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Abstract. Implicitly-restarted Lanczos iteration methods are among the most powerful methods for finding a
small number of eigenpairs of Hermitian matrices. These methods enjoy strong convergence and have manageable
memory requirements. Implicitly-restarted Lanczos methods naturally find approximations to both the largest and
smallest eigenpairs of the input matrix, but stagnation of Ritz values may lead to slow convergence, especially
when one only wants eigenvalues from one end of the spectrum and memory is constrained. We develop a filtering
strategy that breaks Ritz value stagnation for these one-sided eigenvalue problems. We demonstrate the reduction in
matrix-vector product costs and note that this new variant has marked advantages when memory is constrained and
when matrix-vector products are expensive.
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1. Introduction. Consider a Hermitian matrix A with the spectral decomposition

A = UΛU∗,

and the problem of finding the k eigenpairs (λi, ui) with either the largest or the smallest λi
and

Aui = λiui.

We call an eigenpair (λi, ui) leading if λi is among the largest eigenvalues and trailing if it is
among the smallest. Implicitly-restarted Lanczos methods [7, 15, 21, 34, 37, 41] are powerful
methods for finding a few eigenpairs of a Hermitian A. All of these methods project A into a
Krylov subspace to solve the eigenproblem.

DEFINITION 1.1. Given a square matrix A, a vector u(0), and a natural number m, the
mth Krylov subspace of A and u(0) is given by

Km(A, u(0)) = span{u(0), Au(0), A2u(0), . . . , Am−1u(0)}.

In the absence of linear dependence of the Aiu(0), the dimension of the mth Krylov subspace
is equal to m. In practice it is almost always the case that dim(Km(A, u(0))) = m.

All implicitly-restarted Lanczos methods use a Krylov subspace of fixed dimension m,
iteratively getting start guesses that are better and better approximations of the wanted eigen-
vectors. It turns out that these start vectors can be generated implicitly; that is, one does not
need to throw out all of the basis vectors for Km(A, u(0)) when restarting with a new start vec-
tor ũ(0) to getKm(A, ũ(0)). One can transform some of the basis vectors forKm(A, u(0)) into
basis vectors for Km(A, ũ(0)). For the implicitly-restart Lanczos methods based on [15], the
new start vector is ũ(0) := f(A)u(0), where f(x) =

∏d
j=1(x− sj) is a degree d polynomial

whose roots are chosen to filter u(0) to make the cosine cosϑ(ui, f(A)u(0)) larger for wanted
eigenpairs (ui, λi). Good choices of the roots sj determines how fast the method converges.
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Much work has been done on how to find good shifts sj . The original strategies in [15]
suggest using either a set of Ritz values—eigenvalue approximations from the current Krylov
subspace projection of A—that represents unwanted eigenvalues, or Leja points over an
interval known to contain unwanted eigenvalues. Fast Leja points [5] have been shown to be
almost as good as true Leja points, but are easier to compute. Using a set of Ritz values called
exact shifts has been shown to be effective. Thick-Restart Lanczos [37] adds acceleration
heuristics that choose a subset of unwanted Ritz values to use at each restart. The choice of m
is known to be problem-dependent, but m ≥ 2k is a reasonable choice [23]. However, when
m� 2k, exact shifts often give much slower convergence than when m ≥ 2k.

Our contribution is a method that identifies and corrects the slow convergence of exact
shift methods when m is small. We notice that stagnation of the Ritz values that are used to
restart iteration causes the poor convergence of exact shift-restarted Lanczos when m is too
small. The Ritz values that are used to restart the Lanczos algorithm keep assuming nearly
the same values over and over again. We characterize properties of polynomial filters that
can break that stagnation and develop a strategy to apply them when convergence may be
suffering. From that, we develop a hybrid method that uses exact shifts when possible, and
applies polynomial filters to break Ritz value stagnation when necessary.

2. Stagnation of Ritz values in exact shift Lanczos methods. Ritz value stagnation is
problematic for implicitly-restarted Lanczos methods when we want one end of the spectrum
and when we use exact shifts. The exact shift strategy uses a subset of the unwanted Ritz values
λ
(m)
m ≤ λ(m)

m−1 ≤ · · · ≤ λ
(m)
k+1 (when the leading k eigenvalues are wanted). When these Ritz

values do not change much from restart to restart, the filtering polynomial may be inefficient.
Rather than abandon exact shifts and use something else, we want to find a way to use exact
shifts and recover from stagnation.

For wanted Ritz values, it has been shown [2,12] that convergence is guaranteed; we do not
have to worry about wanted Ritz values stagnating. Instead, we do have to worry about stagna-
tion of the unwanted Ritz values. Stagnation of unwanted Ritz values is problematic, as these di-
rectly determine the restarting of the Lanczos iteration. This is not a new idea; in fact, Jia noted
as much in explaining the success of Leja points for small subspace sizes [21, pp. 200–201].
However, the way in which we address stagnation is unique.

To discuss more about stagnation, we first consider how the restart polynomial f(x)
affects convergence. This shows both how stagnation causes slow convergence and how
stagnation can be broken. We then produce a quantitative definition of stagnation. With that,
we can further modify [30, Theorem 2] to show that stagnation of the most extreme Ritz values
is unavoidable. We then present an example that demonstrates Ritz value stagnation and shows
how breaking that stagnation produces Ritz pairs with smaller residuals and reduced error.

2.1. Convergence of implicitly-restarted Lanczos. Convergence of restarted Lanczos
methods depends on both the length of the working subspace m and the filter polynomial
f (r)(x), which is the product of the restart polynomials for restarts 1 through r. Clearly, when
one wants the eigenvalue λi and can set f (r)(λj) = 0 for all unwanted eigenvalues j 6= i,
f (r)(A)u(0) = ui. This also holds for a set of wanted eigenvalues S ⊂ {λj}ni=1; if f (r)(λj) =
0 for all λj /∈ S, then the set of Ritz values of K|S|(A, u(0)) will be equal to S. Lehoucq
and Sorensen noted that the ratio f (r)(λi)/f (r)(λi+1) gives the asymptotic effect of filtering
in [10, p. 72]. We formalize their observation by adapting one of the classic results in [30].

