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LEAST SQUARES SPECTRAL METHOD FOR VELOCITY-FLUX FORM OF THE
COUPLED STOKES-DARCY EQUATIONS∗

PEYMAN HESSARI† AND BONGSOO JANG†

Abstract. This paper develops least squares Legendre and Chebyshev spectral methods for the first order system
of Stokes-Darcy equations. The least squares functional is based on the velocity-flux-pressure formulation with the
enforcement of the Beavers-Joseph-Saffman interface conditions. Continuous and discrete homogeneous functionals
are shown to be equivalent to the combination of weighted H1 and H(div)-norm for the Stokes and Darcy equations.
The spectral convergence for the Legendre and Chebyshev methods are derived and numerical experiments are also
presented to illustrate the analysis.
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1. Introduction. The most likely possible occurrences of the coupled Stokes-Darcy flow
comprise groundwater flows, cross-flows and dead-end filtration processes, plasma separation
from blood and heterogeneous catalytic reactions. The Stokes equation expresses the fluid
dynamics in the free flow regime and the Darcy equation is used to express the fluid dynamics
in porous medium. The mass conservation, balance of normal forces, and the Beavers-Joseph-
Saffman law are used to model the connection between these two fluids.

To state the problem mathematically, let Ω be an open bounded domain in R2 divided into
two sub-domains ΩS and ΩD with the curve (interface) Γ, such that Ω = ΩS ∪ ΩD ∪ Γ. The
boundary of Ω is denoted by ∂Ω and ∂ΩS = ΩS ∩ ∂Ω, ∂ΩD = ΩD ∩ ∂Ω. The schematic of
domain Ω with interface Γ is depicted in Figure 1.1. Suppose that the flow in ΩS is governed
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FIG. 1.1. Schematic domain Ω for Stokes-Darcy problem with interface Γ.

by the Stokes equation

(1.1)

{
−∇ ·T = f , in ΩS ,

∇ · u = 0, in ΩS ,
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where T := −p I + 2ν E(u) is the stress tensor, u is the velocity, and f is the external
force function. Here E(u) = 1

2 (∇u + ∇uT ) is the deformation rate tensor, ν > 0 is the
kinetic viscosity of the fluid, and p is the pressure with average zero. Suppose that the space
averaged velocity and the pressure in the porous medium domain ΩD are governed by the
Darcy equation

(1.2)

{
w +K∇q = 0, in ΩD,

∇ ·w = g, in ΩD,

where K > 0 is the Darcy permeability, w is the velocity, q is the pressure and g is a given
function. The following boundary conditions are considered

(1.3)

{
u = 0, on ∂ΩS ,

w · n = 0, on ∂ΩD,

where n is the outward unit normal vector on ∂ΩS and ∂ΩD. On the interface Γ, the Beavers-
Joseph-Saffman conditions are imposed

(1.4)


u · n−w · n = 0,

n · (T · n) + q = 0,

βn× (T · n) + u× n = 0,

where β is a positive constant and n is the unit normal vector pointing from Γ into ΩD; for
details on a proper choice of β, see [7]. In [21], the authors showed that the weak formulation
of the Stokes-Darcy equation has a unique solution, i.e.,

(u, p,w, q) ∈ [H1
∂ΩS (ΩS)]2 × L2(ΩS)×H∂ΩD (div,ΩD)× L2(ΩD).

The development of appropriate methods for the coupled Stokes-Darcy equations (1.1)–(1.4)
has been investigated from the mathematical and numerical analysis viewpoints [7, 8, 10, 21,
26]. In the case of finite elements, the Stokes equation is analyzed using mixed formulation,
while for the Darcy equation several approaches have been used, such as mixed formula-
tion [21] and the standard variational formulation of the equivalent Poisson equation [9]. A
discontinuous Galerkin method [25] and an edge stabilized method [4] have been proposed
for coupled Stokes-Darcy problems. A survey for coupling Navier-Stokes-Darcy equations
is given in [10]. Least squares methods of finite element type [23] and of pseudo-spectral
type [14] have been used to approximate the solutions of the Stokes-Darcy equations. In
the above least squares approach, the authors eliminated pressure in the Stokes domain and
approximated the stress and velocity in the Stokes domain and velocity and pressure in the
Darcy domain. In this work, we approximate all primitive variables as well as the gradient of
velocity with spectral accuracy. Spectral methods of least-squares type have been the object of
many recent studies, such as second order elliptic boundary value problem [19], the Stokes
equation [20, 27], the Navier-Stokes equation [16], interface problem of Stokes [15], interface
problem of the Navier-Stokes [17] and the Stokes-Darcy equation [14].

The motivation of the present work is to devise a pseudo-spectral approximation based
on a first order system least squares method. Least squares methods have a great flexibility
in the choice of solution spaces that is not restricted by the Ladyshenskaya-Babuška-Brezzi
compatibility condition. Furthermore, least squares methods allow one to incorporate addi-
tional equations and impose additional boundary conditions, as long as the system is consistent.
Additionally, pseudo-spectral methods have the benefit of simplicity and spectral accuracy.



ETNA
Kent State University

http://etna.math.kent.edu

162 P. HESSARI AND B. JANG

To apply the least squares principle, we reformulate the Stokes-Darcy equations as a
first-order system derived in terms of an additional vector variable (the vector of gradients of
the Stokes velocities). We then modify the Stokes-Darcy equations by extending the first order
system with the curl and the gradient of the velocity flux variable for the Stokes domain, and
the curl of the velocity in the Darcy domain. This enables us to prove fully H1 ellipticity of
the proposed method in the Legendre approximation. The least squares functional is defined
as a combination of

a. the squared L2
w-norm of the residuals in Stokes domain ΩS scaled by viscosity

constant ν,
b. the squared L2

w-norm of the residuals in Darcy domain ΩD,
c. the squared L2

w-norm of the residuals of the interface conditions.
The Beavers-Joseph-Saffman interface conditions are treated as an extra least squares func-
tional, while boundary conditions are imposed into solution spaces. The continuous and
discrete Legendre least squares functional is established to have fully H1 ellipticity, while
the continuous and discrete Chebyshev least squares functional is shown to be equivalent to
the product norm ‖U‖2Vw,ΩS

+ ‖U ·n‖2w,Γ + ‖u‖21,w,ΩS + ‖p‖21,w,ΩS + ‖w‖2w,div,ΩD + ‖w ·
n‖2w,Γ +‖q‖21,w,ΩD , under theH2

w regularity assumption for the Stokes equations in the Stokes
domain ΩS . Spectral convergence of the proposed method for both Legendre and Chebyshev
cases is presented.

The outline of the paper is as follows. Some preliminaries are prepared in Section 2.
In Section 3, the Stokes-Darcy equation is recast into a first order system of equations. In
Section 4, the Legendre and Chebyshev least squares functionals are defined and shown to
be equivalent to an appropriate product norm. Spectral convergence of the proposed methods
are also presented in this section. Numerical examples are given in Section 5 to demonstrate
spectral convergence of our method. The paper is ended by concluding remarks in Section 6.

2. Preliminaries. The standard notations and definitions for the weighted Sobolev spaces
for D = [−1, 1]2, are given as follows. The weighted space L2

w(D) is defined as

L2
w(D) = {v : D→ R

∣∣ v is measurable and ‖v‖0,w,D <∞},

equipped with the norm and the associated scalar product

‖v‖0,w,D =

(∫
D

|v(x)|2w(x)dx

)1/2

, (u, v)0,w,D =

∫
D

u(x)v(x)w(x)dx.

Define the weighted Sobolev space Hs
w(D) for a non-negative integer s as

Hs
w(D) = {v ∈ L2

w(D)
∣∣ v(α) ∈ L2

w(D), |α| = 1, 2, . . . , s},

where α = (α1, α2) with α1, α2 ≥ 0, |α| = α1 + α2, and v(α) = ∂|α|v
∂xα1∂yα2

, equipped with
the norm and the associated scalar product

‖v‖s,w,D =

( ∑
|α|≤s

‖v(α)‖20,w,D
)1/2

, (u, v)s,w,D =
∑
|α|≤s

(u(α), v(α))w,D.

