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LOW-RANK SOLVERS FOR FRACTIONAL DIFFERENTIAL EQUATIONS∗

TOBIAS BREITEN†, VALERIA SIMONCINI‡, AND MARTIN STOLL§

Abstract. Many problems in science and technology can be cast using differential equations with both fractional
time and spatial derivatives. To accurately simulate natural phenomena using this technology, fine spatial and temporal
discretizations are required, leading to large-scale linear systems or matrix equations, especially whenever more than
one space dimension is considered. The discretization of fractional differential equations typically involves dense
matrices with a Toeplitz structure in the constant coefficient case. We combine the fast evaluation of Toeplitz matrices
and their circulant preconditioners with state-of-the-art linear matrix equation methods to efficiently solve these
problems, both in terms of CPU time and memory requirements. Additionally, we illustrate how these techniques
can be adapted when variable coefficients are present. Numerical experiments on typical differential problems with
fractional derivatives in both space and time showing the effectiveness of the approaches are reported.

Key words. fractional calculus, fast solvers, Sylvester equations, preconditioning, low-rank methods, tensor
equations
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1. Introduction. The study of integrals and derivatives of arbitrary order, so-called
fractional order, is an old topic in mathematics going back to Euler and Leibniz (see [19]
for historical notes). Despite its long history in mathematics it was not until recently that
this topic has gained mainstream interest outside the mathematical community. This surging
interest is mainly due to the inadequateness of traditional models to describe many real
world phenomena. The well-known anomalous diffusion process is one typical such example
[37]. Other applications of fractional calculus are viscoelasticity - for example using the
Kelvin-Voigt fractional derivative model [28, 63], electrical circuits [25, 47], electro-analytical
chemistry [58], or image processing [48].

With the increase of problems using fractional differential equations there is corresponding
interest in the development and study of accurate, fast, and reliable numerical methods that
allow their solution. There are various formulations for the fractional derivative mainly
divided into derivatives of Caputo or Riemann-Liouville type (see definitions in Section 2). So
far, much of the numerical analysis focused on ways to discretize these equations using either
tailored finite difference [35, 45] or finite element [16, 34] methods. Of particular importance is
the preconditioning of the linear system, which can be understood as additionally employing an
approximation of the discretized operator. For some types of fractional differential equations,
preconditioning has recently been considered (see [32, 38]). Another approach that has
recently been studied by Burrage et al. considers approximations to matrix functions to solve
the discretized system (see [5] for details). In this paper we focus on the solution of the
discretized equations when a finite difference approximation is used. Our work here is
motivated by some recent results in [46], where the discretization via finite differences is
considered in a purely algebraic framework.
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Our aim is to exploit a novel linear algebra formulation of the discretized differential
equations, which allows us to efficiently and reliably solve the resulting very large algebraic
equations. The new framework captures the intrinsic matrix structure in each space and time
directions typical of the problem; the corresponding matrix or tensor equations are solved with
recently developed fast iterative methods, which determine accurate low-rank approximations
in the solution manifold.

We therefore structure the paper as follows. Section 2 provides some background on
both Caputo and Riemann-Liouville fractional derivatives. In Section 3 we introduce different
problems, all of fractional order. The problems are either space-, time- or space-time-fractional.
Additionally, we introduce variable and constant coefficients. We start with a problem revealing
the basic matrix structure that is obtained when tailored finite difference methods are applied.
Later, a more complicated setup will lead to not only having to solve a simple structured
linear system, but rather a (linear) matrix Sylvester equation. An even further structured
equation is obtained when we consider a two-dimensional (in space) setup. We also consider
a problem that combines two-dimensional spatial derivatives of fractional order with a time-
fractional derivative, which in turn leads to a tensor structured equation. In Section 4 we turn
to constructing fast solvers for the previously obtained matrix equations. We therefore start
by introducing circulant approximations to the Toeplitz matrices, which are obtained as the
discretization of an instance of a fractional derivative. These circulant matrices are important
as preconditioners for matrices of Toeplitz type, but can also be used with the tailored matrix
equation solvers presented in Section 4.1, either of direct or preconditioned form. Section 4.3
provides some of the eigenvalue analysis needed to show that our methods perform robustly
within the given parameters. This is then followed by a tensor-valued solver in Section 4.4.
The numerical results given in Section 5 illustrate the competitiveness of our approaches.

Throughout the manuscript the following notation will be used. MATLAB notation will be
used whenever possible; for a matrix U = [u1, . . . ,un] ∈ Rm×n,
vec(U) = [uT1 , . . . ,u

T
n ]T ∈ Rnm denotes the vector obtained by stacking all columns

of U one after the other; A⊗B denotes the Kronecker product of A and B and UH is the
complex conjugate transpose of U.

2. Fractional calculus and Grünwald formulae.

2.1. The fractional derivative. In fractional calculus there are competing concepts for
the definition of fractional derivatives. The Caputo and the Riemann-Liouville fractional
derivatives [45] are both used here and we use this section to briefly recall their definition.

Consider a function f = f(t) defined on an interval [a, b]. Assuming that f is sufficiently
often continuously differentiable, the Caputo derivative of real order α with (n− 1 < α ≤ n)
is defined as (see, e.g., [46, Formula (3)], [6, Section 2.3])

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)ds

(t− s)α−n+1 ,

where Γ(x) is the gamma function. Following the discussion in [46], the Caputo derivative is
frequently used for the derivative with respect to time. We also define the Riemann-Liouville
derivative (see, e.g., [46, Formulas (6-7)]): assuming that f is integrable for t > a, a left-sided
fractional derivative of real order α with (n− 1 < α ≤ n) is defined as

RL
a Dα

t f(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(s)ds

(t− s)α−n+1 , a < t < b.
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Analogously, a right-sided Riemann-Liouville fractional derivative is given by

RL
t Dα

b f(t) =
(−1)n

Γ(n− α)

(
d

dt

)n ∫ b

t

f(s)ds

(s− t)α−n+1 , a < t < b.

If one is further interested in computing the symmetric Riesz derivative of order α, one can
simply perform the half-sum of the left and right-sided Riemann-Liouville derivatives (see,
e.g., [46, Formula (5)]), that is,

dαf(t)

d |t|α
=tD

α
Rf(t) =

1

2

(
RL
a Dα

t f(t) + RL
t Dα

b f(t)
)
.(2.1)

Here a connection to both the left-sided and the right-sided derivatives is made1. In the
remainder of this paper we want to illustrate that fractional differential equations using the
formulations together with certain discretization approaches lead to similar structures at the
discrete level. Our goal is to give guidelines and offer numerical schemes for the efficient
and accurate evaluation of problems of various form. Detailed introductions to fractional
differential equations can be found in [45, 51].

2.2. Numerical approximation. The discretization of fractional derivatives is often
done by finite difference schemes of Grünwald-Letnikov type. Assume that, for a one di-
mensional problem, the spatial domain is given by x ∈ [a, b]. We here follow [35] for the
introduction of the basic methodology. According to [35], the following holds

RL
a Dα

xf(x, t) = lim
M→∞

1

hα

M∑
k=0

gα,kf(x− kh, t),

for the left-sided derivative (see (3) in [35] or (7.10) in [45]), where h = x−a
M , and gα,k is

given by

gα,k =
Γ(k − α)

Γ(−α)Γ(k + 1)
= (−1)k

(
α
k

)
.

For the efficient computation of the coefficients gα,k one can use the following recurrence
relation2 ([45])

gα,0 = 1, gα,k =

(
1− α+ 1

k

)
gα,k−1.

