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ON AMG METHODS WITH F-SMOOTHING BASED ON CHEBYSHEV
POLYNOMIALS AND THEIR RELATION TO AMGr∗

FLORIAN GOSSLER† AND REINHARD NABBEN†

Abstract. MacLachlan, Manteuffel, and McCormick [Numer. Linear Algebra Appl., 13 (2006), pp. 599–620]
introduced a new algebraic multigrid method, the so-called reduction-based algebraic multigrid method (AMGr).
Different from typical multigrid methods, the smoother of the AMGr method is acting only on the fine-grid points.
To analyze the AMGr method, different constants and parameters are used. Here, we further analyze the AMGr
method. We show that the parameter used by MacLachlan et al. has another important property. We show that it
is closely related to the root of a Chebyshev polynomial. This fact also explains the good performance of AMGr.
By examining this relation with Chebyshev polynomials, we extend the concept of the AMGr method. We consider
algebraic multigrid methods with fine-grid smoothers and AMG methods that are based on polynomial smoothing. We
also establish bounds for the error propagation operator. The bound is minimal if Chebyshev polynomials are chosen.
If more than one smoothing step is used, the error bound is smaller than the bound given for the AMGr method. For
only one smoothing step, the polynomial-based AMG with Chebyshev polynomials coincides with the AMGr method.
In this case, our convergence analysis gives some new explanation of the high performance of the AMGr method as
well as the parameters used in the AMGr method.
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1. Introduction. Nowadays multigrid and multilevel methods are the methods of choice
to solve linear systems of the form

Ax = b with A ∈ Rn×n, x, b ∈ Rn,

obtained from a discretization of an elliptic partial differential equation (PDE). These methods
can either be used as a solver or as a preconditioner for Krylov subspace methods. Multigrid
methods have been known for a long time, dating back to the 1930s. Their potential was
first exploited by Fedorenko and Bakhalov in the 1960s [2, 6, 7] and later by Brandt [4] and
Hackbusch [9].

Following the traditional way of explaining multigrid methods, the success of multigrid
depends on two factors. First, there is a basic iterative method, like the Jacobi or the Gauss-
Seidel method, that has strong smoothing effects. By such an iterative method, components
of errors which are highly oscillatory can be well reduced. This basic iterative method is
therefore called the smoother. The second factor is the so-called coarse-grid correction, in
which a projected subsystem is solved approximately by recursively applying the smoothing
and coarse-grid correction process.

If multigrid is used as a solver, the iteration matrix (or error propagation matrix) for a
so-called nonsymmetric multigrid cycle is given as

E = (I − CA)(I − SA)ν .(1.1)

For a symmetric multigrid cycle we have

ES = (I − STA)ν(I − CA)(I − SA)ν .

Here S is the smoother and (I − CA) is the coarse-grid correction operator. The integer ν
indicates the number of smoothing steps. To measure the speed of convergence, the spectral

∗Received March 6, 2014. Accepted January 21, 2016. Published online on May 6, 2016. Recommended by
A. Frommer.
†Institut für Mathematik, MA 3-3, Technische Universität Berlin, D-10623 Berlin, Germany,

({gossler, nabben}@math.tu-berlin.de).

146



ETNA
Kent State University

http://etna.math.kent.edu

POLYNOMIAL-BASED AMGR 147

radius of E or ES or a norm of E or ES is considered. Since 1960, multigrid methods and
algebraic multigrid methods have been analyzed in many publications. Here we just refer to
the books of Hackbusch [9], Wesseling [23], Trottenberg, Oosterlee and Schüller [18], and
Vassilevski [21].

In [11], MacLachlan, Manteuffel, and McCormick introduced a new algebraic multigrid
method called the reduction-based algebraic multigrid method (AMGr method). Different
from typical multigrid methods, the smoother of the AMGr method is acting only on the
fine-grid points. In [11], convergence bounds for the AMGr method applied to symmetric
positive definite systems are established. Independently, these methods were also analyzed by
Mense and Nabben in [14, 15]. There, the authors gave convergence and comparison results for
these methods (called MAMLI and SMAMLI methods) applied to nonsymmetric M-matrices.

The fast convergence of the AMGr method is demonstrated nicely by numerical and
theoretical results in [5, 11]. To analyze the AMGr method, different constants and parameters
are used in [11]. Specifically, the smoothing operator uses a parameter. This parameter is
chosen such that an upper bound for the A-norm of the error propagation matrix of the AMGr
method is small. Here, we further analyze the AMGr method. We show, that the parameter of
the smoother used in [11] has another important property. It is closely related to the root of a
Chebyshev polynomial. This fact also explains the fast convergence of the AMGr method.