We note that w(x) = ŵ(x)ŵ(y) is either the Legendre weight function with ŵ(t) = 1, or
the Chebyshev weight function with ŵ(t) = (1− t2)−

1
2 . The space H0

w(D) denotes L2
w(D),

in which the norm and inner product will be denoted by ‖ · ‖w,D and (·, ·)w,D, respectively.
Let H1

0,w(D) be the subspace of H1
w(D), consisting of the functions which vanish at the

boundary. Let L2
w,0(D) be the subspace of L2

w(D) whose functions have average zero, i.e.,
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D
pw dx = 0. For the Legendre case, we will omit the subscript w, for example, ‖ · ‖D,

(·, ·)D. Denote by H−1
w (D) the dual space of the space H1

0,w(D) equipped with its norm [2]

‖u‖−1,w,D := sup
φ∈H1

0,w(D)

(u, φ)w,D
‖φ‖1,w,D

.

Let

Hw(div,D) = {v ∈ L2
w(D)2 : ∇ · v ∈ L2

w(D)}

and

Hw(curl,D) = {v ∈ L2
w(D)2 : ∇× v ∈ L2

w(D)},

which are Hilbert spaces under the respective norms

‖v‖w,div,D =
(
‖v‖2w,D + ‖∇ · v‖2w,D

)1/2
and

‖v‖w,curl,D =
(
‖v‖2w,D + ‖∇ × v‖2w,D

)1/2
.

Define their subspaces

H0,w(div,D) = {v ∈ Hw(div,D) : n · v = 0 on ∂D}

and

H0,w(curl,D) = {v ∈ Hw(curl,D) : n× v = 0 on ∂D}.

Let PN be the space of all polynomials of degree less than or equal to N . Let {ξi}Ni=0 be
the Legendre-Gauss-Lobatto (LGL) or Chebyshev-Gauss-Lobatto (CGL) points on [−1, 1]
such that −1 =: ξ0 < ξ1 < · · · < ξN−1 < ξN := 1. For the Legendre case, {ξi}Ni=0 are the
zeros of (1 − t2)L′N (t) where LN is the N th Legendre polynomial and the corresponding
quadrature weights {wi}Ni=0 are given by

w0 = wN =
2

N(N + 1)
, wj =

2

N(N + 1)

1

[LN (ξj)]2
, 1 ≤ j ≤ N − 1.

For the Chebyshev case, {ξi}Ni=0 are the zeros of (1−t2)T ′N (t) where TN is theN th Chebyshev
polynomial and the corresponding quadrature weights {wi}Ni=0 are given by

w0 = wN =
π

2N
, wj =

π

N
, 1 ≤ j ≤ N − 1.

We have the following accuracy property for Gaussian quadrature rules,

(2.1)
∫ 1

−1

v(t)ŵ(t)dt =

N∑
i=0

wi v(ξi), ∀ v ∈ P2N−1.

Let {φi}Ni=0 be the set of Lagrange polynomials of degree N with respect to LGL or CGL
points {ξi}Ni=0 which satisfy

φi(ξj) = δij , ∀i, j = 0, 1, . . . , N,
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where δij denotes the Kronecker delta function. For any continuous function v on I = (−1, 1),
denote by INv ∈ PN , its Lagrangian interpolant at the nodes {ξj}Nj=0, i.e., INv(ξj) = v(ξj).
The interpolation error estimate [29] is given by

(2.2) ‖v − INv‖k,w,I ≤ C Nk−s‖v‖s,w,I , k = 0, 1,

provided that v ∈ Hs
w(I) for some s ≥ 1. Define the discrete scalar product and norm as

〈u, v〉w,I,N =

N∑
j=0

u(ξj)v(ξj)wj , ‖v‖w,I,N = 〈v, v〉1/2w,I,N .

By (2.1), we have

(2.3) 〈u, v〉w,I,N = (u, v)w,I , for u, v ∈ P2N−1.

It is well-known that

(2.4) ‖v‖w,I ≤ ‖v‖w,I,N ≤ γ∗‖v‖w,I , ∀ v ∈ PN ,

where γ∗ =
√

2 + 1
N in the Legendre case, and γ∗ =

√
2 in the Chebyshev case [29]. For

u ∈ Hs
w(I), s ≥ 1, and vN ∈ PN

|(u, vN )w,I − 〈u, vN 〉w,I,N | ≤ C N−s ‖u‖s,w,I ‖vN‖w,I .

If the interval [−1, 1] is replaced by [a, b], we can use the following linear transformation

(2.5) t =
b− a

2
(x+ 1) + a : [−1, 1]→ [a, b]

to find the Gauss-points {ξ̂j}Nj=0 and the quadrature weights {ŵj}Nj=1

ξ̂j =
b− a

2
(ξj + 1) + a and ŵj =

b− a
2

wj .

The two-dimensional LGL or CGL nodes {xij} and the corresponding weights {wij} are
denoted by

xij = (ξi, ξj), wij = wiwj , i, j = 0, 1, . . . , N.

Let QN be the space of all polynomials of degree less than or equal to N with respect to each
single variable x and y. Define the basis for QN as

ψij(x, y) = φi(x)φj(y), i, j = 0, 1, . . . , N.

For any continuous functions u and v in D, the associated discrete scalar product and norm
are given by

〈u, v〉w,D,N =

N∑
i,j=0

wiju(xij)v(xij) and ‖v‖w,D,N = 〈v, v〉1/2w,D,N .

From (2.1), we have

(2.6) 〈u, v〉w,D,N = (u, v)w,D, for u, v ∈ Q2N−1,
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and it is well-known that

(2.7) ‖v‖w,D ≤ ‖v‖w,D,N ≤ γ∗‖v‖w,D, ∀ v ∈ QN ,

where γ∗ =
(
2 + 1

N

)
for the Legendre case and γ∗ = 2 for the Chebyshev case [29]. The

interpolation error estimate is given by [2, 6]

(2.8) ‖v − INv‖k,w,D ≤ C Nk−s‖v‖s,w,D, k = 0, 1,

provided that v ∈ Hs
w(D) for some s ≥ 2. For u ∈ Hs

w(D), s ≥ 2, and vN ∈ QN

(2.9) |(u, vN )w,D − 〈u, vN 〉w,D,N | ≤ C N−s ‖u‖s,w,D ‖vN‖w,D.

LEMMA 2.1. For any v ∈ [L2
w(D)]2, we have

‖∇ · v‖−1,w,D ≤ C‖v‖w,D.

Proof. The proof is similar to Lemma 4.2 of [19].

LEMMA 2.2. [11] For any p ∈ L2
0(ΩS) we have

‖p‖ ≤ C‖∇p‖−1.

We use the following bounds for traces from H1
w(ΩD) and H1

w(ΩS) [24]:

(2.10) ‖q‖21/2,w,Γ ≤ CT (‖q‖20,w,D + ‖∇q‖20,w,D),

(2.11) ‖v‖21/2,w,Γ ≤ CT (‖v‖20,w,S + ‖∇v‖20,w,S),

(2.12) ‖v · n‖−1/2,Γ ≤ CT ‖v‖div,D,

with a constant CT . We use the Poincaré-Friedrichs inequality [3] of the form

(2.13) ‖q‖0,D ≤ CF ‖K1/2∇q‖0,D

for all q ∈ H1(ΩD) which satisfies
∫

ΩD
q = 0.

REMARK 2.3. If the domain D is replaced by a simply connected domain, then the
Gordon and Hall transformation [12, 13] can be used to map the simply connected domain
into D.

The following a priori estimate holds for the Stokes equation with homogeneous Dirichlet
boundary condition on ∂D

(2.14) ‖νu‖1,ω,D + ‖p‖ω,D ≤ C
(
‖ − ν∆u +∇p‖−1,ω,D + ‖ν∇ · u‖ω,D

)
.