This finite difference approximation is of first order [35]. One can analogously obtain an
expression for the right-sided derivative via

RL
x Dα

b f(x, t) = lim
M→∞

1

hα

M∑
k=0

gα,kf(x+ kh, t),

where h = b−x
M .

Alternatively, a shifted Grünwald-Letnikov formula is introduced in [35]. This discretiza-
tion shows advantages regarding the stability when the fractional derivative is part of an

1In this work we are not discussing which of these derivatives is the most suitable for the description of a natural
phenomenon.

2In MATLAB, this can be efficiently computed using y = cumprod([1, 1− ((α+ 1)./(1 : n))]), where n is the
number of coefficients.
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unsteady differential equation. The basis of the discretized operator used later is the following
shifted expression

RL
a Dα

xf(x, t) = lim
M→∞

1

hα

M∑
k=0

gα,kf(x− (k − 1)h, t)

introduced in [35, Theorem 2.7].

3. Some model problems and discretizations. In what follows, we introduce some
prototypes of fractional differential equations. We start with space fractional problems with
constant coefficients. These will then be expanded by an additional time fractional derivative.
Similarities and differences in the non-constant coefficient case are pointed out. We emphasize
that the subsequent examples are neither the only relevant formulations nor the only possible
ways to discretize each problem. Instead, we show that classical discretization techniques
typically lead to dense but highly structured problems which, when considered as matrix
equations, allow for an efficient numerical treatment.

3.1. Space fractional problems. Consider the one dimensional fractional diffusion
equation

(3.1)

du(x, t)

dt
− xD

β
Ru(x, t) = f(x, t), (x, t) ∈ (0, 1)× (0, T ],

u(0, t) = u(1, t) = 0, t ∈ [0, T ],

u(x, 0) = 0, x ∈ [0, 1],

with spatial differentiation parameter β ∈ (1, 2). Equation (3.1) is discretized in time by an
implicit Euler scheme of step size τ to give

(3.2)
un+1 − un

τ
− xD

β
Ru

n+1 = fn+1,

where un+1 := u(x, tn+1), and fn+1 := f(x, tn+1) denote the values of u(x, t) and f(x, t)
at time tn+1 = (n+ 1)τ. According to (2.1), the Riesz derivative is defined as the weighted
average of the left and right-sided Riemann-Liouville derivative. Hence, let us first consider
the one-sided analogue of (3.2), i.e.,

un+1 − un

τ
−RLa Dβ

xu
n+1 = fn+1.

The stable discretization of this problem is introduced in [35, Formula (18)], where using
un+1
i := u(xi, tn+1), the derivative is approximated via

RL
a Dβ

xu
n+1
i ≈ 1

hβx

i+1∑
k=0

gβ,ku
n+1
i−k+1.

Here, hx = b−a
nx+1 , and nx is the number of interior points in space. Incorporating the

homogeneous Dirichlet boundary conditions, an approximation to (3.2) in matrix form is given
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by

1

τ


un+1
1 − un1
un+1
2 − un2

...

...
un+1
nx − u

n
nx

 = h−βx



gβ,1 gβ,0 0 . . . 0

gβ,2 gβ,1 gβ,0
. . .

...
...

. . . . . . gβ,0 0

gβ,nx−1
. . . . . . gβ,1 gβ,0

gβ,nx gβ,nx−1 . . . gβ,2 gβ,1


︸ ︷︷ ︸

Tnxβ


un+1
1

un+1
2
...
...

un+1
nx


︸ ︷︷ ︸

un+1

+


fn+1
1

fn+1
2
...
...

fn+1
nx


︸ ︷︷ ︸

fn+1

.

We now approximate the symmetric Riesz derivative as the weighted sum of the left- and
right-sided Riemann-Liouville fractional derivative (see also [46, formula (28)]), to obtain the
differentiation matrix

Lnxβ =
1

2

(
Tnx
β + (Tnx

β )T
)
.

While we simply take the weighted average of the discretized operators, the justification of the
weighted two-sided average is laid in [36, equation (16)], where all ci are constant at 1

2 and all
fi are zero. Using this notation it is easy to see that the implicit Euler method for solving (3.2)
requires the solution of the algebraic linear system

(3.3)
(
Inx − τLnxβ

)
un+1 = un + τ fn+1

at every time-step. We discuss the efficient solution of this system in Section 4. We here focus
on the shifted version of the Grünwald formulae, but we want to remark that all techniques
presented in this paper are also applicable when the unshifted version is used.

Next, for Ω = (ax, bx)× (ay, by), consider the two-dimensional version of (3.1)

(3.4)

du(x, y, t)

dt
− xD

β1

R u(x, y, t)− yD
β2

R u(x, y, t) = f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, t) = 0, (x, y, t) ∈ Γ× [0, T ],

u(x, y, 0) = 0, (x, y) ∈ Ω,

where β1, β2 ∈ (1, 2) and Γ denotes the boundary of Ω. Using again the shifted Grünwald
finite difference for the spatial derivatives, gives in the x-direction

xD
β1

R u(x, y, t) =
1

Γ(−β1)
lim

nx→∞

1

hβ1
x

Mx∑
k=0

Γ(k − β1)

Γ(k + 1)
u(x− (k − 1)hx, y, t),

and then in the y-direction

yD
β2

R u(x, y, t) =
1

Γ(−β2)
lim

ny→∞

1

hβ2
y

My∑
k=0

Γ(k − β2)

Γ(k + 1)
u(x, y − (k − 1)hy, t).

With the previously defined weights, and employing an implicit Euler method in time, we
obtain the following equation

1

τ

(
un+1 − un

)
=
(
Iny ⊗ Lnxβ1

+ L
ny
β2
⊗ Inx

)
︸ ︷︷ ︸

L
nxny
β1,β2

un+1 + fn+1.
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Note that for the numerical approximation we have used hx = bx−ax
nx+1 , hy =

by−ay
ny+1 with

nx+2 and ny +2 degrees of freedom in both spatial dimensions. Again, the boundary degrees
of freedom have been eliminated. To proceed with the implicit time stepping, one now has to
solve the large linear system of equations(

Inxny − τLnxnyβ1,β2

)
un+1 = un + τ fn+1

at each time step tn. Due to the structure of L
nxny
β1,β2

we have

Inxny − τLnxnyβ1,β2
= Iny ⊗

(
1

2
Inx − τLnxβ1

)
+

(
1

2
Iny − τLnyβ2

)
⊗ Inx .

In other words, the vector un+1 ∈ Rnxny is the solution of a Kronecker structured linear
system. On the other hand, interpreting un+1,un, fn+1 as vectorizations of matrices, i.e.,

un+1 = vec(Un+1), un = vec(Un), fn+1 = vec(Fn+1), Un+1,Un,Fn+1 ∈ Rnx×ny ,

this can be rewritten as a Sylvester equation of the form(
1

2
Inx − τLnxβ1

)
Un+1 + Un+1

(
1

2
Iny − τLnyβ2

)T
= Un + τFn+1.(3.5)

Note that Lnxβ1
and L

ny
β2

are both symmetric but, in general, different. In Section 4 we shall
exploit this key connection to efficiently determine a numerical approximation to Un+1, and
thus to un+1.

