary parameter determining critical Reynolds numbers,

(2) to theoretically derive Rc,min ≈ 2050, and

(3) to theoretically derive Rc ≈ 12, 800.
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1.2. Background. The colloquium “Turbulence transition in pipe flow” was held in

2008 to commemorate the 125th anniversary of O. Reynolds’ original 1883 paper. Various

ongoing research topics were presented at this seminar [4]: traveling waves in pipe flow,

the structure and dynamics of turbulent pipe flow, the structure of a puff, aspects of linear

and nonlinear instabilities leading to transitions, the optimal path to transitions, the critical

threshold in transitions, the critical layer in pipe flow, edge states intermediate between laminar

and turbulent dynamics, and experiments on the decay of turbulent puffs. Then there was

considerable interest in determining the mechanism of transition from laminar to turbulent

flow as well as in the structure of puffs and in turbulence.

Why, however, is it difficult to solve the Reynolds problems? It seems unclear what causes

all the transitions in pipe flows. Regarding the primary parameter of transition, White [27]

states that “Transition depends upon many effects, e.g., wall roughness or fluctuations in

the inlet stream, but the primary parameter is the Reynolds number.” This gives rise to a

new question: why is the Reynolds number the primary parameter determining transition to

turbulence?

Regarding the effects of disturbances, Schneider and Eckhardt [22] state that “Turbulence

in pipe flow has to coexist with the laminar profile since the latter is linearly stable for all

Reynolds numbers. Triggering turbulence hence requires not only a sufficiently high Reynolds

number but also a perturbation of sufficient amplitude. The determination of this ‘double

threshold’ in the Reynolds number and the perturbation amplitude has been the focus of many

experimental, numerical, and theoretical studies.”

1.3. Possible cause and objectives. First, consider the point where transition to turbu-

lence occurs. No transition has yet occurred in the fully developed Poiseuille region under

small to medium amplitude disturbances. Thus, many researchers have stated that the flow

may become turbulent long before it becomes a fully developed Poiseuille flow [7, 8, 15, 28].

Taneda [26] stated that transition in pipe flow occurs only in the entrance region.

Two causes have been proposed for transition: oscillations of disturbances and direct

action of bounding walls on the flow. Most theoretical investigations of transition are concerned

with stability theory based on oscillations of disturbances. However, no theory based on

oscillations of disturbances yields results consistent with experimental observations such as

that Rc,min ≈ 2050, or about the intermittent behavior of turbulence in transition, or about

the hysteresis curve of Rc (Figure 2.2).

On the other hand, Lindgren states that “the experiments indicate that real turbulence—

both in flashes and in continuous turbulent regions—is maintained by direct action of the

bounding walls [16].” Lindgren has investigated the relation between the wall roughness and

the critical Reynolds number. In contrast, we investigate the smooth-surface wall effects on

Rc.

More specifically, the present study is based on three assumptions: (a) transition to

turbulence in pipe flow occurs in the entrance region, (b) possible causes of a transition process

are wall effects, and (c) the type of disturbances is natural and not artificial. The results of this

study will be shown to confirm assumptions (a) and (b).

The objectives of the present study are as follows:

(1) to consider the prerequisites for the transition problem associated with Rc,min ≈ 2050

(Section 2),

(2) to determine a possible cause and reason why Re itself is the primary parameter

determining Rc (Sections 3–6),

(3) to review our previously calculated results for Rc,min [10] (Section 7),

(4) to discuss the differences in Rc (Section 8), and

(5) to consider the magnitude of artificial finite-amplitude disturbances (Section 9).
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So far, we have obtained numerical values of 2040 and 2630 [10] for Rc,min in pipe

flow based on ideas of wall effects. This calculation method was confirmed by obtaining

Rc,min = 910 and 1230 for channel flow, where Re = HVm/ν, H is the spacing between the

parallel plates of the channel and ν is the kinematic viscosity (µ/ρ) [11].

2. Prerequisites for the transition problem.

2.1. The characteristics of Rc.

• Assumptions and quantities.

(i) The fluid is an incompressible, isothermal, Newtonian fluid with constant viscosity and

density, disregarding gravity and external forces.

(ii) The fundamental quantity of laminar–turbulent transition in pipe flow is the critical

Reynolds number Rc.

(iii) The Reynolds number ranges from about 1500 to about 15,000. The value of

Rc depends greatly upon the experimental setup such as the use of a calming chamber,

baffles, honeycomb, and screens. Accordingly, it is desirable for the initial analysis to avoid

geometrically complex pipe entrances. Entrance shapes are limited to a sharp-edged entrance

(St), quadrant-arc rounded entrances (Qa) cut at the pipe inlet, and bell-mouth rounded

entrances (Be) as shown in Figure 2.1. Pipes have smooth-surface walls.

• Types of Rc and disturbances.

(iv) The types of disturbances are simply classified into natural (N) or artificial (A)

categories. Under N-disturbance conditions, there is no artificial disturbance generator in a

pipe. Under A-disturbance conditions, a disturbance generator is installed in a pipe as used

in [9, 15]. The magnitudes of disturbances can be classified qualitatively but unambiguously

into small (S), medium (M), or large (L) categories. For example, under N-S disturbance

conditions, the fluid in a reservoir tank is kept still for at least one hour before measurement in

accordance with Reynolds’ color-band experiments; only then does Rc reach an upper critical

Reynolds number Rc1. In the case of N-M disturbances, for a further example, the fluid in

a tank is kept still for less than 20 minutes, and the state of the fluid in the tank is slightly

disturbed, but the flow state is laminar from the inlet end to a transition point downstream as

seen in our color-band experiments; the Rc type is Rc2. Experimental conditions of type N-L

were used in Reynolds’ pressure-drop experiments, where he used a valve arranged at some

distance upstream from the pipe inlet. The flow state was turbulent from the valve, and the

type of transition was turbulent to laminar flow (reverse transition); the Rc type is Rc3.

(v) Each experimental apparatus has two critical Reynolds numbers: Rc1 and Rc2. Rc3 is

assumed to be about 2050 regardless of the apparatus.

• Rc and transition process.

(vi) Transition takes place by the appearance of an increasing number of turbulent flashes

for increasing Re [16, 19]; Rc1 is assumed to be the Reynolds number at which turbulent

flashes first appear. Rc2 and Rc3 are the Reynolds numbers at which a laminar color-band

recovers from a disturbed turbulent state.

(vii) The transition process must be the same for pipe and channel flows since there exists

Rc,min for both, respectively. In contrast, there is no Rc,min for flow on a flat plate, so that

the transition process for flow on a flat plate is different from those for pipe and channel flows.

2.2. The minimum critical Reynolds number. Let us review the results of our earlier

color-band experiments. Figure 2.1 (cf. [12, Figure 3]) shows the bell-mouth and quadrant-arc

rounded entrances of a test pipe of 2.6 cm diameter and about 155 cm length, along with the

experimental results for Rc1 and Rc2. Figure 2.2 (cf. [12, Figure 5]) shows the values of

Rc1 and Rc2 plotted against the contraction ratio Cb of the quadrant-arc entrance and the

bell-mouth entrance diameters to the pipe diameter.
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(a)

L

L1 L2

D

Joint  of  bellmouth  and  pipe,
and  start  point  of  ruler.

Lb

Db

(b)

D

r

L1

Db

Joint  of  round  entrance  and  pipe,
and  start  point  of  ruler.

Entrance Db r Lb Cb Rc1 Rc2

St 2.6 0.0 - 1 2200 2050

Qa1 2.8 0.1 0.1 1.08 3600 3150

Qa2 3.0 0.2 0.2 1.15 5000 4100

Qa3 3.2 0.3 0.3 1.23 6700 4650

Qa4 3.4 0.4 0.4 1.31 8750 4850

Qa5 3.6 0.5 0.5 1.39 12,200 5200

Be1 4.0 - 1.05 1.54 12,500 5200

Be2 6.07 - 2.6 2.34 12,200 5450

Be3 10.4 - 5.85 4 12,500 5500

Be4 15.6 - 9.75 6 12,200 5500

FIG. 2.1. (a) Bell-mouth entrance and (b) quadrant-arc entrance. Sizes of ten pipe entrance shapes

(D = 2.6 cm, L2 = 150 cm), and experimental results for Rc1 and Rc2; cf. [12, Figure 3 and Table 6].