Its proof can be found for the case ν = 1 and ω = 1 in [11] and for the Chebyshev weight
ω in [2], the case for general ν is then immediate. A priori estimate for the Poisson equation
−∆q = g with the Neumann boundary condition ∂q

∂n = 0 on ∂D, is [1]

(2.15) ‖q‖1,w,D ≤ C‖ −∆q‖−1,w,D,
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subject to solvability condition ∫
D

g = 0 or
∫
D

q = 0.

THEOREM 2.4. [11] Assume that the domain D is a bounded convex polyhedron or has
C1,1 boundary. Then for any v in eitherH0(div,D)∩H(curl,D) orH(div,D)∩H0(curl,D)
we have

‖v‖21 ≤ C(‖v‖2 + ‖∇ · v‖2 + ‖∇ × v‖2).

If the domain is simply connected then

‖v‖21 ≤ C(‖∇ · v‖2 + ‖∇ × v‖2).

3. First order systems. In this section we transform the Stokes-Darcy equation into a
system of first order equations by introducing the gradient of velocity in the Stokes domain
as a new independent variable. To do so, for the velocity vector function u = (u1, u2)t, we
introduce the gradient velocity variable U = ∇ut = (∇u1,∇u2) which is a matrix with
entries Uij = ∂uj/∂xi, 1 ≤ i, j ≤ 2. Then the Stokes equation (1.1) can be recast as

U−∇ut = 0, in ΩS ,

−ν(∇ ·U)t +∇p = f , in ΩS ,

∇ · u = 0, in ΩS .

We extend the standard curl operator ∇× u = −∂yu1 + ∂xu2, divergence operator ∇ · u =
∂xu1 + ∂yu2 in R2 and tangential operator n× U to U = (U1, U2), componentwise, i.e.,

∇×U = (∇× U1,∇× U2), ∇ ·U = (∇ · U1,∇ · U2)

and

n×U = (n× U1,n× U2),

where n is the outward unit normal vector on ∂ΩS . Then it is easy to see that

trU = 0, ∇×U = 0 in ΩS , and n×U = 0 on ∂ΩS ,

where trU = U11 + U22. We also have

E(u) =
1

2
(U + Ut) and n ·T · n + q = νn · (U + Ut) · n + q − p.

We consider the following extended first order system for the Stokes-Darcy equation

(3.1)



−ν(∇ ·U)t +∇p = f , in ΩS ,

∇ · u = 0, in ΩS ,

U−∇ut = 0, in ΩS ,

∇(trU) = 0, in ΩS ,

∇×U = 0, in ΩS ,
1√
K
w +

√
K∇q = 0, in ΩD,

∇ ·w = g, in ΩD,

∇×K−1w = 0 in ΩD.
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along with boundary conditions 
u = 0, on ∂ΩS ,

n×U = 0, on ∂ΩS ,

w · n = 0, on ∂ΩD,

and interface conditions

(3.2)


u · n−w · n = 0, on Γ,

νn · (U + Ut) · n + q − p = 0, on Γ,

βν n× (U + Ut) · n + u× n = 0, on Γ.

4. Least squares method. In this section we consider the Legendre and Chebyshev
pseudo-spectral least squares methods for the first order system of equations (3.1)–(3.2) of the
Stokes-Darcy equations. To this end, let

Vw,S = [H1
w,∂ΩS (ΩS)]2,

Vw,D = {v ∈ Hw(div,ΩD) : v · n = 0 on ∂ΩD, and v · n ∈ L2
w(Γ)},

where

H1
w,∂ΩS (ΩS) = {v ∈ H1

w(ΩS) : v = 0 on ∂ΩS}.

Let

V1 = {V ∈ [H1(ΩS)]4 : n×V = 0 on ∂ΩS},
Vw = {V ∈ [L2

w(ΩS)]4 : n×V = 0 on ∂ΩS and ‖V‖Vw <∞},

equipped with the norm

‖V‖Vw =
(
‖V‖2w,S + ‖∇ ·V‖2w,S + ‖∇ ×V‖2w,S

)1/2
.

We note that V1 is for Legendre and Vw is for the Chebyshev case. Define

Ww = Vw × Vw,S × [H1
w(ΩS) ∩ L2

w,0(ΩS)]× Vw,D ×H1
w(ΩD).

Let U = (U,u, p,w, q) and V = (S,v, s, z, r). Define the Legendre/Chebyshev least squares
functional as

(4.1) Gw(U ; f , g) = Gw,S(U,u, p; f) + Gw,D(w, q; g) + Gw,I(U)

over U ∈Ww, where

Gw,S(U,u, p; f) = ν2‖U−∇ut‖2w,S + ‖f + ν(∇ ·U)t −∇p‖2w,S + ν2‖∇ · u‖2w,S
+ ν2‖∇(trU)‖2w,S + ν2‖∇ ×U‖2w,S ,

Gw,D(w, q; g) = ‖K−1/2w +K1/2∇q‖2w,D + ‖∇ ·w − g‖2w,D + ‖∇ ×K−1w‖2w,D,
Gw,I(U) = ‖u · n−w · n‖2w,Γ + ‖νn · (U + Ut) · n + q − p‖2w,Γ

+ ‖βνn× (U + Ut) · n + u× n‖2w,Γ

for U ∈Ww. The first order system least squares variational problem for (4.1) consists of
minimizing the quadratic function Gw(U ; f , g) over Ww, that is: find U ∈Ww such that

Gw(U ; f , g) = inf
V∈Ww

Gw(V; f , g).
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The corresponding variational problem is to find U ∈Ww such that

(4.2) Aw(U ;V) = Fw(V), ∀V ∈Ww,

where

Aw(U ;V) = (ν(∇ ·U)t −∇p, ν(∇ · S)t −∇s)w,S + ν2(∇ · u,∇ · v)w,S

+ ν2
(
U−∇ut, S−∇vt

)
w,S

+ ν2
(
∇(trU), ∇(trS)

)
w,S

+ ν2
(
∇×U, ∇× S

)
w,S

+ (∇ ·w,∇ · z)w,D

+

(
1√
K

w +
√
K∇q, 1√

K
z +
√
K∇r

)
w,D

+ (∇×K−1w,∇×K−1z)w,D + (u · n−w · n,v · n− z · n)w,Γ

+
(
νn · (U + Ut) · n + q − p, νn · (S + St) · n + r − s

)
w,Γ

+
(
βνn× (U + Ut) · n + u× n, βνn× (S + St) · n + v × n

)
w,Γ

and

Fw(S,v, s, z, r) = (g, ∇ · z)w,D − (f , ν(∇ · S)t −∇s)w,S .

Let

|||(U,u, p)||| =
(
ν2‖U‖21,S + ν2‖U · n‖2Γ + ν2‖u‖21,S + ‖p‖21,S

)1/2

,

|||(w, q)||| =
(
‖q‖21,w,D + ‖w‖21,w,D + ‖w · n‖2Γ

)1/2

,

|||(U,u, p)|||w =

(
ν2‖U‖2Vw,S + ν2‖U · n‖2w,Γ + ν2‖u‖21,w,S + ‖p‖21,w,S

)1/2

,

|||(w, q)|||w =

(
‖q‖21,w,D + ‖w‖2div,w,D + ‖w · n‖2w,Γ + ‖∇ ×w‖2w,D

)1/2

and

|||U|||2 = |||(U,u, p)|||2 + |||(w, q)|||2, |||U|||2w = |||(U,u, p)|||2w + |||(w, q)|||2w.

LEMMA 4.1. For (U,u, p) ∈ [Vw,S ]2 × [H1
w,S(ΩS)]2 ×H1

w,S(ΩS), we have

ν2‖(∇·U)t‖2w,S+‖∇p‖2w,S ≤ C
(
‖ν(∇·U)t−∇p‖2w,S+ν2‖∇(trU)‖2w,S+ν2‖∇×U‖2w,S

)
.

Proof. The proof is similar to [15, Lemma 4.1] and [5, Theorem 3.2].