COROLLARY 2.1 (Corollary of [30, Theorem 2]). Assume that λ1 > λ2 > · · · > λN .
Let λi be an eigenvalue of A with associated eigenvector ui such that 〈ui, u(0)〉 6= 0. Write
λ
(m)
i as the ith Ritz value of A restricted to Km(A, f(A)u(0)). Pick some function f (r)(x),
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and let f̄ = maxi<j≤N
{
f (r)(λj)

2
}

. Let

K
(n)
i =


∏i−1
j=1

λ
(m)
j −λN

λ
(m)
j −λi

if i 6= 1

1 otherwise
and γi = 1 + 2

λi − λi+1

λi+1 − λN
.

We have

0 ≤ λi − λ(m)
i ≤ (λi − λN )

(
f̄

f (r)(λi)
· K

(n)
i tanϑ(ui, u

(0))

Tm−i(γi)

)2

.

Proof. We apply [30, Theorem 2] to the approximation of A in Km(A, f (r)(A)u(0)).
Our point of departure is [30, Equation (2.11)]. Noting that the eigenbasis expansion of
f (r)(A)u(0) =

∑N
i=1 αiui =

∑N
i=1 cif

(r)(λi)ui immediately leads to αi = f (r)(λi)ci, where
u(0) =

∑N
i=1 ciui is the expansion of u(0) in the eigenbasis of A. Applying this substitution

to [30, Equation (2.11)] gives the desired result.
REMARK 2.2. It is well-known that picking a filter such that f (r)(x)2 is relatively small

for x in an interval [a, b] that is known to contain only unwanted eigenvalues reduces the
error. However, it requires a to be rather close to λN and b rather close to λi+1 for a leading
eigenvalue problem. Otherwise, the maximum of f (r)(x)2 over [λN , λi+1] will occur near the
endpoints: f̄ will likely be equal to f (r)(λi+1) or f (r)(λN ).

REMARK 2.3. It is only necessary that the filter polynomial f (r)(x) has small magnitude
in the neighborhoods of all unwanted eigenvalues. For example, if one wants the i leading
eigenpairs, it may be far more efficient to construct f (r) based on minx∈{λj}Nj=i+1

f(x)2 rather
than minx∈[λN ,λi+1] f(x)2; that is, there may be subintervals of [λN , λi+1] that are free of
unwanted eigenvalues, and it does not matter if f(x)2 is large in those sub-intervals. This
observation justifies exact shifts as a reasonable choice.

REMARK 2.4. These bounds also show that simply choosing a polynomial that satisfies
f(λi+1)2 � f(λj) for most i < j and with f(λi)

2/f(λi+1)2 small can shrink the approxi-
mation error. This gives insight into which polynomials will be good choices for breaking Ritz
value stagnation.

2.2. A quantitative measure of stagnation. We introduce a quantitative definition of
Ritz value stagnation.

DEFINITION 2.5. Suppose the restarted Lanczos algorithm has been restarted r times,
and uses a working subspace of size m. Let τ be a nonnegative real number less than 1, let w
be a natural number less than r, and let λλλ(m,n)i:j := [λ

(m,n)
i , λ

(m,n)
i+1 , . . . , λ

(m,n)
j ] be a vector

whose entries are Ritz values at restart n ≤ r of the Implicitly-Restarted Lanczos algorithm.
Then, Ritz values i through j are said to be stagnant over w iterations to tolerance τ when

min
r−w≤n≤r
r−w≤k≤r

k 6=n

sinϑ(λλλ
(m,n)
i:j ,λλλ

(m,k)
i:j ) = min

r−w≤n≤r
r−w≤k≤r

k 6=n

1−

〈
λλλ
(m,n)
i:j ,λλλ

(m,k)
i:j

〉
∥∥∥λλλ(m,n)i:j

∥∥∥∥∥∥λλλ(m,k)i:j

∥∥∥
 ≤ τ.

This definition is convenient because it is invariant to scaling of the spectrum ofA. Clearly,
when Ritz values i through j have stagnated to some small tolerance τ , then we can be sure
that those Ritz values do not change much from restart to restart.

One may notice that our definition of stagnation requires minimization of an angle between
two sets of unwanted Ritz values over all sets of unwanted Ritz values up tow restarts before the
current one. Ritz values typically do not have small sinϑ(λλλ

(m,r)
i:j ,λλλ

(m,r−1)
i:j ) for neighboring
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restarts; rather, the Ritz values λλλ(m,n)i:j will be close to one from a restart in recent history. We
have observed that Ritz value stagnation is often periodic, with sinϑ(λλλ

(m,r−2)
i:j ,λλλ

(m,r)
i:j ) being

far smaller than sinϑ(λλλ
(m,r−1)
i:j ,λλλ

(m,r)
i:j ).

2.3. The asymptotically unavoidable stagnation of extreme unwanted Ritz values.
Extreme Ritz values will tend to stagnate, and this is a consequence of the asymptotic con-
vergence properties of Ritz values to eigenvalues in Krylov subspaces. Our adaptations of
the classic bounds in [30] show that extreme Ritz values will always have small error when
the Krylov subspace is nontrivial and when arithmetic is finitely-precise. We present our
adaptations of [30, Theorem 2]; these are intended to show that the error (λ

(m)
i − λi) may be

small even when the dimension m of the Krylov subspace is small. We then derive another
result from Corollary 2.1.