Rc1 Rc2
Eq.(2) Eq.(3)
Reynolds Rc1>Rc>Rc2

R
e

0

2 0 0 0

4 000

6000

8000

10000

12000

14000
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Contraction ratio Cb

0 1 2 3 4 5 6

FIG. 2.2. Hysteresis curve drawn by connecting two sequences of Rc1 and Rc2 plotted against Cb; cf. [12,

Figure 5].

From Figure 2.2, it can be seen that both Rc1 and Rc2 are almost completely determined

by the small radius of the quadrant-arc rounded entrance (r = 1–5 mm). The values of Rc1 and

Rc2 increase steadily and smoothly as Cb increases from 1 (St) to 1.39 (Qa5), and thenRc1 and

Rc2 reach approximately constant values of 12,200–12,500 and 5200–5500, respectively. The

minimum values of Rc1,min = 2200 and Rc2,min = 2050 were obtained with a sharp-edged

circular pipe. Therefore, the minimum critical Reynolds number of Rc,min ≈ 2050 was

observed for Rc2,min [12] and Rc3,min [19].

• Vena contracta.

Flow through a sharp-edged corner is characterized in general by a convergence of

streamlines in the vicinity of the inlet. At some location downstream of the inlet, however, the

streamlines again can be considered parallel, and the flow area at this location (called the vena
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FIG. 2.3. No vena contracta at a sharp edged entrance in our color band experiment, and a turbulent flash at

29.5 cm downstream from the inlet end (top right position in the picture), Re = 2265.

contracta) is found in general to be less than that at the geometric opening of the pipe inlet [3].

Fox and McDonald [5] state that “If the inlet has sharp corners, flow separation occurs at the

corners, and a vena contracta is formed. The fluid must accelerate locally to pass through the

reduced flow area at the vena contracta.”

In contrast, however, in our color-band experiments, neither a vena contracta nor an

inflection point were observed at the sharp-edged inlet corner, as shown in Figure 2.3, where

Re = 2265. The fluid entered the pipe smoothly, and a turbulent spot suddenly appeared

29.5 cm downstream from the pipe inlet. Similarly, another pipe inlet flow observed experi-

mentally appeared not to have an inflection point at its sharp-edged corner. We thus conclude

that the vena contracta is negligible in color-band experiments using a sharp-edged pipe in a

large water tank.

2.3. Entrance length. The entrance region considered in this study includes bell-mouth

entrances. Thus, the inlet (x = 0) is the pipe inlet for a sharp-edged entrance pipe and is the

bell-mouth inlet end for bell-mouth entrance pipes. The entrance length xe is defined as the

distance from the inlet to the point downstream where the center-line velocity uc reaches 99%
of its fully developed value (uc/Vm = 1.98). Then, the dimensionless entrance length Le is

given [23] by

(2.1) Le =
xe
D Re

= 0.056, Re ≥ 500,

while Le for uc reaching 99.9% of its fully developed value is 0.075 [23]. Since the bell-mouth

axial length is small, Le in (2.1) can be used both for sharp-edged pipes and for bell-mouth

entrance pipes.

2.4. Transition length. Reynolds [19] states that “Under no circumstances would the

disturbance occur nearer to the trumpet than about 30 diameters in any of the pipes, and the

flashes generally but not always commenced at about this distance.” Reynolds used three

straight circular pipes in his color-band experiments. Their diameters were D = 0.7886,

1.527, and 2.68 cm, and their length xp was nearly 5 feet (152 cm) giving dimensionless pipe

lengths xp/D of 193, 100, and 57, respectively. Let us consider the transition length xt. The

dimensionless transition length Lt is defined as the normalized distance from the inlet to the

point where transition to turbulence takes place,

Lt =
xt
D Re

·

In Reynolds’ color-band experiments, xt was more than 30D, but it should be less than

the pipe length 152 cm. Accordingly, for the pipe with D = 2.68 cm, the transition length is

bounded at Re = 12,800, so that

30D < xt < 57D and 0.00234 < Lt < 0.00445.

Consider now our experimental results for the transition length. For the sharp-edged

pipe, under N-S disturbance conditions, xt ranged from about 7D (Lt = 7/2265 = 0.0031) to
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20D (Lt = 20/2250 = 0.0089). Under N-M disturbance conditions, xt ranged from about 4D
(Lt = 4/2160 = 0.0019) to 22.3D (Lt = 22.3/2020 = 0.0110). The transition lengths under

N-S and N-M disturbance conditions are approximately the same. Moreover, for the Be4 bell-

mouth entrance, corresponding to Reynolds’ bell-mouth with Cb = 6 (pipe of D = 2.68 cm),

under N-S disturbance conditions, xt ranged from about 19D (Lt = 19/11590 = 0.0016) to

54D (Lt = 54/11060 = 0.0049) for Rt ≈ 10,000–13,700. These results approximately agree

with Reynolds’ observation of xt > 30D.

In short, under N-S or N-M disturbance conditions, natural transition to turbulence seems

to occur only in the entrance region, particularly in the vicinity of the pipe inlet, but does not

occur at the pipe inlet itself.

2.5. Pressure drop in the entrance region. Here the pressure difference and the pres-

sure drop are defined and distinguished to avoid confusing them. Let the pressure at the inlet

(x = 0, i = 1, see Figure 2.4) be zero.

(i) The axial pressure difference (∆p)x is negative, defined as

(∆p)x ≡ p(x+∆x)− p(x) = pi+1 − pi < 0,

and can be used in finite difference expressions, i.e.,

∂p

∂x
≈

(∆p)x
∆x

·

(ii) The axial pressure drop is positive and usually defined as

∆P(x) = p(0)− p(x) = 0− p(x) = −p(x) > 0.

(iii) There is a significant radial pressure drop (∆p)wc in the radial direction between

the pressure on the wall (pw = p|r=R) and the pressure on the centerline (pc = p|r=0) (see

Figure 7.2):

(∆p)wc = pw − pc < 0.

Note that (∆p)wc cannot be disregarded, whereas the boundary-layer approximations disregard

this radial pressure drop.

(iv) The total pressure drop ∆P from the pipe inlet consists of two components: (a) the

pressure drop based on the fully developed flow, f(x/D), and (b) an additional pressure drop

K(x) due to a momentum change∆KE flux(x) and an accumulated increment in the wall shear

KShear(x) between developing flow and Poiseuille flow [23]; i.e., K(x) = ∆KE flux(x) +
KShear(x). Accordingly, ∆P is expressed as

∆P(x) =
(

f
x

D
+∆KE flux′(x) +KShear(x)

)

(

1

2
ρV 2

m

)

> 0,(2.2)

where the Darcy-Weisbach friction factor f is 64/Re for Poiseuille flow (see (6.10)), and

a prime ’ denotes a dimensionless variable; see (6.4). When using the dimensionless axial

coordinate X = x/(DRe), (2.2) is not a function of Re and can be expressed as

∆P(X) =
(

64X +∆KE flux′(X) +KShear(X)
)

(

1

2
ρV 2

m

)

> 0.

K(x) increases monotonically from 0 at x = 0 to a constant value K(∞) in the fully

developed region, and the experimental value of K(∞) is reported as varying from 1.20 to

1.32 [23]. Note that K(∞) includes an ∆KE flux′ of about 1 (see (6.4) and (6.6)), which is

the increase in kinetic energy flux from the entrance flow to Hagen-Poiseuille flow.
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FIG. 2.4. Mesh system with radial wall force and radial flow force.

3. Wall effects and pressure.

3.1. The wall model.

(i) What are wall effects for determining Rc? We consider why the transition between

laminar and turbulent flow occurs in circular pipes with smooth-surface walls. Roughness

effects of pipe wall surfaces on Rc are excluded in this study.

Panton [18] states about a wall model that “the no-slip condition at the wall means that

the particles are not translating; however they are undergoing a rotation. We might imagine

that the wall consists of an array of marbles, which are rotating but remain at the same location

on the wall.”