We now show the continuity and coercivity of the least squares functional for the Legendre
approximation. We note that for the Legendre case, the subscript w is omitted.

THEOREM 4.2. There exists a constant C such that

(4.3)
1

C
|||U|||2 ≤ G(U ; 0, 0) ≤ C|||U|||2, ∀U ∈W.
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Proof. By using (2.10), (2.11), the triangle and Cauchy-Schwarz inequalities, we have

GS(U,u, p; 0) ≤ C
(
ν2‖U‖21,S + ν2‖u‖21,S + ‖p‖21,S

)
,

GD(w, q; 0) ≤ C
(
‖w‖2div, D + ‖q‖21,D + ‖∇ ×w‖2D

)
,

GI(U,u, p,w, q) ≤ C‖w · n‖2Γ + Cν2 max{1, β2}‖U · n‖2Γ
+ CT

(
‖p‖21,S + ‖q‖21,D + ‖u‖21,S

)
,

which proves the upper bound of (4.3). To prove the lower bound, we have

‖∇ ×K−1w‖2D ≤ GD(w, q; 0).

By a similar idea of [28], using

2|(w · n, q)Γ| ≤
1

δε
‖w · n‖2−1/2,Γ + εδ‖q‖21/2,Γ,

the ε-inequality with ε = 1 and the trace inequality (2.10), we have

‖K−1/2w +K1/2∇q‖2D
= ‖K−1/2w‖2D + 2(1− δ)(w,∇q)D + 2δ(w,∇q)D + ‖K1/2∇q‖2D
= ‖K−1/2w‖2D + 2(1− δ)(w,∇q)D − 2δ(∇ ·w, q)D + ‖K1/2∇q‖2D

− 2δ(w · n, q)Γ

≥ δ‖K−1/2w‖2D − 2δ(∇ ·w, q)D + δ‖K1/2∇q‖2D − 2δ(w · n, q)Γ

≥ δ‖K−1/2w‖2D − 2δ(∇ ·w, q)D + δ‖K1/2∇q‖2D −
1

ε
‖w · n‖2−1/2,Γ

− δ2ε‖q‖21/2,Γ
≥ δ‖K−1/2w‖2D − 2δ(∇ ·w, q)D + δ‖K1/2∇q‖2D

− 1

ε
‖w · n‖2−1/2,Γ − δ

2εC2
T ‖q‖21,D

for δ ∈ (0, 1). Using (2.13), we have

GD(w, q; 0) ≥ δ‖K−1/2w‖2D − 2δ(∇ ·w, q)D + δ‖K1/2∇q‖2D

− 1

ε
‖w · n‖2−1/2,Γ − δ

2εC2
T ‖q‖21,D + ‖∇ ·w‖2D

≥ δ‖K−1/2w‖2D − 2δ(∇ ·w, q)D −
1

ε
‖w · n‖2−1/2,Γ

+ (
δ

C2
F

− δ2εC2
T )‖q‖21,D + ‖∇ ·w‖2D

= δ‖K−1/2w‖2D +
1

2
‖∇ ·w − 2δq‖2D +

1

2
‖∇ ·w‖2D

− 2δ2‖q‖2D + (
δ

C2
F

− δ2εC2
T )‖q‖21,D −

1

ε
‖w · n‖2−1/2,Γ

≥ δ‖K−1/2w‖2D +
1

2
‖∇ ·w‖2D + (

δ

C2
F

− δ2εC2
T − 2δ2)‖q‖21,D

− 1

ε
‖w · n‖2−1/2,Γ.
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Choosing

δ =
1

2C2
F (2 + εC2

T )

and

CE = min

{
1

2
, δ,

δ

2C2
F

}
,

we get

GD(w, q; 0) ≥ CE
(
‖w‖2div, D + ‖q‖21,D

)
− 1

ε
‖w · n‖2−1/2,Γ.

Application of (2.12) implies

GD(w, q; 0) ≥ (CE −
C2
T

ε
)‖w‖2div, D + CE‖q‖21,D.

Therefore, for ε ≥ C2
T /CE , there exists a constant C such that

(4.4) ‖w‖2div, D + ‖q‖21,D ≤ CGD(w, q; 0).

To prove (4.3) in the Stokes domain ΩS , let

FS(U,u, p) = ν2‖U−∇ut‖2S + ‖ν(∇ ·U)t −∇p‖2−1,S + ν2‖∇ · u‖2S

and

W1 = [H(div, ΩS)]2 ×VS × [H1(ΩS) ∩ L2
0(ΩS)].

Suppose that (U,u, p) ∈W1 and let φ ∈ H1
0 (ΩS). We have [5]

(∇p, φ)S = (−ν(∇ ·U)t +∇p, φ)S − ν(U,∇φt)S
≤ ‖ − ν(∇ ·U)t +∇p‖−1,S‖φ‖1,S + ν‖U‖S‖∇φt‖S ,

from which Lemma 2.2 gives

(4.5) ‖p‖S ≤ C(‖ − ν(∇ ·U)t +∇p‖−1,S + ν‖U‖S).

From (4.5) and the Poincaré-Friedrichs inequality, we have

ν2‖∇ut‖2S = ν2(∇ut −U,∇ut)S + ν(−ν(∇ ·U)t +∇p,u)S + ν(p,∇ · u)S

− ν(p · n,u)Γ + ν2(U · n,u)Γ

≤ ν2‖∇ut −U‖S‖∇ut‖S + ν‖ − ν(∇ ·U)t +∇p‖−1,S‖u‖1,S
+ ν‖p‖S‖∇ · u‖S + ν(νU · n− p · n,u)Γ

≤
(
ν‖∇ut −U‖S + ‖ − ν(∇ ·U)t +∇p‖−1,S

)
ν‖∇ut‖S

+ Cν‖∇ · u‖S‖ − ν(∇ ·U)t +∇p‖−1,S + Cν2‖∇ · u‖S‖U‖S
+ ν(νU · n− p · n,u)Γ.

Using the ε-inequality with ε = 1 for the first two products yields

(4.6) ν2‖∇ut‖2S ≤ CFS(U,u, p) + Cν2‖∇ · u‖S‖U‖S + ν(νU · n− p · n,u)Γ.
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From the interface condition (3.2) we have

(4.7) νU · n− p · n = −νUt · n− q · n and u · n = w · n.

By (4.4) and (4.7) we have

ν(νU · n− p · n,u)Γ = −ν(νUt · n + q · n,u)Γ = −ν(νn ·Ut · n + q,u · n)Γ

= −ν(νn ·Ut · n + q,w · n)Γ

≤ ν‖νn ·Ut · n + q‖1/2,Γ‖w · n‖−1/2,Γ

≤ 1

2ε
‖νn ·Ut · n + q‖21/2,Γ +

ε

2
ν2‖w · n‖2−1/2,Γ

≤ 1

ε
‖νn ·Ut · n‖21/2,Γ +

1

ε
‖q‖21/2,Γ +

ε

2
ν2‖w · n‖2−1/2,Γ

≤ ν2

ε
‖Ut · n‖2Γ +

1

ε
C2
T ‖q‖21,D +

ε

2
C2
T ν

2‖w‖2div,D

≤ ν2

ε
‖Ut · n‖2Γ + CGD(w, q; 0).

(4.8)

Hence (4.6) becomes

(4.9) ν2‖∇ut‖2S ≤ CFS(U,u, p) +CGD(w, q; 0) +Cν2‖∇ ·u‖S‖U‖S +
ν2

ε
‖Ut ·n‖2Γ.

We have

ν2‖U‖2S = ν2(U−∇ut,U)S + ν(−ν(∇ ·U)t +∇p,u)S + ν(p,∇ · u)S

− ν(u, p · n)Γ + ν2(U · n,u)Γ

≤ ν2‖∇ut −U‖S‖U‖S + ν‖ − ν(∇ ·U)t +∇p‖−1,S‖u‖1,S
+ ν‖p‖S‖∇ · u‖S + ν(νU · n− p · n,u)Γ

≤ (ν‖∇ut −U‖S)(ν‖U‖S) + Cν‖ − ν(∇ ·U)t +∇p‖−1,S‖∇ut‖S
+ Cν‖∇ · u‖S‖ − ν(∇ ·U)t +∇p‖−1,S + Cν‖∇ · u‖S(ν‖U‖S)

+ ν(νU · n− p · n,u)Γ.