COROLLARY 2.6. Suppose N > m, and let all the assumptions of Corollary 2.1 hold. Pick
a nonnegative integer i with i < m. Pick any natural number k with k < N − i. It follows
that the error (λ

(m)
m−i − λN−i) (note that λ(m)

m−i ≥ λN−i) obeys

0 ≤ λ(m)
m−i−λN−i ≤ (λk−λN−i)+(λ1−λk−1)

 f̄

f (r)(λk−1)
·
K̄

(m)
(i,k) tanϑ(ui, u

(0))

Tm−i(γi,k)

2

,

where

γi,k := 1 + 2
λi − λk−1
λk−1 − λ1

and

K̄
(m)
(i,k) :=


∏i−1
j=1

λ
(m)
m−j−λ1

λ
(m)
m−j−λi

if i < N

1 otherwise
.

Proof. We pick an appropriate k, and split [30, Equation (2.11)] into

λN−i − λ(m)
m−i ≤ (λk − λN−i)

∑N−i−1
j=k p(λj)

2f (r)(λj)
2c2j∑N

j=1 p(λj)
2f (r)(λj)2c2j

+ (λ1 − λk−1)

∑k−1
j=1 p(λj)

2f (r)(λj)
2c2j∑N

j=1 p(λj)
2f (r)(λj)2c2j

(2.1)

for any polynomial of degreem−i. We substitute the shifted and scaled Chebyshev polynomial
Tm−i(1 + 2(x− λk−1)/(λk−1 − λ1)) for p(x), and notice that the first partial sum in (2.1) is
less than (λk − λN−i). Simplification of the second partial sum proceeds as in [30] and gives
the desired result.

The main idea is that the error (λ
(m)
i − λi) may shrink much more with small m (n in the

notation in [30]) than the bounds in [30, Theorem 2] might suggest. All that is required is that
γi,k is just a little larger than 1, and the Chebyshev polynomial will obtain a large value for
Tn−i(γi,k) when i is small. Corollary 2.6 has important implications for Ritz value stagnation
in finite arithmetic: for example, when (uN , λN ) is unwanted and cosϑ(uN , u

(0)) cannot be
made smaller than machine precision, tanϑ(uN , u

(0)) is finite. In that case, it is possible that
one may find a suitable k such that the bounds from Corollary 2.6 are tight enough to place
λ
(m)
m in [λN , λ1], perhaps even close to λN . Even for not-too-large m, say 10 or more, one
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can place λ(m)
m into a relatively narrow interval for tanϑ(uN , u

(0)) ≈ εmachine. We illustrate
Corollary 2.6 with an example.

EXAMPLE 2.7. Let A be a 2, 000 × 2, 000 diagonal matrix with eigenvalues 0, 10−3,
2× 10−3, . . . , 1− 10−3, 1, 10, 10 + 10−3, . . . , 11. Now we consider the eigenvalue approxi-
mations of A restricted to K12(A, u(0)) for any u(0). If we set k := 1, 001, then γ2,000,k = 15.
We have T11(γ2,000,k)2 ≈ 1.4×1034, but tanϑ(cos−1 ϑ(εmachine)) ≈ 2.66×1032 if machine
epsilon εmachine = 10−16. By Corollary 2.6, λN − λ(m)

m ≤ 1.01, and λ(m)
m /∈ [λ1,000, λ1] for

any start vector u(0), since cosϑ(uN , u
(0)) ≥ εmachine.

Based on this observation, we would expect λ(m)
m not to vary much from restart to restart

once cosϑ(uN , u
(0)) goes to εmachine. Thus, if we restart the Lanczos iteration by filtering

with only a few of the smallest Ritz values of A, we would expect stagnation. We illustrate
this in the following example.

EXAMPLE 2.8. Let A be the same matrix as in Example 2.7, and let u(0) := [1, 1, . . .].
We now consider the Ritz values used to restart the Lanczos iteration for this particular u(0) to
observe Ritz value stagnation and motivate methods to break stagnation.

Based on the predictions of Corollary 2.6 and the observations in Example 2.7, we expect
the smallest Ritz values to experience stagnation. To show this, we computed restarted Lanczos
iterations with exact shifts, restarting using the smallest three Ritz values. The three smallest
Ritz values from ordinary IRLan with exact shifts are shown in Figure 2.1; these are the roots
of the restart polynomial. It is clear that these Ritz values have stagnated after only about 20
iterations, and that the prediction from Example 2.7 is correct: λ(m)

m is never greater than 1.
To break Ritz value stagnation, we use two factors of a degree-6 Chebyshev polynomial

filter to restart at restarts 21 and 22. If λ(m)
m is the smallest Ritz value encountered in the

previous 20 restarts, then we set our stagnation-breaking filter to be

p(x) = T6((2x− λ(m)
m )/λ(m)

m ) = f (21)(x)f (22)(x),

where f (21)(x) =
∏3
i=1(x − ti), and f (21)(x) =

∏6
i=4(x − ti), and t1, t2, . . . , t6 are the

roots of p(x). The Ritz values with this stagnation breaking are also shown in Figure 2.1. Note
that both methods performed the same number of matrix-vector products and restarts.

This filtering clearly breaks the Ritz value stagnation. To exhibit the impact of breaking
stagnation, we show the sum residual of wanted Ritz values:

∥∥∥AU (m)
1:9 − U

(m)
1:9 Λ

(m)
1:9

∥∥∥
F

=

√√√√ 9∑
i=1

∥∥∥Au(m)
i − u(m)

i λ
(m)
i

∥∥∥2
and the cosine cosϑ(u1,001:2,000, f(A)u(0)) =

∑2,000
i=1,001 cosϑ(ui, f(A)u(0)). These are

shown in Figure 2.2. Note that breaking stagnation results in smaller residuals and better
exclusion of unwanted eigenvectors whose eigenvalues are in [0, 1].

The problem with extreme eigenvalues that Corollary 2.6 illustrates is caused by ex-
actly the same mechanism that causes Lanczos vectors to lose orthogonality between itera-
tions [26, 32, 33], but reorthogonalization methods cannot solve this problem unless we keep
the unwanted eigenvectors. For unwanted eigenvectors, restarting discards any information
which we would need to perform reorthogonalization.