In Figure 2.4, the vorticities on the wall (j = J0, r = R− (1/2)∆r ≈ R) are fixed and

rotating but are not moving downstream. We assume that the wall effects are due to forces,

work, energies, and power acting upon fluids by the vorticities on the wall.

(ii) Since axial and radial velocities on the wall are zero, the vorticity on the wall in two

dimensions is defined by

ωθ|r=R ≡
∂v

∂x
−
∂u

∂r
= −

∂u

∂r
= −

du

dr
·(3.1)

Differentiating (3.1) with respect to r gives

dωθ

dr

∣

∣

∣

∣

r=R

= −
d2u

dr2
·(3.2)

(iii) The Navier-Stokes equation in vector form is expressed as

ρ

(

∂V

∂t
− V × ω

)

= −∇

(

p+
1

2
ρV 2

)

− µ∇× ω,(3.3)

where V is the velocity vector and p is the difference of the actual pressure from the hydro-

static [6].

Since V = 0 on the wall, (3.3) reduces to

−µ(∇× ω)|r=R = ∇p < 0.
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The axial component of the curl of vorticity in two dimensions is expressed from its definition:

−µ(∇× ω)x|r=R ≡ −µ
1

r

[

∂

∂r
(rωθ)−

∂ωr

∂θ

]

= −µ
1

r

∂

∂r
(rωθ)

= −µ

(

∂ωθ

∂r
+
ωθ

r

)

=
∂p

∂x
< 0.

(3.4)

Similarly, the radial component of the curl of vorticity is given from its definition:

− µ(∇× ω)r|r=R ≡ −µ

(

1

r

∂ωx

∂θ
−
∂ωθ

∂x

)

= µ
∂ωθ

∂x
=
∂p

∂r
< 0.(3.5)

Hereafter, ω denotes ωθ since ωr and ωx vanish in two dimensions.

4. Axial force and power. In this section, we consider axial forces and powers in the

fully developed Poiseuille region.

4.1. Axial wall and flow forces.

(i) By the wall we mean the fluid particles on the wall [18]. Equation (3.4) indicates that a

negative force in the axial direction is active on the wall by a rotation of the particles resulting

in an axial pressure difference or an axial pressure drop.

(ii) The wall shear τw is expressed as

τw = µ
du

dr

∣

∣

∣

∣

r=R

< 0.(4.1)

The applied forces due to the wall shear τw and the axial pressure difference (∆p)x for the

axial small distance ∆x are related [27] as

2πR(∆x)τw = πR2(∆p)x < 0,(4.2)

where R is the pipe radius. Equation (4.2) shows that the wall shear on the wall equals the

pressure difference in the axial direction in a fluid.

Using (3.4) and (4.2), the wall shear can be expressed from the axial component of the

curl of vorticity as

τw = −
1

2
µR(∇× ω)x

∣

∣

∣

∣

r=R

= −
1

2
µR

(

∂ωθ

∂r
+
ωθ

r

)

=
1

2
R
∂p

∂x
·(4.3)

(iii) We confirm (4.3) in Hagen-Poiseuille flow, where the axial velocity distribution u is

u = 2Vm

[

1−
( r

R

)2
]

.(4.4)

Differentiating (4.4) with respect to r on the wall gives

du

dr

∣

∣

∣

∣

r=R

= −
4Vm
R

and
d2u

dr2

∣

∣

∣

∣

r=R

= −
4Vm
R2

·(4.5)

From (3.1), (3.2), and (4.5), we have

ω|r=R = −
du

dr

∣

∣

∣

∣

r=R

=
4Vm
R

= −R
d2u

dr2

∣

∣

∣

∣

r=R

= R
dω

dr
·(4.6)
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From (4.1) and (4.6), the wall shear is expressed as

τw = µ
du

dr

∣

∣

∣

∣

r=R

= −µ ω|r=R = −µR
dω

dr
= −

4µVm
R

·(4.7)

Accordingly, the axial viscous term of the N-S equations is expressed from (3.4), (4.6), and

(4.7) as

−µR (∇× ω)x|r=R = −µR

(

dω

dr
+
ω

r

)

= −µR

(

4Vm
R2

+
4Vm
R2

)

= −
8µVm
R

= 2τw.

(4.8)

Thus (4.3) is confirmed for Hagen-Poiseuille flow by (4.8). It is clear that the wall shear

or the axial component of the curl of vorticities on the wall is one of the wall effects.

(iv) The left-hand and right-hand terms in equation (4.2) can be called A-Wall-Force and

A-Flow-Force, respectively.

A-Wall-Force = 2πR(∆x)τw = 2πR(∆x)

[

−
1

2
µR(∇× ω)x

]

r=R

= −πµR2(∆x) (∇× ω)x|r=R = −µV (∇× ω)x|r=R < 0,

(4.9)

and

A-Flow-Force = πR2(∆p)x < 0,

where V is the volume for the axial distance ∆x in a pipe.

(v) Note that A-Wall-Force on the wall exerts an equal force A-Flow-Force on a fluid in

the axial direction by Newton’s Second Law of Motion.

(vi) Regarding (1/2)R in (4.3), it is noted from (4.9) that 2πR∆x × (1/2)R = V , i.e.,

the wall surface exerts µ(∇× ω)x|r=R on all the fluids for ∆x in a pipe.

4.2. Axial wall and flow powers. A-Wall-Force does negative work on fluids on the

wall resulting in a pressure difference in the axial direction in a fluid. This negative work can

be called the axial wall power (A-Wall-Power), and the energy loss of the fluid is called the

axial flow power (A-Flow-Power) since their physical dimension is that of power energy/time,

as measured in watts (W = J/s, [kg m2/s3]).

The wall surfaces where A-Wall-Force is active do not move, but the fluids at

0 ≤ r < (R−∆r) relatively travel downstream with a mean velocity Vm. So, it is possible

that A-Wall-Force does negative work on the fluid. A-Wall-Power and A-Flow-Power are

derived by multiplying both sides of (4.2) by Vm:

A-Wall-Power = 2πR(∆x)τwVm = −πµR2(∆x)(∇× ω)x|r=RVm

= −µV(∇× ω)x|r=RVm,
(4.10)

and

A-Flow-Power = πR2(∆p)xVm = Q(∆p)x,(4.11)

where Q = πR2Vm is the volumetric flux.
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4.3. Dimensionless axial wall and flow powers. A-Wall-Power is made dimensionless

by dividing by Q[(1/2)ρV 2
m]; see (6.4). In the case of Poiseuille flow for ∆x, from (4.7) and

(4.10),

A-Wall-Power′ = −
2πR(∆x)[(4µVm)/R]Vm

Q[(1/2)ρV 2
m]

= −
64

Re

∆x

D
= −64∆X,

where 64/Re is the Darcy-Weisbach friction factor for Poiseuille flow.

Similarly, from (4.11),

A-Flow-Power′ =
πR2(∆p)xVm
Q[(1/2)ρV 2

m]
= (∆p′)x.

It is clear from (2.2) that A-Flow-Power′ = A-Wall-Power′ in the Poiseuille region,

whereas A-Flow-Power′ 6= A-Wall-Power′ in the developing entrance region. A-Flow-Power′

corresponds to the left-hand term of (2.2).

5. Radial force and power.

In this section, we consider radial forces and powers in the developing entrance region.

5.1. Radial wall and flow forces.

(i) We consider the radial wall shear τrw. As τw is expressed as (4.3), τrw can be defined

by multiplying both sides of (3.5) by (1/2)R:

τrw = −
1

2
µR(∇× ω)r

∣

∣

∣

∣

r=R

=
1

2
µR

∂ω

∂x
=

1

2
R
∂p

∂r
< 0.(5.1)

The radial wall force (R-Wall-Force) is expressed from (5.1) as

R-Wall-Force = 2πR(∆x)τrw = −πµR2(∆x)(∇× ω)r = −µV(∇× ω)r

= πµR2(∆ω)x
∣

∣

r=R
= πµR2(ωi+1 − ωi)

∣

∣

r=R
< 0.