The operator (I − SA)ν in (1.1) can be seen as ν steps of the Richardson iteration
preconditioned with S. Using the polynomial P (t) = (1− t)ν , this operator is just P (SA).
Replacing this trivial polynomial by one with proven best approximation properties leads to the
use of Chebyshev polynomials and Chebyshev iterations [8, 16, 20]. Chebyshev acceleration
and polynomial-based methods are well-know techniques in numerical analysis. Among
the many publications, we only mention two recent ones [3, 10]. Polynomially-enhanced
smoothers have been applied for a long time; see, e.g., [1, 19].

Observing the AMGr relation with Chebyshev polynomials, we extend the concept of
the AMGr method. We consider algebraic multigrid methods with fine-grid smoothers and
introduce new types of AMGr methods that are based on Chebyshev polynomials. If more
than one smoothing step is necessary, we show that it is better to use Chebyshev polynomials
rather than one smoother several times. Using the roots of the Chebyshev polynomials, the
Chebyshev smoothers can be written in a similar way as the original smoother in (1.1). Thus,
this modification leads to no extra computations. However, we establish an upper bound
for the A-norm of the error propagation operator using Chebyshev polynomials which is
below the bound for the AMGr method. This theoretical result suggests the use of Chebyshev
polynomials. Numerical results also support this result.

The paper is organized as follows. In Section 2 we describe the AMGr method. The
polynomial-based AMGr (AMGrp) methods are introduced and analyzed in Section 3. In
Section 4, Chebyshev polynomials are used for the polynomial AMGr method to get optimal
error bounds. Section 5 contains some numerical computations.

2. Preliminaries.

2.1. Notations. In this paper we consider symmetric positive definite (spd) matrices and
symmetric positive semidefinite (spsd) matrices. If for all x ∈ Rn and for two spd matrices
A,B ∈ Rn×n the condition

xTAx ≥ xTBx,

holds, we write A � B.
Further, we use λmax(·), λmin(·), ρ(·), κ2(·), and σ(·) for the largest eigenvalue, smallest

eigenvalue, the spectral radius, the condition number, and the spectrum of an spd matrix,
respectively.
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The space R≤ν [t] denotes the set of all polynomials of degree less than or equal to ν with
real coefficients.

2.2. Chebyshev polynomials. In this section, we briefly describe properties of the real
Chebyshev polynomials. Here we follow [16]; see also [17] and [22]. The Chebyshev
polynomial of the first kind of degree ν is defined as

Cν(t) = cos[ν cos−1(t)] for − 1 ≤ t ≤ 1.

It can be shown that this is a polynomial with respect to t. In fact, with Co(t) = 1 and
C1(t) = t, the Chebyshev polynomials satisfy the three-term recurrence relation

Cν+1 = 2tCν − Cν−1(t).

The normalized Chebyshev polynomials have a well-known minimizing property on a
given interval [a, b], a > 0 in R.

THEOREM 2.1 ([16, Theorem 6.25]). The normalized Chebyshev polynomial on [a, b],
a > 0 is given by

(2.1) Tν(t) =
Cν

(
b+a−2t
b−a

)
Cν

(
b+a
b−a

) .

Moreover,

max
t∈[a,b]

|Tν(t) | = min
p∈R0

≤ν [t]
max
t∈[a,b]

| p(t) | ,

where R0
≤ν [t] := {p ∈ R≤ν [t] | p(0) = 1}.

The maximum of Cν(t) in [−1, 1] is 1. With κ = b
a we then have

max
t∈[a,b]

Tν(t) = 2
[(√

κ+1√
κ−1

)ν
+
(√

κ−1√
κ+1

)ν]−1
.(2.2)

The roots of the normalized Chebyshev polynomial of degree ν are given by

ci = 1
2 (b+ a− ti(b− a)) for ti = cos

(
π
2 ·

2i−1
ν

)
, i = 1, 2, . . . , ν.

Note that we have given only the definition and properties of the real Chebyshev polyno-
mials we need in the following sections. For more details, we refer to [17] and [22].

