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PERTURBATION OF PARTITIONED LINEAR RESPONSE EIGENVALUE
PROBLEMS∗

ZHONGMING TENG†, LINZHANG LU‡, AND REN-CANG LI§

Abstract. This paper is concerned with bounds for the linear response eigenvalue problem for H =

[
0 K
M 0

]
,

where K and M admit a 2× 2 block partitioning. Bounds on how the changes of its eigenvalues are obtained when
K and M are perturbed. They are of linear order with respect to the diagonal block perturbations and of quadratic
order with respect to the off-diagonal block perturbations in K and M . The result is helpful in understanding how
the Ritz values move towards eigenvalues in some efficient numerical algorithms for the linear response eigenvalue
problem. Numerical experiments are presented to support the analysis.

Key words. linear response eigenvalue problem, random phase approximation, perturbation, quadratic perturba-
tion bound
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1. Introduction. Linear response perturbation analysis of time-dependent density func-
tional theory in computational quantum chemistry and physics is commonly used to analyze
the electronic excitation spectrum of a quantum many-fermion system [12, 13, 16, 20]. From
the analysis arises the following eigenvalue problem, known as the linear response eigenvalue
problem (LREP) (also known as the random phase approximation eigenvalue problem),

(1.1) Hz =

[
0 K
M 0

] [
y
x

]
= λ

[
y
x

]
= λz,

where K and M are n× n real symmetric positive definite matrices.
Despite that this is a nonsymmetric eigenvalue problem since H is not symmetric, this

eigenvalue problem exhibits many properties that one usually finds in a symmetric eigenvalue
problem [3, 11, 15]. In fact, H is a special Hamiltonian matrix whose eigenvalues are real and
in pairs {λ,−λ}. Denote by ±λi the eigenvalues of H and order them as

(1.2) −λn ≤ · · · ≤ −λ1 < λ1 ≤ · · · ≤ λn.

In particular, λ1 > 0 since both K and M are positive definite. In practice, the first k
smallest positive eigenvalues λ1 ≤ · · · ≤ λk are of interest. Recently, Bai and Li [1, 2] have
successfully obtained Ky Fan-type trace min principle and Cauchy-type interlacing inequalities,
among others. In this paper, we will continue the effort by extending the quadratic residual
bounds, such as the ones in [7, 10] for the symmetric eigenvalue problem, to LREP.

In this paper, we are concerned with perturbations of an LREP (1.1) in which K and M
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are already block diagonal:

(1.3) K =

[ n1 n2

n1 K11

n2 K22

]
, M =

[ n1 n2

n1 M11

n2 M22

]
,

where Mii and Kii, for i = 1, 2, are all symmetric positive definite, and thus

(1.4) H =


0 0 K11 0
0 0 0 K22

M11 0 0 0
0 M22 0 0

 .
When K and M are perturbed to

(1.5)

K̃ = K + E =

[
K11 + E11 E12

E21 K22 + E22

]
, M̃ =M + F =

[
M11 + F11 F12

F21 M22 + F22

]
,

by perturbations E and F which are assumed symmetric, we are interested in bounding how
much the eigenvalues of H change. Let

(1.6) H1 =

[
0 K11

M11 0

]
, H2 =

[
0 K22

M22 0

]
.

Two kinds of bounds will be established in this paper:
• Bounds on the difference between the eigenvalues of H and those of

(1.7) H̃ =


0 0 K11 + E11 E12

0 0 E21 K22 + E22

M11 + F11 F12 0 0
F21 M22 + F22 0 0

 .
Assume that H̃ is also an LREP, i.e, K̃ and M̃ are also symmetric positive definite.
This assumption holds if E and F are sufficiently tiny in norm.
• Bounds on the difference between the eigenvalues of H1 and some n1 eigenvalues of
H̃ .

There are two immediate applicable situations. The first one arises from using algorithms
that try to reduce both K and M to the diagonal form. In running such algorithms, K and M
are gradually turned into block diagonal, i.e., for some i 6= j, Eii = Fii = 0 (i = 1, 2) and
Eij and Fij have tiny magnitude. When Eij and Fij are deemed sufficiently tiny, it is natural
to regard them simply as 0. Our results can be used to show what the effect of doing so is.

The other situation is when one uses some subspace projection type methods for large
scale LREP. Recently, there are several rather efficient algorithms for LREP, such as the
locally optimal block preconditioned 4-D conjugate gradient method (LOBP4DCG) [2, 14],
the generalized Lanczos method [17, 19], and the block Chebyshev-Davidson method [18].
These algorithms are all based on the pair of deflating subspaces which is a generalization of
the concept of the invariant subspace in the standard eigenvalue problem. A pair of subspaces
{U,V} are called a pair of deflating subspaces if they satisfy

KU ⊂ V and MV ⊂ U.

Each of these algorithms hopefully generates an approximate deflating subspace pair {Ũ, Ṽ}.
Projecting LREP by the approximate deflating subspace pair {Ũ, Ṽ} leads to H̃ in (1.7) with
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Eii = Fii = 0 (i = 1, 2) and usually unknown K22 and M22. In such a case, our main results
will help us to understand how well the eigenvalues of H1 approximate some of those of H̃ .