(5.2)

(ii) R-Wall-Force must exert an equal radial flow force (R-Flow-Force) on the fluid in

radial direction resulting in the radial pressure drop (∆p)wc. Then R-Flow-Force is expressed

for ∆x as

R-Flow-Force = 2π(R−∆r)(∆x)(∆p)wc ≈ 2πR∆x(∆p)wc < 0.(5.3)

Thus

τrw ≈ (∆p)wc and R-Wall-Force ≈ R-Flow-Force.(5.4)

(iii) Accordingly, from (3.3), (5.2), and (5.3), it is possible to assume the following process

for the acceleration of a fluid in axial direction:

(a) R-Wall-Force on the wall exerts an equal force R-Flow-Force on the fluid in the radial

direction by Newton’s Second Law of Motion.

(b) R-Wall-Force and R-Flow-Force cause a fluid near the wall to move towards the

centerline in the radial direction, as displayed in Figure 2.4, resulting in an increase in kinetic

energy; cf. Section 6.1.

(c) An increase in kinetic energy means that the pressure of the fluid is transformed into

an increase in kinetic energy of the fluid, as can be seen form the first term on the right-hand

side of (3.3). R-Flow-Force shows the result of this change.
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(d) R-Flow-Force shows that the pressure on the centerline is higher than that on the wall.

As explained in (b) above, however, the fluid near the centerline does not move towards the

wall.

(e) Thus R-Wall-Force and R-Flow-Force act as acceleration forces together with the

continuity equation. Hence, the onset of the transition should depend on whether or not the

acceleration power provided by R-Wall-Force exceeds a required value of ∆KE flux.

5.2. Radial flow work. R-Wall-Force yields a radial velocity v and a pressure drop

(∆p)wc in the radial direction. Using the pressure drop, the radial flow work (R-Flow-Work)

done on a fluid by R-Wall-Force is considered.

Here, on the basis of thermodynamics [14], the variation of the enthalpy H with pressure

p at a fixed temperature can be obtained from the definition

H ≡ Uint + pV,

where Uint is the internal energy and V is the volume. For most solids and liquids, at a constant

temperature the internal energy Uint(T,V) does not change since

dUint =

(

∂Uint

∂T

)

V

dT +

(

∂Uint

∂V

)

T

dV = 0,

where T is the temperature. Since the change in volume is rather small unless changes in

pressure are very large, a change in enthalpy ∆H resulting from a change in pressure ∆p can

be approximated by

∆H ≈ ∆(pV) ≈ p∆V + V∆p ≈ V(∆p).(5.5)

Equation (5.5) can be applied to incompressible flow as well. R-Flow-Work is expressed

from (5.5) as

R-Flow-Work = V(∆p)wc = πR2(∆x)(∆p)wc.(5.6)

Note that the dimension of V(∆p)wc is physically equivalent to energy, and by multiplying

by frequency (the inverse of the period ω|r=R), the physical dimension of V(∆p)wc(ω|r=R)
becomes power; see (5.12).

5.3. Radial flow power.

(i) We begin by calculating the work done on the fluid from (5.6) for the space between

xi and xi+1, ∆x, as seen in Figure 2.4. The volume V on which R-Wall-Force acts is simply

expressed as

V = πR2∆x.(5.7)

Next, the pressure drop in the radial direction is approximated by the mean difference in

pressure between xi and xi+1,

(∆pi)wc =
1

2
[(pi,J0 + pi+1,J0)− (pi,1 + pi+1,1)].(5.8)

(ii) The period during which R-Wall-Force acts on the flow passing along ωi,J0 and

ωi+1,J0 on the wall is considered. The period ∆t∗(i) may be given by dividing the axial mesh

space ∆x by the mean velocity at two points (i, J1) and (i+ 1, J1),

∆t∗(i) =
∆x

(1/2)(ui,J1 + ui+1,J1)
≈

∆x

ui+1/2,J1
·
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However, if this ∆t∗(i) is the correct period, an inconsistency is encountered. Three simple

cases are considered as examples to illustrate this inconsistency.

(a) First, if the mesh aspect ratio is ∆x = 2∆r (m = 2), as observed in Figure 2.4, where

∆x is constant, then R-Flow-Work(a) and R-Flow-Power(a) can be expressed as

R-Flow-Work(a) = V(∆p)wc,(5.9)

R-Flow-Power(a) =
V(∆p)wc

∆x/ui+1/2,J1
=

V(∆p)wc ui+1/2,J1

2∆r
.

(b) Next, if ∆x and V are equally divided into two parts, then ∆r + ∆r = ∆x and

V1 + V2 = V . R-Flow-Work(b) in V is calculated by adding the work in V1 and the work in

V2,

R-Flow-Work(b) = V1(∆p1)wc + V2(∆p2)wc ≈ V(∆p)wc.(5.10)

R-Flow-Power(b) in V is calculated by adding the power in V1 and the power in V2,

R-Flow-Power(b) =
V1(∆p1)wc

∆r/ui+1/4,J1
+

V2(∆p2)wc

∆r/ui+3/4,J1
≈

V(∆p)wc ui+1/2,J1

∆r

≈ 2R-Flow-Power(a),

assuming that (∆p1)wc ≈ (∆p2)wc ≈ (∆p)wc and ui+1/4,J1 ≈ ui+3/4,J1 ≈ ui+1/2,J1. From

(5.9) and (5.10), R-Flow-Work(a) equals R-Flow-Work(b). Comparing R-Flow-Power(a)
and (b), however, R-Flow-Power(b) is two times R-Flow-Power(a), although the volume and

position are the same.

(c) In numerical calculations, usually ∆x = m∆r (m = 1, 2, 3, . . . ). To avoid the

inconsistency between (a) and (b) above, the following period is required for a general mesh

system of ∆x = m∆r:

∆ti =
∆r

(1/2)(ui,J1 + ui+1,J1)
≈

1

(1/2)(ωi,J0 + ωi+1,J0)
·(5.11)

This period in (5.11) is based on the following assumptions: a rotation of a fluid particle on

the wall yields a vortex and a vorticity. Then the curl of vorticity yields R-Wall-Force from

(5.2). The diameter of vorticities on the wall is ∆r. Accordingly, R-Wall-Force is produced

between two continuous vortexes or per ∆r.

(iii) R-Flow-Power is derived from (5.7), (5.8), and (5.11):

R-Flow-Power = πR2∆x(∆p)wc ω|r=R = V(∆p)wc ω|r=R.(5.12)

5.4. Radial wall work and wall power.

(i) The radial wall work (R-Wall-Work) approximately equals R-Flow-Work. From (3.5),

(5.1), (5.4), and (5.6), R-Wall-Work can be expressed from R-Flow-Work by replacing (∆p)wc

with −(1/2)µR(∇× ω)r|r=R:

R-Wall-Work = πR2(∆x)τrw = −
1

2
πµR3(∆x)(∇× ω)r|r=R =

1

2
πµR3(∆ω)x|r=R.

(ii) The radial wall power (R-Wall-Power) is obtained by multiplying R-Wall-Work by

the vorticity ω|r=R:

R-Wall-Power =
1

2
πµR3ω(∆ω)x|r=R.(5.13)

Equation (5.13) approximately equals (5.12):

R-Wall-Power ≈ R-Flow-Power.
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6. A criterion for determining Rc.

6.1. Kinetic energy flux.

(i) Consider the kinetic energy flux (KE flux) at the inlet. The KE flux varies with inlet

shapes such as bell-mouths and with radial velocities. If the velocity profile is the mean

velocity Vm only, then the kinetic energy flux across the inlet is given by

KE fluxMean =

∫ R

0

(2πrdr)Vm

(

1

2
ρV 2

m

)

=
1

8
πρD2V 3

m = Q

(

1

2
ρV 2

m

)

.(6.1)

Note that the physical dimension of KE flux is that of power. In Hagen-Poiseuille flow, the

axial velocity distribution is given by (4.4), and the kinetic energy flux of Hagen-Poiseuille

flow is

KE fluxPoiseuille =

∫ R

0

(2πrdr)

(

1

2
ρ

)

{

2Vm
[

1− (
r

R
)2
]

}3

dr = 2Q

(

1

2
ρV 2

m

)

.(6.2)

Let the kinetic energy flux of a fluid at the pipe inlet be KE fluxInlet. Then, the ∆KE flux

is expressed as

∆KE flux = KE fluxPoiseuille − KE fluxInlet.