We notice that when m− k is not too small, the K̄(m)
(i,k) term can become large for some

Ritz values, and some restart roots are not bound to be in a small interval. However, when
m − k is small, Corollary 2.6 can be made sufficiently tight to guarantee that exact shifts
would be nearly identical from iteration to iteration.
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FIG. 2.1. Smallest three Ritz values over restarts of Lanczos iteration to find the largest eigenvalues of the
matrix in Example 2.8 when restarting using the three smallest unwanted Ritz values as exact shifts (left). These are
also the roots of the exact shift restart polynomial f (r)(x) discussed in Section 2.1. The left-hand plot shows that the
roots of the restart polynomial have stagnated after about 20 restarts. On the right are the smallest three unwanted
Ritz values from restarted Lanczos iteration with the same subspace size and using exact shifts for restarts except for
restarts 21 and 22. For those restarts, we set the restart polynomial to be the Chebyshev polynomial of the first kind
of degree 6, scaled and shifted so that its roots were in [0, λ

(m)
m ], where λ(m)

m is the smallest Ritz value seen in all
previous restarts. At restart 21, we restart with the first three roots of the Chebyshev polynomial, and at restart 22, we
restart with the remaining three roots. The right-hand plot shows that applying the Chebyshev filter breaks Ritz value
stagnation.
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FIG. 2.2. Residuals (left) and sum of cosines of the restart vector against the smallest 1,000 eigenvectors (right).
Breaking Ritz value stagnation both reduces residuals and renders the restart vector more orthogonal to a set of
unwanted eigenvectors. Note that the residual measured here is the square root of the sum of squares of residuals of
all wanted eigenvectors.

3. Choosing filtering intervals to break Ritz value stagnation. We have seen that
stagnant Ritz values cause trouble for implicitly-restarted Lanczos methods when exact shifts
are used and when the working subspace size m is not much larger than the number of wanted
eigenpairs. Machine precision limits how small the bounds from Corollary 2.6 can get, so
the smallest Ritz values can get stuck in some sense. However, one may break the stagnation
by applying a filter polynomial as Example 2.8 showed. Though the idea of generating a
filtering polynomial that minimizes over [λN , λi+1] is a well-known trick, our contribution is
that we construct our polynomials to filter different intervals than the shift selection strategies
in [5–7, 15]. We focus on how we pick the lower bound a and upper bound b; our strategy for
picking a and b is different from related methods. To filter over the interval [a, b], we just use a
shifted and scaled Chebyshev polynomial, though this is by no means the only possible choice.



ETNA
Kent State University

http://etna.math.kent.edu

22 A. BREUER

3.1. Choosing a and b. Choosing the filtering interval endpoints is one of the key ingredi-
ents in our approach. Our interval strategy is based on some observations from Corollaries 2.1
and 2.6. These observations assume that the leading eigenvalues are wanted, and one may
simply reverse the ordering of the Ritz- and eigenvalues and swap a and b to get the strategy
when one wants the trailing eigenvalues.

1. We can see that exact shifts are an efficient choice because Ritz values will tend to
“gravitate” towards clusters of Ritz values, but exact shifts will only be able to filter
in [λ(m)

m , λ
(m)
i+1 ], where λ(m)

m is the smallest Ritz value encountered and λ(m)
i+1 is the

largest Ritz value encountered at index i+ 1;
2. stagnation of Ritz values will result in slow convergence;
3. stagnation can be broken with any polynomial that has a small magnitude for un-

wanted eigenvalues, a steep slope around the smallest wanted eigenvalue, and is large
for wanted eigenvalues; and

4. exact shifts will not be able to filter eigenvalues smaller than λ(m)
m effectively, where

λ(m)
m is the smallest λ(m)

m encountered.
We will, based on observation 1, let exact shifts filter in [λ(m)

m , λ
(m)
i+1 ]—that is, we will not

place stagnation breaking roots in [λ(m)
m , λ

(m)
i+1 ]. We will break stagnation only when the Ritz

values we use for restarting are stagnant. Our stagnation-breaking polynomial will be designed
to filter out eigenvalues that we know exact shifts would fail to filter efficiently. Assuming
an eigenproblem where the leading eigenvalues are wanted, we pick the lower endpoint a
to be λ(m)

m − ‖rλ(m)
m
‖, where rλ(m)

m
is the Ritz residual for the Ritz value λ(m)

m = λ(m)
m . We

further pick the upper endpoint b to be λ(m)
m . For a trailing eigenvalue problem, we simply

reverse the ordering of the eigenvalues and endpoints: a is the largest Ritz value encountered,
and the width of the interval is the norm of the residual associated with the largest Ritz value
encountered.

3.2. Comparison with other filtering intervals. Our interval choosing strategy may be
contrasted with the filtering strategies in [5–7, 15] where exact shifts are not used. In all of
these, a ≤ λ(m)

m and b ≥ λ(m)
i+1 for a leading eigenvalue problem. The endpoints are updated at

each restart such that a ≤ λ(m)
m and b ≥ λ(m)

m−i for some offset i. How to choose that offset is
up to the user. It is interesting that choosing i to be small when m is close to k tends to work
best [6, p. 15]; the upper endpoint b only gets close to λk+1 when the restarts have filtered the
start vector to be orthogonal to most other unwanted eigenvectors. Many restarts will have b
far from λk+1, so they will be most biased to remove trailing eigenvectors. That behavior is
just what we are trying to do when we break stagnation.