3.2. Time fractional problems. We now assume that the time derivative is of fractional
order as well. Hence, in a one-dimensional space, let us consider

(3.6)

C
0 D

α
t u(x, t)− xD

β
Ru(x, t) = f(x, t), (x, t) ∈ (0, 1)× (0, T ],

u(0, t) = u(1, t) = 0, t ∈ [0, T ],

u(x, 0) = 0, x ∈ [0, 1],

where α ∈ (0, 1) and β ∈ (1, 2).
We again approximate the Riesz derivative as the weighted sum of the left- and right-sided

Riemann-Liouville fractional derivatives used before. The Caputo time-fractional derivative
C
0 D

α
t u(x, t) is then approximated using the unshifted Grünwald-Letnikov approximation to

give

Tnt+1
α


u(x, t0)
u(x, t1)

...
u(x, tnt)

− Int+1


xD

β
Ru(x, t0)

xD
β
Ru(x, t1)

...
xD

β
Ru(x, tnt)

 = Int+1


f(x, t0)
f(x, t1)

...
f(x, tnt)

 ,
where

Tnt+1
α := τ−α



gα,0 0 . . . . . . 0

gα,1 gα,0
. . .

...
. . . . . . . . . . . .

...
. . . . . . . . . gα,0 0
gα,nt . . . . . . gα,1 gα,0


=

 τ−αgα,0 0T

... Tnt
α

τ−αgα,nt

.
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Here, Tnt+1
α represents the discrete Caputo derivative. In case of a non-zero initial condition

u(x, t0) = u0 we get

Tnt
α


u(x, t1)
u(x, t2)

...
u(x, tnt)

− Int


xD

β
Ru(x, t1)

xD
β
Ru(x, t2)

...
xD

β
Ru(x, tnt)

 =


f(x, t1)
f(x, t2)

...
f(x, tnt)

−

gα,1
gα,2

...
gα,nt

u(x, t0).

If we now discretize in space, this leads to the following algebraic linear system in Kronecker
form (

(Tnt
α ⊗ Inx)− (Int ⊗ Lnxβ )

)
u = f̃ ,(3.7)

where u = [uT1 ,u
T
2 , . . . ,u

T
nt ]

T ∈ Rnxnt . Similarly, we define f̃ = [fT1 , f
T
2 , . . . , f

T
nt ]

T .
Introducing the matrices U = [u1,u2, . . . ,unt ] and F = [f1, . . . , fnt ], we can rewrite (3.7) as

U(Tnt
α )T − Lnxβ U = F,(3.8)

which shows that U is the solution to a Sylvester matrix equation (see, e.g., [31]), with Tnt
α

lower triangular and Lnxβ a dense symmetric matrix.
Finally, if we have fractional derivatives in both a two-dimensional space and time, we

consider

C
0 D

α
t u(x, y, t)− xD

β1

R u(x, y, t)− yD
β2

R u(x, y, t) = f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, t) = 0, (x, y, t) ∈ Γ× [0, T ],

u(x, y, 0) = 0, (x, y) ∈ Ω.

Following the same steps as before we obtain a space-time discretization written as the
following algebraic linear system(

Tnt
α ⊗ Inxny − Int ⊗ L

nxny
β1,β2

)
u = f̃ .(3.9)

The space-time coefficient matrix now has a double tensor structure, making the numerical
solution of the associated equation at each time step much more complex than in the previ-
ous cases. An effective solution strategy resorts to recently developed algorithms that use
approximate tensor computations; see Section 4.4.

3.3. Variable coefficients. In this section we consider a more general FDE, which
involves separable variable coefficients

du(x, y, t)

dt
= p+(x, y) D

RL β1

0 x u(x, y, t) + p−(x, y) D
RL β1

x 1 u(x, y, t)

+ q+(x, y) D
RL β2

0 y u(x, y, t)

+ q−(x, y) D
RL β2

y 1 u(x, y, t) + f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, t) = 0, (x, y, t) ∈ Γ× [0, T ],

u(x, y, 0) = 0, (x, y) ∈ Ω.

To simplify the presentation, we provide the details only for the two-dimensional space-
fractional example, since the other cases can be obtained in a similar manner. We thus consider
the case p+(x, y) = p+,1(x)p+,2(y), and similarly for the other coefficients. The left and right
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sided Riemann-Liouville derivatives enter the equation with different coefficients, therefore
the block (

p+ D
RL β1

0 x +p− D
RL β1

x 1 +q+ D
RL β2

0 y +q− D
RL β2

y 1

)
u(x, y, t)

becomes(
P+,1Tβ1UP+,2 + P−,1T

T
β1

UP−,2 + Q+,1UTβ2Q+,2 + Q−,1UTT
β2

Q−,2
)

or, in Kronecker notation,(
P+,2 ⊗P+,1Tβ1

+ P−,2 ⊗P−,1T
T
β1

+ Q+,2T
T
β2
⊗Q+,1 + Q−,2Tβ2

⊗Q−,1
)

vec(U).

Note that the matrices P and Q are diagonal matrices representing the finite difference
evaluations of the coefficients of the FDE. A simpler case occurs when the coefficients only
depend on one spatial variable; for instance, the following data was used in [61]:(

D
C α
0 t −p+ D

RL β1

0 x −p− D
RL β1

x 1 −q+ D
RL β2

0 y −q− D
RL β2

y 1

)
u(x, y, t) = 0,

with

p+ = Γ(1.2)xβ1 , p− = Γ(1.2)(2− x)β1 , q+ = Γ(1.2)yβ2 , q− = Γ(1.2)(2− y)β2 .

After the Grünwald-Letnikov discretization, the system matrix A reads

A = Tnt
α ⊗ In2n1 −Int ⊗ In2 ⊗

(
P+Tβ1

+ P−T>β1

)
−Int ⊗

(
Q+Tβ2

+ Q−T>β2

)
⊗ In1,

where Tβ is the one-sided derivative, P+,P−,Q+,Q− are diagonal matrices with the grid
values of p+, p−, q+, q−, respectively. Now, using

L̂nx,Pβ1
= P+Tβ1 + P−T>β1

,

we obtain the following form of the two-dimensional problem

A = Tα ⊗ In1n2 − Int ⊗ L̂nx,Pβ1
⊗ In2 − Int ⊗ In1 ⊗ L̂nx,Qβ2

.

In the more general case when the coefficients are sum of separable terms, that is,

p+(x, y) =

r∑
j=1

p+,j(x)p+,j(y),

then the equation can be rewritten accordingly. For instance, assuming for simplicity that all
coefficients are of order r, we obtain

r∑
j=1

(
P

(j)
+,2 ⊗P

(j)
+,1Tβ1 + P

(j)
−,2 ⊗P

(j)
−,1T

T
β1

+ Q
(j)
+,2T

T
β2
⊗Q

(j)
+,1 + Q

(j)
−,2Tβ2 ⊗Q

(j)
−,1

)
.

Our methodology can be applied to this case as well. An even more general form is obtained
if all coefficients are of different form, and hence results in affine decompositions of different
orders. For reasons of exposition we will not discuss this case further.

The structure of the linear systems in the variable coefficient case is very similar to
the constant coefficient case, but also shows crucial differences. While the matrix Lnxβ1

is
a symmetric Toeplitz matrix, the matrix Lnx,Pβ1

is not symmetric and also without Toeplitz
structure. Often we obtain a diagonal times a Toeplitz matrix, which will be exploited in our
solution strategy.
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4. Matrix equations solvers. This section is devoted to the introduction of the method-
ology that allows us to efficiently solve the problems presented in Section 3. We start
our discussion by considering the constant coefficient case, and then we adapt the matrix
structure to the (separable) variable coefficient case. We shall work with methods that exploit
the presence of matrices and tensors as much as possible, so as to reduce the complexity
of the problem. Moreover, we try to use the special “Toeplitz” structure whenever possible,
either in the coefficient matrix or in its approximations. This is followed by a discussion of a
tensor-based approach for the time-fractional problem with two space dimensions based on
the highly popular TT toolbox [40, 41].