2.3. Polynomial-based AMGs. The classical use of the smoother (I − SA)ν in (1.1)
involves ν steps of the Richardson iteration (see [20]) preconditioned with S. The Richardson
iteration is a special stationary iterative method resulting from a splitting of the matrix A. Let
S be an approximation of A−1. Then we obtain the stationary iteration

xi+1 = (I − SA)xi+1 + Sb, i = 1, 2, . . .

with arbitrary x0 ∈ Rn.
The error propagation operator is then I − SA. To get fast convergence, the spectral

radius of I −SA should be small. After ν steps, we obtain (I −SA)ν as the error propagation
operator. This can be written as P (SA) where P (t) = (1− t)ν is a polynomial of degree ν
satisfying P (0) = 1. Replacing this trivial polynomial by another polynomial of degree ν
leads to the so-called semi-iterative methods. Since the spectral radius of I − SA should be
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small, the best polynomial should satisfy some (discrete) minimization property. Here, the
Chebyshev polynomials with their (continuous) minimization property are the first choice.
The resulting method is called Chebyshev iteration [8, 16, 20].

Similar techniques can be used for the multigrid method. Replacing P (t) = (1− t)ν in
the smoother of the multigrid iteration operator by another polynomial Pν of degree ν with
Pν(0) = 1 leads to the polynomial-based multigrid methods. The error propagation operator
has the form

(I − CA)Pν(SA)(2.3)

and, in the symmetric cycle,

Pν(STA)(I − CA)Pν(SA),(2.4)

where I − CA is the coarse-grid correction operator and S is the smoother.
Using the roots of the polynomial Pν , we obtain the following representation of Pν , which

we will use later on.
PROPOSITION 2.2. Let Pν be a real polynomial of degree ν with Pν(0) = 1. Let

r1, . . . , rν be the roots of Pν . Then, Pν can be factorized as

Pν(t) =

(
1− 1

r1
t

)(
1− 1

r2
t

)
. . .

(
1− 1

rν
t

)
.(2.5)

Proof. Obviously the polynomial of the right-hand side in (2.5) is of degree ν, has roots
r1, . . . , rν , and equals one for t = 0. Hence it must be Pν .

With Proposition 2.2 the polynomial-based multigrid error propagation operator in (2.3)
can be written as

(I − CA)Pν(SA) = (I − CA)(I − ω1SA)(I − ω2SA) . . . (I − ωνSA),

where ωi = 1
ri

, for i = 1, . . . , ν. Similarly, the symmetric version in (2.4) can be represented.
Hence, the difference between the classical smoothing operator (I − SA)ν and Pν(SA) is
only the use of different weights ωi in the factors. Therefore, there is no extra computational
cost for using the polynomial version as long as the roots are known.

2.4. Reduction-based AMG (AMGr). Here we consider a symmetric positive definite
n× n matrix A partitioned into a 2× 2 block form

(2.6) A =

[
A11 A12

A21 A22

]
.

We assume that the partition of Rn in two sets, fine- and coarse-grid points, is given so
that A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 and n1 + n2 = n. The AMGr method presented by
MacLachlan, Manteuffel, and McCormick in [11] is motivated from a reduction point of
view. Using only an F -smoother (a smoother that operates only on Rn1), it can be seen that

Popt :=

[
−A−111 A12

I

]
is the optimal interpolation matrix; see [5, 11, 13].

In general, computing A−111 is expensive, and often A−111 is not sparse, so an easy invertible
and sparse approximation D ∈ Rn1×n1 of A11 is used instead. The resulting interpolation is
then defined by

P =

[
−D−1A12

I

]
,
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which results in the AMGr method with error propagation matrix

(2.7) Eamgr := I −B−1amgr
A := (I − CA)

(
I − σ

[
D−1 0

0 0

]
A

)
,

where

C := P(PTAP)−1PT .

In [11], D has to satisfy two conditions:
1. σ(D−1A11) ⊆ [1, 1 + ε], and

2.
[
D A12

A21 A22

]
has to be symmetric positive semidefinite,

where ε > 0 is a given parameter. The constant σ is determined by σ = 2
2+ε , motivated by the

following inequality:∥∥[I − σD−1A11

]∥∥
A11

= ρ
(
I − σA

1
2
11D

−1A
1
2
11

)
≤ max (| 1− σ | , | (1 + ε)σ − 1 |) .

The last term is minimal if

| 1− σ | = 1− σ = (1 + ε)σ − 1 = | (1 + ε)σ − 1 | ,

which holds for σ = 2
2+ε . The following convergence result is proven in [11].

THEOREM 2.3. Let A be spd and partitioned as in (2.6). Further, let D be an approx-

imation of A11 with 1
1+εA11 � D � A11 such that

[
D A12

A21 A22

]
is spsd. Then, the error

propagation matrix Eamgr := I −B−1amgr
A in (2.7) with σ = 2

2+ε satisfies

∥∥∥I −B−1amgr
A
∥∥∥
A
≤
(

ε

1 + ε

(
1 +

ε

(2 + ε)2

)) 1
2

< 1.