Using the ε-inequality with ε = 1 twice, (4.8), and (4.9), we arrive at

(4.10) ν2‖U‖2S ≤ CFS(U,u, p) + CGD(w, q; 0) + 4
ν2

ε
‖Ut · n‖2Γ.

By using (4.10) in (4.5) and (4.9), we get

(4.11) ‖p‖2S ≤ CFS(U,u, p) + CFD(w, q; 0) + C
ν2

ε
‖Ut · n‖2Γ

and

(4.12) ν2‖∇ut‖2S ≤ CFS(U,u, p) + CGD(w, q; 0) + 5
ν2

ε
‖Ut · n‖2Γ.

Applying of (4.10), (4.11), and (4.12), we obtain

C
(
ν2‖U‖2S −

ν2

ε
‖Ut · n‖2Γ+ν2‖u‖21,S + ‖p‖2S

)
≤ FS(U,u, p) + GD(w, q; 0).
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Since theH−1-norm of a function is bounded by itsL2-norm and W1 ⊂W, thenFS(U,u, p)+
GD(w, q; 0) ≤ GS(U,u, p; 0) + GD(w, q; 0) on W. Hence we have

C
(
ν2‖U‖2S −

ν2

ε
‖Ut · n‖2Γ+ν2‖u‖21,S + ‖p‖2S

)
≤ GS(U,u, p; 0) + GD(w, q; 0).

(4.13)

By Lemma 4.1, we have

(4.14) ν2‖(∇ ·U)t‖2S + ‖∇p‖2S ≤ CGS(U,u, p; 0).

Hence by using Lemma 2.4, the Poincare inequality, (4.13), and (4.14) we get

C
(
ν2‖U‖21,S −

ν2

ε
‖Ut · n‖2Γ+ν2‖u‖21,S + ‖p‖21,S

)
≤ GS(U,u, p; 0) + GD(w, q; 0).

(4.15)

For the interface condition, by using ‖h1 + h2‖2 ≥ α‖h1‖2 − 2α‖h2‖2 for α ∈ (0, 1
2 ], we

have

GI(U,u, p,w, q) ≥ α
(
‖νn · (U + Ut) · n‖2Γ + ‖βνn× (U + Ut) · n‖2Γ
+ ‖w · n‖2Γ

)
− 2α

(
‖u · n‖2Γ + ‖q − p‖2Γ + ‖u× n‖2Γ

)
≥ α

(
‖νn · (U + Ut) · n‖2Γ + ‖βνn× (U + Ut) · n‖2Γ
+ ‖w · n‖2Γ

)
− 2α

(
‖u · n‖2Γ + ‖q‖2Γ + ‖p‖2Γ + ‖u× n‖2Γ

)
≥ α

(
‖w · n‖2Γ + 4ν2 min{1, β2}‖U · n‖2Γ

)
− 2α

(
‖u‖2Γ + ‖q‖2Γ + ‖p‖2Γ

)
≥ α

(
‖w · n‖2Γ + 4ν2 min{1, β2}‖U · n‖2Γ

)
− 2αCT ‖u‖21,S − CT ‖q‖21,D − CT ‖p‖21,S .

(4.16)

Hence, there exists a constant C such that

‖w · n‖2Γ + ν2 min{1, β2}‖U · n‖2Γ ≤ C
(
GI(U) + ‖u‖21,S + ‖q‖21,D + ‖p‖21,S

)
.

Application of the inequalities (4.4) and (4.15) gives

‖w · n‖2Γ + 4ν2 min{1, β2}‖U · n‖2Γ ≤ CG(U ; 0, 0) + C
ν2

ε
‖U · n‖2Γ.

Therefore

(4.17) ‖w · n‖2Γ + ν2‖U · n‖2Γ ≤ CG(U,u, p,w, q; 0, 0),

provided that ε > C
4 min{1,β2} . The coercivity (4.3) is now a consequence of (4.4), (4.15)

and (4.17).

We now wish to prove the continuity and coercivity of the least squares functionals for
the Chebyshev approximation. First we assume that an a priori estimate (2.14) holds for the
Stokes equation in ΩS , that is

(4.18) ‖νu‖1,ω,S + ‖p‖ω,S ≤ C
(
‖ − ν∆u +∇p‖−1,ω,S + ‖ν∇ · u‖ω,S

)
.
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We note that the elimination of w in (1.2) gives the Poisson equation −K∆q = g with
the Neumann boundary condition ∂q

∂n = 0 on ∂ΩD, and we also assume that an a priori
estimate (2.15) holds for Darcy equation in ΩD, that is,

(4.19) ‖q‖1,w,D ≤ C‖ −
√
K∆q‖−1,w,D.

THEOREM 4.3. Assume that the inequalities (4.18) and (4.19) hold. Then there exists a
positive constant C such that

(4.20) 1
C |||U|||

2
w ≤ Gw(U ;0, 0) ≤ C|||U|||2w, ∀U ∈Ww.

Proof. The upper bound of (4.20) is a consequence of the triangle inequality. To prove the
lower bound of (4.20), (4.18) and Lemma 2.1 yield

‖νu‖21,w,S + ‖p‖2w,S ≤ C(‖ − ν∆u +∇p‖2−1,w,S + ‖ν∇ · u‖2w,S)

= C
(
‖ − ∇ · (U−∇ut)‖2−1,w,S + ‖ν(∇ ·U)t

+∇p‖2−1,w,S + ‖ν∇ · u‖2w,S
)

≤ C
(
‖U−∇ut‖2w,S + ‖ν(∇ ·U)t +∇p‖2w,S

+ ‖ν∇ · u‖2w,S
)

≤ CGw,S(U,u, p;0).

(4.21)

Using the triangle inequality and the above one we obtain

(4.22) ν2‖U‖2w,S ≤ 2
(
‖U−∇ut‖2w,S + ν2‖∇ut‖2w,S

)
≤ 2Gw,S(U,u, p;0).

By Lemma 4.1, we have

(4.23) ν2‖(∇ ·U)t‖2w,S + ‖∇p‖2w,S ≤ CGw,S(U,u, p; 0).

We obviously have

(4.24) ‖∇ ×U‖2w,S ≤ Gw,S(U,u, p; 0).

Hence, by (4.21), (4.22), (4.23), and (4.24) we have

(4.25) ‖νu‖21,w,S + ν2‖U‖2Vw
+ ‖p‖21,w,S ≤ CGw,S(U,u, p; 0).

For the Darcy domain, by using (4.19), and Lemma 2.1, we have

‖q‖21,w,D ≤ C‖ −
√
K∆q‖2−1,w,D

≤ C‖ − ∇ · (
√
K∇q +

1√
K

w)‖2−1,w,D + C‖ 1√
K
∇ ·w‖2−1,w,D

≤ C‖
√
K∇q +

1√
K

w‖2w,D + C‖ 1√
K
∇ ·w‖2w,D

≤ CGw,D(w, q; 0).

(4.26)

The triangle inequality gives

‖w‖2w,D ≤ C‖
1√
K

w +
√
K∇q‖2w,D + C‖q‖21,w,D ≤ CGw,D(w, q; 0).
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Then, by using ‖∇ ·w‖w ≤ Gw,D(w, q; 0), we get

(4.27) ‖w‖2div,w,D ≤ CGw,D(w, q; 0).

Obviously, it holds

(4.28) ‖∇ ×w‖2w,D ≤ CGw,D(w, q; 0).

Hence by (4.26), (4.27), and (4.28) we have

(4.29) ‖q‖21,w,D + ‖w‖2div,w,D + ‖∇ ×w‖2w,D ≤ CGw,D(w, q; 0).