As a general remark for all solvers we are going to survey, we mention that they are all
related to Krylov subspaces. Given a matrix A and a vector r0, the Krylov subspace of size l
is defined as

Kl(A, r0) = span
{
r0,Ar0, . . . ,Al−1r0

}
.

As l increases, the space dimension grows, and the spaces are nested, namely
Kl(A, r0) ⊆ Kl+1(A, r0). In the following we shall also consider wide forms of gener-
alizations of this original definition, from the use of matrices in place of r0, to the use of
sequences of shifted and inverted matrices instead of A.

4.1. Numerical solution of the Sylvester equation. The numerical solution of linear
matrix equations of the form

AU + UB = G,(4.1)

with A ∈ RnA×nA ,B ∈ RnB×nB , and G ∈ RnA×nB arises in a large variety of applications;
we refer the reader to [54] for a detailed description. A unique solution U ∈ RnA×nB is
ensured if A and −B have disjoint spectra. Robust numerical procedures for solving (4.1)
when A and B have modest dimensions - up to a few hundreds - have been widely tested, and
the Bartels-Stewart algorithm has emerged as the method of choice [3]. The method relies on
a full Schur decomposition of the two matrices, and then on a backward substitution of the
transformed problem.

We mention here another method that can be used when either A or B are small and
already in triangular form, the way the equation (3.8) is in (3.6), when nt is small. Par-
tition U and G as U = [u1, . . . ,unB ] and G = [g1, . . . ,gnB ]. Explicit inspection shows
that if B is upper triangular, then u1 ∈ RnA can be obtained by solving the shifted sys-
tem (A+B11I)u1 = g1. All subsequent columns of U may be obtained with a backward
substitution as

(A+BiiI)ui = gi −
i−1∑
k=1

ukBki, i = 2, ..., nB .

Each of these systems may be solved by CG equipped with a circulant preconditioner, as for
(3.1). This strategy is appealing when nB is small.

Generically, however, we consider the case where the coefficient matrices A and B are
both extremely large, typically dense, making full spectral decompositions and backward
solves prohibitively expensive both in terms of computational and memory requirements. On
the other hand, G usually has much lower rank than the problem dimension, which makes
low-rank approximation procedures more appealing. Note that the matrix G in our case
reflects the right-hand side of the FDE and, as this often has a certain smoothness, we perform
a truncated singular value decomposition to obtain a low-rank representation G. Based on this
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low-rank property, efficient methods seek an approximation Ũ = VYWT ≈ U, for matrices
V ∈ RnA×nV ,Y ∈ RnV ×nW ,W ∈ RnB×nW , where nV , nW � nA, nB . Among these
approaches are Krylov subspace projection and ADI methods, the latter being a particular
Krylov subspace method [54]. We consider the following general projection methods for (4.1):
given two approximation spaces Range(V) and Range(W), an approximation Ũ = VYWT

is determined by requiring that the residual matrix R := AŨ + ŨB−G satisfies3

VTRW = 0.

Assuming that both V and W have orthogonal columns, and using Ũ = VYWT , the
condition above gives the reduced matrix equation

(VTAV)Y + Y(WTBW)−VTGW = 0;

for VTAV and WTBW of small size, this equation can be efficiently solved by the Bartels-
Stewart method, giving the solution Y. Different choices of Range(V) and Range(W) lead to
different approximate solutions. The quality of such an approximation depends on whether
certain spectral properties of the coefficient matrices A and B are well represented in the two
approximation spaces. Among the most successful choices are rational Krylov subspaces:
letting G = G1G

T
2 , rational Krylov subspaces generate the two spaces

Range(V) = Range([G1, (A− σ1I)−1G1, (A− σ2I)−1G1, . . .])

and

Range(W) = Range([G2, (B
T − η1I)−1G2, (B

T − η2I)−1G2, . . .]),

for specifically selected shifts σi, ηi, i = 1, 2, . . .. Note that a shift σ of multiplicity k can
be used, as long as terms with powers (A − σI)−j , j = 1, . . . , k are included in the basis.
In our numerical experience we found the choice σi, ηi ∈ {0,∞} particularly effective: for
Range(V) this choice corresponds to an approximation space generated by powers of A and
A−1 and it was first proposed under the name of Extended Krylov subspace [14]. In [53] it
was shown for B = AT that such a space can be generated progressively as

EK(A,G1) = Range([G1,A
−1G1,AG1,A

−2G1,A
2G1,A

−3G1, . . .]),

and expanded until the approximate solution Ũ is sufficiently accurate. Note that in a standard
implementation that sequentially generates EK(A,G1), two “blocks” of new vectors are
added at each iteration, one block multiplied by A, and one “multiplied” by A−1. The block
size depends on the number of columns in G1, although as the iteration proceeds this number
could decrease, in case rank deficiency occurs. The implementation of the resulting projection
method with EK(A,G1) as approximation space was called KPIK in [53] for the Lyapunov
matrix equation, that is (4.1) with B = AT and G1 = G2.

The procedure in [53] can be easily adapted to the case of general B, so that also the space
EK(BT ,G2) is constructed [54]. For consistency we shall also call KPIK our implementation
for the Sylvester equation. A MATLAB function implementing this algorithm is available at
www.dm.unibo.it/˜simoncin/software.html.

The effectiveness of the procedure can be measured in terms of both the dimension of
the approximation space needed to achieve the required accuracy, as well as computational

3It can be shown that this requirement corresponds to an orthogonality (Galerkin) condition of the residual vector
for the equation in Kronecker form, with respect to the space spanned by Range(W ⊗V) [54].
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time. The first issue, that is convergence of the approximate to the exact solution, was recently
analyzed in [27] for KPIK applied to the Lyapunov equation, and in [4] as a particular case of
rational Krylov space methods applied to the Sylvester equation; see Section 4.3. Regarding
computational complexity, since each step of KPIK requires the solution of linear systems
with coefficient matrices A and B, an exact complexity analysis is highly problem dependent.
Nevertheless, it is clear that there is a direct relation between the problem dimensions nA, nB
and the computational time. In particular, for system dimensions as given in Section 5, a direct
solution based on an LU decomposition of the system matrices is hardly possible. To alleviate
this computation, in our implementation the inner systems with A and B are solved inexactly,
that is by means of a preconditioned iterative method, with a sufficiently high accuracy so
as to roughly maintain the KPIK rate of convergence expected with the exact (to machine
precision) application of A−1 and B−1. In our numerical experiments we shall call iKPIK
the inexact version of the method. At this point we need to distinguish between the constant
and the variable coefficient case. In the constant coefficient case we will inexactly solve for
the Toeplitz matrices by using a circulant preconditioned CG method (see Section 4.2). In the
case of the variable coefficient we can use the preconditioned GMRES approach that uses the
local finite difference matrix for the preconditioner; see (4.3) in Section 4.2. Note that matrix
vector products with Toeplitz matrices can be handled very efficiently; we recall this fact in
the next section.

