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AN EFFICIENT MULTIGRID METHOD FOR GRAPH LAPLACIAN SYSTEMS∗

ARTEM NAPOV† AND YVAN NOTAY†‡

Abstract. We consider linear systems whose matrices are Laplacians of undirected graphs. We present a new
aggregation-based algebraic multigrid method designed to achieve robustness for this class of problems, despite the
diversity of connectivity patterns encountered in practical applications. These indeed range from regular mesh graphs
to scale-free type of graphs associated with social networks. The method is based on the recursive static elimination
of the vertices of degree 1 combined with a new Degree-aware Rooted Aggregation (DRA) algorithm. This algorithm
always produces aggregates big enough so that the cost per iteration is low, whereas reasonable convergence is
observed when the approach is combined with the K-cycle. The robustness of the resulting method is illustrated on a
large collection of test problems, and its effectiveness is assessed via the comparison with a state-of-the-art reference
method.
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1. Introduction. Numerous algorithms for undirected graphs require a fast solver for the
linear systems

(1.1) Au = b ,

where the system matrix is the Laplacian matrix of a graph. Among others, fast solution of
Laplacian systems is required for spectral algorithms in graph partitioning [26], solution meth-
ods for maximum flow/minimum cut problems [8], and solving discretized partial differential
equations; for further applications, see [17, 30]. Note that the Laplacian matrix A is symmetric
positive semidefinite and singular; hence, the system (1.1) has a solution only if b belongs to
the rangeR(A) of A, a condition which we assume here to be always satisfied.

When applied to Laplacian systems, general purpose system solvers may lack robustness.
In particular, for some connectivity patterns in the graph, sparse variants of LU factorization
can produce a considerable amount of fill-in, even when used with a fill reducing ordering. As
a consequence, significant storage and work may be required even for problems of moderate
size. On the other hand, simple iterative schemes such as the conjugate gradient method with
a basic preconditioner (e.g., diagonal scaling or symmetric Gauss–Seidel) are inexpensive
in both memory and work per iteration. Hence, if the number of iterations is moderate, as
observed for some graphs, this solution technique is especially attractive. Unfortunately, a fast
convergence is neither often observed nor is it easy to forecast.

On the other hand, algebraic multigrid (AMG) and multilevel iterative methods [6, 31]
represent a good starting point for the development of graph Laplacian solvers. This stems
from the observation that graphs of discretization meshes are also undirected graphs and,
moreover, the corresponding Laplacian matrix often resembles the discrete Laplace operator
on the underlying mesh. Hence, good solvers for graph Laplacians should also be methods of
choice for such discretized problems, and, as is well known, among these methods of choice,
a good place is occupied by algebraic multigrid or multilevel iterative methods; that, is, by
the methods that combine smoothing iterations with a basic preconditioner (such as Jacobi
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TABLE 1.1
Total time (in seconds per million of nonzero entries in the matrix) needed to solve the graph Laplacian linear

system with various methods; n.c. means that the method has not converged in 1000 iterations; dagger symbol †

informs that the problem matrix comes from the University of Florida Sparse Matrix Collection [9]; double dagger
‡ is for matrices from the LAMG test set suite [16]; the subscript lcc means that the graph has several connected
components and the experiment was performed with the largest connected component.

Graph n nnz/n SGS AGMG Boomer LAMG New
delaunay_n23† 8388608 7.0 n.c. 1.63 1.98 4.17 1.27

144† ‡ 144649 15.9 2.59 1.04 2.15 2.52 0.35
soc-Slashdot0902‡lcc 25736 26.1 0.30 53.90 92.53 2.70 0.24

web-BerkStan‡lcc 282720 16.9 14.15 18.03 10.82 1.60 1.20

or Gauss–Seidel), and the approximate solution of a coarse representation of the problem
involving fewer unknowns.

