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DISCONTINUOUS GALERKIN DISCRETIZATIONS OF OPTIMIZED SCHWARZ

METHODS FOR SOLVING THE TIME-HARMONIC MAXWELL’S EQUATIONS˚

MOHAMED EL BOUAJAJI:, VICTORITA DOLEAN;, MARTIN J. GANDER§, STÉPHANE LANTERI:,

AND RONAN PERRUSSEL¶

Abstract. We show in this paper how to properly discretize optimized Schwarz methods for the time-harmonic
Maxwell’s equations in two and three spatial dimensions using a discontinuous Galerkin (DG) method. Due to the
multiple traces between elements in the DG formulation, it is not clear a priori how the more sophisticated transmission
conditions in optimized Schwarz methods should be discretized, and the most natural approach, at convergence of the
Schwarz method, does not lead to the monodomain DG solution, which implies that for such discretizations, the DG
error estimates do not hold when the Schwarz method has converged. We present here a consistent discretization of
the transmission conditions in the framework of a DG weak formulation, for which we prove that the multidomain
and monodomain solutions for the Maxwell’s equations are the same. We illustrate our results with several numerical
experiments of propagation problems in homogeneous and heterogeneous media.

Key words. computational electromagnetism, time-harmonic Maxwell’s equations, Discontinuous Galerkin
method, optimized Schwarz methods, transmission conditions.
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1. Introduction. Discontinuous Galerkin (DG) methods have received a lot of attention
over the last decade since they combine the best of both finite-element and finite-volume
methods. The approximation of each field is done locally at the level of each mesh element
by using a local basis of functions, and the discontinuity between neighboring elements is
treated using a finite-volume flux. A richer representation of the solution is given at the price
of increasing the total number of degrees of freedom as a result of the decoupling of elements.
The literature on these methods applied to different types of equations is rich, and we will focus
on contributions concerning Maxwell’s equations. A complete historical introduction with a
large panel of references can be found in the milestone book on DG methods by Hesthaven
and Warburton [28].

Theoretical results on DG methods applied to the time-harmonic Maxwell’s equations
have been obtained by several authors. Most of these use the second-order formulation of the
Maxwell’s equations. An alternative is to use the first-order formulation as in [25, 26, 27] based
on the theory of Friedrichs systems. In a large part of the literature on time-harmonic problems,
a mixed formulation is used (see [30, 35]), but DG methods for the non-mixed formulation,
like interior penalty techniques [5, 29] and local discontinuous Galerkin methods [5], have
also been studied. A numerical convergence study of discontinuous Galerkin methods based
on centered and upwind fluxes and nodal polynomial interpolation applied to the first-order
time-harmonic Maxwell system in the two-dimensional case can be found in [10].

Like for all other discretizations of the time-harmonic Maxwell’s equations, it is also
difficult to solve linear systems obtained by DG discretizations with iterative methods. Due
to the indefinite nature of the problems, classical iterative solvers fail as in the Helmholtz
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case [18]. Després defined in [8] a first provably convergent domain decomposition algorithm
for the Helmholtz equation. This algorithm was extended to Maxwell’s equations in [9]. Even
better transmission conditions were proposed in [6, 7, 23] based on optimized Schwarz theory
[19, 20] with an application to the second-order Maxwell system in [1]. An entire hierarchy of
optimized Schwarz methods for the first-order Maxwell’s equations can be found in [11] with
complete asymptotic results for the optimization. DG discretizations of optimized Schwarz
methods for time-harmonic Maxwell’s equations were proposed first in [15]. In the short
proceedings paper [17], the authors proposed a different DG discretization of the transmission
conditions for the TM formulation of Maxwell’s equation in two spatial dimensions and stated
an equivalence theorem of the decomposed DG solution with the monodomain DG solution
without a proof. The purpose of our manuscript is to prove this theorem and also to present a
consistent DG discretization for Maxwell’s equations in three spatial dimensions together with
an equivalence theorem which is more involved to prove than in the two-dimensional case.
Classical finite-element based non-overlapping and non-conforming domain decomposition
methods for the computation of multiscale electromagnetic radiation and scattering problems
can be found in [31, 32, 33, 34, 36, 37]. They do not need any special treatment for the
discretization of the optimized transmission conditions. For DG discretizations, however,
even for the Poisson equation, the discretization of transmission conditions needs to be done
with care [22, 24], and classical block Jacobi methods are not equivalent to classical Schwarz
methods for DG discretizations [21].

This paper is organized as follows: in Section 2 we present the three-dimensional time-
harmonic Maxwell’s equations as a first-order system and introduce the notation for what
follows. In Section 3 we state the classical and optimized Schwarz algorithm at the continuous
level for the first-order Maxwell system in 3D. In Section 4, we introduce a weak formulation
for the first-order system and use a DG approximation to obtain discrete subdomain problems.
We then show that while the DG discretization of the classical Schwarz method is very
natural, the optimized transmission conditions are more tricky to discretize, and we present
for the three-dimensional Maxwell’s equations a consistent discretization of the transmission
conditions, for which we prove that the monodomain and multidomain formulations are
equivalent. Next we also prove the equivalence result for the two-dimensional TM formulation
announced in the proceedings paper [17]. We finally provide in Section 5 results of several
numerical experiments for both homogeneous and heterogeneous propagation problems to
illustrate the performance of the optimized Schwarz methods as solvers for DG-discretized
Maxwell’s equations. Section 6 contains a brief conclusion.

2. The time-harmonic Maxwell system. The time-harmonic Maxwell’s equations in a
homogeneous medium are given by

(2.1) iωεE ´ curlH ` σE “ 0, iωµH ` curlE “ 0,

where the positive real parameter ω is the pulsation of the harmonic wave, σ is the electric
conductivity, ε is the electric permittivity, µ is the magnetic permeability, and the unknown
complex-valued vector fields E and H are the electric and magnetic fields. In the homogeneous
case, to simplify notation, we can rewrite equation (2.1) as

(2.2) iω̃E ´ curlH ` σ̃E “ 0, iω̃H ` curlE “ 0,

where ω̃ :“ ω
?
εµ and σ̃ :“ σ

a
µ
ε

. Collecting the variables into one big vector W :“ pE,Hq,
we can rewrite (2.2) as a first-order system,

G0W ` GxBxW ` GyByW ` GzBzW “ 0,
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where

G0 :“
„

pσ̃ ` iω̃qI3ˆ3 03ˆ3

03ˆ3 iω̃I3ˆ3


,

and

Gx :“
„
03ˆ3 Nx

NT
x 03ˆ3


, Gy :“

„
03ˆ3 Ny

NT
y 03ˆ3


, Gz :“

„
03ˆ3 Nz

NT
z 03ˆ3


,

with

Nx :“

»

–
0 0 0

0 0 1

0 ´1 0

fi

fl , Ny :“

»

–
0 0 ´1

0 0 0

1 0 0

fi

fl , Nz :“

»

–
0 1 0

´1 0 0

0 0 0

fi

fl .

For a general vector n “ pnx, ny, nzq, we can define the matrices

Gn :“
„
03ˆ3 Nn

NT
n

03ˆ3,


and Nn :“

»

–
0 nz ´ny

´nz 0 nx

ny ´nx 0

fi

fl .

The skew-symmetric matrix Nn allows us to define the cross-product between a vector V and
the vector n,

V ˆ n “ NnV and n ˆ V “ NT
n
V.

Moreover, if the vector n is normalized, we also have N3
n

“ ´Nn. Using this notation, the
matrices Gl, with l standing for tx, y, zu, are in fact Gl “ Gel

, where el, l “ 1, 2, 3, are the
canonical basis vectors.

We consider here a total field formulation, that is, we are interested in the unknown vector
W “ Winc `Wsc, where Winc represents the incident field and Wsc represents the scattered

field by an obstacle with boundary Γm or in an inhomogeneous medium. Our goal is to solve
the boundary-value problem whose strong form is given by

G0W `
ÿ

lPtx,y,zu
GlBlW “ 0, in Ω,

pMΓm
´ GnqW “ 0, on Γm,

pMΓa
´ GnqpW ´ Wincq “ 0, on Γa.

Here the matrices MΓm
and MΓa

are used for taking into account the boundary conditions of
the problem imposed on the metallic boundary Γm and the absorbing boundary Γa,

MΓm
“
„
03ˆ3 Nn

´NT
n

03ˆ3


and MΓa

“ |Gn|“
„
NnN

T
n

03ˆ3

03ˆ3 NT
n
Nn


.