(ii) In numerical calculations, dimensionless variables denoted with a prime (′) are used:

x′ =
x

D
r′ =

r

D
, ω′ =

ω

Vm/D
, p′ =

p

(1/2)ρV 2
m

,

t′ =
Vm
D
t, ψ′ =

ψ

D2Vm
, X ′ =

x

DRe
,

(6.3)

where t′ is the time, ψ′ is the stream function, and X ′ is the axial coordinate. Note that the

dimensionless axial coordinate x′ (= x/D) is used for the calculations, and X ′ (= x/(D Re))
is used in our figures and tables.

(iii) KE flux and ∆KE flux are made dimensionless by dividing by KE fluxMean. From

(6.1) and (6.2), KE flux′Mean = 1 and KE flux′Poiseuille = 2. The dimensionless ∆KE flux is given

by

∆KE flux′ =
KE fluxPoiseuille − KE fluxInlet

KE fluxMean

=
∆KE flux

Q[(1/2)ρV 2
m]
.(6.4)

6.2. Determination of Rc.

(i) It appears likely that laminar–turbulent transition always occurs in the developing

entrance region, where flow develops into Hagen-Poiseuille flow. In that case, KE flux

increases. On the other hand, there is no R-Wall-Power or ∆KE flux in the Poiseuille region.

Hence, it is assumed that R-Wall-Force is a possible cause for the flow development and

R-Wall-Power is used for ∆KE flux in the developing region.

Let the total R-Wall-Power be T-R-Wall-Power. Thus, the criteria for determining Rc are

|T-R-Wall-Power|







> ∆KE flux, transition does not occur,

= ∆KE flux, Re = Rc, and

< ∆KE flux, transition occurs.

(6.5)

(ii) When |T-R-Wall-Power| > ∆KE flux, the difference between |T-R-Wall-Power| and

∆KE flux might be maintained in the internal energy of the fluid, restoring to the pressure of

the fluid.
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(iii) Let the total R-Flow-Power be T-R-Flow-Power. Since R-Flow-Power approximately

equals R-Wall-Power, the criterion for determining Rc are also

|T-R-Flow-Power|







> ∆KE flux, transition does not occur,

= ∆KE flux, Re = Rc, and

< ∆KE flux, transition occurs.

6.3. Sharp-edged inlet pipe and Rc,min.

(i) Rc is Rc,min when using a sharp-edged inlet pipe under natural disturbance conditions

in a water tank. For a sharp-edged pipe, it is assumed that KE fluxInlet = KE fluxMean.

∆KE flux′ is calculated from (6.1), (6.2), and (6.4) as

∆KE flux′ =
2Q[(1/2)ρV 2

m]−Q[(1/2)ρV 2
m]

Q[(1/2)ρV 2
m]

= 1.(6.6)

If KE fluxInlet 6= KE fluxMean, then ∆KE flux′ 6= 1.

(ii) For a sharp-edged inlet pipe, R-Wall-Power′ is reduced from (5.13) to

R-Wall-Power′ =
(1/2)πµR3ω(∆ω)x

Q[(1/2)ρV 2
m]

=
ω′(∆ω)′x

2Re

∣

∣

∣

∣

r=R

,

and

|T-R-Wall-Power′| =
1

2Re

I1
∑

i=2

|ω′(∆ω)′x|r=R ,(6.7)

where if I1(= I0− 1) indicates the Poiseuille region, then ω′|r=R = 8 from (4.6) and (6.3).

If |T-R-Wall-Power′| = 1, then Rc,min is obtained from (6.7) as

Re = Rc,min =
1

2

I1
∑

i=2

|ω′(∆ω)′x|r=R .(6.8)

It is noted [27] that “Equations (6.7) and (6.8) show a possible answer to why Re is the primary

parameter for laminar-turbulent transition in pipe flow.”

(iii) The dimensionless R-Flow-Power is obtained from (5.12) as

|R-Flow-Power′| =
|πR2(∆x)ω(∆p)wc|

Q[(1/2)ρV 2
m]

= |(∆x′)ω′(∆p′)wc|,

and

|T-R-Flow-Power′| =

I1
∑

i=2

|(∆x′)ω′(∆p′)wc|.(6.9)

If |T-R-Flow-Power′| = 1, then Re = Rc,min.

Equations (6.7) and (6.9) can be solved by an interpolation method with varying Re.

6.4. Stability of Poiseuille flow.

(i) We consider the question why Poiseuille flow is stable by using the shear stress

µ(du/dr). Let the shear forces exerted on a fluid by shear stresses at r and (r +∆r) for ∆x
be τ -force1 and τ -force2, respectively. From (4.4),

τ -force1 = (2πr∆x)µ
du

dr
= −

8πµVm∆x(r
2)

R2
,



ETNA
Kent State University

http://etna.math.kent.edu

562 H. KANDA

τ -force2 = [2π(r +∆r)∆x]µ
du

dr
= −

8πµVm∆x(r +∆r)2

R2
·

Then the shear force per unit volume is expressed by subtracting τ -force1 from τ -force2
resulting in the constant axial pressure difference:

τ -force2 − τ -force1

2πr∆r∆x
= −

8µVm
R2

= −
32µVm
D2

(1/2)ρV 2
m

(1/2)ρV 2
m

= −
64µ

ρDVm

1

D

(

1

2
ρV 2

m

)

= −
64

Re

1

D

(

1

2
ρV 2

m

)

=
(∆p)x
∆x

.

(6.10)

From (6.10), the Darcy-Weisbach friction factor f = 64/Re in (2.2) is obtained.

Thus the constant shear force of (−8µVm/R
2) is active across the radius in the entire

Poiseuille region, so that transition to turbulence will not occur in the Poiseuille region.

(ii) Our earlier calculated results of the axial velocity development [25] show that the

velocity distribution is concave in the central portion for X < 0.0002 at Re = 2000 and

appears approximately flat in the central portion for 0.0003 < X < 0.004. It is clear from the

calculated results that the magnitude of shear force per unit volume near the wall is larger than

that in the central portion resulting in a difference in energy of the fluid in the radial direction.

Therefore, differences in the shear force and in the energy of a fluid in radial direction trigger

a transition to turbulence in the developing entrance region.

7. Calculation of Rc,min.

Part of this section refers to our earlier calculations [10]. The notational primes denoting

dimensionless expressions are hereafter elided for simplicity.

7.1. Governing equations. We introduce the stream function and vorticity formulae

in two-dimensional cylindrical coordinates for the governing equations to avoid the explicit

appearance of the pressure term. Accordingly, the velocity fields are determined without any

assumptions concerning pressure. Subsequently, the pressure distribution is calculated using

values of the velocity fields.

Let ψ be the stream function. The dimensionless transport equation for the vorticity ω is

expressed as

∂ω

∂t
−

1

r

∂ψ

∂x

∂ω

∂r
+

1

r

∂ψ

∂r

∂ω

∂x
+
ω

r2
∂ψ

∂x
=

1

Re

{

∂

∂r

[

1

r

∂(rω)

∂r

]

+
∂2ω

∂x2

}

·

The Poisson equation for ω is derived from the definition of ω, i.e.,

− ω = ∇2ψ =
∂

∂r

(

1

r

∂ψ

∂r

)

+
∂2

∂x2

(

ψ

r

)

,

where only the angular (θ) component of ω in a two-dimensional flow field is effective, and

thus ω denotes ωθ. The axial velocity u and radial velocity v are defined as derivatives of the

stream function, i.e.,

u =
1

r

∂ψ

∂r
, v = −

1

r

∂ψ

∂x
.(7.1)

The pressure can be calculated from the steady-state form of the N-S equations. The

pressure distribution for the x-partial derivative is

∂p

∂x
= −2

(

u
∂u

∂x
+ v

∂u

∂r

)

+
2

Re

(

∂2u

∂x2
+

1

r

∂u

∂r
+
∂2u

∂r2

)

,(7.2)
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and that for the r-partial derivative is

∂p

∂r
= −2

(

u
∂v

∂x
+ v

∂v

∂r

)

+
2

Re

(

∂2v

∂x2
+

1

r

∂v

∂r
−

v

r2
+
∂2v

∂r2

)

.(7.3)

Since u and v are known at every point from (7.1), a smooth pressure distribution that satisfies

both (7.2) and (7.3) is calculated using the Poisson equation for the pressure [20],

∇2p =
∂2p

∂x2
+
∂2p

∂r2
+

1

r

∂p

∂r
= −2

[

(

∂v

∂r

)2

+ 2
∂u

∂r

∂v

∂x
+

(

∂u

∂x

)2

+
v2

r2

]

.(7.4)

Initial values are determined using (7.2), and then (7.4) is used to obtain better solutions.