The above result can be generalized to an AMGr method that uses more than one smooth-
ing step. The following bound is given in [11].

THEOREM 2.4. Let A be spd and partitioned as in (2.6). Further, let D be an approxima-

tion of A11 with 1
1+εA11 � D � A11 so that

[
D A12

A21 A22

]
is spsd. Then,

∥∥∥I −B−1amgr,ν
A
∥∥∥
A
≤

(
ε

1 + ε

(
1 +

(
ε

2 + ε

)2(ν−1)(
ε

(2 + ε)2

))) 1
2

< 1,

where Bamgr,ν is defined by

I −B−1amgr,ν
A = (I − CA) ·

(
I − σ

[
D−1 0

0 0

]
A

)ν
.

One of the aims of this paper is to understand the choice of the weight σ in the AMGr
method. For one smoothing step, we will prove that the value σ = 2

2+ε in Theorem 2.3 is
optimal. However, if more than one smoothing step is used, this optimality is lost.

Finally, we remark that the use of two different approximations is possible; see [5]. Here,
we use Dp ≈ A11 in P and Ms ≈ A11 in the smoother. We shall see that the choice of σ
depends only on the approximation in the smoother as well as on the number of relaxation (or
smoothing) steps.
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3. Polynomial-based AMGr (AMGrp). In this section we introduce a class of AMGr
methods using a polynomial-based relaxation. We are able to prove an error bound for these
methods. Later on, we will establish a relation between the polynomial-based AMG and the
reduction-based AMG introduced in [11].

3.1. Definition and first characterizations. In the last section we described the AMGr
method which uses a special weight σ for acceleration. In this section we consider a similar
AMG method using more than one smoothing step. In contrast to employing the same smoother
several times, we use different smoothers of the same type. Our smoothers differ only in the
weights that are used. We will establish the best choice for every weight. The weights have
a strong connection to a polynomial. Thus, we define the resulting AMGr as polynomial-
based AMGr, (AMGrp) and the symmetrized one as symmetrized polynomial-based AMGr,
(AMGrps). For a polynomial Pν of degree ν with Pν(0) = 1, we define

I −B−1amgrp
A : = (I − CA) · Pν(MA),(3.1)

I −B−1amgrps
A : = Pν(MTA) · (I − CA) · Pν(MA),(3.2)

with

M =

[
M−1s 0

0 0

]
, P =

[
−D−1p A12

I

]
, C = P(PTAP)−1PT ,(3.3)

where Dp and Ms are nonsingular approximations of A11.
Using Proposition 2.2, this polynomial AMGr can be written in the following form

I −B−1amgrp
A = (I − CA) ·

(
I − ω1

[
M−1s 0

0 0

]
A

)
. . .

(
I − ων

[
M−1s 0

0 0

]
A

)
,

and the weights ωi are the reciprocals of the roots of the polynomial P .
These polynomial-based AMGs use ν presmoothing steps and one coarse-grid correction,

or in the symmetric cycle, ν presmoothing steps, one coarse-grid correction, and ν postsmooth-
ing steps. Note that the factors in the smoother commute. For the special smoother M in (3.3)
one can obtain a simpler expression of the polynomial Pν(MA) in (3.1).

THEOREM 3.1. Let A be spd and partitioned as in (2.6) and let Pν ∈ R≤ν [t] be a
polynomial of degree ν with Pν(0) = 1. Moreover, let Ms ∈ Rn1×n1 be spd. Let M be
defined as in (3.3). Then, Pν(MA) and Pν(MTA) satisfy

Pν(MA) = I −
[[
I − Pν(M−1s A11)

]
A−111 0

0 0

]
A,(3.4)

Pν(MTA) = I −
[[
I − Pν(M−Ts A11)

]
A−111 0

0 0

]
A.(3.5)

If in addition |Pν(t) | < 1 for t ∈ σ(M−1s A11), then
[
I − Pν(M−1s A11)

]
A−111 is spd.

Proof. Let Q be a polynomial with Q(0) = 0. Then, we can prove easily by induction for
j ≥ 1 that ([

M−1s 0
0 0

]
A

)j
=

[
(M−1s A11)jA−111 0

0 0

]
A.