In what follows we will use the matrices G`
n

and G´
n
, which denote the positive and negative

parts of Gn according to its diagonalization. We note that |Gn|“ G`
n

´G´
n
, and the definition

of G`
n

and G´
n

can be deduced from those of Gn and |Gn| by

(2.3) G´
n

“ 1

2
pGn ´ |Gn|q and G`

n
“ 1

2
pGn ` |Gn|q.
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3. Continuous classical and optimized Schwarz algorithms. We decompose the com-
putational domain Ω into two non-overlapping subdomains Ω1 and Ω2. We denote by Σ the
interface between Ω1 and Ω2, by Wj the restriction of W to the subdomain Ωj , and by n the
unit outward normal vector to Σ pointing from Ω1 to Ω2. Schwarz algorithms compute at each
iteration step n “ 0, 1, 2, ... a new approximation W

n`1

j from a given approximation W
n
j ,

j “ 1, 2, by solving

G0W
n`1

1
`

ÿ

lPtx,y,zu
GlBlWn`1

1
“ 0, in Ω1,

pG´
n

` S1G
`
n

qWn`1

1
“ pG´

n
` S1G

`
n

qWn
2 , on Σ,

G0W
n`1

2
`

ÿ

lPtx,y,zu
GlBlWn`1

2
“ 0, in Ω2,

pG`
n

` S2G
´
n

qWn`1

2
“ pG`

n
` S2G

´
n

qWn
1 , on Σ,

(3.1)

where S1 and S2 are differential operators. When S1 and S2 are equal to zero, the algorithm
is called classical Schwarz algorithm, and it uses classical transmission conditions. It has
been shown in [11] that these classical conditions have the meaning of imposing Dirichlet
conditions on characteristic (incoming) variables in each subdomain. Since

G´
n

“ 1

2

„
´NnN

T
n

Nn

NT
n

´NT
n
Nn


“ 1

2

„
I3ˆ3

´NT
n

 “
´NnN

T
n

Nn

‰
,(3.2)

G`
n

“ 1

2

„
NnN

T
n

Nn

NT
n

NT
n
Nn


“ 1

2

„
I3ˆ3

NT
n

 “
NnN

T
n

Nn

‰
,(3.3)

the classical transmission conditions are also equivalent to imposing impedance conditions,

(3.4)
G´

n
W

n`1

1
“ G´

n
W

n
2 ðñ BnpEn`1

1
,Hn`1

1
q “ BnpEn

2 ,H
n
2 q,

G`
n
W

n`1

2
“ G`

n
W

n
1 ðñ B´npEn`1

2
,Hn`1

2
q “ B´npEn

1 ,H
n
1 q,

where the impedance operator is given by

(3.5) BnpE,Hq :“ NnN
T
n
E ´ NnH

and for the subdomain Ω2 we have used the fact that G`
n

“ ´G´
´n. The classical Schwarz

algorithm has been thoroughly tested in [14] for the solution of the three-dimensional time-
harmonic Maxwell’s equations discretized by low-order DG methods.

In the second-order formulation of Maxwell’s equation, the classical Schwarz method
uses the impedance condition

(3.6) B̃npEq “ p∇ ˆ E ˆ nq ˆ n ` iω̃E ˆ n;

see [9]. This impedance condition is equivalent to using the condition

(3.7) B̃npEq “ p∇ ˆ E ˆ nq ´ iω̃n ˆ pE ˆ nq,

which is just a rotation by 90 degrees of (3.6) but is more adapted to variational formulations;
see, for example, [4]. Condition (3.7) is equivalent to (3.5) if we express H by Maxwell’s
equation as a function of ∇ ˆ E. The equivalence between the first- and second-order
formulation has been illustrated in [12, 13].
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As in (3.4), we also have the equivalences

pG´
n

` S1G
`
n

qWn`1

1
“ pG´

n
` S1G

`
n

qWn
2

ðñ pBn ` S̃1B´nqpEn`1

1
,Hn`1

1
q “ pBn ` S̃1B´nqpEn

2 ,H
n
2 q,

pG`
n

` S2G
´
n

qWn`1

2
“ pG`

n
` S2G

´
n

qWn
1

ðñ pB´n ` S̃2BnqpEn`1

2
,Hn`1

2
q “ pB´n ` S̃2BnqpEn

1 ,H
n
1 q.

(3.8)

Here S̃1 and S̃2 denote differential operators which are approximations of the transparent
operators, and S1 and S2 are defined to guarantee the above equivalence. In [16], an entire
hierarchy of optimized algorithms, defined by the choice of S̃j , j “ 1, 2, was obtained from
the transparent operators. Using (3.2) and (3.3), the optimized transmission conditions (3.8)
become

NnN
T
n
E

n`1

1
´ NnH

n`1

1
` S̃1pNnN

T
n
E

n`1

1
` NnH

n`1

1
q

“ NnN
T
n
E

n
2 ´ NnH

n
2 ` S̃1pNnN

T
n
E

n
2 ` NnH

n
2 q,

NnN
T
n
E

n`1

2
` NnH

n`1

2
` S̃2pNnN

T
n
E

n`1

2
´ NnH

n`1

2
q

“ NnN
T
n
E

n
1 ` NnH

n
1 ` S̃2pNnN

T
n
E

n
1 ´ NnH

n
1 q.

4. Discontinuous Galerkin approximation. We now present a weak formulation and a
DG discretization of the Schwarz algorithms (3.1) and show how the optimized transmission
conditions are properly discretized in a DG framework.

4.1. Weak formulation. We denote by Th a triangulation of the domain Ω, by Γ0, Γm,

and Γa, the sets of purely internal, metallic, and absorbing faces, by K an element of Th, and
by F “ K X K̃ the face shared by two neighboring elements K and K̃. On each face F , we
define the average tWu and the tangential trace jump JWK of W by

tWu :“ 1

2
pWK ` WK̃q and JWK :“ GnK

WK ` Gn
K̃
WK̃ .

For two vector-valued functions U and V in pL2pDqq6, we introduce the inner products

pU,VqD :“
ż

D

U ¨ V dx, xU,VyF :“
ż

F

U ¨ V ds,

for D being a domain of R3 and F a two-dimensional face. For simplicity, we skip the index
for Th, i.e., we write in what follows

p¨, ¨q :“ p¨, ¨qTh
“

ÿ

KPTh

p¨, ¨qK .

On the boundaries we define

MF,K :“

$
’&

’%

«
ηFNnK

NT
nK

NnK

´NT
nK

03ˆ3

ff

with ηF ‰ 0, if F belongs to Γm,

|GnK
| if F belongs to Γa.

We thus obtain a weak formulation of the problem,

pG0W,Vq `

¨

˝
ÿ

lPtx,y,zu
GlBlW,V

˛

‚´
ÿ

FPΓ0

xJWK, tVuyF `
ÿ

FPΓ0

@
1

2
JWK, JVK

D
F

`
ÿ

FPΓmYΓa

@
1

2
pMF,K ´ GnK

qW,V
D
F

“
ÿ

FPΓa

@
1

2
pMF,K ´ GnK

qWinc,V
D
F
,

where we used an upwind flux discretisation [14, equation (4.4)].
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4.2. Discretization of the subdomain problems and the classical Schwarz algorithm.

Let PppDq denote the space of polynomial functions of degree at most p on a domain D. For
any element K P Th, let DppKq ” pPppKqq6. The discontinuous finite-element spaces we
use are then defined by

D
p
h “

!
V P pL2pΩqq6

∣

∣

∣
V|K P D

ppKq, @K P Th

)
.

Approximate solutions W and test functions V for the discretized problem will be taken in
the space D

p
h.

Let ΓΣ be the set of faces on the interface Σ, Γj
0

be the set of faces in the interior of each
subdomain Ωj , and Γ

j
b be the set of faces of each subdomain which lie on the real boundary BΩ.

For any face F “ K X K̃, note also that G2
nK

“ G2
n

K̃
“ |GnK

|“ |Gn
K̃
|.