7.2. Numerical method and the mesh system. The finite difference equations for both

the stream function-vorticity and the pressure are solved by the Gauss-Seidel iterative method.

This computational scheme uses the Forward-Time, Centered-Space (FTCS) method. The

scheme has second-order accuracy in the space variables and first-order accuracy in time. The

rectangular mesh system used is schematically illustrated in Figure 2.4, where I0 and J0 are

the maximum coordinates for axial and radial mesh points, respectively, and I1 = I0− 1 and

J1 = J0− 1. J0 is located on the wall, and J1 is located at the wall.

To calculate R-Wall-Power and R-Flow-Power, two mesh systems (b) and (c) are used

for four Reynolds numbers, 1000, 2000, 4000, and 10,000 (cf. [10]): (b) I0 = 1001, J0 =51,

∆X = 0.00002, ∆x = Re∆X , and max X = 0.02, and (c) J0 =101, with other parameters

the same as for (b).

7.3. Vorticity on the wall. The vorticity boundary condition on no-slip walls is derived

from (3.1) as ω|r=R = −du/dr. A three-point, one-sided approximation for (3.1) is used to

maintain second-order accuracy,

(7.5) ω|r=R = ωi,J0 ≈ −
3ui,J0 − 4ui,J1 + ui,J2

2∆r
=

4ui,J1 − ui,J2
2∆r

.

The boundary conditions for the axial velocity at the pipe inlet (i = 1) are approximated as

(7.6) u1,j = 1, 1 ≤ j ≤ J1, and u1,J0 = 0.

Table 7.1 and Figure 7.1 show the vorticities on the wall. Our major conclusions for the

vorticity distribution are:

(i) A large value of vorticity may appear at a pipe inlet edge. According to (7.5) and (7.6),

ω1,J0 at the pipe inlet is 150 for J0 = 51 (∆r = 0.01) and 300 for J0 = 101 (∆r = 0.005);

i.e., if ∆r → 0, then ω1,J0 → ∞. In the FTCS method, ω1,J0 is not used, so that reasonable

values of ω|r=R can be observed in Table 7.1 and Figure 7.1.

(ii) It is clear from Table 7.1 that for X ≥ 0.00002, the vorticity on the wall is approx-

imately the same for J0 = 51 and 101 but varies somewhat with Re. For X ≥ 0.0001 the

vorticity on the wall is independent of Re and the size of ∆r.

7.4. Radial pressure drop along the pipe. A natural transition occurs where X is less

than 0.01 experimentally, so the pressure drop for X ≤ 0.02 was calculated. To verify the

accuracy of the calculations, the calculated results for the pressure drop are compared with

Shapiro’s experimental results [24] as displayed in Figure 7.2(a) through (d) (cf. Figures. 7–10

in [10]), where zz = X .
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TABLE 7.1

Vorticity vs. X and Re, (b) J0 = 51 and (c) J0 = 101.

X 1000-b 2000-b 4000-b 10000-b 1000-c 2000-c 4000-c 10000-c

0.00002 100.2 83.3 70.3 60.8 112.4 85.0 69.8 59.6

0.00004 66.0 49.8 41.5 38.8 55.6 42.8 37.9 37.3

0.00006 46.7 36.0 32.6 33.5 38.5 32.6 31.5 33.5

0.00008 36.4 30.3 29.6 31.6 31.8 28.9 29.5 31.8

0.0001 31.0 27.7 28.4 30.3 28.4 27.1 28.4 30.4

0.0002 23.1 24.1 25.4 25.8 22.7 24.1 25.5 25.9

0.0005 19.1 20.0 20.2 20.1 19.1 20.1 20.3 20.2

0.001 16.3 16.6 16.6 16.6 16.4 16.7 16.7 16.6

0.005 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0

0.01 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6

0.02 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8

(b) J0 = 51 (c) J0 = 101

FIG. 7.1. Vorticity vs. X for Re = 1000, 2000, 4000, and 10,000.

The major conclusions for the radial pressure distribution are as follows:

(i) From Figure 7.2, the radial pressure difference |(∆p)wc| decreases as Re increases;

i.e., |R-Flow-Power| drops with Re.

(ii) Consider the above item in detail. So far, three major aspects have been studied

regarding phenomena in the entrance region [6]: (a) the pressure difference between any two

sections in axial direction, (b) the velocity distribution at any section, and (c) the length of the

entrance region Le. According to many previous investigations, variables such as velocity and

pressure distributions become similar and independent of the Reynolds number when they are

plotted against the dimensionless distance X (= x/(DRe)).

Accordingly, it is important to find variables which decrease in the X coordinate as Re

increases since transition occurs as Re increases. For that purpose we identified R-Wall-Force,

R-Wall-Power, R-Flow-Force, R-Flow-Work, and R-Flow-Power, presented here for the first

time.

(iii) (∆p)wc can be used to calculate R-Flow-Power.

(iv) It is necessary to numerically calculate (∆p)wc with varying mesh systems and with

varying inlet boundary conditions to obtain more precise values of (∆p)wc.

7.5. Calculation of Rc,min. |T-R-Wall-Power| and |T-R-Flow-Power| are obtained from

(6.7) and (6.9), respectively, and the calculated results are displayed in Figure 7.3, where the

minimum critical Reynolds number Rc,min is obtained via linear interpolation.
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(a) Re = 1000 (b) Re = 2000
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(c) Re = 4000 (d) Re = 10,000
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FIG. 7.2. Difference in pressure drop between on the wall and on the centerline (∆p)wc, J0 = 101, where

zz = X = x/(D Re).

(a) |T-R-Wall-Power| (b) |T-R-Flow-Power|

Re-mesh 1000-b 2000-b 4000-b 10000-b 1000-c 2000-c 4000-c 10000-c

TRWP 2.494 0.859 0.305 0.091 3.143 0.895 0.301 0.087

Rc,min 1910 1950

TRFP 1.789 1.183 0.747 0.427 1.497 0.952 0.574 0.265

Rc,min 2840 1910

FIG. 7.3. Rc,min based on (a) |T-R-Wall-Power| (TRWP) and |T-R-Flow-Power| (TRFP) for mesh systems (b)

J0 = 51 and (c) J0 = 101.

For |T-R-Wall-Power| and J0 = 51,

Rc,min − 1000

2000− 1000
=

1− 2.494

0.859− 2.494
and Rc,min = 1910.

Similarly, Rc,min = 1950 for J0 = 101. For |T-R-Flow-Power|, Rc,min = 2840 for J0 = 51,

and 1910 for J0 = 101.

In the case of |T-R-Wall-Power|, both calculated values of Rc,min are close to Reynolds’

experimental value of 2050. When using |T-R-Flow-Power|, the calculated value for J0 = 51
is somewhat higher than the experimental value, although the value for J0 = 101 is close to the
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experimental value. Approximations for the pressure field in a pipe needs to be reconsidered

in future investigations.

In summary, |T-R-Wall-Power| and |T-R-Flow-Power| vs.∆KE flux are possible methods

for calculating Rc.

8. Discussion of the difference in Rc.

8.1. Difference between Rc1,min and Rc2,min. Let the flow state be laminar. It is

assumed that ∆KE fluxVariance is the variance from KE fluxMean if the inlet velocity is not the

mean velocity Vm and that ∆KE flux includes the inlet loss Kinlet due to inlet disturbances.

Accordingly, the required kinetic energy flux for the development into Hagen-Poiseuille flow

is described as

∆KE flux = KE fluxPoiseuille − KE fluxInlet +KInlet

= KE fluxPoiseuille − (KE fluxMean +∆KE fluxVariance) +KInlet

= 1−∆KE fluxVariance +KInlet,

(8.1)

where KE fluxPoiseuille = 2, KE fluxMean = 1 (see Section 6.1).