Hence, we obtain

Q

([
M−1s 0

0 0

]
A

)
=

[
Q(M−1s A11)A−111 0

0 0

]
A.
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Since Pν(0) = 1, we get

Pν

([
M−1s 0

0 0

]
A

)
− I =

[
(Pν(M−1s A11)− I)A−111 0

0 0

]
A,

which gives the desired representation in (3.4) and (3.5).
Next we prove the last statement, i.e.,

[
I − Pν(M−1s A11)

]
A−111 is spd if |Pν(t) | < 1 for

t ∈ σ(M−1s A11). We consider(
I − Pν(M−1s A11)

)
A−111 = A

− 1
2

11

(
I − Pν

(
A

1
2
11M

−1
s A

1
2
11

))
A
− 1

2
11 .

Obviously, this matrix is symmetric. Since

|Pν(t) | < 1 on σ(M−1s A11) = σ
(
A

1
2
11M

−1
s A

1
2
11

)
,

the positive definiteness follows.

3.2. Convergence of the polynomial-based AMGr. The convergence analysis of the
polynomial-based AMGrp defined in (3.1) is given in the next theorem.

THEOREM 3.2. Let A be spd and partitioned as in (2.6), let Dp ∈ Rn1×n1 be an spd
approximation of A11 with

αA11 � Dp � A11

for some α ≤ 1 so that
[
Dp A12

A21 A22

]
is spsd. Further let Ms ∈ Rn1×n1 be another ap-

proximation of A11. Let Pν ∈ R≤ν [t] be a polynomial of degree ν satisfying Pν(0) = 1
and |Pν(t) | < 1 for t ∈ σ(M−1s A11). Assume that the largest singular value σmax of

Pν(A
1
2
11M

−1
s A

1
2
11) satisfies σmax < 1. Consider the polynomial-based AMGr defined in (3.1).

Then, ∥∥∥I −B−1amgrp
A
∥∥∥
A
≤
(
1− α(1− σ2

max)
) 1

2 < 1.

Proof. First, note that every e ∈ Rn can be written as the A-orthogonal sum

(3.6) e = η

[
−A−111 A12

I

]
v + µ

[
I
0

]
w,

where ‖v‖S = ‖w‖A11
= 1. Here, S = A22 −A21A

−1
11 A12.

Consider next an A-normalized e ∈ Rn (‖e‖A = 1) which implies that η2 + µ2 = 1.
With Theorem 3.1, we have

Pν(MA) = I −
[[
I − Pν(M−1s A11)

]
A−111 0

0 0

]
A.

Thus,

Pν(MA)e = e− µ
[[
I − Pν(M−1s A11)

]
w

0

]
= η

[
−A−111 A12

I

]
v + µ

[
Pν(M−1s A11)

0

]
w.
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We follow the ideas of [11] and estimate the second term with respect to the A-norm,

∥∥∥∥[Pν(M−1s A11)
0

]
w

∥∥∥∥2
A

=
∥∥Pν(M−1s A11)w

∥∥2
A11

= max
x 6=0

xTPν

(
A

1
2
11M

−T
s A

1
2
11

)
Pν

(
A

1
2
11M

−1
s A

1
2
11

)
x

xTx

= σmax

(
Pν

(
A

1
2
11M

−1
s A

1
2
11

))2
= σ2

max.

Therefore, for any e of the form (3.6), there exists a ŵ with ‖ŵ‖A11
= 1 and

Pν(MA)e = η

[
−A−111 A12

I

]
v + µ̂

[
I
0

]
ŵ

with | µ̂ | ≤ |µσmax |.
Next, let ê = Pνe. We obtain

‖C ê‖A = min
u

∥∥∥∥ê− [−D−1p A12

I

]
u

∥∥∥∥
A

.

With u = ηθv, minimizing over θ, and using that

[
−D−1p A12

I

]
v =

[
−A−111 A12

I

]
v +

[
−(D−1p −A−111 )A12

0

]
v,

we get

‖C ê‖2A ≤ min
θ

{
η2(1− θ)2 +

(
µ̂+ ηθ

∥∥(D−1p −A−111 )A12v
∥∥
A11

)2}
.

Since
[
Dp A12

A21 A22

]
is spsd, we then have A22 � A21D

−1
p A12. Furthermore, we assume that

λmax(D−1p A11) ≤ 1
α . For convenience, we set 1 + ε = 1

α for ε > 0, which implies

∥∥(D−1p −A−111 )A12)
∥∥2
A11
≤ ε.

This yields

∥∥∥(I −B−1amgrpA)e
∥∥∥2
A
≤ min

θ

{
η2(1− θ)2 +

(
µ̂+ ηθ

√
ε
)2}

.