The rest of this paper is organized as follows. In Section 2, we first collect some known
results for the standard symmetric eigenvalue problem and LREP. These results are essential
to the later analysis in this paper. Analogous to the estimate results of perturbed Hermitian
eigenvalue problems [7] and Hermitian definite generalized eigenvalue problems [8], we obtain
our main results in Section 3. Some numerical examples are presented in Section 4 to support
our analysis. Concluding remarks are given in Section 5.

The following is a list of notation used in this paper: Rm×n is the set of all m× n real
matrices, Rn = Rn×1, R = R1, and In is the n×n identity matrix or simply I if its dimension
is clear from the context. The superscript “T” represents the transpose. ‖ · ‖2 denotes the
`2-norm of a vector or the spectral norm of a matrix. For any Hermitian matrix X ∈ Rn×n,
we will use the integer triplet

(i−(X), i0(X), i+(X))

to represent its inertia, where i−(X), i0(X), and i+(X) are the number of negative, zero, and
positive eigenvalues of X , respectively. For matrices or scalars Xi, both diag(X1, . . . , Xk)
and X1 ⊕ · · · ⊕Xk denote the same block diagonal matrix.

2. Preliminaries. In the rest of this paper, unless otherwise explicitly stated, we always
assume that K and M are symmetric positive definite. The LREP (1.1) can be turned into the
following generalized eigenvalue problem by permuting the first and second block rows to get

(2.1)
[
M 0
0 K

] [
y
x

]
= λ

[
0 In
In 0

] [
y
x

]
.

We collect several properties of LREP in Theorems 2.1–2.2; see [1] for more detail.
THEOREM 2.1. There exist nonsingular X, Y ∈ Rn×n, such that

(2.2) K = Y Λ2Y T, M = XXT, XTY = In,

where Λ = diag(λ1, λ2, . . . , λn) and 0 < λ1 ≤ · · · ≤ λn. As a consequence,

(2.3) KX = Y Λ2, MY = X,

or equivalently

(2.4) H

[
Y

X

]
=

[
Y

X

] [
Λ2

In

]
.

THEOREM 2.2. There exist nonsingular Φ, Ψ ∈ Rn×n, such that

(2.5) ΨTKΨ = Λ, ΦTMΦ = Λ, Ψ = Φ−T,

where Λ is the same as in Theorem 2.1. Moreover,

(2.6) ‖Ψ‖22 ≤
‖M‖2
λ1

and ‖Φ‖22 ≤
‖K‖2
λ1

.

Proof. From Theorem 2.1, taking Ψ = XΛ−1/2 and Φ = Y Λ1/2, we have (2.5). We also
have (2.6) from

‖K‖2 = ‖ΦTΛΦ‖2 ≥ λ1‖Φ‖22,
‖M‖2 = ‖ΨTΛΨ‖2 ≥ λ1‖Ψ‖22.
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Later in this paper, we also need the following known results from the standard symmetric
eigenvalue problem.

LEMMA 2.3. Let A and Ã be two n× n symmetric matrices. Denote their eigenvalues in
the ascending order by λi and λ̃i, for 1 ≤ i ≤ n, respectively. Then

(a) (See [15]) |λ̃i − λi| ≤ ‖Ã−A‖2, for 1 ≤ i ≤ n.
(b) (See [7]) Suppose that

(2.7) A =

[ n1 n2

n1 A11

n2 A22

]
, Ã =

[
A11 ET

E A22

]
.

Then for 1 ≤ i ≤ n,

|λ̃i − λi| ≤
2‖E‖22

ηi +
√
η2i + 4‖E‖22

≤ 2‖E‖22
η +

√
η2 + 4‖E‖22

,

where

ηi =


min

µ2∈λ(A22)
|λi − µ2|, if λi ∈ λ(A11),

min
µ1∈λ(A11)

|λi − µ1|, if λi ∈ λ(A22),

η = min
1≤i≤n

ηi = min
µ1∈λ(A11), µ2∈λ(A22)

|µ1 − µ2|.

(c) (See [5]) Denote by θi, for 1 ≤ i ≤ n1, the eigenvalues of A11 in (2.7) in the
ascending order. Then there exist n1 eigenvalues λ̃t1 ≤ · · · ≤ λ̃tn1

of Ã, such that

|θi − λ̃ti | ≤ ‖E‖2, for 1 ≤ i ≤ n1.

We also need the following definition of positive (semi-)definite matrix pencil.
DEFINITION 2.4. (See [9]) A − λB is a symmetric matrix pencil of order n if both

A, B ∈ Rn×n are symmetric. A− λB is a positive (semi-)definite matrix pencil of order n
if it is a symmetric matrix pencil of order n and if there exists λ0 ∈ R such that A− λ0B is
positive (semi-)definite.

It can be proved that any positive semidefinite matrix pencil A− λB with nonsingular B
has only real eigenvalues and i−(B) of them are no larger than λ0 and the rest i+(B) of them
are no less than λ0 [4, 6, 9]. We implicitly use this fact in the following lemmas in ordering
the eigenvalues of involved positive (semi-)definite matrix pencils.