There are two possible terms in (8.1) to which the difference between our experimental

values Rc1,min ≈ 2200 and Rc2,min ≈ 2050 might be ascribed: ∆KE fluxVariance and KInlet.

Recall from (6.5) that ∆KE flux is equal to |T-R-Wall-Power| when Re is Rc.

First, in the case that ∆KE flux varies and KInlet = 0, if ∆KE flux is assumed to be

inversely proportional to Re around Re = 2000–2300, then ∆KE flux at Re = 2200 is approxi-

mated by

∆KE fluxRc1,min
× 2200 = ∆KE fluxRc2,min

× 2050.

Then,

∆KE fluxRc2,min
= 1, ∆KE fluxRc1,min

≈ 0.932, and ∆KE fluxVariance ≈ 0.068.

The velocity distribution for turbulent flow in a pipe is flatter than that for laminar flow.

Thus, the value of 0.068 for ∆KE fluxVariance is possible for the difference between Rc1,min

and Rc2,min. Figure 8.1(a) conceptually shows the difference between Rc1,min and Rc2,min

in the first case.

Second, if ∆KE fluxVariance = 0 and KInlet 6= 0, then

∆KE fluxRc1,min
× 2200 = (∆KE fluxRc2,min

+KInlet)× 2050.

Then,

∆KE fluxRc2,min
= 1, and KInlet ≈ 0.073, ∆KE fluxRc1,min

= 1.(8.2)

Here, both velocity distributions at the inlet are uniform and ∆KE flux = 1. The assumption

of KInlet = 0.073 causes the difference between Rc1,min and Rc2,min. Exact calculations and

experiments will determine which case is operative in future investigations.

8.2. Effects of the bell-mouth entrance on Rc. R-Wall-Power is generated on the walls

of a bell-mouth entrance and a pipe, indicating that R-Wall-Power depends upon Re when the

entrance shape is fixed. Here, it is considered referring to Figure 8.1(b) why and how Rc2 is

about 5500 for the Be4 bell-mouth entrance with Cb = 6 as displayed in Figure 2.2. Let the

average velocity at the bell-mouth inlet end, Vbell, be Vm/C
2
b . The increase in kinetic energy
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FIG. 8.1. Two parameters, |T-R-Wall-Power| (TRWP) and ∆KE flux (DKE) to determine Rc: (a) Rc1,min =

2200 and Rc2,min = 2050 for sharp edged pipe, and (b) Rc2 ≈ 5500 for Be4 bell-mouth entrance with Cb = 6.

flux between the bell-mouth inlet end and the Poiseuille region is approximated in dimensional

form by

∆KE fluxBell =
π

4
ρD2V 3

m −
π

8
ρ

1

C4
b

D2V 3
m = Q(

1

2
ρV 2

m)(2−
1

C4
b

).(8.3)

The dimensionless form of (8.3) is given by

∆KE fluxBell = 2−
1

C4
b

.

From this relation, the ∆KE flux value increases from 1 to 2 as Cb increases.

9. Questions about disturbances.

9.1. Disturbance amplitude.

(i) Flow in the entrance region is sensitive to N-S disturbances, whereas A-L distur-

bances are required to trigger transition in a Hagen-Poiseuille flow. Hence, are there double

disturbance standards for transitions in the entrance flow and Hagen-Poiseuille flow?

(ii) Consider the disturbance loss coefficient. A pipe system has many fitting losses,

including entrance shape, bends, elbows, valves, expansions, and contractions. They can be

aggregated into a single total system loss using the pressure drop equation (2.2). The pressure

drop ∆P , head loss ∆h, and fitting loss coefficient K for a valve, device, or fitting are related

by

∆P = K
(1

2
ρV 2

m

)

= ρg(∆h).(9.1)

The loss coefficient K is derived from (9.1) as

K =
∆P

(1/2)ρV 2
m

=
∆h

V 2
m/(2g)

·(9.2)

Next, the power dissipation of a valve generating continuous disturbances is considered.

Power dissipation = Q(∆P) = QK
(1

2
ρV 2

m

)

,
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where the dimensions are those of power. On the other hand, the energy of a pulse disturbance

is given by

Energy = Q(∆t)K
(1

2
ρV 2

m

)

= Q(∆t)(ρg∆h).

To compare the magnitude of a pulse disturbance with that of a continuous disturbance,

the width ∆t of the pulse disturbance must be a single second so that the integrated magnitude

of the pulse becomes power. That is, continuous disturbances are divided into a series of single-

second discrete disturbances, and each one-second discrete disturbance is compared with the

one-second pulse disturbance using the same units of power. If ∆t for a pulse disturbance is

less than one second, then the value of ∆t can be used as a non-unit weight ∆t of the pulse

disturbance.

As a result, the magnitude of disturbances expressed in the dimension of power is given as

Disturbance magnitude =







QK
(

1

2
ρV 2

m

)

, continuous pulse of ∆t ≥ 1,

Q(∆t)K
(

1

2
ρV 2

m

)

, pulse of ∆t < 1.

In a pipe system, since Q and (1/2)ρV 2
m are constant, the disturbance magnitude reduces to a

coefficient:

Disturbance loss coefficient =

{

K, continuous pulse of ∆t ≥ 1,
(∆t)K, pulse of ∆t < 1.

(9.3)

(iii) Consider Hof et al.’s disturbance amplitude [9]. Let ǫ = ǫ(Re) denote the minimal

amplitude of all finite perturbations that can trigger transition. If ǫ scales with Re according

to ǫ = O(Reγ) as Re → ∞, then what is the value of the exponent γ? Hof et al. obtained

γ = −1 for 2000 < Re < 18,000 using a single “boxcar” rectangular pulse of fluid, injected

tangentially into a flow via a ring of six equally spaced holes, from which the pressure trace of

the perturbation was observed. Then, D = 20 mm, ∆h = 37 mm H2O, ∆t = 1.2 s (length =

6D), and Vm = 0.1 m/s at Re ≈ 2000. Thus, the loss coefficient K for the pulse disturbance is

calculated from (9.2) and (9.3) as

K =
37× 10−3

0.12/(2× 9.8)
= 72.5.

For example, the values of K in a screwed 20-mm-pipe-fitting system are 10 for a glove valve,

0.28 for a gate valve, and 6.1 for an angle valve; cf. [1, Table 1 in ASHRAE Handbook 22.2].

The amplitude of the injected-pulse disturbance of K = 72.5 is much larger than that of

these valves. Therefore, it is difficult to compare N-S disturbances in the inlet flow and A-L

disturbances injected into Hagen-Poiseuille flow.

(iv) What is the magnitude of natural disturbances? The disturbance loss coefficient KDist

may be expressed as

KDist =
(Vm + u′m)2 − V 2

m

V 2
m

,(9.4)

where u′m is the axial velocity perturbation in Vm.

The perturbations in turbulent flow were observed as u′c/Vc ≈ 0.035 for x/D > 60,

where the subscript ‘c’ denotes centerline; see [29, Figure 5]. If u′c/Vc ≈ u′m/Vm, then KDist

is obtained from (9.4): KDist = 1.0352 − 1 ≈ 0.071. The disturbance loss of KDist = 0.071

is much less than the value of |T-R-Wall-Power| ≈ 1 around Re = 2000, so that R-Wall-Force

can depress disturbed flow and change it into laminar flow.

Accordingly, it may be stated that a possible cause of the onset of transition is the wall

effects exerted by R-Wall-Force rather than an oscillation of disturbances.
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Conclusions. A definite and fundamental problem of fluid dynamics is to theoretically

obtain Reynolds’ findings of Rc,min ≈ 2050 and Rc1 = 12,800 for the transition to turbulence

in circular pipe flow. It seems that a transition in circular pipe flows always occurs in the

developing entrance region, where the axial velocity distribution develops from an uniform

flow at the inlet to the Poiseuille profile, and the kinetic energy of the flow increases, i.e., that

a ∆KE flux exists.

In this paper we have studied this flux by the introduction of R-Wall-Power, which arises

due to the radial component of the viscous term (R-Wall-Force) in the Navier-Stokes equations

on the wall.