The zero of the derivative of this function is given by

θ =
η −
√
εµ̂

(1 + ε)η
.
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Combining these two terms gives∥∥∥(I −B−1amgrpA)e
∥∥∥2
A
≤ η2

(
(1 + ε)η − η +

√
εµ̂

(1 + ε)η

)2

+

(
µ̂+

η −
√
εµ̂

1 + ε

√
ε

)2

=
ε

(1 + ε)2

((√
εη + µ̂

)2
+

(
µ̂√
ε

+ η

)2
)

=
ε

(1 + ε)2

(
(1 + ε)η2 + (1 + ε)

(
µ̂√
ε

)2

+ (1 + ε)2η
µ̂√
ε

)

=
ε

1 + ε

(
η +

µ̂√
ε

)2

.

Next, we maximize the last term with respect to µ =
√

1− η2 and η ∈ [0, 1].

We obtain the maximum for η =
√

ε
σ2
max+ε

and µ =
√

σ2
max

σ2
max+ε

, remembering that

| µ̂ | ≤ |µσmax |. Thus,

∥∥∥(I −B−1amgrpA)e
∥∥∥2
A
≤ ε

1 + ε

(√
ε

σ2
max + ε

+

√
σ2
max

ε
· σ2

max

σ2
max + ε

)2

=
ε

1 + ε

(
ε+ σ2

max√
σ2
max + ε ·

√
ε

)2

=
1

1 + ε
· 1

σ2
max + ε

(
ε+ σ2

max

)2
=

ε

1 + ε

(
1 +

σ2
max

ε

)
.

Finally, we substitute ε = 1
α − 1 and obtain

∥∥∥(I −B−1amgrpA)e
∥∥∥2
A
≤

1
α − 1

1
α

(
1 +

σ2
max

1
α − 1

)
= (1− α)

(
1 +

σ2
maxα

1− α

)
= 1− α+ σ2

maxα = 1− α(1− σ2
max).

This completes the proof.
With Theorem 3.2 we obtain the convergence of the symmetrized AMGrps easily.
THEOREM 3.3. Let A be spd and partitioned as in (2.6), and let Dp ∈ Rn1×n1 be an spd

approximation of A11 with

αA11 � Dp � A11

for α ≤ 1 so that
[
Dp A12

A21 A22

]
is spsd. Furthermore, let Ms ∈ Rn1×n1 be another approx-

imation of A11. Let Pν ∈ R≤ν [t] be a polynomial of degree ν with ν satisfying Pν(0) = 1
and |Pν(t) | < 1 for t ∈ σ(M−1s A11). Assume that the largest singular value σmax of

Pν(A
1
2
11M

−1
s A

1
2
11) satisfies σmax < 1. Consider the symmetrized polynomial-based AMGr

defined in (3.2). Then, ∥∥∥I −B−1amgrps
A
∥∥∥
A
≤ 1− α(1− σ2

max) < 1.
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Proof. To prove the result we use two properties of the method. First, the coarse-grid cor-
rection I−CA is a projection, thus (I−CA)2 = I−CA. Second, the postsmoother Pν(MTA)
is the adjoint ofPν(MA) in the inner product 〈x, y〉A := xTAy, thusPν(MTA)∗=Pν(MTA).
Therefore, we obtain ∥∥∥I −B−1amgrps

A
∥∥∥
A

=
∥∥∥I −B−1amgrp

A
∥∥∥2
A
,

and with Theorem 3.2, the upper bound follows.
The resulting convergence bounds of Theorems 3.2 and 3.3 depend on the choice of

the polynomial. The next section deals with the minimization of these upper bounds using
polynomials which have a minimizing property.

4. Chebyshev polynomials and the polynomial-based AMGr. In Theorem 3.2, we
did not choose a special polynomial. If the matrix Ms used in the smoother is spd, we have
σ(M−1s A11) ⊆ [a, b]. Thus, we obtain for the largest singular value

σmax = σmax

(
Pν

(
A

1
2M−1s A

1
2

))
= max

k

∣∣∣λk (Pν (A 1
2M−1s A

1
2

)) ∣∣∣ ≤ max
t∈[a,b]

Pν(t).
(4.1)

To minimize the right-hand side, we have to choose the polynomial with its smallest maximum
value in the interval [a, b], and this leads us to the Chebyshev polynomials with their minimiza-
tion property. This choice is not only the optimal one but also helps to establish upper bounds
that are independent of the singular values.