Finally, we observe that our stopping criterion for the whole procedure is based on the
residual norm. In accordance with other low-rank approximation methods, the Frobenius norm
of the residual matrix, namely ‖R‖2 =

∑
i,j R2

ij , can be computed without explicitly storing
the whole residual matrix R. Indeed, using G1 = Vγγγ1 and G2 = Wγγγ2, we have

R = [AV, V]

[
0 Y
Y −γγγ1γγγT2

]
[BTW, W]T = Q1ρρρ1

[
0 Y
Y −γγγ1γγγT2

]
ρρρT2 QT

2 ,

where the two skinny QR factorizations [AV, V] = Q1ρρρ1 and [BTW, W] = Q2ρρρ2 can be
updated as the space expands4. Therefore,

‖R‖ =

∥∥∥∥ρρρ1 [ 0 Y
Y −γγγ1γγγT2

]
ρρρT2

∥∥∥∥ ,
whose storage and computational costs do not depend on the problem size, but only on the
approximation space dimensions.

4.2. Computations with Toeplitz matrices. We briefly discuss the properties of Toeplitz
matrices and possible solvers. This is needed for the simplest problem (3.3), but also within
the Sylvester solvers presented earlier.

As Ng points out in [39], many direct solution strategies exist for the solution of Toeplitz
systems that can efficiently solve these systems recursively. We mention here [1, 15, 18, 33]
among others. One is nevertheless interested in finding iterative solvers for the Toeplitz
matrices, as this further reduces the complexity. Additionally, as we want to use the Toeplitz
solver within a possible preconditioner for the Sylvester equations, we are not necessarily
interested in computing the solution to full accuracy. Note that, for convenience reasons, we
simply use n for the dimensionality of the matrices in the general discussion following about
Toeplitz matrices. It will be clear from the application and the discussion in Section 3 what the

4The residual norm computation could be made even cheaper in the exact case since then the skinny QR
factorization would not have to be done explicitly [54].
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specific value for n is. Let us consider a basic Toeplitz matrix of the form

T =


t0 t−1 . . . t2−n t1−n
t1 t0 t−1 t2−n
... t1 t0

. . .
...

tn−2
. . . . . . t−1

tn−1 tn−2 . . . t1 t0

 .(4.2)

Circulant matrices, which take the generic form

C =


c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . . . . . cn−1

cn−1 cn−2 . . . c1 c0

 ,

are special Toeplitz matrices as each column of a circulant matrix is a circulant shift of its
preceding column.

It is well known that a circulant matrix C can be diagonalized using the Fourier matrix
F5. In more detail, the diagonalization of C is written as C = FHΛF, where F is again the
Fourier matrix and Λ is a diagonal matrix containing the eigenvalues (see [7, 39]). In order to
efficiently compute the matrix-vector multiplication with C, the matrix-vector multiplication
using F and Λ needs to be available. The evaluation of F and FH times a vector can be done
via the Fast Fourier Transform (FFT, [8, 17]). The computation of the diagonal elements of Λ
is done employing one more FFT. Overall, this means that the matrix vector multiplication
with C can be replaced by applications of the FFT.

The n× n Toeplitz matrices (4.2) are not circulant but can be embedded into a 2n× 2n
circulant matrix as follows [

T B
B T

] [
y
0

]
,

with

B =


0 tn−1 . . . t2 t1

t1−n 0 tn−1 t2
... t1−n 0

. . .
...

t−2
. . . . . . tn−1

t−1 t−2 . . . t1−n 0

 .

This new structure allows one to exploit the FFT in matrix-vector multiplications with T.
Note that these techniques can also be used when the variable coefficient case is considered,

as multiplications with

I− L̂nx,Pβ1
= I−

(
P+Tβ1

+ P−T>β1

)
can be performed using FFTs and simple diagonal scaling with P− and P+.

5In MATLAB this matrix can be computed via F=fft(eye(n)).
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For the constant coefficient case, i.e., the Toeplitz case, there exists a variety of different
preconditioners [39]. Here we focus on a classical circulant preconditioner introduced by
Strang in [57]. The idea is to approximate the Toeplitz matrix T by a circulant C that can
in turn be easily inverted by means of the FFT machinery. The diagonals cj of this C are
determined as

cj =

 tj , 0 ≤ j ≤ bn/2c
tj−n, bn/2c < j < n
cn+j 0 < −j < n

.

Here k := bn/2c is the largest integer less or equal than n/2. Note that other circulant
approximations are possible but will not be discussed here [39].

The computational strategy described above can be used to solve the linear system in (3.3)
associated with Problem 1, namely(

Inx − τLnxβ
)

un+1 = un + f .

In [62] it was shown that the coefficient matrix Inx − τLnxβ is a strictly diagonally
dominant M-matrix. This allows us to use a symmetric Krylov subspace solver such as the
Conjugate Gradient method (CG) [23], which requires matrix-vector products with the coef-
ficient matrix; for more details on iterative Krylov subspace solvers we refer the reader to
[22, 49, 55]. The coefficient matrix has Toeplitz structure. Therefore the circulant approxima-
tion C ≈ Inx − τLnxβ can be used as a preconditioner for CG. For the fast convergence of CG
it is sufficient that the eigenvalues of the preconditioned matrix form a small number of tiny
clusters, which is known to be the case for the Strang circulant preconditioner, since it gives a
single eigenvalue cluster around 1 [32].

The numerical treatment is more complicated in the variable coefficient case. The authors
of [13] point out that the use of circulant preconditioners for this case is not as effective, and
suggest the use of the following approximation

−L̂nx,Pβ1
= −(P+Tβ1

+ P−T>β1
) ≈ P+A + P−A> =: W,(4.3)

where W ≈ −L̂nx,Pβ1
is used for preconditioning purposes whenever a system involving

L̂nx,Pβ1
needs to be solved and

A =
1

hβ1
x


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 ,
which is simply the central difference approximation to the 1D Laplacian. This approximation
is good when the fractional differentiation parameter is close to two, i.e., ≥ 1.5. Alternatively,
for smaller differentiation parameters one could use

A =
1

hβ1
x


1 −1

1
. . .

. . . . . . −1
1

 ,
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as suggested in [13]. We can use a nonsymmetric Krylov solver such as GMRES [50] where
the matrix multiplication is performed using the FFT based approach presented above, and the
tridiagonal matrix P+A+P−A> as preconditioner by means of its LU factorization. One of
the major concerns is carrying the approaches for the one-dimensional case over to the higher
dimensional settings. The techniques for matrix equations presented earlier are well suited for
this scenario. We are in particular focusing on the connection to matrix equation solvers for
which we study the convergence behaviour in the next section. In addition we mention the
possible use of low-rank versions [30, 56] of well-known Krylov subspace solvers that have
become popular as they allow for the solution of tensor-valued equations while maintaining
the low-rank nature of the solution. This approach is certainly applicable in our case when
combined with a suitable preconditioner. For more detailed discussion we refer to [30].

4.3. Considerations on the convergence of the iterative solvers in the constant co-
efficient case. The performance of the iterative methods discussed so far depends, in the
symmetric case, on the distribution of the eigenvalues of the coefficient matrices, and, in the
nonsymmetric case, on more complex spectral information such as the field of values. We
start with providing a simple but helpful bound on the spectrum of the matrix obtained after
discretizing the fractional derivatives.

LEMMA 1. For 1 < β < 2, the spectrum of the matrix Lβ := 1
2 (Tβ + TT

β ) is contained
in the open interval (−2h−ββ, 0).