Yet, the performance of AMG methods with arbitrary graphs may be disappointing. To
illustrate this point, we provide in Table 1.1 the total solution time needed for some AMG
approaches to solve some graph Laplacian systems. The considered methods include standard
AMG approaches: an aggregation-based method [19, 22] as implemented in the AGMG
software [23], and a classical Ruge–Stüben method [7, 27] as implemented in the Boomer
AMG software [12] from the hypre package [13]; but also an AMG method by Livne and
Brandt [17] which is specifically designed for graph Laplacians and implemented in the
LAMG software [16]. For the sake of completeness, we also provide timings for symmetric
Gauss–Seidel preconditioning (SGS). The considered graphs represent a sample from the
test set used for the numerical experiments in Section 4.∗ In particular, the first two graphs
correspond to discretization meshes: two-dimensional (2D) mesh for delaunay_n23 and
three-dimensional (3D) one for 144, whereas soc-Slashdot0902 and web-BerkStan
are social network graphs.

The results in Table 1.1 show that standard AMG approaches perform well for graphs
corresponding to discretization meshes; regarding Ruge–Stüben AMG, this confirms the results
in [3]. However, both AGMG and Boomer AMG encounter severe difficulties with social
network graphs. On the other hand, LAMG is robust, but it is less efficient than PDE solvers on
mesh graphs, and sometimes even not competitive with simple Gauss–Seidel preconditioning.

This raises the question: can we design a method that would be competitive with PDE
solvers on mesh graphs, and that would nevertheless be robust while never being significantly
slower than simple Gauss–Seidel preconditioning? The answer is given in the last column of
Table 1.1, where, anticipating on the following, we show the results obtained with the method
presented in the next sections.

Eventually, it is worth noting that we do not present this new method as a kind of universal
solver, competitive with specialized methods for discrete scalar elliptic PDEs while able to
handle arbitrary graphs. Indeed, when designing the algorithms, we took benefit from the fact
that, in most applications, graphs are either unweighted or have weights not varying much
in magnitude. We also assumed that all weights are positive, and hence the system matrix
is always a symmetric M-matrix. As a result, the new method may be not appropriate for

∗See Section 4 for more details on the origin of the graphs and on the experiments setting; let us just mention here
that the conjugate gradient acceleration was used in all cases and that all software were used with default parameter,
with the exception of Boomer AMG, considered with the same smoother as AGMG (that is, with a single forward
Gauss–Seidel sweep as pre-smoother, and a single backward Gauss–Seidel sweep as post-smoother), and a coarsest
grid solver being 5 iterations of the symmetric Gauss–Seidel method with a coarsest grid of size at most 100 (instead
of 1 by default; this way we circumvent issues stemming from the singularity of the coarsest grid matrix, which boils
down to the zero 1× 1 matrix when the coarsest grid contains a single unknown).
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PDE problems with anisotropy or jumping coefficients, and/or with a discretization that yields
positive off-diagonal connections.

Regarding related works, we already mentioned the results from [3] and [17]. More
specifically, in [3], the Ruge–Stüben AMG approach is theoretically analyzed and tested
on mesh graphs. In [17], the Lean Algebraic Multigrid (LAMG) method is presented and
shown to be quite robust, giving us motivation to take this method as state-of-the-art reference
for comparison. In particular, LAMG appears in [17] overall as efficient but more robust
than the Combinatorial Multigrid (CMG) method from [15]. This latter method is related
to combinatorial subgraph preconditioners, introduced by Vaidya [32], and later analyzed in
[4]. Several theoretically oriented works further develop the approach, near linear complexity
being ultimately proved in [29]; however, as noted in [10], the estimates contain hidden
constants that may be very large. In [10], an extensive numerical comparison is provided,
which includes not just such subgraph preconditioners and CMG, but also PCG with ILU and
diagonal preconditioning, as well as some variants of aggregation-based AMG. The focus
is on systems arising when applying interior point methods to minimum cost flow problems.
The main conclusions are in line with our own findings summarized above: single level
preconditioners can be effective but none of them is able to solve all the problems, whereas
aggregation-based AMG variants perform well in general, but none of the tested aggregation
algorithms is robust in all cases.

The remainder of this paper is organized as follow. First, in the remainder of this introduc-
tory section, we briefly recall the definitions of an undirected graph and its Laplacian matrix.
Section 2 is an introduction to aggregation-based AMG methods, with a special emphasis on
the key components, namely the aggregation and the K-cycle. The new aggregation strategy
is presented and motivated in Section 3, and the performance of the corresponding solver is
further assessed on a large set of test graphs in Section 4. We end with some conclusions in
Section 5.