In [40], the authors propose the Chebyshev-Davidson method that uses interval filtering
to accelerate convergence: the new search direction is given by f(A)r, where r is a residual
vector, and f(x) is a shifted and scaled Chebyshev polynomial. There are two advantages
of applying filtering in a Krylov subspace that may save matrix vector products compared
to filtering a less structured subspace as in the Davidson method. First, Lanczos methods
do not need to explicitly compute the residual to determine convergence. Second, when one
implicitly filters the start vector, one implicitly filters all the basis vectors of the subspace;
d matrix-vector products filter m basis vectors. That is, if Qm is a basis for Km(A, u(0)),
implicitly-restarting Lanczos iteration with a d-degree f(x) yields f(A)Qm−d as a basis for
Km−d(A, f(A)u(0)), and then d Lanczos steps give f(A)Qm as a basis forKm(A, f(A)u(0)).
Krylov structure lets us filter m basis vectors with only d matvecs. In a Davidson algorithm, d
matrix-vector products can only filter one basis vector.

It is notable that [40] uses a similar lower endpoint as our strategy in a Davidson algorithm
but again chooses a larger upper endpoint. Our strategy chooses b := λ(m)

m specifically to
avoid choosing roots greater than λ(m)

m , where exact shifts may place roots. In some sense, our
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strategy “trusts” exact shifts to do a good job and only filters in intervals that are disjoint from
those that exact shifts can “know” about.

Algorithm 1 Implicitly-restarted Lanczos algorithm with exact shifts and stagnation breaking
for a one-sided eigenvalue problem.

Require: Hermitian input matrix A, a priori chosen unit-length start vector u(0), stagnation
breaking tolerance τ , stagnation window w, convergence residual tolerance t, working
subspace size m, number of wanted eigenvalues k, stagnation breaking filter degree d

1: Generate an orthonormal basis for Km(A, u(0)).
2: r ← 0
3: f (0)(x) = 1

4: Get Ritz values λ(m)
1 , . . . , λ

(m)
m from restriction of A to Km(A, u(0)), update λ(m)

m and
‖rλ(m)

m
‖.

5: while
∑k
i=1 ‖Au

(m)
i − u(m)

i λ
(m)
i ‖2 > t2 do

6: if Ritz values m : m− k have stagnated to τ over the last w restarts then
7: Set s1, s2, . . . , sd to be the roots of the degree-d Chebyshev polynomial shifted and

scaled to be in [λ(m)
m − ‖rλ(m)

m
‖, λ(m)

m ], set p← d.
8: else
9: Set p with p ≤ m− k by max-γ strategy in [37].

10: Set s1 ← λ
(m)
m , s2 ← λ

(m)
m−1 . . . , sp ← λ

(m)
m−p.

11: end if
12: for j ← 1, . . . , p in steps of m− k do
13: Extract Kk(A, (A− sjI)f (r+m−k)(A)u(0)) from Km(A, f (r)(A)u(0)) with

f (r+m−k)(x) = (x− sj) · · · (x− sj+m−k)f (k)(x).
14: Perform m− k more Lanczos iterations to get Km(A, f (r+m−k)(A)u(0)).
15: r ← r +m− k
16: end for
17: Get Ritz values λ(m)

1 , . . . , λ
(m)
m from restriction of A to Km(A, f (k)(A)u(0)), update

λ(m)
m and ‖rλ(m)

m
‖.

18: end while
19: Get Ritz vectors u(m)

1 , . . . , u
(m)
m and Ritz values λ(m)

1 , . . . , λ
(m)
m from restriction of A to

Km(A, f (k)(A)u(0)) (Ritz values were already computed at line 17).
20: return wanted Ritz values and Ritz vectors.

3.3. Implicitly-restarted Lanczos with exact shifts and stagnation-breaking. We are
now ready to present our shift strategy incorporated into the Implicitly-restarted Lanczos
Algorithm (IRLan); it is presented in Algorithm 1. Our presentation of IRLan differs slightly
from those in [10, 15]; we explain these in the following remarks.

REMARK 3.1. In [10, 15], the polynomial f(x) =
∏d
j=1(x − sj) is evaluated all at

once; Km−d(A, f (k+d)(A)u(0)) is extracted from Km(A, f (k)(A)u(0)) before the Lanczos
factorization is advanced. We interleave these steps in lines 12–16, which is equivalent.
Interleaving the steps allows one to have d ≥ m.

REMARK 3.2. Our presentation of IRLan has an explicit residual-based convergence
criteria, but explicitly computing the sum of residuals is not necessary; rather, we test the sum
of residuals of Ritz pairs using the Lanczos recurrence AQm = QmTm,m + rme

∗
m, where

Qm is an orthonormal basis for Km(A, u(0)) and em is the mth standard basis vector.
REMARK 3.3. Since we do not need to explicitly compute residuals per Remark 3.2, we

do not explicitly need Ritz vectors. Since the implicit restarts maintain the tridiagonality of
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Tm,m, Ritz values can be computed with complexity O(m2) (e.g., [18]) rather than the O(m3)
for a generic full eigensolve.

4. Numerical examples. We demonstrate the performance of IRLan with stagnation
breaking on four eigenvalue problems.1 All calculations were performed on a Dell Dimension
workstation running Redhat Linux 6.5 with 16 Xeon X5650 cores and 12 GB of memory. We
used Octave 4.0.0 [19]. LAPACK and BLAS were provided by ATLAS 3.10.2 [35].

In all cases, we constrain memory to show the advantage of stagnation breaking when the
working subspace size is less than twice the number of desired eigenpairs. Since eigenvalue
calculation depends on the initial guess—which we choose as a random vector of uniformly-
distributed values—we perform multiple runs and present averaged results. When comparing
across different eigenvalue computation methods, we use the same series of random start
vectors.