LEMMA 2.5 ([6, Theorem 2.1]). Let A and J = diag(±1) ∈ Rn×n be a positive
semidefinite pencil partitioned as

A =

[ k `

k A1 ET

` E A2

]
, J =

[ k `

k J1
` J2

]
,

and let

n+ = i+(J), n− = i−(J), n+ + n− = n,

k+ = i+(J1), k− = i−(J1), k+ + k− = k,

`+ = i+(J2), `− = i−(J2), `+ + `− = `.
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Denote by

λ−n−
≤ · · · ≤ λ−1 ≤ λ

+
1 · · · ≤ λ+n+

,

α−k− ≤ · · · ≤ α
−
1 ≤ α

+
1 · · · ≤ α

+
k+
,

β−`− ≤ · · · ≤ β
−
1 ≤ β

+
1 · · · ≤ β

+
`+
,

the eigenvalues of the pencils A− λJ , A1 − λJ1 and A2 − λJ2, respectively. Then

λ+i ≤ α
+
i ≤ λ

+
i+n−k , i = 1, 2, . . . , k+ ,

λ−j+n−k ≤ α
−
j ≤ λ

−
j , j = 1, 2, . . . , k− ,

and

λ+i ≤ β
+
i ≤ λ

+
i+n−` , i = 1, 2, . . . , `+ ,

λ−j+n−` ≤ β
−
j ≤ λ

−
j , j = 1, 2, . . . , `− ,

where λ+t = +∞ if t > n+ and λ−t = −∞ if t > n−.
LEMMA 2.6. Suppose A − λB is a positive definite matrix pencil of order n with

nonsingular B and let λ0 ∈ R such that A− λ0B is positive definite. Denote the eigenvalues
of A− λB by

(2.8) λ−n−
≤ · · · ≤ λ−1 < λ+1 ≤ · · · ≤ λ+n+

,

where n+ = i+(B) and n− = i−(B). Then λ−1 < λ0 < λ+1 , and there exists a nonsingular
W ∈ Rn×n, such that

(2.9) WTAW =

[
−Λ−

Λ+

]
, WTBW =

[
−In−

In+

]
,

where Λ± = diag(λ±1 , . . . , λ
±
n±

).
Proof. The key is to prove the eigen-decomposition (2.9). This is a corollary of more

general results [4, 6, 9]. In fact, the current case is much simpler; the matrices A and A−λ0B
are simultaneously congruent to diagonal matrices since A − λ0B is positive definite, and
then the eigen-decomposition can be constructed. We omit the detail here.

LEMMA 2.7. Let

(2.10) A =

[
A1 ET

E A2

]
, B =

[
In+

−In−

]
,

where A1 ∈ Rn+×n+ , A2 ∈ Rn−×n− and A ∈ Rn×n are symmetric positive definite, and
n+ + n− = n. Denote the eigenvalues of A− λB by

λ−n−
≤ · · · ≤ λ−1 < λ+1 ≤ · · · ≤ λ+n+

,

where1 λ+1 > 0 and λ−1 < 0, and the eigenvalues of A1 and A2 by

α1 ≤ · · · ≤ αn+
, β1 ≤ · · · ≤ βn− ,

1A− λB is a positive definite pencil with λ0 = 0 in Definition 2.4. Thus we know it has n− negative and n+

positive eigenvalues.
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respectively. Then, for 1 ≤ i ≤ n+ and 1 ≤ j ≤ n−,

(2.11) −βj ≤ λ−j < 0 < λ+i ≤ αi,

and

|αi − λ+i | ≤
‖E‖22
β1 + λ+i

≤ ‖E‖22
λ+i − λ

−
1

,(2.12a)

|(−βj)− λ−j | ≤
‖E‖22

α1 − λ−j
≤ ‖E‖22
λ+1 − λ

−
j

.(2.12b)

In particular, if λ+i − λ
−
1 ≥ 2‖E‖2 and λ+1 − λ

−
j ≥ 2‖E‖2, then 2

|αi − λ+i | ≤
2‖E‖22

(β1 + αi) +
√
(β1 + αi)2 − 4‖E‖22

(2.13a)

≤ 2‖E‖22
(λ+i − λ

−
1 ) +

√
(λ+i − λ

−
1 )

2 − 4‖E‖22
,(2.13b)

|(−βj)− λ−j | ≤
2‖E‖22

(α1 + βj) +
√
(α1 + βj)2 − 4‖E‖22

(2.13c)

≤ 2‖E‖22
(λ+1 − λ

−
j ) +

√
(λ+1 − λ

−
j )

2 − 4‖E‖22
.(2.13d)

Proof. We may suppose that A1 = diag(α1, . . . , αn+
) and A2 = diag(β1, . . . , βn−).

Otherwise, replace A by

(U+ ⊕ U−)TA(U+ ⊕ U−),

where UT
+A1U+ and UT

−A2U− are in diagonal form with their diagonal entries arranged in
ascending order and UT

±U± = In± . Doing so will keep the eigenvalues of A− λB unchanged
since B = (U+ ⊕ U−)TB(U+ ⊕ U−).