Graph Laplacians. In this work we consider only undirected graphs. As a reminder,
a graph G = (V,E) (also called simple graph) is given by a set V of vertices and a set
E ⊂ V × V of edges. G is undirected if (i, j) ∈ E implies (j, i) ∈ E for every i, j ∈ V .
An undirected graph is weighted if it has an associated positive weight function w : E 7→ R+

such that w(i, j) = w(j, i) for every (i, j) ∈ E . An unweighted graph is transformed into a
weighted one by assigning the default weight 1 to all edges.

The Laplacian matrix of an undirected graph G (or its graph Laplacian) is the matrix
A = (aij) such that, for all i 6= j ,

aij =

{
−w(i, j) if (i, j) ∈ E ,

0 otherwise ,

whereas the diagonal entries are set up in such a way that A has zero row-sums:

aii = −
∑
j 6=i

aij .

Clearly, such a matrix A is symmetric and singular. Because it has nonpositive off-diagonal
entries and nonnegative row-sums, it further turns out that it is a symmetric M-matrix, hence
positive semidefinite [2].

In what follows, we further assume that every vertex has at least one edge connecting
it to another vertex; that is, there is no isolated vertices. This is not a restrictive assumption,
since the unknowns in the graph Laplacian system corresponding to isolated vertices may have
any value, and the corresponding rows/columns can safely be deleted from the system. In
particular, this assumption implies that aii > 0 for all i .
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2. Aggregation-based multigrid methods.

2.1. Two-grid algorithm. Multigrid methods correspond to the recursive application of
a two-grid scheme. The latter, described by Algorithm 1 below, is a combination of smoothing
iterations and a coarse grid correction. Smoothing iterations correspond to stationary iterations
with a simple preconditioner. In particular, here we use a smoother which amounts to a single
forward Gauss–Seidel sweep as pre-smoother (before the coarse grid correction; see step 1 of
Algorithm 1), and a single backward Gauss–Seidel sweep as post-smoother (after the coarse
grid correction; see step 7); this smoother is also the one implemented in the AGMG software
[22, 23].
Algorithm 1 (application of two-grid preconditioner: v = BTG r)
1. Solve Lv1 = r , where L is the lower triangular part of A (pre-smoothing)
2. r̃ = r−Av1 (residual update)
3. Form r̃c such that (r̃c)s =

∑
i∈Gs

(r̃)i , s = 1, . . . , nc (restriction)
4. Solve Acvc = r̃c (coarse grid solution)
5. Form v2 such that (v2)i = (vc)s for all i ∈ Gs, s = 1, . . . , nc (prolongation)
6. r = r̃−Av2 (residual update)
7. Solve Uv3 = r , where U is the upper triangular part of A (post-smoothing)
8. v = v1 + v2 + v3 (final result of the preconditioner application)

The coarse grid correction corresponds to steps 3–5. With aggregation-based methods,
it is entirely determined by a partitioning of the set of unknowns {1, . . . , n} into nc < n
disjoint subsets Gi , i = 1, . . . , nc , called aggregates. Every aggregate from the initial system
then corresponds to an unknown of the coarse system. In the algorithm, the residual is first
restricted on this coarse variable set (step 3); then the corresponding nc × nc coarse system is
solved (step 4); finally, the computed coarse solution is prolongated on the initial variable set
(step 5). The entries of the coarse system matrix Ac are obtained by summation of the entries
of the original matrix, namely

(2.1) (Ac)ij =
∑
k∈Gi

∑
`∈Gj

ak` .

Note that such a coarse grid matrix is also the Laplacian matrix of the coarse graph associated
with the partitioning in aggregates (i.e., the graph whose vertices correspond to aggregates,
and for which the weight of an edge (i, j) is given by the sum of the weights of all the edges
connecting Gi to Gj) .

We now briefly motivate the structure of the above preconditioner. Letting P be the n×nc
matrix such that

(P )ij =

{
1 if i ∈ Gj
0 otherwise

(1 ≤ i ≤ n , 1 ≤ j ≤ nc),

and using D = diag(A) = L+U −A , the preconditioning matrix BTG can then be expressed
as

(2.2) BTG =
(
LD−1U

)−1
+
(
I − U−1A

)
P A−1

c PT
(
I −AL−1

)
.