Similarly to (4.16), there exists a constant C such that

(4.30) ‖w · n‖2w,Γ + ‖U · n‖2w,Γ ≤ CGw(U,u, p,w, q; 0).

The lower bound of (4.20) follows from the inequalities (4.25), (4.29), and (4.30).

We now define the discrete Legendre/Chebyshev pseudo-spectral least squares method for
the Stokes/Darcy equations. First, define

Vw,S,N = Vw,S ∩Q2
N , Vw,N = Vw ∩Q4

N , Vw,D,N = Vw,D ∩Q2
N ,

and

Ww,N = Vw,N × Vw,S,N × [H1
w(ΩS) ∩ L2

w,0(ΩS) ∩QN ]× Vw,D,N × [H1
w(ΩD) ∩QN ].

Let us define the discrete Legendre/Chebyshev least squares functional as

(4.31) Gw,N (U ; f , g) = Gw,S,N (U,u, p; f) + Gw,D,N (w, q; g) + Gw,I,N (U),

where

Gw,S,N (U,u, p; f) = ν2‖U−∇ut‖2w,S,N + ‖f + ν(∇ ·U)t −∇p‖2w,S,N
+ ν2‖∇ · u‖2w,S,N + ν2‖∇(trU)‖2w,S,N + ν2‖∇ ×U‖2w,S,N ,

Gw,D,N (w, q; g) = ‖K−1/2w +K1/2∇q‖2w,D,N + ‖∇ ·w − g‖2w,D,N
+ ‖∇ ×K−1w‖2w,D,N ,

Gw,I,N (U) = ‖u · n−w · n‖2w,Γ,N + ‖νn · (U + Ut) · n + q − p‖2w,Γ,N
+ ‖βνn× (U + Ut) · n + u× n‖2w,Γ,N

for every U ∈ Ww,N . The first order system least squares variational problem for (4.31)
consists of minimizing the quadratic function Gw,N (U ; f , g) over Ww,N , that is, find U ∈
Ww,N such that

Gw,N (U ; f , g) = inf
V∈Ww,N

Gw,N (V; f , g).

The corresponding variational problem is to find UN ∈Ww,N such that

(4.32) Aw,N (UN ;V) = Fw,N (V), ∀V ∈Ww,N ,
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where

Aw,N (U ;V) =
〈
ν(∇ ·U)t −∇p, ν(∇ · S)t −∇s

〉
w,S,N

+ ν2
〈
∇ · u,∇ · v

〉
w,S,N

+ ν2
〈
U−∇ut, S−∇vt

〉
w,S,N

+ ν2
〈
∇(trU), ∇(trS)

〉
w,S,N

+ ν2
〈
∇×U, ∇× S

〉
w,S,N

+
〈
∇ ·w,∇ · z

〉
w,D,N

+
〈 1√

K
w +

√
K∇q, 1√

K
z +
√
K∇r

〉
w,D,N

+
〈
∇×K−1w,∇×K−1z

〉
w,D,N

+
〈
u · n−w · n,v · n− z · n

〉
w,Γ,N

+
〈
νn · (U + Ut) · n + q − p, νn · (S + St) · n + r − s

〉
w,Γ,N

+
〈
βνn× (U + Ut) · n + u× n, βνn× (S + St) · n + v × n

〉
w,Γ,N

and

Fw,N (V) =
〈
g, ∇ · z

〉
w,D,N

−
〈
f , ν(∇ · S)t −∇s

〉
w,S,N

.

The continuity and coercivity of Gw,N (U ; f , g) is a consequence of that of Gw. which is stated
as follows.

THEOREM 4.4. There exists a positive constant C such that

(4.33)
1

C
|||U|||2w ≤ Gw,N (U ;0, 0) ≤ C|||U|||2w, ∀U ∈Ww,N .

Proof. Since ν(∇ · U)t − ∇p ∈ Q2
N−1, ∇ · u,∇ · w ∈ QN−1, U − ∇ut ∈ Q4

N ,
1√
K
w+
√
K∇q ∈ Q2

N , and u·n−w ·n, νn·(U+Ut)·n+q−p, βνn×(U+Ut)·n+u×n
are in PN . Hence, by applying (2.7) and (2.4), there is a constant C such that

1

C
Gw(U ;0, 0) ≤ Gw,N (U ;0, 0) ≤ C Gw(U ;0, 0).

Therefore the bounds on (4.33) are a consequence of Theorems 4.2 and 4.3 for the Legendre
and Chebyshev approximations, respectively.

Above we have proved the continuity and coercivity of the least squares functional.
This proves, consequently, the existence and uniqueness of the solution of the Stokes-Darcy
equation by the Lax-Milgram lemma. We are now going to prove spectral convergence of the
proposed Legendre/Chebyshev pseudospectral method.

THEOREM 4.5. Assume that the inequalities (4.18) and (4.19) hold for the Chebyshev
approximation. Suppose that the solution U of (4.2) is in Ww ∩

[
Hs
w(ΩS)4 ×Hs

w(ΩS)2 ×
Hs
w(ΩS)×Hs

w(ΩD)2 ×Hs
w(ΩD)

]
for some s ≥ 1, and g ∈ Hk

w(ΩD), f ∈ [H`
w(ΩS)]2 , for

`, k ≥ 2. Let UN ∈Ww,N be the approximate solution of (4.32). Then there exists a constant
C such that

|||U − UN |||w ≤ C
(
N1−s[‖U‖s,w,S + ‖u‖s,w,S + ‖p‖s,w,S + ‖w‖s,w,D

+ ‖q‖s,w,D
]

+N−`‖f‖`,w,S +N−k‖g‖k,w,D
)
.

(4.34)
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Proof. Using Strang’s Lemma [2], we get

|||U − UN |||w ≤ inf
V∈Ww,N

[
|||U − V|||w + sup

W∈Ww,N

|Aw(V,W)−Aw,N (V,W)|
|||W|||w

]
+ sup
W∈Ww,N

|Fw(W)−Fw,N (W)|
|||W|||w

.

(4.35)

The inequality (2.9) yields

|Fw(W)−Fw,N (W)| =
∣∣(g, ∇ · z)w,D − (f , ν(∇ · S)t −∇s)w,S
− 〈g, ∇ · z〉w,D,N − 〈f , ν(∇ · S)t −∇s〉w,S,N

∣∣
≤ CN−`‖f‖`,w,S‖ν(∇ · S)t −∇s‖w,S

+ CN−k‖g‖k,w,D‖∇ · z‖w,D
≤ C(N−`‖f‖`,w,S +N−k‖g‖k,w,D)|||W|||w.

(4.36)

If we take V ∈Ww,N−1, then by using (2.3) for the interior inner products and (2.6) for the
interface inner products, we have

(4.37)
∣∣Aw(V,W)−Aw,N (V,W)

∣∣ = 0, W ∈Ww,N .

Hence, by (4.36) and (4.37), the inequality (4.35) becomes

|||U − UN |||w ≤ inf
V∈WN

|||U − V|||w + C(N−`‖f‖`,S +N−k‖g‖k,D).

Applying (2.2) and (2.8), to the above inequality, results in (4.34) and the proof is complete.

5. Implementation and numerical tests. This section provides a brief implementation
of pseudospectral approximation (for details see [18, 19, 27]) and some numerical tests
in order to confirm the spectral convergence of the presented least squares pseudospectral
method for the Stokes-Darcy equations. We note that the numerical examples satisfy the
non-homogeneous boundary condition (1.3). Let DN be the one dimensional pseudo-spectral
derivative matrix associated to the N + 1 values of {∂Nv(ξj)}Nj=0 at LGL or CGL points [6].
The entries of DN can be computed by differentiating the Lagrange polynomials φj . The
LGL and CGL points are reordered from bottom to top, and then from left to right, such that
xk(N+1)+l := xkl = (ξk, ξl) for k, l = 1, . . . , N . The pseudo-spectral derivative matrix in
the 2-dimensional space is defined via the Kronecker tensor product, that is,

Dx = DN ⊗ IN and Dy = IN ⊗DN ,

where IN is identity matrix of the same order as DN . For the continuous function r we use r̂
to denote the vector containing the nodal values, i.e.,

r̂ = (r(x0), . . . , r(x(N+1)2−1))T .