Then, for each subdomain Ω1 and Ω2, the weak form can be written as

pG0W1,V1q `
˜
ÿ

l

GlBlW1,V1

¸

`
ÿ

Γ1

0

˛ `
ÿ

Γ1

b

˛

`
ÿ

FPΓΣ

B
1

2
p|GnK

|´GnK
q pW1 ´ W2q,V1

F

F

“ 0,

pG0W2,V2q `
˜
ÿ

l

GlBlW2,V2

¸

`
ÿ

Γ2

0

˛ `
ÿ

Γ2

b

˛

`
ÿ

FPΓΣ

B
1

2

`
|Gn

K̃
|´Gn

K̃

˘
pW2 ´ W1q,V2

F

F

“ 0,

(4.1)

where, for simplicity, we have replaced some terms on the faces that do not play any particular
role in what follows by a ˛. For any face F “ K X K̃ on Σ, let n denote the normal on Σ

directed from Ω1 towards Ω2, and if K and K̃ are elements of Ω1 and Ω2, then we have
nK “ n “ ´nK̃ .

The classical algorithm, which uses characteristic transmission conditions, corresponds
in this DG formulation to a simple relaxation of the coupling flux terms in the coupled
formulation (4.1): starting from initial guesses W0

1 and W
0
2, the iterates Wn`1

j are computed
from W

n
j , j “ 1, 2, by solving on Ω1 and Ω2 the subproblems

`
G0W

n`1

1
,V1

˘
`
˜
ÿ

l

GlBlWn`1

1
,V1

¸

`
ÿ

Γ1

0

˛ `
ÿ

Γ1

b

˛

`
ÿ

FPΓΣ

@
G´

n
pWn`1

1
´ W

n
2 q,V1

D
F

“ 0,

`
G0W

n`1

2
,V2

˘
`
˜
ÿ

l

GlBlWn`1

2
,V2

¸

`
ÿ

Γ2

0

˛ `
ÿ

Γ2

b

˛

`
ÿ

FPΓΣ

@
G`

n
pWn`1

2
´ W

n
1 q,V2

D
F

“ 0,

(4.2)

where we used again (2.3) to simplify the notation. The relaxation in (4.2) is completely natural
in the context of a DG discretization: we simply replaced the occurrence of the flux G´

n
W

n`1

1

from outside the subdomain by the flux from the neighboring subdomain G´
n
W

n
2 at the
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previous iteration and vice versa the occurrence of G`
n
W

n`1

2
by G`

n
W

n
1 . This corresponds

precisely to using the transmission conditions in (3.1) with Sj “ 0, j “ 1, 2, namely

(4.3) G´
n
W

n`1

1
“ G´

n
W

n
2 G`

n
W

n`1

2
“ G`

n
W

n
1 ,

and thus it naturally guarantees that, at convergence of the associated classical Schwarz
algorithm, the monodomain DG solution is obtained. Such a simple replacement is, however,
not possible for the optimized transmission conditions, Sj ‰ 0. The DG discretization which
seems natural for the transmission conditions using the variables available in each subdomain,
namely

(4.4)
G´

n
W

n`1

1
` S1G

`
n
W

n`1

1
“ G´

n
W

n
2 ` S1G

`
n
W

n
2 ,

G`
n
W

n`1

2
` S2G

´
n
W

n`1

2
“ G`

n
W

n
1 ` S2G

´
n
W

n
1 ,

leads to an obtained solution of the Schwarz algorithm which is different from the monodomain
DG solution. The solver should, however, never change the solution sought, and such a
discretization is therefore to be avoided. We show in the next section how to properly
discretize optimized transmission conditions in the framework of DG discretizations.

4.3. Discretization of optimized transmission conditions. In order to correctly intro-
duce optimized transmission conditions (3.1) with a non-zero Sj into the DG discretization, we
first write explicitly what transmission conditions the classical relaxation in (4.2) corresponds
to. To do so, the subdomain problems solved in (4.2) are not allowed to depend on variables
of the other subdomain anymore since the coupling will be performed with the transmission
conditions, and we thus need to introduce additional unknowns, namely W

n`1

2,Ω1
on Ω1 and

W
n`1

1,Ω2
on Ω2, in order to write the classical Schwarz iteration with local variables only, i.e.,

(4.5)

`
G0W

n`1

1
,V1

˘
`
˜
ÿ

l

GlBlWn`1

1
,V1

¸

`
ÿ

Γ1

0

˛ `
ÿ

Γ1

b

˛

´
ÿ

FPΓΣ

A
G´

n
pWn`1

1
´ W

n`1

2,Ω1
q,V1

E

F
“ 0,

`
G0W

n`1

2
,V2

˘
`
˜
ÿ

l

GlBlWn`1

2
,V2

¸

`
ÿ

Γ2

0

˛ `
ÿ

Γ2

b

˛

`
ÿ

FPΓΣ

A
G`

n
pWn`1

2
´ W

n`1

1,Ω2
q,V2

E

F
“ 0.

Comparing with the classical Schwarz algorithm (4.2), we see that in order to obtain the same
algorithm, the transmission conditions for (4.5) need to be chosen as

(4.6) G´
n
W

n`1

2,Ω1
“ G´

n
W

n
2 , G`

n
W

n`1

1,Ω2
“ G`

n
W

n
1 ,

which we have already encountered when explicitly stating the relaxation as a replacement
in (4.3). But one has to be careful when keeping these variables since they represent the outside
traces at the interface, not the inside traces of the elements! The transmission condition (4.6)
implies that in the limit, when the algorithm converges, the so-called coupling conditions

(4.7) G´
n
W2,Ω1

“ G´
n
W2, G`

n
W1,Ω2

“ G`
n
W1,

will be satisfied, where we dropped the iteration index to denote the limit quantities. These
are the conditions which imply the equivalence of the converged solution to the monodomain
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DG solution. When using the Schwarz algorithm (4.5) with the optimized transmission
conditions (3.1), we therefore propose to use DG discretizations of the strong relations

(4.8)
G´

n
W

n`1

2,Ω1
` S1G

`
n
W

n`1

1
“ G´

n
W

n
2 ` S1G

`
n
W

n
1,Ω2

,

G`
n
W

n`1

1,Ω2
` S2G

´
n
W

n`1

2
“ G`

n
W

n
1 ` S2G

´
n
W

n
2,Ω1

,

which are substantially different from the transmission conditions (4.4) since they use addi-
tional variables W2,Ω1

and W1,Ω2
, which in principle belong to the traces at the interface Σ of

the neighboring subdomain and are not available in the formulation (4.4). We now prove that
with the transmission conditions (4.8), at convergence of the associated Schwarz algorithm,
the same coupling conditions as (4.7) hold, and thus the optimized Schwarz method converges
to the monodomain solution of the chosen DG discretization. First, from (3.2) and (3.3), note
that relation (4.7) is equivalent to

NnN
T
n
E2,Ω1

´ NnH2,Ω1
“ NnN

T
n
E2 ´ NnH2,

NnN
T
n
E1,Ω2

` NnH1,Ω2
“ NnN

T
n
E1 ` NnH1.

We now introduce the auxiliary variables

Λ2,Ω1
:“ NnN

T
n
E2,Ω1

´ NnH2,Ω1
, Λ2 :“ NnN

T
n
E2 ´ NnH2,

Λ1,Ω2
:“ NnN

T
n
E1,Ω2

` NnH1,Ω2
, Λ1 :“ NnN

T
n
E1 ` NnH1.

These variables represent traces belonging to a trace finite-element space

M
p
h “

!
η P pL2pΣqq3

∣

∣

∣
η|F P pPppF qq3, pη ¨ nq|F “ 0, @F P Σ

)
.

Note that Mp
h consists of vector-valued functions whose normal component is zero on any face

F P Σ. At convergence of the classical Schwarz algorithm and hence for the monodomain DG
solution, we see from (4.7) that these trace variables have to satisfy

(4.9) Λ2,Ω1
“ Λ2, Λ1,Ω2

“ Λ1.

From (4.8) and (4.9), we have to find for the optimized transmission conditions a suitable DG
discretization of the relations

(4.10) Λ2,Ω1
` S̃1Λ1 “ Λ2 ` S̃1Λ1,Ω2

, Λ1,Ω2
` S̃2Λ2 “ Λ1 ` S̃2Λ2,Ω1

.