THEOREM 4.1. Let A be spd and partitioned as in (2.6). Let Dp ∈ Rn1×n1 be spd such

that αA11 � Dp � A11 and
[
Dp A12

A21 A22

]
is spsd. Further let Ms ∈ Rn1×n1 be spd with

σ(M−1s A11) ⊆ [a, b] and κ := b
a . Let Tν be given by (2.1). Consider the error propagation

matrix of the polynomial-based AMG given by (3.1). Then,

∥∥∥I −B−1amgrpA∥∥∥
A
≤

1− α

1−
(√

κ−1√
κ+1

)2ν
1 +

(√
κ−1√
κ+1

)2ν


2


1
2

< 1.

Proof. In Theorem 3.2, the upper bound depends on the maximum of the singular values
of A

1
2
11M

−1
s A

1
2
11. For an spd matrix Ms with σ(M−1s A11) ⊆ [a, b], we obtain with (2.2)

σmax = σmax

(
Tν

(
A

1
2M−1s A

1
2

))
= max

k

∣∣∣λk (Tν (A 1
2M−1s A

1
2

)) ∣∣∣
≤ max
t∈[a,b]

Tν(t) = 2
((√

κ+1√
κ−1

)ν
+
(√

κ−1√
κ+1

)ν)−1
.

Hence

1− σ2
max ≥

1−
(√

κ−1√
κ+1

)2ν
1 +

(√
κ−1√
κ+1

)2ν


2

,

which leads to the desired result.



ETNA
Kent State University

http://etna.math.kent.edu

156 F. GOSSLER AND R. NABBEN

Next, we compare our result with the upper bound of the AMGr method given by Theo-
rem 2.3. First, we note that for ν = 1, a = 1, and b = 1 + ε (this is the setting for the AMGr
method) the weight used in the smoothing operator using Chebyshev polynomials is given by

ω1 =
(

1
2

(
1 + ε+ 1− cos(π2 ·

2−1
1

)
(1 + ε− 1)

))−1
=

2

2 + ε
·

Thus, the AMGrp and AMGr methods use the same weight. Hence, they are identical. Next,
we show that the upper bounds of the error propagation operator with α = 1

1+ε are also the
same. We use κ = b

a = 1 + ε(√
κ− 1√
κ+ 1

)2

=
2 + ε− 2

√
1 + ε

2 + ε+ 2
√

1 + ε
·

Thus,

1−
(√

κ− 1√
κ+ 1

)2

=
4
√

1 + ε

2 + ε+ 2
√

1 + ε
,

and

1 +

(√
κ− 1√
κ+ 1

)2

=
4 + 2ε

2 + ε+ 2
√

1 + ε
·

With these two equations, we obtain

1− α

1−
(√

κ−1√
κ+1

)2
1 +

(√
κ−1√
κ+1

)2


2

= 1− 1

1 + ε
· 4(1 + ε)

(2 + ε)2
=

ε

(2 + ε)2
· (ε+ 4)

=
ε

(2 + ε)2
· ε

2 + 5ε+ 4

1 + ε
=

ε

(2 + ε)2
· (2 + ε)2 + ε

1 + ε

=
ε

1 + ε

(
1 +

ε

(2 + ε)2

)
,

which gives the upper bound of the AMGr method proved in [11].

5. Numerical comparisons. Here we illustrate the theoretical results of this paper with
some numerical computations. Similarly, as done in [11], we consider Poisson’s equation in
two dimensions, −∆u = f . The performance of the AMGr method is already demonstrated
in [11].

Here, we consider the resulting matrix A ∈ Rn×n using homogeneous Dirichlet boundary
conditions and linear finite elements on a regular mesh in [0, 1]2. To get a partition into
fine- (F) and coarse-grid (C) points, we use the Greedy coarsening algorithm for symmetric
problems [12]. The algorithm can be found in Appendix A. This coarser does not use weak and
strong connections but a special diagonal dominance ofA depending on a parameter θ ∈ ( 1

2 , 1).
By choosing θ ≈ 1

2 , we get fewer coarse-grid points at the cost of an increased condition num-
ber of M−1s A11: if we use Ms = diag(A11), it can be shown that σ(M−1s A11) ⊆ [2− 1

θ ,
1
θ ];

see [12]. In our numerical experiments we choose Ms = Dp = [dij ] with dij = 0 for i 6= j

and dii =
∑
i∈F aij for i ∈ F . Thus,

[
Dp A12

A21 A22

]
is spsd and (2θ − 1)A11 � Dp � A11;

see [12, Corollary 2 and Theorem 5]. Notice that we consider only two-level methods and the
coarse-grid system is solved exactly.
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TABLE 5.1
Comparison of AMGr and AMGp based on Chebyshev polynomials for the test problem −∆u = f .