By the definition of discrete scalar inner product, we have

〈v, z〉w,N = ẑTW v̂ and 〈∂t1v, ∂t2z〉w,N = (Dt2 ẑ)TW (Dt1 v̂),

where t1 and t2 are x or y, and W = diag{wi} is the diagonal weight matrix. Then, the
problem (4.32) can be assembled.

REMARK 5.1. In the implementation of the discrete least squares method, we use LGL or
CGL points, which are defined in the interval [−1, 1]. If the Stokes-Darcy equation is defined
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TABLE 5.1
L2
w-discretization errors for Example 5.2.

N ‖EU‖w ‖Eu‖w ‖Ep‖w ‖Ew‖w ‖Eq‖w
Legendre approximation

4 4.1080e-03 8.5709e-04 4.7171e-03 1.5724e-03 2.7597e-04
6 1.2657e-04 1.8891e-05 1.6569e-04 7.0949e-06 1.4258e-06
8 2.0361e-06 3.9323e-07 2.7640e-06 1.7992e-07 6.3527e-08

10 4.2830e-08 8.6139e-09 6.0595e-08 4.2996e-09 1.5640e-09
12 2.1704e-11 4.3976e-12 3.1159e-11 2.2377e-12 7.9158e-13
14 5.4480e-13 1.0967e-13 7.5334e-13 5.3601e-14 8.7046e-14

Chebyshev approximation
4 9.0684e-03 2.8718e-03 1.2252e-02 4.1880e-03 2.1751e-03
6 6.0338e-03 8.9482e-04 6.7867e-03 6.0708e-04 2.1063e-04
8 4.3721e-06 6.4370e-07 5.5952e-06 4.5264e-07 1.7633e-07

10 2.2318e-09 3.2886e-10 2.9373e-09 2.3635e-10 9.7432e-11
12 3.2112e-12 4.8785e-13 4.4752e-12 3.4076e-13 5.0783e-13
14 2.4990e-12 3.8468e-13 3.3192e-12 2.7540e-13 8.7372e-13

in a rectangular domain with a straight line interface, then transformation (2.5) can be used and,
in the case of curved boundary and curve interface, the Gordon-Hall transformation [12, 13]
can be used to transform the domain and equations into a rectangular domain. For a complete
explanation and examples of Gordon-Hall transformation, see [18]. It is noteworthy that a
major advantage of using the Gordon-Hall map and a pseudo-spectral approximation is that
the collocation points always lie on the interface and two neighboring domains ΩS and ΩD
share the same nodes on the interface, regardless of the interface shape. Owing to this property,
the error discretization in our method does not include the mismatch parameter introduced
in [22].

In the Examples 5.2–5.4, we take Ω = (0, 1)× (0, 2) with ΩD = (0, 1)× (0, 1), ΩS =
(0, 1)× (1, 2), and Γ = (0, 1)×{1}. The results are given for K = 1, β = 1 and ν = 1. The
functions U and w can be computed by the definition of U and equation (1.2), respectively. Let
(UN , uN , pN , wN , qN ) be the approximate solution of the Stokes-Darcy equations by the
Legendre or Chebyshev least squares method, and let Ev = v− vN , for v ∈ {U, u, p, w, q}.

EXAMPLE 5.2. Let 
u1 = − cos(π2 y) sin(π2x),

u2 = sin(π2 y) cos(π2x)− 1 + x,

p = 1
2 − x,

q = 2
π cos(π2x) cos(π2 y)− y(x− 1),

be the exact solution of the Stokes-Darcy equations. The discretization errors for the Legendre
and Chebyshev approximations are given in Tables 5.1 and 5.2, which show that the spectral
errors decay exponentially with respect to N .

EXAMPLE 5.3. We consider the following velocity and pressure:
u1 = exp(x+ y) + y,

u2 = − exp(x+ y)− x,
p = cos(πx) cos(πy) + x− 1

2 ,

q = exp(x+ y)− cos(πx) + yx,
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TABLE 5.2
H1

w-discretization errors for Example 5.2.

N ‖EU‖1,w ‖Eu‖1,w ‖Ep‖1,w ‖Ew‖1,w ‖Eq‖1,w
Legendre approximation

4 3.2723e-02 5.3085e-03 2.7545e-02 1.0885e-02 1.6032e-03
6 8.2747e-04 8.9677e-05 7.6937e-04 7.0137e-05 9.6244e-06
8 1.2690e-05 1.6098e-06 1.2373e-05 6.8969e-07 1.9330e-07
10 2.6403e-07 3.4711e-08 2.6057e-07 1.5299e-08 4.5983e-09
12 1.3406e-10 1.7682e-11 1.3257e-10 7.9145e-12 2.3791e-12
14 3.3360e-12 4.4185e-13 3.3019e-12 1.9394e-13 1.1203e-13

Chebyshev approximation
4 6.0344e-02 1.9460e-02 4.5903e-02 2.4181e-02 7.4832e-03
6 4.8013e-02 4.9008e-03 3.9871e-02 3.2964e-03 6.8104e-04
8 4.5170e-05 3.5574e-06 3.9833e-05 2.5476e-06 5.0788e-07
10 2.6740e-08 1.8907e-09 2.3863e-08 1.7968e-09 4.2169e-10
12 3.4081e-11 2.7486e-12 3.0534e-11 2.5228e-12 1.0089e-12
14 2.2993e-11 2.1063e-12 2.0430e-11 1.5314e-12 1.2557e-12

TABLE 5.3
L2
w-discretization errors for Example 5.3.

N ‖EU‖w ‖Eu‖w ‖Ep‖w ‖Ew‖w ‖Eq‖w
Legendre approximation

4 2.6404e-02 2.2206e-03 3.1493e-02 1.3263e-02 1.4158e-02
6 1.9205e-04 2.7308e-05 2.9518e-04 7.4952e-05 1.9430e-04
8 5.8800e-06 1.1377e-06 8.1192e-06 6.6253e-07 1.6026e-06
10 2.1014e-07 4.2258e-08 2.9737e-07 2.1158e-08 1.1566e-08
12 2.3002e-10 4.6610e-11 3.3174e-10 2.4346e-11 3.4577e-11
14 3.6359e-12 7.2209e-13 5.2272e-12 3.4598e-13 2.3270e-13

Chebyshev approximation
4 9.2662e-02 8.3589e-03 1.9296e-01 1.6701e-01 1.2027e-01
6 1.7560e-02 2.5955e-03 1.9743e-02 2.7258e-03 1.3267e-03
8 1.0442e-05 1.5550e-06 1.3321e-05 1.7008e-05 6.2780e-06
10 6.4516e-09 5.8487e-10 2.9639e-08 9.5675e-08 3.4423e-08
12 2.3514e-11 1.3861e-12 1.1828e-10 3.8769e-10 1.3310e-10
14 1.8150e-12 2.5433e-13 2.0914e-12 1.1649e-12 7.0745e-13

as an exact solution of the Stokes-Darcy equations. The discretization errors for Example 5.3,
corresponding to both Legendre and Chebyshev approximations, are displayed in Tables 5.3
and 5.4, which show spectral convergence of the errors.

EXAMPLE 5.4. In this example, let the exact solutions of the Stokes-Darcy equation be
u1 = − cos(πx) sin(πy),

u2 = sin(πx) cos(πy),

p = sin(πx)− 2
π ,

q = y sin(πx).

The discretization errors for Example 5.4, for Legendre and Chebyshev approximations, are
presented in Tables 5.5 and 5.6, which show the spectral convergence of the proposed method.



ETNA
Kent State University

http://etna.math.kent.edu

FOSLS METHOD FOR STOKES-DARCY EQUATION 179

TABLE 5.4
H1

w-discretization errors for Example 5.3.