We therefore need to give now the precise expressions used in optimized Schwarz methods
for the operators S̃j , j “ 1, 2. Several choices for these operators have been proposed in [16]
based on Fourier analysis under the assumption that the interface is a plane: they are second-
order differential operators in the tangential direction of the interface, whose Fourier symbols
are given in Table 4.1, where F denotes the Fourier transform and k is the Fourier parameter
in the tangential direction of the interface. The matrix-valued operators Q̃sj are given by

Q̃sj “
„

Bτ1τ1 ´ Bτ2τ2 ´ σ̃sj 2Bτ1τ2
2Bτ1τ2 Bτ2τ2 ´ Bτ1τ1 ´ σ̃sj


,

and the division by |k|2 indicates an integral operation. We explain below how this integration
can be avoided in the implementation. Every choice in Table 4.1 leads to a different transmis-
sion condition and thus a different optimized Schwarz algorithm. Note that the operator Q̃sj



ETNA
Kent State University

http://etna.math.kent.edu

580 M. EL BOUAJAJI, V. DOLEAN, M. J. GANDER, S. LANTERI, AND R. PERRUSSEL

TABLE 4.1
Symbols of the different operators for 3D Maxwell’s equations.

Algorithm FpS̃jq

1 0

2 s´iω̃
ps`iω̃qp|k|2`sσ̃qFpQ̃sq, s P C

3 1

|k|2´2ω̃2`2iω̃σ̃`p2iω̃`σ̃qsFpQ̃sq, s P C

4 sj´iω̃

psj`iω̃qp|k|2`sj σ̃qFpQ̃sj q, sj P C

5 1

|k|2´2ω̃2`2iω̃σ̃`p2iω̃`σ̃qsj FpQ̃sj q, sj P C

can be rewritten in a more natural form for Maxwell’s equations,

Q̃sj “
„

Bτ1τ1 Bτ1τ2
Bτ1τ2 Bτ2τ2


`
„

´Bτ2τ2 Bτ1τ2
Bτ1τ2 ´Bτ1τ1


´ σ̃sj I

“ ∇τ∇τ ¨loomoon
STM

`∇τ ˆ ∇τˆlooooomooooon
STE

´σ̃sj I,

where I denotes the identity operator, τj , j “ 1, 2, are two independent vectors in the tangent
plane to the interface, ∇τ denotes the gradient in the tangent plane to the interface, ∇τ ¨ is the
divergence in the tangent plane, and ∇τˆ is the two-dimensional curl operator in the tangent
plane. The operators STM and STE satisfy the remarkable relation

´∆τ I “ STE ´ STM ,

where ∆τ is the Laplace-Beltrami operator, and they act mainly on the transverse electric and
transverse magnetic part of the solution; see [12, 13] for a more detailed explanation.

To avoid an integral relation in the transmission condition, one has to multiply the
entire transmission conditions by the operator symbol in the denominator and then obtains
second-order differential transmission conditions. These second-order differential transmission
conditions are equivalent to the transmission conditions (4.10) and are of the form

(4.11)
P̃1pΛ2,Ω1

´ Λ2q “ Q̃s1pΛ1,Ω2
´ Λ1q,

P̃2pΛ1,Ω2
´ Λ1q “ Q̃s2pΛ2,Ω1

´ Λ2q,

where, for example for Algorithms 2 and 4 indicated in Table 4.1, we have

(4.12) P̃j :“
sj ` iω̃

sj ´ iω̃
p´∆τ ` σ̃sjq I, sj P C,

and for Algorithms 3 and 5 in Table 4.1, we have

P̃j : “ p´∆τ ´ 2ω̃2 ` 2iω̃σ̃ ` 2iω̃sj ` σ̃sjq I
“ STE ´ STM ` p´2ω̃2 ` 2iω̃σ̃ ` 2iω̃sj ` σ̃sjq I, sj P C.

(4.13)

We see that even though these transmission conditions have been derived in [16] assuming
that the interface is planar, their reformulation allows us to use them also for non-planar
interfaces obtained for example by an automatic mesh partitioning tool in the context of DG
discretizations.
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TABLE 4.2
Asymptotic convergence factor and optimized choice of the parameters in the transmission conditions for the 3D

Maxwell’s equations.

with overlap, L “ h

Algorithm ρ parameters

1 1 ´ 4

3

`
9ω̃4σ̃2

˘ 1

8 h
3

4 none

2 1 ´ 2
7

6 pω̃ σ̃ q1{6
h

1

3 p “ p2 ω̃ σ̃q1{3

2h
1

3

3 1 ´ 2
17

10 pω̃4σ̃2q
1

20 h
3

10

3
3

10

p “ 2
2

5 pω̃4σ̃2q
1

10

3
3

5 h
2

5

4 1 ´ 4
?
2 pω̃ σ̃q

1

10 h
1

5 p1 “ pω̃ σ̃q
1

5

2h
3

5

, p2 “ pω̃ σ̃q
2

5

2h
1

5

5 1 ´ 2
23

8 pω̃4σ̃2q
1

32 h
3

16

3
3

16

p1 “ pω̃4σ̃2q
1

16

2
1

4 3
3

8 h
5

8

, p2 “
?
2pω̃4σ̃2q

1

8

3
3

4 h
1

4

without overlap, L “ 0

1 1 ´ ω̃2σ̃
C3 h3 none

2 1 ´ 2
3

4 pω̃σ̃q
1

4

?
h?

C
p “ pω̃σ̃q

1

4

?
C

2
1

4

?
h

3 1 ´ 2
11

7 pω̃4σ̃2q
1

14 h
3

7

3
3

7 C
3

7

p “ 2
4

7 pω̃4σ̃2q
1

14 C
4

7

3
3

7 h
4

7

4 1 ´ p2 ω̃ σ̃q
1

8 h
1

4

C
1

4

p1 “ p2 ω̃ σ̃q
1

8 C
3

4

h
3

4

, p2 “ p2 ω̃ σ̃q3{8C1{4

2h
1

4

5 1 ´ 2
34

13 pω̃4σ̃2q
1

26 h
3

13

3
3

13 C
3

13

p1 “ 2
8

13 pω̃4σ̃2q
1

26 C
10

13

3
3

13 h
10

13

, p2 “ 2
11

13 pω̃4σ̃2q
3

26 C
4

13

3
9

13 h
4

13

It remains to choose the parameters sj , j “ 1, 2, in (4.12) and (4.13) to complete the
definition of the corresponding optimized Schwarz method. These parameters are selected
by a minimization of the associated contraction factors for a model problem such that the
performance of the method is optimized, and we show for completeness in Table 4.2 the
optimized values from [16] adapted to the notation in this manuscript.

Having defined all the components in the transmission conditions (4.11), we now explain
how to discretize the five variants in a consistent fashion using a DG discretization: let pηjqj
be a basis of Mp

h . On the interface Σ we define the matrices

pMΣqi,j :“
ÿ

FPΣ
xηi,ηjyF ,

pKΣqi,j :“
ÿ

FPΣ
x∇τ ˆ ηi,∇τ ˆ ηjyF ` x∇τ ¨ ηi,∇τ ¨ ηjyF

`
ÿ

ePBΣ

ż

e

αh´1
ÿ

kPt1,2u
JJηi ¨ τkKKJJηj ¨ τkKK

´
ÿ

ePBΣ

ż

e

tt∇τ ¨ ηiuu JJηj ¨ ne,τ KK ´ JJηi ¨ ne,τ KK
  

∇τ ¨ ηj

((

´
ÿ

ePBΣ

ż

e

tt∇τ ˆ ηiuu ¨ JJηj ˆ ne,τ KK ´ JJηi ˆ ne,τ KK ¨
  

∇τ ˆ ηj

((
,
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and

pAΣqi,j :“
ÿ

FPΣ
x∇τ ˆ ηi,∇τ ˆ ηjyF ´ x∇τ ¨ ηi,∇τ ¨ ηjyF

`
ÿ

ePBΣ

ż

e

αh´1
ÿ

kPt1,2u
JJηi ¨ τkKKJJηj ¨ τkKK

`
ÿ

ePBΣ

ż

e

tt∇τ ¨ ηiuu JJηj ¨ ne,τ KK ´ JJηi ¨ ne,τ KK
  

∇τ ¨ ηj

((
,

´
ÿ

ePBΣ

ż

e

tt∇τ ˆ ηiuu ¨ JJηj ˆ ne,τ KK ´ JJηi ˆ ne,τ KK ¨
  

∇τ ˆ ηj

((
,

where the positivity of the discretized operator is guaranteed for sufficiently large α, BΣ
denotes the set of interior edges of Σ, JJ¨KK and tt¨uu denote the jump and the average at
an edge e of the values at neighboring triangles, and ne,τ is the outward normal on e in the
tangent plane. Then matrix KΣ stems from the discretization of ´∆τ using a symmetric
interior penalty approach [2, 3]. Note that the operator ´∆τ has to be taken in “vector” form
since it is applied to pΛ

2,Ω̃1
´ Λ2q, which is a discretization of a vector quantity. MΣ is an

interface mass matrix with the same dimensions as the interface stiffness matrix KΣ, and AΣ

represents the discretization of the operator
„

Bτ1τ1 ´ Bτ2τ2 2Bτ1τ2
2Bτ1τ2 Bτ2τ2 ´ Bτ1τ1


.