We compared our method against filtering with Fast Leja points using the same strategy
as in [5–9]: we choose Fast Leja points in [λ(m)

m , λ
(m)
m−1], where λ(m)

m is the smallest Ritz
value encountered, and λ(m)

m−1 is the largest Ritz value at index m− 1 encountered. We also
compared against the Chebyshev-Davidson method in [40], and Implicitly-restarted Lanczos
with exact shifts (no stagnation-breaking). We used the MATLAB code from Y. Zhou’s web
site [39] to get our Chebyshev-Davidson results. We used our own fast Leja point generation
code, which we found comparable to IRBLEIGS [4] with unweighted fast Leja points. For
exact shifts, we selected shifts using the max-γ strategy from Thick Restart Lanczos [37]; we
noticed that this produced equivalent matrix-vector product counts compared to the Fortran
implementation of TRLan [36] accessed via the SLEPc4Py [1] bindings. The only difference
between IRLan with exact shifts and IRLan with stagnation breaking is the stagnation breaking;
all other shifts are the same.

We present four examples: the small diagonal example from Example 2.7 to illustrate the
effect of the input parameters of Algorithm 1, another small example to allow comparison
against results reported in [9], and two large examples on which timing results are meaningful.

For subspaces with m close to the number of wanted eigenvalues k, the Chebyshev-
Davidson software resets m if it is too small; we generated results for m as small as was
allowed. We note that all methods were implemented in Octave to allow for timing comparison
in Section 4.3. Our results show that stagnation breaking requires fewer matrix-vector products
than the reference methods; we can expect stagnation breaking to have advantages when
matrix-vector products are the predominant computational cost.

4.1. The diagonal matrix from Example 2.7. The matrix from Example 2.7 happens
to be a nice choice for demonstrating positive attributes of Algorithm 1. The matrix has a
wide gap [1, 10] in which there are no eigenvalues. Though Fast Leja points tend to work well
when the size of the working subspace m is close to the number of wanted eigenvalues k, any
Leja point that falls in [1, 10] will be a poor choice. However, there is no way to know how to
avoid placing Leja points in intervals free of eigenvalues without already knowing what those
intervals are beforehand.

4.1.1. Matrix-vector product use. We first study the number of matrix-vector prod-
ucts needed to get convergence of the first 5 and the first 10 eigenpairs of the matrix from
Example 2.7. Based on the stagnation of Ritz values in Example 2.8, we would expect
stagnation-breaking to have a positive impact on IRLan with exact shifts. Also, we would
expect Fast Leja points to encounter difficulty with this matrix, since it has a wide interval

1The author’s MATLAB implementation of IRLan with all restart methods analyzed here is available on github:
https://github.com/alexmbreuer/irlan.

https://github.com/alexmbreuer/irlan
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FIG. 4.1. Matrix-vector products needed by ordinary IRLan with exact shifts and IRLan with stagnation breaking
(IRLan + stag. break.) to compute the largest 5 and 10 eigenpairs of A from Example 2.7 given different working
subspace dimensions. Matrix-vector products for IRLan with Fast Leja points and for Chebyshev-Davidson are also
shown. Plots to find 5 eigenpairs are in the left-hand plot; plots to find 10 are on the right. These plots represent the
averages over 10 runs with random start vectors; error bars show three standard deviations from the means.

that is free of eigenvalues. Finally, we would not be surprised to see that Chebyshev-Davidson
requires more matrix-vector products than restarted Lanczos methods; Chebyshev-Davidson
can only refine one basis vector with each filter application, rather than implicitly filtering all
basis vectors at the same time. Our expectations were not disappointed.

The number of matrix-vector products to find the largest 5 and largest 10 eigenpairs of the
matrix from Example 2.7 is shown in Figure 4.1. We performed 10 runs of each method and
present the average number of matrix-vector products. An important feature of the plots in
Figure 4.1 is that the matrix-vector product use of IRLan with stagnation breaking grows more
slowly as the working subspace size is restricted. This may be contrasted with standard IRLan
with exact shifts, which requires almost an order of magnitude more matrix-vector products to
find k eigenvectors when the size of the working subspace is only k + 2.

4.1.2. The τ parameter in IRLan with stagnation breaking. We study the effect of
the τ parameter that determines Ritz value stagnation (used on line 6 of Algorithm 1) on
convergence of eigenvalues. We ran IRLan with stagnation breaking on A from Example 2.7
with 10−6 ≤ τ ≤ 10−3 andw := 4; all other parameters were set to values used in the previous
comparisons. We show the number of matrix-vector products versus working subspace size
in Figure 4.2; the error bars in this figure represent one standard deviation from the mean
of the 10 runs. There are differences between runs with differing values of τ , but all of the
standard deviations overlap. One may conclude that setting τ to be between 10−6 and 10−3

should produce equivalent results to those reported in this paper. In general, τ should be
set according to how quickly the unwanted, opposite end of the spectrum converges in the
Krylov subspace: faster convergence of unwanted eigenvalues requires smaller τ , and slower
convergence requires larger τ .

4.1.3. The w parameter in IRLan with stagnation breaking. Along with the τ pa-
rameter, the w parameter determines how often IRLan with stagnation breaking performs
stagnation-breaking restarts. We examine the difference in matrix-vector product costs when
w is varied. We set τ := 5× 10−6 and w := 3, 4, 5, 6; all other parameters were set to values
used in the previous comparisons. We ran on A from Example 2.7 and report the number
of matrix-vector products in Figure 4.3. Again, we ran 10 runs with different start vectors
and averaged the results. Like in the experiment with τ , it is evident that varying w does not
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FIG. 4.2. Matrix-vector products as a function of τ from line 6 of Algorithm 1 for finding 5 (left) and 10 (right)
eigenvectors of A from Example 2.7. These results were averaged over 10 runs with random start vectors. The y-axis
is linear, and the error bars represent one standard deviation from the means.
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FIG. 4.3. Matrix-vector products as a function of w from line 6 of Algorithm 1 for finding 5 (left) and 10 (right)
eigenvectors of A from Example 2.7. These results were averaged over 10 runs with random start vectors. The y-axis
is linear, and the error bars represent one standard deviation from the means.

affect the matrix-vector product cost appreciably. A value of 3 ≤ w ≤ 6 should be expected to
reproduce the results in this paper.