Proof. From [32], for 1 < β < 2, we recall the following useful properties of gβ,k :

gβ,0 = 1, gβ,1 = −β < 0, gβ,2 > gβ,3 > · · · > 0,

∞∑
k=0

gβ,k = 0,

n∑
k=0

gβ,k < 0, ∀n ≥ 1.

We can now adapt the proof in [32] to get an estimate of the eigenvalues of Lβ = 1
2 (Tβ+TT

β ).
Recall the structure of Tβ :

Tβ = h−β



gβ,1 gβ,0 0
gβ,2 gβ,1 gβ,0
gβ,3 gβ,2 gβ,1 gβ,0

...
. . . gβ,2 gβ,1

. . .
...

. . . . . . . . . . . . gβ,0 0
...

. . . . . . . . . gβ,2 gβ,1 gβ,0
gβ,n gβ,n−1 . . . . . . gβ,2 gβ,1


.

Hence, the Gershgorin circles of Lβ are all centered at h−βgβ,1 = −βh−β . Moreover, the
largest radius is obtained in row

⌊
n
2 + 1

⌋
and thus is at most (depending on n being odd or

even)

rmax = h−β
bn2 +1c∑
k=0,k 6=1

gβ,k < −h−βgβ,1 = h−ββ.

This now implies σ(Lβ) ⊂ (−2h−ββ, 0).
The result shows that, as the spatial mesh is refined, the eigenvalues of Lβ spread out on

the negative half of the real line, and preconditioning is needed for a fast convergence of the
iterative scheme for (3.1). The eigenvalue properties are also crucial to assess the performance
of the Extended Krylov subspace method described in the previous section, which we use both
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for (3.4) and (3.6) as a solver. Assume that G = g1g
T
2 . In [4], for A and B symmetric, it was

shown that the residual Frobenius norm is bounded as

‖R‖F
‖g1‖ ‖g2‖

≤ 4 max{γmA,A,B, γmB,B,A}+ ξ(γmA,A,B + γmB,B,A),

where γmA,A,B and γmB,B,A are quantities associated with the approximation spaces in A
and in B of dimension mA and mB, respectively, and ξ is an explicit constant independent
of the approximation space dimensions. For A = B, which in (3.6) is obtained for instance
whenever β1 = β2, it holds (see [27])

γmA,A,B = γmB,B,A =

(
κ1/4 − 1

κ1/4 + 1

)2mA

, κ = λmax(A)/λmin(A).

In the notation of (3.6), the rate of convergence of the Extended Krylov subspace method
when β1 = β2 is thus driven by κ1/4, where κ is the condition number of 1

2I− Lβ .
Finally, if one were to consider the (symmetric) Kronecker formulation of the Sylvester

equation in (3.8), that is,

(I1 ⊗A + B⊗ I2)vec(U) = vec(G),

the following estimate for the eigenvalues of the coefficient matrix would hold:

σ(I1 ⊗A + B⊗ I2) ⊂
(

1, 1 +
2β1τ

hβ1
+

2β2τ

hβ2

)
.

The assertion follows from the fact that the eigenvalues ν of I1 ⊗A + B⊗ I2 are given by
the eigenvalues of A and B via νi,j = λi(A) + µj(B). Therefore, if the Conjugate Gradient
method were applied to the Kronecker formulation above, classical results would ensure that its
convergence would asymptotically depend on (1 + 2β1τ

hβ1
+ 2β2τ

hβ2
)

1
2 , which can be significantly

larger than the quantity κ
1
4 obtained with the matrix equation formulation. As a consequence,

solving with the Conjugate Gradient method is expected to be much slower than with the
matrix-oriented approach.

4.4. Tensor-valued equation solver. The efficient solution of tensor-valued equations
has recently seen much progress regarding the development of effective methods and their
corresponding analysis [2, 40, 59]. General introductions to this very active field of research
can be found in [21, 29] and in the literature mentioned there. A crucial aspect in tensor-
based strategies is deciding on the format employed to represent tensors, for which different
algorithms can be exploited; here we focus on the tensor train (TT) representation [40, 41, 44].
While for a three-dimensional setup other formats such as the well known Tucker format
[21, 29] can be more efficient than the TT format, this property is lost in higher dimensions,
which is the case when we consider three spatial dimensions plus time or additional parameter
dimensions. Additionally, the availability of a suitable software implementation of the used
algorithms via the TT toolbox [42] is an advantage of the tensor train format. In the following
we shall briefly introduce the TT format, while we point to the literature for details.

The first operation we need for high-dimensional data is reshaping. To this end, suppose
u is the solution of (3.9). Its elements can be naturally enumerated by three indices i1, i2, i3,
corresponding to the discretization in time and the two spatial dimensions, respectively.
Introducing a multi-index

i1i2i3 = (i1 − 1)ntnx + (i2 − 1)nx + i3,
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we can denote u =
[
u(i1i2i3)

]nt,nx,ny
i1,i2,i3=1

, and consider u as a three-dimensional tensor with
elements u(i1, i2, i3). The TT decomposition aims to approximate u as follows,

(4.4) u(i1, i2, i3) ≈
r1,r2∑
s1,s2=1

u(1)
s1 (i1)u(2)

s1,s2(i2)u(3)
s2 (i3) ⇔ u ≈

r1,r2∑
s1,s2=1

u(1)
s1 ⊗u(2)

s1,s2⊗u(3)
s2 .

The indices r1, r2 are called TT ranks and the u(m), m = 1, 2, 3 are the so-called TT
blocks, with u(1) ∈ Rnt×r1 , u(2) ∈ Rr1×nx×r2 and u(3) ∈ Rr2×ny . When fixing the indices
we get for u(2)(j) ∈ Rr1×r2 a matrix slice, for u

(2)
s1,s2 ∈ Rnx a vector, and for u

(2)
s1,s2(j) a

scalar. The values of r1, r2 depend on the accuracy enforced in (4.4).
Let us next represent the (tensorized) linear operator (3.9) in the proposed TT format. We

recall thatAAA is given by

AAA = Tnt
α ⊗ Inx ⊗ Iny − Int ⊗

(
1

hβ1
Iny ⊗ Lnxβ1

+ L
ny
β2
⊗ 1

hβ2
Inx
)

= (Tnt
α ⊗ Inx ⊗ Iny )−

(
Int ⊗ 1

hβ1
Iny ⊗ Lnxβ1

)
−
(

Int ⊗ L
ny
β2
⊗ 1

hβ2
Inx
)
.

For applying the tensorAAA to a tensor in TT format, we use the following approximation ofAAA
(see [10])

(4.5) AAA(i, j) =AAA(i1i2i3, j1j2j3) ≈
r1,r2∑

γ1,γ2=1

A(1)
γ1 (i1, j1)A(2)

γ1,γ2(i2, j2)A(3)
γ2 (i3, j3).

Assume that the right-hand side of the equation to be solved is given in the TT format (4.4),
and that the matrix product operator uses the structure in (4.5). Then a suitable approximate
solution to the FDE (3.9) will also be sought in the same TT format. For convenience we do
not introduce additional notation but assume the operations discussed in the following are all
within the TT framework. Again, similar reasonings would be possible using other tensor
formats.