The inequalities in (2.11) are consequences of Lemma 2.5.
Let k be the multiplicity of λ+i and assume that

λ+i−k1 < λ+i−k1+1 = · · · = λ+i = · · · = λ+i+k2 < λ+i+k2+1,

where k1 + k2 = k. Let X =

[
In+ 0

−(A2 + λ+i In−)
−1E In−

]
. It can be verified that

XT(A− λ+i B)X = XT

[
A1 − λ+i In+ ET

E A2 + λ+i In−

]
X =

[
M(λ+i ) 0

0 A2 + λ+i In−

]
,

whereM(λ+i ) = A1−λ+i In+
−ET(A2+λ

+
i In−)

−1E. SinceXT(A−λ+i B)X andA−λ+i B
have the same inertia, by using Lemma 2.6 we conclude

i+(X
T(A− λ+i B)X) = 2n− i− k2,

i−(X
T(A− λ+i B)X) = i− k1,

i0(X
T(A− λ+i B)X) = k.

2By (2.11), λ+i −λ
−
1 ≥ 2‖E‖2 and λ+1 −λ

−
j ≥ 2‖E‖2 imply that β1+αi ≥ 2‖E‖2 and α1+βj ≥ 2‖E‖2,

respectively.
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Notice that the eigenvalues of A2 + λ+i In− are all positive. Thus, the inertia of M(λ+i ) is
given by

(2.14) i0(M(λ+i )) = k, i−(M(λ+i )) = i− k1, i+(M(λ+i )) = n+ − i− k2.

Denote by ω1 ≤ ω2 ≤ · · · ≤ ωn+
the eigenvalues of M(λ+i ). By (2.14), it is clear that

(2.15) ωi−k1+1 = · · · = ωi = · · · = ωi+k2 = 0.

Notice that the eigenvalues of A1 − λ+i In+
are

α1 − λ+i ≤ α2 − λ+i ≤ · · · ≤ αi − λ
+
i ≤ αi+1 − λ+i ≤ · · · ≤ αn+ − λ+i .

Therefore, we have by (2.15) and Lemma 2.3 (a),

|ωi − (αi − λ+i )| = |αi − λ
+
i | ≤ ‖E(A2 + λ+i In−)

−1ET‖2
≤ ‖E‖22 ‖(A2 + λ+i In−)

−1‖2

≤ ‖E‖22
β1 + λ+i

.

This together with (2.11) yields

|αi − λ+i | ≤
‖E‖22

λ+i − λ
−
1

,

which gives (2.12a), and

|αi − λ+i | ≤
‖E‖22

β1 + αi − |αi − λ+i |
.

Consequently, if λ+i − λ
−
1 ≥ 2‖E‖2, which implies β1 + αi ≥ 2‖E‖2, then

|αi − λ+i | ≤
2‖E‖22

(β1 + αi) +
√
(β1 + αi)2 − 4‖E‖22

≤ 2‖E‖22
(λ+i − λ

−
1 ) +

√
(λ+i − λ

−
1 )

2 − 4‖E‖22
,

which are (2.13a) and (2.13b). Similarly, we can prove (2.12b), (2.13c), and (2.13d).

3. Main Results. Consider LREP (1.1) with (1.3). Denote by ±λ̃i the eigenvalues of H̃
and order them, similarly to (1.2), as

(3.1) −λ̃n ≤ · · · ≤ −λ̃1 < λ̃1 ≤ · · · ≤ λ̃n.

First we bound the difference between the eigenvalues of H and H̃ .
From Theorem 2.2, we know that for Kii and Mii in (1.3), there exist Ψi and Φi, such that

ΨT
1 K11Ψ1 = Λ1, ΦT

1M11Φ1 = Λ1, Ψ1 = Φ−T
1 ,

ΨT
2 K22Ψ2 = Λ2, ΦT

2M22Φ2 = Λ2, Ψ2 = Φ−T
2 ,

where Λ1 and Λ2 are diagonal matrices with the diagonal entries consisting of the positive
eigenvalues of H . Also λ(Λ1) ∪ λ(Λ2) = λ(Λ), where Λ is defined in (2.2).
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Define, for 1 ≤ i ≤ n,

ηi =


min

µ2∈λ(Λ2)
|λi − µ2|, if λi ∈ λ(Λ1),

min
µ1∈λ(Λ1)

|λi − µ1|, if λi ∈ λ(Λ2),
(3.2)

η = min
1≤i≤n

ηi = min
µi∈λ(Λ1), µj∈λ(Λ2)

|µi − µj |.(3.3)

The quantity η is the spectral gap between λ(H1) and λ(H2), where H1 and H2 are as given
in (1.6). Set

P =


Ψ1 0 0 0
0 Ψ2 0 0
0 0 Φ1 0
0 0 0 Φ2

 , Q =


Φ1 0 0 0
0 Φ2 0 0
0 0 Ψ1 0
0 0 0 Ψ2

 .
We have PTQ = I2n and

PTHQ =


0 0 Λ1 0
0 0 0 Λ2

Λ1 0 0 0
0 Λ2 0 0

 ,(3.4)