4.2. Finding singular values and vectors. The eigenvalue problem is closely related to
the singular value problem [17, Theorem 3.2] of finding A = UΣV ∗, where U and V are
unitary and Σ is diagonal and positive semidefinite. A well-known trick [4, 20] is to take a
(possibly rectangular) input matrix A and define

(4.1) M =

[
A

A∗

]
.

Each eigenvalue of M is then either a singular value of A or −1 times a singular value of A.
Eigenvectors of M give both left and right singular vectors of A. When finding the largest
singular values and their singular vectors, M might give slower convergence of singular value
approximations to singular values [20], but does have the advantage that one can compute the
matrix-vector products on A and A∗ in parallel when evaluating a matrix-vector product on M .
If A is sparse, this is equivalent to evaluating a compressed sparse column and a compressed
sparse row product [10, Ch. 10].
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FIG. 4.4. Matrix-vector products needed by IRLan with stagnation breaking, Fast Leja points, ordinary exact
shifts and Chebyshev-Davidson to compute the 50 largest eigenvalues of M formed from well1850 via (4.1). These
results were averaged over 10 runs with random start vectors, the error bars represent three standard deviations from
the means. For two runs at 56 dimensions, Chebyshev-Davidson required substantially more iterations than for the
others; we treat those two outliers separately.
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FIG. 4.5. Smallest 2 Ritz values from an arbitrary run for finding 50 eigenvalues of the well1850 M matrix
for IRLan with ordinary exact shifts (left) and with stagnation breaking (right). The stagnation breaking plot also
shows the roots of the Chebyshev polynomials that break stagnation, marked in red. The left-hand plot only shows the
roots of the first 850 restart polynomials, but the run took 34,517 restarts to obtain convergence. In contrast, IRLan
with stagnation breaking converged after 827 restarts. Exact shifts exhibit stagnation that is effectively broken in the
right-hand plot.

We use the matrix well1850 from the University of Florida sparse matrix collection [16]
(also in the Matrix Market collection [14]) and look for the 50 largest singular values. The
number of matrix-vector products is shown in Figure 4.4.

To confirm our expectations from Corollary 2.6 on stagnation of Ritz values, we plot the
smallest two Ritz values from an arbitrary one of the left-most runs of IRLan in Figure 4.5:
finding 50 eigenvalues using a working subspace size of 52. These correspond to the unwanted
Ritz values that define the restart polynomial. We also plotted the smallest Ritz values from
the run of IRLan with stagnation breaking using the same start vector as the exact shift run
and the same working subspace size. The figure shows that Ritz values from ordinary IRLan
with exact shifts do indeed experience stagnation. It is also evident that stagnation breaking
prevents the Ritz values from repeatedly assuming the same values over and over.

This matrix allows us to compare to the results reported in [9, Example 2]. Finding the
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largest singular value to a convergence tolerance of 10−6 is reported to take 72 matrix-vector
products with IRBLB and 82 matrix-vector products with IRBLA [8] when using a working
subspace size of 5. We computed the largest singular value of M using the same subspace
size with stagnation breaking IRLan with τ := 5× 10−6 and with a convergence tolerance of
10−6, which required an average of 77.6 matrix-vector products over 10 runs. When we set
τ := 10−3, IRLan with stagnation breaking required an average of 59.2 matrix vector products
per iteration.

4.3. Two graph eigenproblems. Spectral graph analysis requires finding eigenvectors
of matrices derived from the graph’s adjacency matrix [13, 22, 25, 27, 29, 31, 38]. These
eigenproblems are typically somewhat hard, and arbitrarily many eigenvectors may be required.
Some important classes of graphs—scale-free networks [11]—may produce matrices with
many nonzero entries, which leads to expensive matrix-vector products. When matrix vector
products are expensive relative to other arithmetic operations, smaller matrix vector product
usage correlates directly with shorter wall clock times. We examine two normalized graph
Laplacian matrices [28]: one from a 10, 000 × 10, 000 synthetic matrix generated using
the GRAPHGEN graph generator implementation in SNAP [24] (using the Albert-Barabási
adjacency model [3]), and the other from University of Florida sparse matrix collection [16].
We obtain a leading eigenvalue problem from the normalized Laplacian by applying a shift.
The normalized Laplacian is L := I −D−1/2AD−1/2, where A is the adjacency matrix of
the graph and D is a diagonal matrix whose entries are vertex degree. All eigenvalues of L are
in [0, 2]. We set our input matrix to be

(4.2) Ainput := 2I − L,

so all eigenvalues are still in [0, 2] and the largest ones are wanted. Both matrices are large
enough to provide meaningful wall clock measurements. For both matrices we measure
wall clock time using the Octave/Matlab tic and toc commands. We used a convergence
tolerance of 10−8 for both graphs. We used w := 4 and τ := 5×10−6 for stagnation-breaking
IRLan. We performed five runs with random start vectors, and present the average wall clock
times and number of matrix-vector products.

A contrast between Lanczos solvers and Chebyshev-Davidson with respect to run times
is apparent in this section. The results reported here contrast with those reported in [40],
where Chebyshev-Davidson was reported to outperform TRLan. In the results reported
in [40, Figure 6.2], one can see that run times decrease despite increasing matrix-vector
product counts. This suggests that the savings in orthogonalization and restarting due to better
filtering offset the extra filtering costs; relatively inexpensive matrix-vector products are a
prerequisite. For many applications, one will have sufficiently inexpensive matrix-vector
products, but when the input matrix is too dense, one may witness relatively expensive matrix-
vector products. When matrix-vector products are sufficiently expensive, performing fewer
matrix vector products will realize savings. The following examples demonstrate this.