A way to approximate the solution of the problem defined by (3.9) is to first recast it as a
least squares problem, that is, ∥∥∥f̃ −AAAu

∥∥∥⇒ min .(4.6)

A simple class of techniques for solving (4.6) is the so-called Alternating Least Squares
(ALS) scheme where the minimization proceeds by fixing all but one core of the optimization
problem, and then solving this simpler problem while repeatedly iterating over all cores. In
[43] several issues associated with this basic ALS approach are discussed, among them its slow
convergence. An improved scheme is the so-called DMRG (Density Matrix Renormalization
Group) method [24, 40], where all but two cores are fixed and the alternating optimization
proceeds iterating over these pairs of cores. In our experiments we have used the more recent
approach AMEN (Alternating Minimal Energy) method [12]. This algorithm is an improvement
on ALS schemes with steepest descent, in the sense that it uses computed information in
a more timely way and can work with local operations using only one or two cores. For
a detailed discussion and comparisons, we refer to [12]. We also mention that one could
use a TT version of well-known Krylov methods such as GMRES ([50]) adapted to the TT
framework (see [9]), or further exploit the Toeplitz structure of the involved matrices (see the
QTT framework [10, 11, 26]). We have not explored these possibilities in this work.
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The existence of low-tensor-rank solutions for fractional differential equations has, to the
best of our knowledge, not received any attention, and will be the study of further work. In
spirit, the closest results are found in [20], where high-dimensional Laplacians are discussed.
For more results we refer to [52, 60].

5. Numerical results. In this section we report on our numerical experience with the
algorithms proposed in the previous sections. All tests are performed on a Linux Ubuntu
Compute Server using 4 Intel Xeon E7-8837 CPUs running at 2.67 GHz, each equipped with
256 GB of RAM using MATLAB R© 2012.

We illustrate the effectiveness of our proposed methods by testing the convergence for
all problems presented earlier both in the constant and variable coefficient case. Our goal is
to obtain robustness with respect to the discretization parameter in both the temporal and the
spatial dimensions. Additionally, we are testing all problems for a variety of different orders
of differentiation to illustrate that the methods are suitable for reasonable parameter choices.

FIG. 5.1. Comparison of numerical solutions when using two different values for β with zero initial condition
and zero Dirichlet boundary condition (510 and 10 space and time points, resp.).

As this work discusses various different formulations and several solution strategies, we
want to summarize the suggested solution methods in Table 5.1.

TABLE 5.1
Overview of the solvers. Iterative solution in the constant coefficient case always uses circulant preconditioned

CG; in the variable coefficient case a preconditioned nonsymmetric solver.

Problem setup Solution method

Time+1D FDE (3.3) PCG
Time+2D FDE (3.5) IKPIK
Frac.Time+1D FDE (3.7) IKPIK
Frac.Time+2D FDE (3.9) AMEN

5.1. Fractional in space: constant and variable coefficients.

One-dimensional example. We are using a zero-initial condition and a zero Dirichlet
boundary condition. The result for two different values of β is shown in Figure 5.1 and is
simply given to illustrate that the parameter β has a significant influence on the solution u.
Table 5.2 shows the result for a variety of discretization levels with two values of β. For this
problem the forcing term was given by
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f = 80 sin(20x) cos(10x).

It can be seen that the Strang preconditioner [57] performs exceptionally well with only 6 to 8
iterations needed for convergence and no dependence on the mesh size. A tolerance of 10−6

for the relative residual was used for the stopping criterion. The time-step is chosen to be
τ = hx/2.

For the variable coefficient case we consider the following parameters p+ = Γ(1.2)xβ1

1

and p− = Γ(1.2)(2 − x1)β1 . It is easily seen from Table 5.2 that the iteration numbers are
very robust using the approximation by the difference matrices, and that timings remain very
moderate.

TABLE 5.2
Average PCG (constant coefficient case) and GMRES (variable coefficient case) iteration numbers for 8 time

steps and two values of β, as the mesh is refined; in parenthesis is the total CPU time (in secs).

Constant Coeff. Variable Coeff.
nx β = 1.3 β = 1.7 β = 1.3 β = 1.7

32768 6.0 (0.43) 7.0 (0.47) 6.8 (0.90) 6.0 (0.81)
65536 6.0 (0.96) 7.0 (0.97) 6.4 (1.93) 6.0 (1.75)

131072 6.0 (1.85) 7.0 (2.23) 5.9 (3.93) 5.9 (3.89)
262144 6.0 (7.10) 7.1 (8.04) 5.4 (12.78) 6.0 (13.52)
524288 6.0 (15.42) 7.8 (19.16) 5.1 (25.71) 6.0 (27.40)

1048576 6.0 (34.81) 8.0 (41.76) 4.9 (51.02) 6.3 (62.57)

Two-dimensional example. This problem now includes a second spatial dimension
together with a standard derivative in time. The spatial domain is the unit square. The problem
is characterized by a zero-Dirichlet condition with a zero-initial condition. The time-dependent
forcing term is given as

F = 100 sin(10x) cos(y) + sin(10t)xy

and the solution for this setup is illustrated in Figure 5.2, where we show the solution at two
different time steps.

Table 5.3 shows the average IKPIK iteration numbers alongside the total computing time.
The tolerance for IKPIK is set to 10−6, to illustrate that we can compute the solution very
accurately, and the tolerance for the inner iterative solver is chosen to be 10−12. The results
summarized in Table 5.3 give the average number of IKPIK iterations for 8 time-steps. The
variable coefficient is given by

p+ = Γ(1.2)xβ1 , p− = Γ(1.2)(2− x)β1 , q+ = Γ(1.2)yβ2 , q− = Γ(1.2)(2− y)β2 .

Note that the largest problem given in Table 5.3 corresponds to 16, 777, 216 unknowns,
which is no problem for our methodology, but a further increase would not make it possible to
store the unknowns without being represented in low-rank format.

5.2. Time and space fractional. Additionally we consider the challenging case when
also the temporal derivative is of fractional type.



ETNA
Kent State University

http://etna.math.kent.edu

LOW-RANK SOLVERS FOR FRACTIONAL DIFFERENTIAL EQUATIONS 125

a) First time-step

b) Tenth time-step

FIG. 5.2. First and tenth time-step solutions of the 2D fractional differential equation.

TABLE 5.3
The solver IKPIK is presented, for a variety of meshes and two different values of β in both the constant and the

variable coefficient cases. Shown are the iteration numbers and the total CPU time.

Variable Coeff. Constant Coeff.
nx ny β1 = 1.3 β1 = 1.7 β1 = 1.3 β1 = 1.7

β2 = 1.7 β2 = 1.9 β2 = 1.7 β2 = 1.9
it (CPUtime) it (CPUtime) it (CPUtime) it (CPUtime)

1024 1024 2.3 (19.35) 2.5 (15.01) 2.9 (9.89) 2.5 (18.51 )
1024 2048 2.8 (47.17) 2.9 (22.25) 3.0 (23.07) 3.2 (22.44)
2048 2048 3.0 (76.72) 2.6 (36.01) 2.0 (51.23) 2.3 (34.43)
4096 4096 3.0 (171.30) 2.6 (199.82) 2.0 (164.20) 2.2 (172.24 )

One spatial dimension. Here the forcing term was defined by f = 8 sin(10x), while a
zero Dirichlet condition on the spatial interval was used.

Table 5.4 summarizes the results for IKPIK. Here we discretized both the temporal and
the spatial domain using the same number of elements. For the variable coefficient case we
use the finite difference approximation presented earlier. We noticed that the convergence of
the outer IKPIK solver was dependent on the accuracy. We did not observe this dependence
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for the results shown in Table 5.3 earlier. Due to the effectiveness of the preconditioner we
set a tight tolerance for the inner scheme of 10−13, and use a tolerance of 10−6 for the IKPIK
convergence. When stating the degrees of freedom for each dimension one has to note that
implicitly this method is solving a linear system of tensor form that has the dimensionality
ntnx × ntnx so for the largest example shown in Table 5.4 this leads to roughly 70 million
unknowns. We see that in the constant coefficient case the method performs very robustly

TABLE 5.4
IKPIK, for a variety of meshes and different values of α and β. Shown are the iteration numbers, the elapsed

CPU time, and the maximum iteration numbers for the inner solver (MI).