PTH̃Q =


0 0 Λ1 + Ẽ11 Ẽ12

0 0 Ẽ21 Λ2 + Ẽ22

Λ1 + F̃11 F̃12 0 0

F̃21 Λ2 + F̃22 0 0


= PTHQ+

[
0 Ẽ

F̃ 0

]
,(3.5)

where

Ẽ ≡

[
Ẽ11 Ẽ12

Ẽ21 Ẽ22

]
=

[
ΨT
1 0
0 ΨT

2

] [
E11 E12

E21 E22

] [
Ψ1 0
0 Ψ2

]
,(3.6a)

F̃ ≡

[
F̃11 F̃12

F̃21 F̃22

]
=

[
ΦT
1 0
0 ΦT

2

] [
F11 F12

F21 F22

] [
Φ1 0
0 Φ2

]
.(3.6b)

Using (2.6), we can bound Ẽij and F̃ij (i, j = 1, 2) as follows

‖Ẽij‖2 = ‖ΨT
i EijΨj‖2 ≤

‖M‖2‖Eij‖2
λ1

,(3.7a)

‖F̃ij‖2 = ‖ΦT
i FijΦj‖2 ≤

‖K‖2‖Fij‖2
λ1

,(3.7b)

and similarly,

(3.8) ‖Ẽ‖2 ≤
‖M‖2‖E‖2

λ1
, ‖F̃‖2 ≤

‖K‖2‖F‖2
λ1

.

In the following theorem, we use the notation introduced so far in this section.
THEOREM 3.1. Suppose that H in (1.4) is perturbed to H̃ in (1.7), where K, M , and the

corresponding perturbed matrices are all symmetric positive definite. Then, for all 1 ≤ i ≤ n,

(3.9) |λ̃i − λi| ≤ ε1 + ε2 + ε3,
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where

ε1 =

∥∥Ẽ − F̃∥∥2
2

4 (λ̃1 + λ̃i)
, ε2 = max

j=1,2

1

2

∥∥Ẽjj + F̃jj
∥∥
2
,

ε3 =

∥∥Ẽ21 + F̃21

∥∥2
2

2 ηi + 2
√
η2i +

∥∥Ẽ21 + F̃21

∥∥2
2

≤
∥∥Ẽ21 + F̃21

∥∥2
2

2 η + 2
√
η2 +

∥∥Ẽ21 + F̃21

∥∥2
2

.

Proof. Using (2.1), (3.4) and (3.5), we can transform LREP for H in (1.4) and LREP
for H̃ in (1.7) equivalently to the generalized eigenvalue problems for A− λB and Ã− λB,
respectively, where

A =


Λ1 0 0 0
0 Λ2 0 0
0 0 Λ1 0
0 0 0 Λ2

 , B =


0 0 In1

0
0 0 0 In2

In1 0 0 0
0 In2 0 0

 ,

Ã =


Λ1 + Ẽ11 Ẽ12 0 0

Ẽ21 Λ2 + Ẽ22 0 0

0 0 Λ1 + F̃11 F̃12

0 0 F̃21 Λ2 + F̃22

 .
Both

(3.10)

[
Λ1 + Ẽ11 Ẽ12

Ẽ21 Λ2 + Ẽ22

]
and

[
Λ1 + F̃11 F̃12

F̃21 Λ2 + F̃22

]
.

are positive definite because K̃ and M̃ in (1.5) are assumed positive definite. Let Z =

1√
2

[
In In
In −In

]
. We have

Â = ZTÃZ

=


Λ1 +

1
2 Ẽ11 +

1
2 F̃11

1
2 Ẽ12 +

1
2 F̃12

1
2 Ẽ11 − 1

2 F̃11
1
2 Ẽ12 − 1

2 F̃12
1
2 Ẽ21 +

1
2 F̃21 Λ2 +

1
2 Ẽ22 +

1
2 F̃22

1
2 Ẽ21 − 1

2 F̃21
1
2 Ẽ22 − 1

2 F̃22
1
2 Ẽ11 − 1

2 F̃11
1
2 Ẽ12 − 1

2 F̃12 Λ1 +
1
2 Ẽ11 +

1
2 F̃11

1
2 Ẽ12 +

1
2 F̃12

1
2 Ẽ21 − 1

2 F̃21
1
2 Ẽ22 − 1

2 F̃22
1
2 Ẽ21 +

1
2 F̃21 Λ2 +

1
2 Ẽ22 +

1
2 F̃22

 ,

B̂ = ZTBZ =


In1

0 0 0
0 In2 0 0
0 0 −In1 0
0 0 0 −In2

 .
The matrix Ã is positive definite; so are Â and its leading n× n principal submatrix[

Λ1 +
1
2 Ẽ11 +

1
2 F̃11

1
2 Ẽ12 +

1
2 F̃12

1
2 Ẽ21 +

1
2 F̃21 Λ2 +

1
2 Ẽ22 +

1
2 F̃22

]
.
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Next, we consider the following four eigenvalue problems:
1. EIG(a): Â− λB̂ (which has the same eigenvalues as Ã− λB);

2. EIG(b):

[
Λ1 +

1
2 Ẽ11 +

1
2 F̃11

1
2 Ẽ12 +

1
2 F̃12

1
2 Ẽ21 +

1
2 F̃21 Λ2 +

1
2 Ẽ22 +

1
2 F̃22

]
− λIn;

3. EIG(c):

[
Λ1

1
2 Ẽ12 +

1
2 F̃12

1
2 Ẽ21 +

1
2 F̃21 Λ2

]
− λIn;

4. EIG(d):
[
Λ1

Λ2

]
− λIn.