Then the DG discretization of (4.11) for the Algorithms 2 and 4 is

s1 ` iω̃

s1 ´ iω̃
pKΣ ` σ̃s1MΣqpΛ2,Ω1

´ Λ2q “ pAΣ ´ σ̃s1MΣqpΛ1,Ω2
´ Λ1q,

s2 ` iω̃

s2 ´ iω̃
pKΣ ` σ̃s2MΣqpΛ1,Ω2

´ Λ1q “ pAΣ ´ σ̃s2MΣqpΛ2,Ω1
´ Λ2q,

and for the Algorithms 3 and 5 we get

(4.14)
pKΣ ` α1MΣqpΛ2,Ω1

´ Λ2q “ pAΣ ´ σ̃s1MΣqpΛ1,Ω2
´ Λ1q,

pKΣ ` α2MΣqpΛ1,Ω2
´ Λ1q “ pAΣ ´ σ̃s2MΣqpΛ2,Ω1

´ Λ2q,

where αj “ 2iω̃piω̃ ` σ̃q ` 2iω̃sj ` σ̃sj . In the following theorem we will only treat the case
of Algorithms 3 and 5; similar techniques can be applied for Algorithms 2 and 4.

THEOREM 4.1 (DG discretization of Algorithms 3 and 5). If s1 and s2 are such that

sj “ pjp1 ` iq with pj a strictly positive real number for j “ 1, 2, and σ̃pp1 ´ p2q “ 0, then

the relations (4.9) and (4.14) are equivalent.

Proof. We first observe that ℑαj “ 2ω̃σ̃ ` 2ω̃pj ` σ̃pj ą 0. Let us denote

U1 “ Λ1,Ω2
´ Λ1, U2 “ Λ2,Ω1

´ Λ2.

Multiplying the first relation in (4.14) on the left by Ū
T
2 and the second by Ū

T
1 and summing

them up, we get

Ū
T
2 pKΣ ` α1MΣqU2 ` Ū

T
1 pKΣ ` α2MΣqU1

“ Ū
T
2 pAΣ ´ σ̃s1MΣqU1 ` Ū

T
1 pAΣ ´ σ̃s2MΣqU2.



ETNA
Kent State University

http://etna.math.kent.edu

DISCONTINUOUS GALERKIN METHODS FOR THE MAXWELL EQUATIONS 583

Since KΣ is symmetric and non-negative, MΣ is symmetric and positive definite, and AΣ is
symmetric, all the quantities ŪT

j MΣUj , ŪT
j KΣUj , and Ū

T
1 AΣU2 ` Ū

T
2 AΣU1 are real. In

this case, by taking the imaginary part of the previous relation, we get

(4.15) ℑα1Ū
T
2 MΣU2 ` ℑα2Ū

T
1 MΣU1 ` σ̃ℑps1ŪT

2 MΣU1 ` s2Ū
T
1 MΣU2q “ 0.

In order to simplify notation and by using that MΣ is symmetric positive definite, we introduce
the norm }U}2MΣ

:“ Ū
TMΣU induced by the Hermitian product pU1,U2qMΣ

“ Ū
T
2 MΣU1.

Since by definition pU2,U1qMΣ
“ ĞpU1,U2qMΣ

, we see that

ℑpŪT
2 MΣU1q “ 1

2i
ppU1,U2qMΣ

´ pU2,U1qMΣ
q “ ´ℑpŪT

1 MΣU2q,
ℜpŪT

2 MΣU1q “ 1

2
ppU1,U2qMΣ

` pU2,U1qMΣ
q “ ℜpŪT

1 MΣU2q,
ℑps1ŪT

2 MΣU1q “ p1pℜpU1,U2qMΣ
` ℑpU1,U2qMΣ

q,
ℑps2ŪT

1 MΣU2q “ p2pℜpU2,U1qMΣ
` ℑpU2,U1qMΣ

q
“ p2pℜpU1,U2qMΣ

´ ℑpU1,U2qMΣ
q.

Also, let p1 “ p ` δ and p2 “ p ´ δ, and suppose that δ ě 0. Then (4.15) becomes

2ω̃pσ̃ ` p1q}U2}2MΣ
` 2ω̃pσ̃ ` p2q}U1}2MΣ

` σ̃pp ` δq}U2}2MΣ

` σ̃pp ´ δq}U1}2MΣ
` σ̃pp ` δq

´
ℜpU1,U2qMΣ

` ℑpU1,U2qMΣ

¯

` σ̃pp ´ δq
´
ℜpU1,U2qMΣ

´ ℑpU1,U2qMΣ

¯
“ 0

ô 2ω̃pσ̃ ` p1q}U2}2MΣ
` 2ω̃pσ̃ ` p2q}U1}2MΣ

` σ̃p
´

}U2}2MΣ
` }U1}2MΣ

` 2ℜpU1,U2qMΣ

¯

` σ̃δ
´

}U2}2MΣ
´ }U1}2MΣ

` 2ℑpU1,U2qMΣ

¯
“ 0

ô 2ω̃pσ̃ ` p1q}U2}2MΣ
` 2ω̃pσ̃ ` p2q}U1}2MΣ

` σ̃p}U1 ` U2}2MΣ

` σ̃δ
´

}U2}2MΣ
´ }U1}2MΣ

` 2ℑpU1,U2qMΣ

¯
“ 0.

(4.16)

We thus see that if σ̃ “ 0 or δ “ 0, which means that p1 “ p2 (Algorithm 3 from Table 4.2),
then the last form of (4.16) leads to the conclusion that Uj “ 0 since all the terms are positive,
which proves the equivalence between (4.14) and (4.9).

4.4. The two-dimensional case. As in the three-dimensional case, we can rewrite (4.8)
and (4.7) by introducing the auxiliary variables (see [17] for more details)

Λ2,Ω1
:“ E2,Ω1

´ NnH2,Ω1
, Λ2 :“ E2 ´ NnH2,

Λ1,Ω2
:“ E1,Ω2

` NnH1,Ω2
, Λ1 :“ E1 ` NnH1,

(4.17)

belonging to the trace space M
p
h “

 
η P L2pΣq | η|F P PppF q, @F P Σ

(
. Then (4.7) be-

comes

(4.18) Λ2,Ω1
“ Λ2 and Λ1,Ω2

“ Λ1.

From (4.8) and (4.17), we see that for the optimized transmission conditions, we have to find
a suitable DG discretization of the relations

(4.19) Λ2,Ω1
` S̃1Λ1 “ Λ2 ` S̃1Λ1,Ω2

and Λ1,Ω2
` S̃2Λ2 “ Λ1 ` S̃2Λ2,Ω1

.
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If we focus on the second-order transmission conditions, (4.19) becomes

p´B2

τ ` iω̃σ̃ ´ 2ω̃2 ` 2iω̃s1qpΛ2,Ω1
´ Λ2q ` p´B2

τ ` iω̃σ̃qpΛ1,Ω2
´ Λ1q “ 0,

p´B2

τ ` iω̃σ̃ ´ 2ω̃2 ` 2iω̃s2qpΛ1,Ω2
´ Λ1q ` p´B2

τ ` iω̃σ̃qpΛ2,Ω1
´ Λ2q “ 0.

(4.20)

Let pηjqj be a basis of Mp
h . We define the matrices

pMΣqi,j :“
ÿ

FPΣ
xηi, ηjyF ,

pKΣqi,j :“
ÿ

FPΣ
xBτηi, BτηjyF `

ÿ

nPΣ0

αnh
´1rrrrηissssnrrrrηjssssn

´
ÿ

nPΣ0

ttBτηiuun rrrrηjssssn ´ rrrrηissssn ttBτηjuu
n
,

where positiveness is guaranteed for sufficiently large αn, Σ0 denotes the set of interior
nodes of Σ, rrrr¨ssssn and tt¨uun denotes the jump and the average at a node n of the values
on neighboring segments. The matrix KΣ comes from the discretization of ´B2

τ using a
symmetric interior penalty approach [3].