Accordingly, the hypothesized criterion for laminar-turbulent transition can be tersely

expressed as follows: transition occurs if and only if |T-R-Wall-Power| < ∆KE flux. The

criterion simply implies that if a pipe flow develops into Hagen-Poiseuille flow, then transition

does not occur, and if not, transition occurs.

R-Wall-Power clarified that under natural disturbance conditions, (i) R-Wall-Power and

∆KE flux are effective only in the entrance region, so that the transition occurs only in

the entrance region, (ii) R-Wall-Force is a possible cause of a transition process, (iii) the

Reynolds number becomes a critical Reynolds number, i.e., Re =Rc when |T-R-Wall-Power| =

∆KE flux, and (iv) the Rc value depends upon both the entrance shape and the flow conditions

at the inlet. Thus, Rc takes a minimum value of about 2050 only when using a sharp-edged

entrance pipe.

Future investigations will be (i) to numerically calculate T-R-Wall-Power with varying

mesh systems and with varying inlet boundary conditions, and (ii) to determine why and how

Rc takes values of about 5500 and 12,800 when using a bell-mouth entrance.
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Appendix A. Notation.

A = artificial disturbance condition

Be = bell-mouth entrance pipe

Cb = contraction ratio (Db/D)

D = pipe diameter

Db = bell-mouth and quadrant-arc inlet diameter

f = Darcy-Weisbach friction factor, (2.2)

H = enthalpy

i = axial point of mesh system

I0 = maximum axial mesh point

j = radial point of mesh system

J0 = maximum radial mesh point

K = minor pressure loss

KDist = inlet disturbance loss, (9.4)

KInlet = inlet disturbance loss, (8.2)

Le = dimensionless entrance length (xe/(DRe))
N = natural disturbance condition

p = pressure

P = pressure (P = −p)

Q = volumetric flux ((π/4)D2Vm)

r = radial coordinate; radius of quadrant-arc rounded entrance
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R = pipe radius

Rc = critical Re for laminar–turbulent transition

Rc1 = Rc under S disturbance conditions

Rc2 = Rc under M disturbance conditions

Rc3 = Rc under L disturbance conditions

Re = Reynolds number (DVm/ν)

St = sharp-edged entrance pipe

u = axial velocity

Uint = internal energy of a fluid

v = radial velocity

Vm = mean axial velocity

V = volume

x = axial coordinate

x′ = dimensionless axial coordinate (x/D)

xe = entrance length

xt = transition length from inlet

X = dimensionless axial coordinate (x/(DRe))
θ = cylindrical coordinate

µ = viscosity coefficient

ν = kinematic viscosity (µ/ρ)

ρ = density

τw = wall shear, (4.1)

τrw = radial wall shear, (5.1)

ω = vorticity

∆KE flux = difference in kinetic energy flux, (6.4)

REFERENCES

[1] ASHRAE HANDBOOK COMMITTEE, ASHRAE Handbook of Fundamentals (SI), ASHRAE, Atlanta, 2009.

[2] K. AVILA, D. MOXEY, A. DE LOZAR, M. AVILA, D. BARKELEY, AND B. HOF, The onset of turbulence in

pipe flow, Science, 333 (2011), pp. 192–196.

[3] R. P. BENEDICT, Fundamentals of Pipe Flow, Wiley, New York, 1980.

[4] B. ECKHARDT, Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds’ paper,

Philos. Trans. R. Soc. A, 367 (2009), pp. 449–455.

[5] R. W. FOX AND A. T. MCDONALD, Introduction to Fluid Mechanics, Wiley, New York, 1994.

[6] S. GOLDSTEIN, Modern Developments in Fluid Dynamics, Vol. I, Dover, New York, 1965.

[7] R. A. GRANGER, Fluid Mechanics, Dover, New York, 1995.

[8] R. W. HANKS, J. M. PETERSON, AND C. NARVAEZ, The influence of inlet flow disturbances on transition of

Poiseuille pipe flow, AIChE J., 25 (1979), pp. 181–183.

[9] B. HOF, A. JUEL, AND T. MULLIN, Scaling of the turbulence transition threshold in a pipe, Phys. Rev. Lett.,

91 (2003), 244502 (4 pages).

[10] H. KANDA, Computerized model of transition in circular pipe flows. Part 2. Calculation of the minimum

critical Reynolds number, in Proc. ASME Fluids Engeneering Division-1999, D. E. Stock, ed., ASME

FED-Vol. 250, ASME, New York, 1999, pp. 197–204.

[11] , Laminar-turbulent transition: Calculation of minimum critical Reynolds number in channel flow,

in Kyoto Conference on the Navier-Stokes Equations and their Applications, Y. Giga, H. Kozono, H.

Okamoto, and Y. Shibata, eds., RIMS Kokyuroku Bessatsu B1, RIMS, Kyoto, 2007, pp. 199–217.

[12] H. KANDA AND T. YANAGIYA, Hysteresis curve in reproduction of Reynolds’ color-band experiments, J. Fluids

Engrg., 130 (2008), 051202 (10 pages).

[13] R. R. KERSWELL, Recent progress in understanding the transition to turbulence in a pipe, Nonlinearity, 18

(2005), pp. R17–R44.

[14] D. KONDEPUDI AND I. PRIGOGINE, Modern Thermodynamics, Wiley, Chichester, 1998.

[15] R. J. LEITE, An experimental investigation of the stability of Poiseuille flow, J. Fluid Mech., 5 (1959),

pp. 81–96.

[16] E. R. LINDGREN, 1957, The transition process and other phenomena in viscous flow, Ark. Fys., 12 (1957),



ETNA
Kent State University

http://etna.math.kent.edu

CALCULATION OF MINIMUM CRITICAL REYNOLDS NUMBER 571

pp. 1–169.

[17] T. MULLIN AND J. PEIXINHO, Transition to turbulence in pipe flow, J. Low Temp. Phys., 145 (2006),

pp. 75–88.

[18] R. L. PANTON, Incompressible Flow, Wiley, New York, 1984.

[19] O. REYNOLDS, An experimental investigation of the circumstances which determine whether the motion of

water shall be direct or sinuous, and of the Law of resistance in parallel channels, Philos. Trans. Royal

Soc. London, 174 (1883), pp. 935–982.

[20] P. J. ROACHE, Fundamentals of Computational Fluid Dynamics, Hermosa, Albuquerque, 1998.

[21] L. SCHILLER, Experimentelle Untersuchungen zum Turbulenzproblem, Z. Angew. Math. Mech., 1 (1921), pp.

436–444.

[22] T. M. SCHNEIDER AND B. ECKHARDT, Edge states intermediate between laminar and turbulent dynamics in

pipe flow, Philos. Trans. R. Soc. A, 367 (2009), pp. 577–587.

[23] R. K. SHAH AND A. L. LONDON, Laminar Flow Forced Convection in Ducts, Academic Press, New York,

1978.

[24] A. H. SHAPIRO, R. SHIGEL, AND S. J. KLINE, Friction factor in the laminar entry region of a smooth tube,

in Proc. 2nd U.S. National Congress of Applied Mathematics, ASME, New York, 1954, pp. 733–741.

[25] K. SHIMONUKAI AND H. KANDA, Numerical study of normal pressure distribution in entrance pipe flow,

Electron. Trans. Numer. Anal., 30 (2008), pp. 10–25.

http://etna.mcs.kent.edu/vol.30.2008/pp10-25.dir

[26] S. TANEDA, Gazou-kara Manabu Ryutai Rikigaku (in japanese) (Fluid Dynamics Studied from Images),

Asakura Shoten, Tokyo, 1993.

[27] F. M. WHITE, Fluid Mechanics, McGraw-Hill, New York, 1999.

[28] I. J. WYGNANSKI AND F. H. CHAMPAGNE, On transition in a pipe. Part 1. The origin of puffs and slugs and

the flow in a turbulent slug, J. Fluid Mech., 59 (1973), pp. 281–335.

[29] E.-S. ZANOUN, M. KITO, AND C. EGBERS, A study on flow transition and development in circular and

rectangular ducts, J. Fluids Engrg., 131 (2009), 061204 (10 pages).

http://etna.mcs.kent.edu/vol.30.2008/pp10-25.dir