For x=b, c, and d, denote the eigenvalues of EIG(x) by λ(x)i in the ascending order, i.e.,

λ
(x)
1 ≤ λ(x)2 ≤ · · · ≤ λ(x)n .

For EIG(a), the eigenvalues are given by (3.1). Now, we can bound the eigenvalue differences
between any two adjacent eigenvalue problems in the above list as follows:

EIG(a) and EIG(b): By Lemma 2.7,

|λ̃i − λ(b)i | ≤ ε1 =

∥∥Ẽ − F̃∥∥2
2

4(λ̃1 + λ̃i)
.

EIG(b) and EIG(c): By Lemma 2.3 (a),

|λ(b)i − λ
(c)
i | ≤ ε2 =

∥∥∥∥∥
[

1
2 Ẽ11 +

1
2 F̃11 0

0 1
2 Ẽ22 +

1
2 F̃22

]∥∥∥∥∥
2

=
1

2
max

{∥∥Ẽ11 + F̃11

∥∥
2
,
∥∥Ẽ22 + F̃22

∥∥
2

}
.

EIG(c) and EIG(d): By Lemma 2.3 (b),

|λ(c)i − λ
(d)
i | ≤ ε3 =

2
∥∥∥ 1
2 Ẽ21 +

1
2 F̃21

∥∥∥2
2

ηi +

√
η2i + 4

∥∥∥ 1
2 Ẽ21 +

1
2 F̃21

∥∥∥2
2

,

where ηi and η are given in (3.2) and (3.3), respectively.
Combining the above three inequalities, we have

|λ̃i − λi| = |λ̃i − λ(d)i |

≤ |λ̃i − λ(b)i |+ |λ
(b)
i − λ

(c)
i |+ |λ

(c)
i − λ

(d)
i |

≤ ε1 + ε2 + ε3.

Next, we bound the difference between the eigenvalues of H1 and some n1 eigenvalues
of H̃ .

THEOREM 3.2. Assume that the conditions of Theorem 3.1. Denote the eigenvalues of H1

by

−µn1
≤ · · · ≤ −µ1 < µ1 ≤ · · · ≤ µn1

.

There are n1 positive eigenvalues λ̃t1 ≤ · · · ≤ λ̃tn1
of H̃ , such that for 1 ≤ i ≤ n1,

(3.11) |µi − λ̃ti | ≤ ε̃1 + ε̃2 + ε̃3,
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where

ε̃1 =

∥∥Ẽ − F̃∥∥2
2

4(λ̃1 + λ̃ti)
, ε̃2 =

1

2

∥∥Ẽ11 + F̃11

∥∥
2
, ε̃3 =

1

2

∥∥Ẽ21 + F̃21

∥∥
2
.

Proof. We follow the notation used in the proof of Theorem 3.1. We first consider
estimating the difference between the eigenvalues of H1 and some n1 eigenvalues of EIG(b).
This can be done in two steps. First, we bound the difference between the eigenvalues of
Λ1+

1
2 Ẽ11+

1
2 F̃11 and some n1 eigenvalues of EIG(b), and then bound the difference between

the eigenvalues of Λ1 +
1
2 Ẽ11 +

1
2 F̃11 and those of H1.

By Lemma 2.3 (a) and (c), there are n1 eigenvalues λ(b)t1 ≤ · · · ≤ λ
(b)
tn1

of EIG(b), such
that

(3.12) |µi − λ(b)ti | ≤
1

2

(∥∥Ẽ11 + F̃11

∥∥
2
+
∥∥Ẽ21 + F̃21

∥∥
2

)
.

For 1 ≤ i ≤ n1, we have by Lemma 2.7,

(3.13) |λ̃ti − λ
(b)
ti | ≤

∥∥Ẽ − F̃∥∥2
2

4(λ̃1 + λ̃ti)
.

Therefore, it follows from (3.12) and (3.13) that

|µi − λ̃ti | ≤ |µi − λ
(b)
ti |+ |λ

(b)
ti − λ̃ti |

≤ 1

2

(∥∥Ẽ11 + F̃11

∥∥
2
+
∥∥Ẽ21 + F̃21

∥∥
2

)
+

∥∥Ẽ − F̃∥∥2
2

4(λ̃1 + λ̃ti)
,

which is (3.11).
REMARK 3.3. Listed below are some comparisons between Theorems 3.1 and 3.2.