The DG discretization of (4.20) is then

pKΣ ` α1MΣqpΛ2,Ω1
´ Λ2q “ p´KΣ ´ iω̃σ̃MΣqpΛ1,Ω2

´ Λ1q,
pKΣ ` α2MΣqpΛ1,Ω2

´ Λ1q “ p´KΣ ´ iω̃σ̃MΣqpΛ2,Ω1
´ Λ2q,(4.21)

with αj “ ´2ω̃2 ` ipω̃σ̃`2ω̃sjq. As in the three-dimensional case, KΣ is symmetric and non-
negative definite, and MΣ is symmetric and positive definite. A similar result to Theorem 4.1
can be obtained also in 2D:

THEOREM 4.2 (DG discretization for the second-order conditions in 2D). If s1 and s2
are such that sj “ pjp1 ` iq with pj a strictly positive real number for j “ 1, 2, then the

relations (4.18) and (4.21) are equivalent.

Proof. We first note that ℑαj “ ω̃σ̃ ` 2ω̃pj ą 0. Setting

U1 “ Λ1,Ω2
´ Λ1, U2 “ Λ2,Ω1

´ Λ2,

and multiplying the first relation in (4.21) on the left by Ū
T
2 , the second by Ū

T
1 , and adding

them up, we obtain by taking the imaginary part

pω̃σ̃ ` 2ω̃pjqpŪT
1 MΣU1 ` Ū

T
2 MΣU2q “ ´ω̃σ̃pŪT

2 MΣU1 ` Ū
T
1 MΣU2q.

By rearranging the terms using the norm, we get

2ω̃pjp}U1}2MΣ
` }U2}2MΣ

q ` ω̃σ̃}U1 ` U2}2MΣ
“ 0.

From this last equation, we see that Uj “ 0 since all the terms are positive, which proves the
equivalence between (4.21) and (4.18).

5. Numerical results. We illustrate the performance of the optimized Schwarz algo-
rithms discretized using a DG method in two dimensions. We consider the TM formulation of
Maxwell’s equations, i.e., E “ p0, 0, EzqT and H “ pHx, Hy, 0qT . We can then rewrite the
algorithm in (3.1) by using that W “ pEz, Hx, Hyq,T and the corresponding G-matrices are

G0 “
„
σ̃ ` iω̃ 01ˆ2

02ˆ1 iω̃I2ˆ2


, Gx “

„
0 Nex

NT
ex

0


, Gy “

„
0 Ney

NT
ey

0


,
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TABLE 5.1
Symbols of the different operators for 2D Maxwell’s equations.

Algorithm FpS̃jq

1 0

2 ´ s´iω̃
s`iω̃

, s P C

3 ´ k2`iω̃σ̃
k2´2ω̃2`iω̃σ̃`2iω̃s

, s P C

4 ´ sj´iω̃

sj`iω̃
, sj P C

5 ´ k2`iω̃σ̃
k2´2ω̃2`iω̃σ̃`2iω̃sj

, sj P C

TABLE 5.2
Asymptotic convergence factor and optimal choice of the parameters in the transmission conditions for 2D

Maxwell’s equations.

without overlap
Algorithm ρ parameters

1 1 ´ ω̃2σ̃
C3 h3 none

2 1 ´ 2
3

4 pω̃σ̃q
1

4

?
h?

C
p “ pω̃σ̃q

1

4

?
C

2
1

4

?
h

3 1 ´ 2
11

7 pω̃4σ̃2q
1

14 h
3

7

3
3

7 C
3

7

p “ 2
4

7 pω̃4σ̃2q
1

14 C
4

7

3
3

7 h
4

7

4 1 ´ p2 ω̃ σ̃q
1

8 h
1

4

C
1

4

p1 “ p2 ω̃ σ̃q
1

8 C
3

4

h
3

4

, p2 “ p2 ω̃ σ̃q3{8C1{4

2h
1

4

5 1 ´ 2
34

13 pω̃4σ̃2q
1

26 h
3

13

3
3

13 C
3

13

p1 “ 2
8

13 pω̃4σ̃2q
1

26 C
10

13

3
3

13 h
10

13

, p2 “ 2
11

13 pω̃4σ̃2q
3

26 C
4

13

3
9

13 h
4

13

where Nn “ pny,´nxqT . We present in Table 5.1 the corresponding Fourier symbols of S̃j

in the two-dimensional case, which were derived from the 3D results given in [16]. The
parameters s “ pp1` iq, s1 “ p1p1` iq, and s2 “ p2p1` iq are solutions of specific min-max
problems solved in [16], and their asymptotic behavior in the homogeneous non-overlapping
case is displayed in Table 5.2 together with the corresponding convergence factors. The
constant C is defined such that kmax “ C

h
is the highest numerical frequency that can be

represented by the discretization method on a mesh with mesh size h.
The Fourier symbols of the operators in Algorithms 1, 2, and 4 are constants, therefore

their expression is the same in the physical space. In this case, (3.8) can be written in the 2D
situation considered here as

En`1

1
´ NnH

n`1

1
` S̃1pEn`1

1
` NnH

n`1

1
q “ En

2 ´ NnH
n
2 ` S̃1pEn

2 ` NnH
n
2 q,

En`1

2
` NnH

n`1

2
` S̃2pEn`1

2
´ NnH

n`1

2
q “ En

1 ` NnH
n
1 ` S̃2pEn

1 ´ NnH
n
1 q.

(5.1)

This is not the case for Algorithms 3 and 5, which lead to second-order transmission conditions
because a factor of k2 appears in the corresponding Fourier symbols. As in the 3D case, we
need to rewrite the transmission conditions: the S̃j are operators with Fourier symbols

FpS̃jq “ qjpkq
rjpkq with qjpkq “ ´pk2 ` iω̃σ̃q, rjpkq “ k2 ´ 2ω̃2 ` iω̃σ̃ ` 2iω̃sj .

We observe that the numerator and denominator, F´1pqjq and F´1prjq, are partial differential
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operators in the tangential direction,

F´1qj “ Bττ ´ iω̃σ̃, F´1rj “ ´Bττ ´ 2ω̃2 ` iω̃σ̃ ` 2iω̃sj .

In this case, we multiply the transmission conditions on both sides by the denominator, and
then the interface iteration (5.1) can be rewritten as

F´1r1pEn`1

1
´ NnH

n`1

1
q ` F´1q1pEn`1

1
` NnH

n`1

1
q

“ F´1r1pEn
2 ´ NnH

n
2 q ` F´1q1pEn

2 ` NnH
n
2 q,

F´1r2pEn`1

2
` NnH

n`1

2
q ` F´1q2pEn`1

2
´ NnH

n`1

2
q

“ F´1r2pEn
1 ` NnH

n
1 q ` F´1q2pEn

1 ´ NnH
n
1 q,

similarly to the general 3D case as we explained in (4.11).

5.1. Plane wave in a homogeneous conductive medium. We first consider the propa-
gation of a plane wave in a homogeneous conductive medium. The computational domain is
Ω “ p0, 1q2, and σ̃ “ 0.5. We use DG discretizations with several polynomial orders denoted
by DG-Pk, with k “ 1, 2, 3, 4, and impose on BΩ “ Γa an incident wave

Winc “

»

—
–

ky

ω̃
´kx

ω̃

1

fi

ffi
fl e´ik¨x, and k “

„
kx
ky


“
«
ω̃

b
1 ´ i σ̃

ω̃

0

ff

.

The domain Ω is decomposed into the two subdomains Ω1 “ p0, 0.5q ˆ p0, 1q and
Ω2 “ p0.5, 1q ˆ p0, 1q. The goal of this first test problem is to retrieve numerically the
asymptotic behavior of the convergence factors of the optimized Schwarz methods when
discretized using DG and to compare with the theoretical convergence factors of Table 5.2.
The iteration numbers to reduce the relative residual by six orders of magnitude are given
in Table 5.3, where also in parentheses the iteration numbers are included for the use of the
Schwarz methods as preconditioners for a Krylov method, which is BiCGStab in our case.
We clearly see that there is a hierarchy of faster and faster algorithms, and their asymptotic
behavior corresponds well to the analysis as one can see from Figure 5.1.