N ‖EU‖1,w ‖Eu‖1,w ‖Ep‖1,w ‖Ew‖1,w ‖Eq‖1,w
Legendre approximation

4 1.3215e-01 1.7397e-02 1.3532e-01 4.5072e-02 8.5626e-02
6 1.3939e-03 1.3215e-04 2.1471e-03 7.0086e-04 2.0271e-03
8 3.6775e-05 4.6533e-06 4.2075e-05 6.5112e-06 2.3921e-05

10 1.2957e-06 1.7029e-07 1.2889e-06 8.3257e-08 1.7150e-07
12 1.4231e-09 1.8742e-10 1.6128e-09 1.6877e-10 8.1357e-10
14 2.2358e-11 2.9318e-12 2.2384e-11 1.3511e-12 2.8244e-12

Chebyshev approximation
4 5.9432e-01 6.7927e-02 5.6767e-01 9.3997e-01 2.6007e-01
6 1.3963e-01 1.4179e-02 1.1610e-01 3.3371e-02 5.3978e-03
8 1.0941e-04 8.7607e-06 1.0793e-04 4.6644e-04 5.4721e-05

10 7.6404e-08 4.9536e-09 3.7317e-07 3.8397e-06 3.7447e-07
12 2.4672e-10 1.6459e-11 1.7773e-09 2.0613e-08 1.7421e-09
14 1.5384e-11 1.4745e-12 1.4958e-11 7.8129e-11 5.9324e-12

TABLE 5.5
L2
w-discretization errors for Example 5.4.

N ‖EU‖w ‖Eu‖w ‖Ep‖w ‖Ew‖w ‖Eq‖w
Legendre approximation

4 2.0737e-01 4.0619e-02 2.5063e-01 5.1443e-02 1.2925e-02
6 3.7222e-03 7.7173e-04 5.1587e-03 7.6340e-04 1.8120e-04
8 1.4605e-04 2.9422e-05 2.0442e-04 1.5607e-05 5.4847e-06

10 8.1525e-06 1.6335e-06 1.1492e-05 8.0811e-07 2.9278e-07
12 1.0081e-08 2.0173e-09 1.4291e-08 9.9919e-10 3.6071e-10
14 3.1499e-11 6.3004e-12 4.4846e-11 3.1132e-12 1.1138e-12
16 4.3518e-12 8.7959e-13 6.2548e-12 4.4551e-13 1.2082e-13

Chebyshev approximation
4 1.4916e-01 3.4011e-02 6.5356e-02 7.8975e-02 2.3771e-02
6 1.8656e-02 2.9435e-03 2.1295e-02 2.2268e-03 7.7432e-04
8 6.2222e-05 1.0750e-05 7.3509e-05 1.1832e-05 3.1119e-06

10 5.2815e-07 8.4915e-08 6.6412e-07 7.8161e-08 2.3058e-08
12 3.5054e-09 5.4157e-10 4.5602e-09 4.2674e-10 1.4341e-10
14 1.8411e-11 2.7520e-12 2.4454e-11 1.9514e-12 6.3886e-13
16 5.0970e-13 4.2134e-14 8.1079e-13 1.6911e-14 8.1472e-15

EXAMPLE 5.5. This example is taken from a real engineering application on a domain of
100 by 100 meters, with material parameters K = 8.25e-5, ν = 1e-4 and β = 2

√
K
ν [23]. The

boundary conditions used for this example are the following:
w · n = π

2 sin( π
100x), on Γ1,

u = (0,−1), on Γ2,

w · n = 0, on Γ3,

T · n = 0, on Γ4;

the schematic domain is depicted in Figure 5.1.
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TABLE 5.6
H1

w-discretization errors for Example 5.4.

N ‖EU‖1,w ‖Eu‖1,w ‖Ep‖1,w ‖Ew‖1,w ‖Eq‖1,w
Legendre approximation

4 1.3669e+00 1.5956e-01 9.8057e-01 2.8906e-01 4.0020e-02
6 2.8122e-02 3.5718e-03 2.1866e-02 7.4118e-03 5.4998e-04
8 9.1746e-04 1.2056e-04 8.8322e-04 1.0136e-04 1.6028e-05

10 5.0324e-05 6.5931e-06 4.9613e-05 2.9522e-06 8.6341e-07
12 6.2704e-08 8.1849e-09 6.1605e-08 4.7224e-09 1.0613e-09
14 1.9662e-10 2.5598e-11 1.9320e-10 1.5633e-11 3.2990e-12
16 2.7066e-11 3.5403e-12 2.6773e-11 1.5720e-12 4.5047e-13

Chebyshev approximation
4 1.2642e+00 2.5036e-01 3.4214e-01 6.0876e-01 1.4714e-01
6 1.5470e-01 1.7923e-02 1.2343e-01 1.9292e-02 4.7021e-03
8 7.0277e-04 1.2235e-04 4.5845e-04 2.1130e-04 6.1141e-05

10 6.3597e-06 1.0156e-06 4.5517e-06 1.6659e-06 4.9462e-07
12 4.2259e-08 5.7641e-09 3.2941e-08 8.8438e-09 2.6285e-09
14 2.1936e-10 2.4510e-11 1.8144e-10 3.3905e-11 9.9318e-12
16 6.0879e-12 3.8101e-13 5.3604e-12 1.7201e-13 3.1977e-14

Since the exact solution is not known, we are not able to compute the errors as we did in
previous examples. However the least squares functionals establish an effective and reliable
error estimator. To demonstrate the efficiency of our least squares method we compute the
least squares functional. The numerical results are given in Table 5.7, which shows the spectral
convergence of the proposed method.
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FIG. 5.1. Schematic domain Ω for the Stokes-Darcy equation of Example 5.5.

6. Conclusion. This paper combined least squares technique and pseudospectral method
to approximate the solution of Stokes-Darcy equations. The gradient of velocity is introduced
as a new independent variable in the Stokes subsystem, and the Stokes-Darcy equation is recast
into a first order system of equations. The first order system is then extended by gradient and
curl operator in the Stokes subsystem and curl operator in the Darcy subsystem. The least
squares functional is defined as a combination of

a. the squared L2
w-norm of residuals in a Stokes subsystem scaled by the viscosity

constant ν,
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TABLE 5.7
Discretization errors for Example 5.5.

N Gw,S(U,u, p; f) Gw,D(w, q; g) Gw,I(U,u, p,w, q)
Legendre approximation

4 1.2665e-01 2.0889e+00 2.7733e-03
6 1.3629e-04 1.8208e-03 4.4932e-05
8 3.3024e-08 4.5319e-07 1.2915e-07

10 4.2467e-12 2.1770e-10 5.0023e-09
12 6.3643e-15 2.2204e-14 2.3257e-12

Chebyshev approximation
4 3.6097e-01 4.1110e+00 2.4055e-02
6 4.0788e-04 5.8283e-03 9.5122e-05
8 9.2369e-08 9.3731e-07 4.9744e-07

10 6.7283e-12 7.0756e-11 3.0396e-09
12 3.0911e-13 3.6242e-12 2.0451e-11

b. the squared L2
w-norm of residuals in a Darcy subsystem,

c. the squared L2
w-norm of residuals of interface conditions.

Continuous and discrete homogeneous least squares functionals for Legendre approxima-
tion is shown to be fully H1 elliptic, and for Chebyshev approximation are shown to be equiva-
lent to ‖U‖2Vw,S

+‖U ·n‖2w,Γ +‖u‖21,w,S+‖p‖21,w,S+‖w‖2w,div,D+‖w ·n‖2w,Γ +‖q‖21,w,D,
that is, the Chebyshev least squares functional is equivalent to the weighted div-curl product
norm. The spectral convergence for both Legendre and Chebyshev pseudospectral methods are
derived. To illustrate the analysis, several numerical tests are given. The proposed method can
be applied to the Stokes-Darcy equations in three-dimensional space with no essential changes.
It can also be applied to the Navier-Stokes-Darcy equation in two and three dimensions
requiring, however, more analysis.
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