(a) The bound in Theorem 3.1 is quadratic with respect to the off-diagonal blocks of Ẽ and F̃ ,
but is only linear with respect to the diagonal blocks of Ẽ and F̃ , whereas in Theorem 3.2,
the bound is linear with respect to both diagonal and off-diagonal blocks of Ẽ and F̃ .
Thus, the bound in Theorem 3.1 is much tighter in the case of no perturbations in the
diagonal blocks, i.e., Eii = Fii = 0 for i = 1, 2. Theorem 3.1 achieves this supremacy
over Theorem 3.2 in the case when Eii = Fii = 0 for i = 1, 2 through the availability of
the gaps as defined in (3.2), which Theorem 3.2 does not require, i.e., Theorem 3.2 uses
less information.

(b) Theorem 3.1 provides bounds for the changes of all of eigenvalues of H , while Theo-
rem 3.2 provides only for those of H1.

4. Numerical examples. We test our results in Theorems 3.1 and 3.2 on the following
parameterized LREP,

(4.1) H̃(α)z =

[
0 K + αE

M + αF 0

] [
y
x

]
= λ

[
y
x

]
= λz,

where the parameter α varies from 0 to 1 while K+αE and M +αF remain positive definite.
Two types of perturbations E and F are considered: Perturbations in all blocks

(4.2) E =

[
E11 E12

E21 E22

]
, F =

[
F11 F12

F21 F22

]
,
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α

10-6 10-5 10-4 10-3 10-2 10-1

10-12

10-10

10-8

10-6

10-4
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|λ̃1(α)− λ1|
Bound by Thm 3.1

Bound by Thm 3.2

FIG. 4.1. |λ̃1(α)− λ1| and its bounds in Theorems 3.1 and 3.2. The left plot is for the perturbations
in (4.4) and all three lines have the same slope. The right plot is for the perturbations in (4.5) and the
line corresponding to Theorem 3.2 has flatter slope than the other two lines. This is due to the fact that
under (4.5), λ̃1(α) − λ1 varies quadratically in α and such dependency is correctly reflected by the
bound in Theorem 3.1 but incorrectly by the bound in Theorem 3.2.

and perturbations in off-diagonal blocks only

(4.3) E =

[
E12

E21

]
, F =

[
F12

F21

]
.

Denote the eigenvalues of H̃(α) by

−λ̃n(α) ≤ · · · ≤ −λ̃1(α) < λ̃1(α) ≤ · · · ≤ λ̃n(α).

In particular, λ̃i(α) = λi for α = 0.
EXAMPLE 4.1. For simplicity, we first take K =M = diag(1, 2). In such case, Φi and

Ψi (i = 1, 2) in (3.6) are I1 = 1. Therefore, in (3.6), we have

Ẽij = Eij , F̃ij = Fij for i, j = 1, 2.

Furthermore, the eigenvalues of H are ±λ1 = ±1, ±λ2 = ±2, and the gap η = 1. We
consider two perturbation pairs (E,F ):

Perturbing all blocks, E =

[
1 1
1 1/2

]
, F =

[
1/4 −1/2
−1/2 1

]
,(4.4)

and

perturbing only off-diagonal blocks, E =

[
0 1
1 0

]
, F =

[
0 −1/2
−1/2 0

]
.(4.5)

Since n = 2, we can directly compute |λ̃1(α)− λ1| to get, under (4.5),

(4.6)
∣∣∣λ̃1(α)− λ1∣∣∣ =

∣∣∣∣∣
√
1− α2

2
− 1

∣∣∣∣∣ = 1

2
α2 +O(α3),
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and under (4.4),

(4.7)
∣∣∣λ̃1(α)− λ1∣∣∣ =

∣∣∣∣∣
√
1 +

5α− α2

4
− 1

∣∣∣∣∣ = 5

8
α+O(α2).

Figure 4.1 shows log-log plots for |λ̃1(α)− λ1| and the bounds in Theorems 3.1 and 3.2
under perturbations in (4.4) (left) and perturbations in (4.5) (right), respectively. The vertical
axes in both plots are purposefully made to have the same range, in an attempt to highlight
the linear and quadratic behaviors of eigenvalue changes with respect to different perturbation
patterns in (4.4) and (4.5). It is noted that the bound in Theorem 3.1 is sharp in this example.
In fact, the exact value |λ̃1(α)−λ1| and its bounds all approach 0 linearly in α in the left-hand
side plot, correctly reflecting the true behavior. In the right-hand side part, the exact value
|λ̃1(α)− λ1| and its bound of Theorem 3.1 approaches 0 quadratically in α while the bound
in Theorem 3.2 still approaches 0 linearly, as commented on in Remark 3.3(a).