AMGr AMGrp
grid
points θ ν = 1 ν = 2 ν = 4 ν = 6 ν = 1 ν = 2 ν = 4 ν = 6

16× 16

.55
ρ(t) .82 .67 .55 .54 .82 .50 .58 .52
ρ(e) .66 .71 .60 .56 .66 .63 .54 .53

.60
ρ(t) .67 .44 .20 .09 .67 .29 .10 .09
ρ(e) .40 .24 .12 .10 .40 .17 .10 .09

.65
ρ(t) .54 .29 .09 .09 .54 .17 .11 .09
ρ(e) .40 .24 .12 .10 .40 .17 .10 .09

132× 32

.55
ρ(t) .82 .67 .56 .54 .82 .50 .58 .52
ρ(e) .66 .71 .60 .56 .66 .63 .54 .53

.60
ρ(t) .67 .44 .20 .09 .67 .29 .10 .09
ρ(e) .40 .24 .12 .10 .40 .17 .10 .09

.65
ρ(t) .54 .29 .09 .09 .54 .17 .10 .09
ρ(e) .40 .24 .12 .10 .40 .17 .10 .09

164× 64

.55
ρ(t) .82 .67 .56 .54 .82 .50 .59 .52
ρ(e) .66 .71 .60 .56 .66 .63 .54 .53

.60
ρ(t) .67 .44 .20 .09 .67 .29 .10 .09
ρ(e) .40 .24 .12 .10 .40 .17 .10 .09

.65
ρ(t) .54 .29 .09 .09 .54 .17 .10 .09
ρ(e) .40 .24 .12 .10 .40 .17 .10 .09

In Table 5.1 we consider the spectral radii of the AMGrp operators based on Chebyshev
polynomials compared to the classical AMGr method. We consider two cases. First, denoted
by ρ(t), we list the spectral radii using the parameter as described above, i.e., we use

[a, b] =

[
2− 1

θ
,

1

θ

]
, α = 2θ − 1, ε =

1

θ
·(5.1)

Second, denoted by ρ(e), we use the exact interval [a, b], thus a and b are the extreme
eigenvalues of M−1s A11. Moreover, ν is the number of smoothing steps in one AMG cycle.

For ν = 1 we obtain that both methods are identical, thus the spectral radii are the same.
For ν > 1 and the estimates of a and b as in (5.1), it happens only in very few cases that the
spectral radius of the AMGr operator is below the spectral radius of the AMGrp operator. This
is no contradiction to the optimality of the Chebyshev polynomials. In this case we have a
strict inequality in (4.1), namely

σmax = σmax

(
Pν(A

1
2M−1s A

1
2 )
)

= max
k

∣∣∣λk(Pν(A
1
2M−1s A

1
2 )
∣∣∣ < max

t∈[a,b]
Pν(t).

For the exact values of a and b, the spectral radius of the AMGrp operator is always below the
one of the AMGr operator.

Summarizing. the polynomial-based AMGrp is a good alternative to the AMGr method.
The computational costs of the methods are the same.

6. Conclusion. We presented a further analysis of the AMGr method introduced in [11].
Our analysis lead to polynomial-based AMGr methods. We established an error bound for
these methods. If more than one smoothing step is used, our bound for the error propagation
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operator of the polynomial-based AMGr method is below those for the AMGr method. The
polynomial-based AMGr methods can be implemented with the same computational cost as
the AMGr method.

Acknowledgment. We would like to thank Scott MacLachlan and the referee for many
helpful comments. Moreover, we thank Scott for sharing his Greedy Coarser with us.

Appendix A. Greedy coarsening algorithm.

Algorithm 1: Greedy coarsening.

Input: A, θ ∈ ( 1
2 , 1)

Output: F,C, θi, i = 1, 2 . . . , n

1 Set U = {1, 2, . . . , n}, F = C = ∅
2 Compute θi = | aii |∑

j∈F
| aij |

3 for i = 1, . . . , n do
4 if θi ≥ θ then
5 F = F ∪ {i}, U = U\{i}

6 while U 6= ∅ do
7 Find j = argmin

i∈U
{θi}

8 C = C ∪ {j}, U = U\{j}
9 for i ∈ U ∩Adj(j) with Adj(j) := {k : ajk 6= 0} do

10 Update θi = | aii |∑
j∈F
| aij | if θi ≥ θ then

11 F = F ∪ {i}, U = U\{i}
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