Variable Coeff.
nt nx β = 1.7 β = 1.1 β = 1.9

α = 0.5 α = 0.9 α = 0.2
it (CPUtime, MI) it (CPUtime, MI) it (CPUtime, MI)

1024 1024 10 (0.33, 31) 43 (1.87, 39 ) 4 (0.14, 15)
2048 2048 11 (0.59, 33) 57 (4.92, 48 ) 4 (0.21, 15 )
4096 4096 13 (2.64, 36) 74 (30.52, 60) 4 (0.54, 15 )
8192 8192 14 (5.51, 39) 95 (91.13, 75 ) 4 (1.31, 16 )

Constant Coeff.
nt nx β = 1.7 β = 1.1 β = 1.9

α = 0.5 α = 0.9 α = 0.2
it (CPUtime, MI) it (CPUtime, MI) it (CPUtime, MI)

1024 1024 6 (0.17, 18) 14 (0.39, 15 ) 4 (0.13, 17)
2048 2048 6 (0.27, 18) 16 (0.79, 18) 4 (0.21, 17)
4096 4096 6 (0.65, 20) 18 (2.52, 19) 4 (0.45, 17)
8192 8192 7 (2.43, 20) 20 (6.51, 20) 4 (1.25, 20)

with respect to mesh-refinement and that also the iteration numbers needed for IKPIK are of
moderate size when the differentiation parameter is changed. From the results for the variable
coefficient case it can be seen that

−L̂nx,Pβ1
≈ P+A + P−A> =: P̂nx,P

β1

is not always equally effective in this setup. The eigenvalues of (P̂nx,P
β1

)−1L̂nx,Pβ1
are shown

in Figure 5.3.
In Figure 5.4 we illustrate the performance of both the preconditioner and the IKPIK

method for a variety of differentiation parameters in the variable coefficient setup. It can be
seen that IKPIK often only needs a small number of iterations whereas the preconditioner is
not always as effective as the one in the constant coefficient case.

Two and three dimensions. In this section we briefly illustrate how the tensorized
problems can be solved. Our implementation is based on the recently developed tensor-train
format [40, 41, 44]. The forcing term in the first three-dimensional setup is given by the
rank-one tensor

f̃ = 1⊗ exp((x− 0.5)2)⊗ exp((y − 0.5)2)⊗ exp((z− 0.5)2),

where the terms exp((? − 0.5)2) are to be understood componentwise with x,y, z the vec-
tors representing the mesh-grid of appropriate dimensionality. Furthermore, zero-Dirichlet
conditions are imposed, together with a zero initial condition. The approximations of the
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FIG. 5.3. Eigenvalues shown for the three setups presented in Table 5.4.

right-hand side f̃ and the tensor A use the round function within the TT-toolbox, with
“round” tolerance set to 10−6. The AMEN method recalled in Section 4.4 ([12]) was used, with
a convergence tolerance also set to 10−6. We next illustrate that the performance of AMEN for
our tensor equation with constants coefficients is robust with respect to changes in the system
parameters such as the orders of differentiation and varying meshes. Table 5.5 shows the AMEN
iteration numbers for 3 different mesh sizes both in time and space and two different choices
of differentiation orders. The iteration numbers are relatively robust with changing mesh-size,
while they show some dependence on the choice of the differentiation orders. We stress that
the solvers were not tailored to these specific cases, rather they were used as black boxes. We
note that the storage of the full solution to the problem presented in Table 5.5 would require
ntnxnynz elements, which for the finest discretization shown is 244 ≈ 1013 elements. The
low-rank solution in the TT format requires storage for r0r1nt + r1r2nx + r2r3ny + r3r4nz
elements. We then obtain

mem(TT )

mem(FULL)
=

60 · 211

244
≈ 6 · 10−9,

which illustrates the potential of the low tensor-rank method. Figure 5.5 shows the computed
solution to the above mentioned problem in three-dimensional space.

We also want to illustrate the performance of the tensor method for the use with a variable
coefficient setup as presented earlier. For this we consider the coefficients

p+ = Γ(1.2)xβ1y, p− = Γ(1.2)(2− x)β1y, q+ = Γ(1.2)yβ2x, q− = Γ(1.2)(2− y)β2x.

The forcing term is given by f̃ = 1 ⊗ sin(2πx) ⊗ exp((y − 0.5)2), while zero Dirichlet
boundary conditions are imposed, together with a zero initial condition. We show the results
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FIG. 5.4. Results for a mesh 1024 degrees of freedom both in space and time. We put a mesh of width 0.05 on
both the differentiation parameter in time and space. α ∈ [0.05, 1], β ∈ [1.05, 2]. We switch between preconditioners
at β = 1.3.

TABLE 5.5
Performance of AMEN as the mesh is refined, for different values of the differentiation orders.

β2 = 1.9, β3 = 1.3 β2 = 1.5, β3 = 1.2
β1 = 1.7, α = 0.7 β1 = 1.7, α = 0.7

nt nx ny nz it it

256 256 256 256 5 5
512 512 512 512 5 5

1024 1024 1024 1024 6 4
2048 2048 2048 2048 6 5

in Table 5.6. We note that in the first two parameter setups there is a benign increase in the
iteration numbers while the dimensionality is increased. We want to point out that for these
computations AMEN was used in a standard way. We believe that incorporating within AMEN
preconditioners that are tailored for the variable coefficient matrices will allow for a better
convergence. This and the use of the even more efficient QTT [26] representation is future
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FIG. 5.5. Problem (3.9). Solution at time-step 12 for a three-dimensional setup.

work and beyond the scope of this paper.

TABLE 5.6
Performance of AMEN as the mesh is refined, for different values of the differentiation orders.

β1 = 1.3, β2 = 1.5 β1 = 1.7, β2 = 1.9 β1 = 1.9, β2 = 1.1
α = 0.3 α = 0.2 α = 0.7

nt ny nx it it it

256 256 256 8 6 6
512 512 512 10 9 6

1024 1024 1024 16 16 7

6. Conclusions. We have introduced four problems that use the well-established
Grünwald-Letnikov scheme (and some of its descendants), as a sample of emerging mathemati-
cal models that rely on FDEs. We derived the discrete linear systems and matrix Sylvester-type
equations that represent the discretized version of the space-, time- and space-time-fractional
derivative for both constant and variable coefficients. For all problems it was crucial to notice
the Toeplitz structure of the discrete differentiation operator whenever present. While the
simplest model problem only required a circulant preconditioner in combination with the
preconditioned CG method, the more involved problems needed further study. For realistic
discretization levels it was no longer possible to explicitly store the approximate solution
vectors. We thus considered low-rank matrix equations solvers and in particular focused on the
successful KPIK method in its inexact version IKPIK. This method was then extremely effective
when we again used the circulant preconditioned Krylov solver to evaluate any linear systems
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with the inverse of a differentiation matrix. The last and most challenging problem was then
solved using recently developed tensor-methodology and, while still future research needs to
be devoted to understanding these solvers better, the numerical results are very promising.
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