5.2. Plane wave in a multi-layer heterogeneous medium. We study the performance
of the optimized Schwarz algorithms in the case of a heterogeneous propagation medium. The
model problem we consider is the propagation of a plane wave in a multi-layer conductive
medium, as displayed in Figure 5.2 on the left. We decompose the computational domain
Ω “ p´1, 1q2 into two subdomains Ω1 “ p0, 0.5q ˆ p0, 1q and Ω2 “ p0.5, 1q ˆ p0, 1q; see
Figure 5.2 on the right. The electromagnetic characteristics of the medium are given in
Table 5.4.

We test here the method DG-P1,2,3,4 where the interpolation degree is fixed for each
element of the mesh according to the local wavelength; see the last column in Table 5.4. In
Table 5.5, we again present the iteration numbers obtained by the various optimized Schwarz
algorithms for reducing the relative residual by six orders of magnitude and in parentheses
the corresponding iteration numbers when the Schwarz methods are used as preconditioners.
In Figure 5.3, we plot these iteration numbers as a function of the mesh size as well as the
corresponding theoretical asymptotic iteration number counts, which shows that even in such a
layered medium, where our analysis is not valid any more, the Schwarz algorithms still behave
asymptotically as the constant medium theory indicates. We finally display in 5.4 the real part
of the electric field for this scattering problem.
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TABLE 5.3
Wave propagation in a homogeneous medium. Iteration count as a function of h when the optimized Schwarz

methods are used as iterative solvers and in parentheses when used as preconditioners.

h

1

10

1

20

1

40

1

80

DG-P1, ω̃ “ 2π

Algorithm 1 383 (16) 1396 (21) 5434 (27) 24400 (35)
Algorithm 2 30 (9) 43 (11) 62 (13) 92 (18)
Algorithm 3 29 (9) 40 (10) 59 (13) 81 (18)
Algorithm 4 28 (10) 34 (10) 43 (12) 52 (17)
Algorithm 5 28 (9) 32 (9) 38 (10) 45 (15)

DG-P2, ω̃ “ 10{3π
Algorithm 1 1573 (21) 2288 (24) 10520 (29) 55054 (35)
Algorithm 2 37 (11) 53 (12) 77 (16) 111 (18)
Algorithm 3 35 (10) 48(11) 69 (16) 95 (17)
Algorithm 4 30 (10) 36 (12) 45 (14) 55 (16)
Algorithm 5 29 (9) 33 (10) 39 (13) 49 (14)

DG-P3, ω̃ “ 13{3π
Algorithm 1 650 (21) 3025 (25) 17900 (30) (51)
Algorithm 2 40 (11) 58 (14) 84 (16) 122 (21)
Algorithm 3 38 (11) 51 (13) 75 (15) 105 (19)
Algorithm 4 31 (10) 38 (13) 47 (15) 57 (19)
Algorithm 5 30 (9) 33 (11) 39 (13) 47 (16)

DG-P4, ω̃ “ 6π

Algorithm 1 1072 (29) 6318 (38) 39977 (51) (64)
Algorithm 2 50 (12) 73 (15) 106 (18) 154 (21)
Algorithm 3 47 (11) 69 (14) 98 (18) 139 (20)
Algorithm 4 37 (12) 47 (14) 59 (17) 71 (19)
Algorithm 5 34 (10) 42 (12) 51 (15) 60 (17)

TABLE 5.4
Characteristic parameters of the medium for the model problem of scattering of a plane wave in a multi-layer

domain.

Layer i εi σ̃i µi DG-Pi

1 1.0 0.0 1 1
2 2.25 0.1 1 2
3 3.5 0.2 1 3
4 5.3 0.5 1 4

5.3. Scattering of a plane wave by a conductive dielectric cylinder. The final model
problem we consider is the scattering of a plane wave by a dielectric conductive cylinder
with radius r0 “ 0.6m. The computational domain is obtained by artificially restricting the
domain to a cylinder with radius r “ 1.6m and using the Silver-Müller condition on the
artificial boundary. We use a non-uniform triangular mesh which consists of 2078 vertices
and 3958 triangles; see Figure 5.5. The relative permittivity of the inner cylinder is set to
εr “ 2.25 and its electric conductivity to σ̃ “ 0.01, while vacuum is assumed for the rest of
the domain. The frequency we consider is F=300 MHz. Numerical simulations are performed
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FIG. 5.1. Asymptotic behavior of the iteration numbers from Table 5.3 as a function of the mesh size h for the

DG-P1, DG-P2, DG-P3, and DG-P4 discretizations.

FIG. 5.2. Domain configuration for the model problem of scattering of a plane wave in a multi-layer domain.

using decompositions into 4 and 16 subdomains; for an example see Figure 5.5. In Table 5.6
we display the iteration numbers for the various optimized Schwarz methods for reducing the
relative residual by six orders of magnitude. Here, DG-P1,2,3,4 stands for a non-uniform-order
DG discretization, i.e., the interpolation order is defined on an elementwise basis: small
elements use low-order shape functions and large elements use high-order ones. We note
that the optimized algorithms improve substantially the convergence of the classical Schwarz
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TABLE 5.5
Scattering of a plane wave in a multi-layer domain. Iteration count as a function of h when the optimized

Schwarz methods are used as iterative solvers and in parentheses when used as preconditioners.

h
1

20

1

40

1

80

1

160

Algorithm 1 727 (31) 2974 (41) 11973 (52) (70)
Algorithm 2 108 (21) 153(25) 220 (30) 315 (33)
Algorithm 3 101 (20) 138 (23) 197 (27) 267 (30)
Algorithm 4 87 (18) 103 (22) 128 (25) 157 (28)
Algorithm 5 84 (16) 96 (20) 113 (22) 140 (25)

TABLE 5.6
Scattering of a plane wave by a dielectric conductive cylinder. Iteration count vs. mesh size.

DG-P1 DG-P2 DG-P3 DG-P4 DG-P1,2,3,4

Algo. # of domains # of domains # of domains # of domains # of domains
4 16 4 16 4 16 4 16 4 16

1 76 104 99 145 124 168 134 203 78 105
2 33 50 40 62 50 66 52 81 34 51
3 32 47 38 57 46 62 48 75 31 48
4 29 45 36 53 44 58 42 70 29 46
5 28 42 33 50 40 55 39 76 28 44
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FIG. 5.3. Asymptotic behavior of the iteration numbers from Table 5.5 as a function of the mesh size h.

algorithm (Algorithm 1 in the table) and also that the gain between both the optimized and
the classical algorithms seems to slightly increase with the interpolation order. Finally, we
also observe, as could be expected, a dependence of the iteration count on the number of
subdomains since we are not using any coarse grid correction in these experiments.

6. Conclusions. In this paper we have shown how optimized Schwarz methods can be
properly discretized in the framework of DG-methods such that at convergence, the result of
the underlying DG monodomain solution is recovered. The key idea is to introduce additional
trace variables on each subdomain interface representing the DG-traces of the neighboring
subdomain interface traces and then to use both traces appropriately to discretize the optimized
transmission conditions. We have tested the performance of the DG-discretized Schwarz
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FIG. 5.4. Real part of the electric field for the scattering of a plane wave in a multi-layer domain.
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y

x

FIG. 5.5. Mesh and subdomain decomposition for the scattering problem of a plane wave by a dielectric

conductive cylinder.

methods on many numerical scattering experiments, both for homogeneous and heterogeneous
media and in various physical configurations and for various decompositions. Our numerical
results indicate that the asymptotic performance of these algorithms obtained at a theoretical
level for homogeneous media and constant coefficients well predicts the performance of the al-
gorithms when discretized using DG-discretizations, both in homogeneous and heterogeneous
media and for very general decompositions.



ETNA
Kent State University

http://etna.math.kent.edu

DISCONTINUOUS GALERKIN METHODS FOR THE MAXWELL EQUATIONS 591

REFERENCES

[1] A. ALONSO RODRÍGUEZ AND L. GERARDO-GIORDA, New nonoverlapping domain decomposition methods

for the harmonic Maxwell system, SIAM J. Sci. Comput., 28 (2006), pp. 102–122.
[2] D. N. ARNOLD, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal.,

19 (1982), pp. 742–760.
[3] D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, Unified analysis of discontinuous Galerkin

methods for elliptic problems, SIAM J. Numer. Anal., 39 (2001/02), pp. 1749–1779.
[4] A. BUFFA, M. COSTABEL, AND D. SHEEN, On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal.