4.3.1. A synthetic Albert-Barabási graph. We generated a 10, 000× 10, 000 synthetic
graph using the graphgen generator in SNAP [24], where each vertex brings on average 128
edges to the graph (the graphgen command was graphgen -g:k -n:10000 -k:128).
The resulting normalized Laplacian matrix had 2, 553, 488 nonzero elements. Additionally,
the matrix had a large gap between the smallest and second-smallest eigenvalues: the smallest
eigenvalue is 0, but the second-smallest is ≈ 0.876326; the largest eigenvalue of Ainput

from (4.2) is then 2, and the second-largest is ≈ 1.123674.
We ran IRLan with stagnation breaking using w := 4 and τ := 5× 10−6. We tried to get

the fastest possible run times for Chebyshev-Davidson by using degrees of 2, 5, and 15; larger
degrees caused Chebyshev Davidson to fail. We note that d := 15 produced the best run times.
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FIG. 4.6. Matrix-vector products (left) and wall clock times (right) for IRLan with Leja Points, stagnation
breaking, ordinary exact shifts and Chebyshev-Davidson to find the 200 largest eigenvalues of Ainput for the graph
Laplacian matrix for a 10,000 vertex synthetic graph. The Krylov subspace methods show a distinct advantage
over Chebyshev-Davidson for matrix-vector products, but Chebyshev-Davidson has been shown to have smaller
costs for orthogonalization and refinement. Nevertheless, matrix-vector products are sufficiently expensive to render
Chebyshev-Davidson slower for small search spaces.

The gap between the two smallest wanted eigenvalues apparently limits the polyno-
mial degree that can be used in Chebyshev-Davidson; even simple power iteration is effec-
tive for this eigenvector. With a sufficiently-high degree Chebyshev filter polynomial f(x),
cosϑ(f(A)x, u1) ≈ 1 for any x. That is, applying the filter polynomial to any vector gives a
vector that is numerically indistinguishable from an eigenvector. Once this eigenvector is in
the working subspace, the Chebyshev-Davidson code cannot expand its search subspace. At
each subspace expansion step, the new vector f(A)x ≈ u1 is already in the subspace, so the
code simply replaces the filtered vector f(A)x with (another) random vector and continues
trying to expand the search space [39, file bchdav.m, line 689]. An apparently infinite loop
results. We saw this behavior for polynomial degrees greater than 20, so we report results
obtained with degrees of 2, 5 and 15.

We computed the 200 leading eigenvectors of Ainput using subspace dimensions ranging
from 210 to 400. The matrix-vector products and wall clock times are shown in Figure 4.6. One
can see that the smallest wall clock times are for stagnation breaking Lanczos, but Chebyshev-
Davidson exhibits roughly monotonic run times. This is in contrast to the implicitly-restarted
Lanczos methods, whose orthogonalization costs scale quadratically with subspace dimension.
A known advantage of Chebyshev-Davidson is that it may have reduced orthogonalization
costs [40], which likely accounts for the observed monotonicity. However, Chebyshev-
Davidson has larger wall clock times for dimensions under 300; this is because matrix-vector
products are simply too expensive to overcome any savings in orthogonalization costs.

4.3.2. The Citeseer co-author graph. The co-author graph constructed from Citeseer
data [16, coPapersCiteseer] has a ratio of edges to vertices that, like the previous example,
results in matrix-vector products that are expensive relative to other linear algebra operations.
The matrix is 434, 102 × 434, 102 but has 320, 507, 542 nonzero entries. The relatively
expensive matrix-vector products dominate compute costs and render Lanczos methods cheaper
than Chebyshev-Davidson. Again, we transform the normalized graph Laplacian into a leading
eigenproblem per (4.2).

For this example, we computed k := 40, 65, 90, 115 with search spaces of k + 10 for
Lanczos methods, and the smallest search spaces that Chebyshev-Davidson would allow.
We ran IRLan with stagnation breaking using w := 4 and τ := 5 × 10−6. The number of
matrix-vector products and the wall clock times are shown in Figure 4.7.
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FIG. 4.7. Matrix-vector products (left) and wall clock times (right) for IRLan with stagnation breaking, IRLan
with exact shifts, IRLan with Fast Leja points and Chebyshev-Davidson to find the k largest eigenvalues of Ainput for
the graph Laplacian matrix for the coauthor graph from the University of Florida sparse matrix collection.

As for the previous example, we tried to get the best run times out of Chebyshev-Davidson
by using polynomial degrees of d := 20, 40, 80. As in [40], run times decreased as polynomial
degree increased, but d := 80 is roughly equivalent to d := 40. A point of diminishing returns
appears to have been reached. However, that d := 20 is slower than d := 40 suggests that
degrees less than 20 will have slower run times.

Again, any savings Chebyshev-Davidson has in orthogonalization and refinement are
outweighed by matrix-vector disadvantages. We notice that the relationship shown in [40]—
that increases in the degree d lead to decreases in computational costs—is not realized here.
In fact, one can see that the wall clock times for the d := 80 runs are slightly larger than
those for d := 40. Per Amdahl’s argument, when matrix-vector products are the principal and
overwhelming compute cost, matrix-vector product counts will predict wall clock times.

5. Conclusion. We have shown that restarted Lanczos methods that use exact shifts may
encounter difficulty due to stagnation of the discarded Ritz values from iteration to iteration.
This problem is particularly acute when the dimension of the subspace is restricted; that is,
when one does not set m greater than 2 times the number of wanted eigenvalues k, but sets it
instead close to k. We have developed a method to break Ritz value stagnation and accelerate
convergence for values of m close to k, but we have also seen a benefit for larger values of m
as well. We have demonstrated that this approach requires fewer matrix-vector products to
achieve convergence of eigenpairs than restarts using only exact shifts or Fast Leja points. One
may expect our method to produce smaller wall clock times, especially when matrix-vector
product costs dominate compute times; this may be the case when the matrix has a great many
nonzero entries. This method introduces new parameters to be defined by the user—w and
τ—but we have seen that the method is not sensitive to w and provided advice for how to
choose τ in Section 4.1.2. The method works competitively even out-of-the-box with w := 4
and τ := 5 × 10−6. The advantage over other implicit restart methods is most pronounced
when memory is restricted.
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