EXAMPLE 4.2. In this example, we construct a linear response eigenvalue problem using
the eigenvalues −λn ≤ · · · ≤ −λ1 < λ1 ≤ · · · ≤ λn from the LREP for the sodium dimer
Na2 [2] with n = 1862. Let

Λ1 = diag(λ1, . . . , λ4), Λ2 = diag(λ5, . . . , λn),

and Q1, Q2 be random orthogonal matrices obtained by

qr(randn(4)) and qr(randn(n− 4)),

in MATLAB, respectively. Finally, we define an LREP with

K =

[
K11

K22

]
, M =

[
M11

M22

]
,

where K11 = M11 = QT
1 Λ1Q1 and K22 = M22 = QT

2 Λ2Q2. The symmetric perturbation
matrices

E =

[ 4 n−4

4 E11 E12

n−4 E21 E22

]
, F =

[ 4 n−4

4 F11 F12

n−4 F21 F22

]
are also generated by the MATLAB function randn. |λ̃i(α)− λi| for i = 1, 2, 3, 4 and their
associated upper bounds under the two different types of perturbations in (4.2) and (4.3) are
shown in Figure 4.2. Again it can be seen that off-diagonal-block-only perturbations change
λi, for i = 1, 2, 3, 4, much less than all-block perturbations do and the bounds in Theorem 3.1
reflect that well. In addition, in this example, Ẽ22+ F̃22 has much larger norm than Ẽ11+ F̃11

since the norms ofE22 and F22 are larger than those ofE11 and F11. Consequently, the bounds
in Theorem 3.2 under perturbations in (4.5) appear sharper than those in Theorem 3.1.

5. Conclusion. In this paper, we have obtained perturbation bounds for the partitioned LREP for
H as in (1.4) perturbed to H̃ as in (1.7), as well as bounds for the differences between the eigenvalues
of H1 as in (1.6) and some of those of H̃ . The main results are summarized in Theorems 3.1 and 3.2.
The bound in Theorem 3.1 depends linearly on the norms of diagonal perturbation blocks Eii, Fii but
quadratically on those of off-diagonal perturbation blocks Eij and Fij (i 6= j). These bounds are shown
to be very sharp in the presented numerical examples.

While the analysis in this paper is for real symmetricK andM , it also holds for the case of Hermitian
K andM , simply by replacing all R by C (the set of complex numbers) and each matrix/vector transpose
by complex conjugate and transpose.
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FIG. 4.2. |λ̃i(α)−λi| for i = 1, 2, 3, 4 and their bounds in Theorems 3.1 and 3.2 under all-block perturbations
(left plots) and off-diagonal perturbations (right plots), respectively. In particular, in the left plots, the bounds
in Theorem 3.2 under all-block perturbations are sharper than those in Theorem 3.1 due to ‖Ẽ22 + F̃22‖2 ≥
‖Ẽ11 + F̃11‖2.
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[6] J. KOVAČ-STRIKO AND K. VESELIĆ, Trace minimization and definiteness of symmetric pencils, Linear Algebra

Appl., 216 (1995), pp. 139–158.
[7] C.-K. LI AND R.-C. LI, A note on eigenvalues of perturbed Hermitian matrices, Linear Algebra Appl., 395

(2005), pp. 183–190.
[8] R.-C. LI, Y. NAKATSUKASA, N. TRUHAR, AND S. XU, Perturbation of partitioned Hermitian definite

generalized eigenvalue problems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 642–663.
[9] X. LIANG, R.-C. LI, AND Z. BAI, Trace minimization principles for positive semi-definite pencils, Linear

Algebra Appl., 438 (2013), pp. 3085–3106.
[10] R. MATHIAS, Quadratic residual bounds for the Hermitian eigenvalue problem, SIAM J. Matrix Anal. Appl.,

19 (1998), pp. 541–550.
[11] B. N. PARLETT, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.
[12] P. RING, Z.-Y. MA, N. V. GIAI, D. VRETENAR, A. WANDELT, AND L.-G. GAO, The time-dependent

relativistic mean-field theory and the random phase approximation, Nuclear Phys. A, 694 (2001), pp. 249–
268.

[13] D. ROCCA, Time-Dependent Density Functional Perturbation Theory: New Algorithms with Applications to
Molecular Spectra, Ph.D. Thesis, The International School for Advanced Studies, Trieste, Italy, 2007.

[14] D. ROCCA, Z. BAI, R.-C. LI, AND G. GALLI, A block variational procedure for the iterative diagonalization
of non-Hermitian random-phase approximation matrices, J. Chem. Phys., 136 (2012), 034111 (8 pages).

[15] G. W. STEWART AND J. G. SUN, Matrix Perturbation Theory , Academic Press, Boston, 1990.
[16] R. E. STRATMANN, G. E. SCUSERIA, AND M. J. FRISCH, An efficient implementation of time-dependent

density-functional theory for the calculation of excitation of large molecules, J. Chem. Phys., 109 (1998),
pp. 8218–8824.

[17] Z. TENG AND R.-C. LI, Convergence analysis of Lanczos-type methods for the linear response eigenvalue
problem, J. Comput. Appl. Math., 247 (2013), pp. 17–33.

[18] Z. TENG, Y. ZHOU, AND R.-C. LI, A block Chebyshev-Davidson method for linear response eigenvalue
problems, Technical Report 2013-11, Department of Mathematics, University of Texas at Arlington,
Arlington, September 2013.

[19] E. V. TSIPER, Variational procedure and generalized Lanczos recursion for small-amplitude classical oscilla-
tions, JETP Lett., 70 (1999), pp. 751–755.

[20] , A classical mechanics technique for quantum linear response, J. Phys. B: At. Mol. Opt. Phys., 34
(2001), pp. L401–L407.