Appl., 276 (2002), pp. 845–867.
[5] A. BUFFA AND I. PERUGIA, Discontinuous Galerkin approximation of the Maxwell eigenproblem, SIAM J.

Numer. Anal., 44 (2006), pp. 2198–2226.
[6] P. CHEVALIER AND F. NATAF, Symmetrized method with optimized second-order conditions for the Helmholtz

equation, in Domain Decomposition Methods 10: The 10th International Conference on Domain Decom-
position Methods, Boulder, 1997, J. Mandel, C. Farhat, and X.-C. Cai, eds., Contemp. Math., 218, Amer.
Math. Soc., Providence, 1997, pp. 400–407.

[7] P. COLLINO, G. DELBUE, P. JOLY, AND A. PIACENTINI, A new interface condition in the non-overlapping

domain decomposition for the Maxwell equations, Comput. Methods Appl. Mech. Engrg., 148 (1997),
pp. 195–207.

[8] B. DESPRÉS, Décomposition de domaine et problème de Helmholtz, C. R. Acad. Sci. Paris Sér. I Math., 311
(1990), pp. 313–316.

[9] B. DESPRÉS, P. JOLY, AND J. E. ROBERTS, A domain decomposition method for the harmonic Maxwell equa-

tions, in Iterative Methods in Linear Algebra, Proceedings of the IMACS International Symposium held
at the Vrije Universiteit Brussel, 1991, R. Beauwens and P. de Groen, eds., North-Holland, Amsterdam,
1992, pp. 475–484.

[10] V. DOLEAN, H. FOL, S. LANTERI, AND R. PERRUSSEL, Solution of the time-harmonic Maxwell equations

using discontinuous Galerkin methods, J. Comput. Appl. Math., 218 (2008), pp. 435–445.
[11] V. DOLEAN, M. J. GANDER, AND L. GERARDO-GIORDA, Optimized Schwarz methods for Maxwell’s

equations, SIAM J. Sci. Comput., 31 (2009), pp. 2193–2213.
[12] V. DOLEAN, M. J. GANDER, S. LANTERI, J.-F. LEE, AND Z. PENG, Optimized Schwarz methods for curl-curl

time-harmonic Maxwell’s equations, in Domain Decomposition Methods in Science and Engineering 21,
J. Erhel, M. J. Gander, L. Halpern, T. Sassi, and O. Widlund, eds., Lect. Notes Comput. Sci. Eng., 98,
Springer, Cham, 2014, pp. 587–595.

[13] , Effective transmission conditions for domain decomposition methods applied to the time-harmonic

curl-curl Maxwell’s equations, J. Comput. Phys., 280 (2015), pp. 232–247.
[14] V. DOLEAN, S. LANTERI, AND R. PERRUSSEL, A domain decomposition method for solving the three-

dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, J. Comput.
Phys., 227 (2008), pp. 2044–2072.

[15] , Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a

discontinuous Galerkin method, IEEE. Trans. Magnetics, 44 (2008), pp. 954–957.
[16] M. EL BOUAJAJI, V. DOLEAN, M. J. GANDER, AND S. LANTERI, Optimized Schwarz methods for the

time-harmonic Maxwell equations with dampimg, SIAM J. Sci. Comput., 34 (2012), pp. A2048–A2071.
[17] M. EL BOUAJAJI, V. DOLEAN, M. J. GANDER, S. LANTERI, AND R. PERRUSSEL, DG discretization of

optimized Schwarz methods for Maxwell’s equations, in Domain Decomposition Methods in Science and
Engineering 21, J. Erhel, M. J. Gander, L. Halpern, T. Sassi, and O. Widlund, eds., Lect. Notes Comput.
Sci. Eng., 98, Springer, Cham, 2014, pp. 217–225.

[18] O. G. ERNST AND M. J. GANDER, Why it is difficult to solve Helmholtz problems with classical iterative

methods, in Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and
R. Scheichl, eds., Lect. Notes Comput. Sci. Eng., 83, Springer, Heidelberg, 2012, pp. 325–363.

[19] M. J. GANDER, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), pp. 699–731.
[20] , Schwarz methods over the course of time, Electron. Trans. Numer. Anal., 31 (2008), pp. 228–255.

http://etna.math.kent.edu/vol.31.2008/pp228-255.dir

[21] M. J. GANDER AND S. HAJIAN, Block Jacobi for discontinuous Galerkin discretizations: no ordinary Schwarz

methods, in Domain Decomposition Methods in Science and Engineering 21, J. Erhel, M. J. Gander,
L. Halpern, T. Sassi, and O. Widlund, eds., Lect. Notes Comput. Sci. Eng., 98, Springer, Cham, 2014,
pp. 305–313.

[22] , Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization, SIAM J. Numer.
Anal., 53 (2015), pp. 573–597.

[23] M. J. GANDER, F. MAGOULÈS, AND F. NATAF, Optimized Schwarz methods without overlap for the Helmholtz

equation, SIAM J. Sci. Comput., 24 (2002), pp. 38–60.
[24] S. HAJIAN, An optimized Schwarz algorithm for discontinuous Galerkin methods, in Domain Decomposi-

tion Methods in Science and Engineering 22, T. Dickopf, M. J. Gander, L. Halpern, R. Krause, and

http://etna.math.kent.edu/vol.31.2008/pp228-255.dir


ETNA
Kent State University

http://etna.math.kent.edu

592 M. EL BOUAJAJI, V. DOLEAN, M. J. GANDER, S. LANTERI, AND R. PERRUSSEL

L. F. Pavarino, eds., Lect. Notes Comput. Sci. Eng., 104, Springer, Cham, 2015, to appear.
[25] P. HELLUY, Résolution numérique des équations de Maxwell harmoniques par une méthode d’éléments finis

discontinus, Ph.D. Thesis, Mathématiques Appliquées, Ecole Nationale Supérieure de l’Aéronautique et
de l’ espace, Toulouse, 1994.

[26] P. HELLUY AND S. DAYMA, Convergence d’une approximation discontinue des systèmes du premier ordre,
C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), pp. 1331–1335.

[27] P. HELLUY, P. MAZET, AND P. KLOTZ, Sur une approximation en domaine non borné des équations de

Maxwell instationnaires: comportement asymptotique, Rech. Aérospat., 5 (1994), pp. 365–377.
[28] J. HESTHAVEN AND T. WARBURTON, Nodal Discontinuous Galerkin methods: Algorithms, Analysis and

Applications, Springer, New York, 2008.
[29] P. HOUSTON, I. PERUGIA, A. SCHNEEBELI, AND D. SCHÖTZAU, Interior penalty method for the indefinite

time-harmonic Maxwell equations, Numer. Math., 100 (2005), pp. 485–518.
[30] , Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case, M2AN

Math. Model. Numer. Anal., 39 (2005), pp. 727–753.
[31] S.-C. LEE, M. N. VOUVAKIS, AND J.-F. LEE, A non-overlapping domain decomposition method with

non-matching grids for modeling large finite antenna arrays, J. Comput. Phys., 203 (2005), pp. 1–21.
[32] Z. PENG AND J.-F. LEE, Non-conformal domain decomposition method with second-order transmission

conditions for time-harmonic electromagnetics, J. Comput. Phys., 229 (2010), pp. 5615–5629.
[33] , A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic

maxwell equations in R3, SIAM J. Sci. Comput., 34 (2012), pp. A1266–A1295.
[34] Z. PENG, V. RAWAT, AND J.-F. LEE, One way domain decomposition method with second order transmission

conditions for solving electromagnetic wave problems, J. Comput. Phys., 229 (2010), pp. 1181–1197.
[35] I. PERUGIA, D. SCHÖTZAU, AND P. MONK, Stabilized interior penalty methods for the time-harmonic

Maxwell equations, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 4675–4697.
[36] V. RAWAT, Finite Element Domain Decomposition with Second Order Transmission Conditions for Time-

Harmonic Electromagnetic Problems, Ph.D. Thesis, ElectroScience Lab, Ohio State University, Columbus,
2009.

[37] V. RAWAT AND J.-F. LEE, Nonoverlapping domain decomposition with second order transmission condition

for the time-harmonic Maxwell’s equations, SIAM J. Sci. Comput., 32 (2010), pp. 3584–3603.