The motivation is better understood considering the iteration matrix associated with stationary
iterations, namely

(2.3) I − BTGA =
(
I − U−1A

) (
I − P A−1

c PT A
) (
I − L−1A

)
.
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Thus, stationary iterations with BTG alternate coarse grid corrections (corresponding to the
term I − P A−1

c PT A , which is actually a projector) and smoothing iterations (corresponding
to the terms I − L−1A and I − U−1A , which are the iteration matrices associated with
forward and backward Gauss–Seidel, respectively). The efficiency of the approach relies on
the complementarity of these two sub-iterations: the coarse grid correction should be able to
significantly reduce the error modes that are not efficiently damped by Gauss–Seidel iterations.

Nowadays algebraic multigrid methods are commonly used as preconditioners, especially
if robustness is required. In particular, here the approach is combined with the conjugate
gradient method. This is possible because the resulting preconditioner is symmetric and
positive definite (SPD), as can be seen from (2.2) and the observations that L = UT while D
has strictly positive diagonal entries. (In particular, the symmetry of the preconditioner is a
major motivation for choosing pre- and post-smoothing operators that are the transpose of
each other.) Note that the systems to solve are singular, but compatible positive semidefinite
systems can be solved without problem by the conjugate gradient algorithm if one uses a SPD
preconditioner [14]; moreover the standard bound on the number of iterations applies, using
the effective condition number κeff , defined as the ratio of the largest and the smallest nonzero
eigenvalue of the preconditioned matrix.

A slight difficulty comes from the coarse grid correction step. Indeed, with (2.1), one
sees that, A having zero row-sum, Ac will have zero row-sum as well; i.e., will be singular.
The issues involved by a singular coarse grid matrix are analyzed in detail in [24]. It turns
out that in most cases there is no practical difficulty: on one hand, the coarse systems to be
solved when applying BTG are always compatible; on the other hand, which solution is picked
up does not influence the following of the iterations (only the null space component of the
computed solution is affected). In particular, this is true when the system matrix is symmetric
and positive semidefinite, as is always the case in this work. From a more theoretical viewpoint,
note, however, that (2.2) and (2.3) contain then an abuse of notation: one should substitute for
A−1
c the generalized inverse that is effectively used to implement step 4 in Algorithm 1.

2.2. Multigrid cycles. The coarse grid system solved at step 4 in Algorithm 1 is typically
still too large to make the use of a direct solver affordable. Multigrid methods resort to
recursion then: the coarse system is solved only approximately, using few iterations with the
same two-grid preconditioning approach, but applied at the coarse level. This also means that a
further coarser level is then defined; the related system is again solved with the same approach,
etc. The recursion is stopped when the system matrix is small enough to allow the use of a
direct solver. The stopping criterion used here is the coarse grid system size being below n1/3 ,
where n is the size of the original (fine grid) system matrix. This criterion guarantees that the
factorization cost is below the cost of one multiplication by A independently of the occurring
fill-in.

The number and the nature of the iterations used for the solution of the coarse grid
system is determined by the multigrid cycle. In particular, the V-cycle resorts to a single
iteration, the W-cycle uses two stationary iterations, and the K-cycle [25] uses two iterations
as well, but in combination with a Krylov acceleration. In the symmetric case, the Krylov
accelerator is the flexible conjugate gradient method [21] (more precisely FCG(1)); the flexible
variant is required since the preconditioner used at any level but the bottom one is a variable
preconditioner.

As an illustration, Algorithm 2 below defines the aggregation-based multigrid precondi-
tioner at level ` when using the K-cycle (see step 4) ; the resulting multilevel preconditioner (at
fine grid level) corresponds to ` = 1 . The subscript/superscript with level index ` marks the
quantities defined on that level. Similar to (2.1) for the two-level case, A`+1 is the n`+1×n`+1

matrix obtained by summing the entries of A` over the aggregates G(`)
i , i = 1, . . . n`+1 .



ETNA
Kent State University

http://etna.math.kent.edu

206 A. NAPOV AND Y. NOTAY

Algorithm 2 (application of K-cycle multigrid preconditioner at level `: v = B` r)
1. Solve L`v1 = r , where L` is the lower triangular part of A` (pre-smoothing)
2. r̃ = r−A` v1 (residual update)
3. Form r̃c such that (r̃c)s =

∑
i∈G(`)

s
(r̃)i , s = 1, . . . , n`+1 (restriction)

4. if n`+1 ≤ n1/3 (coarse grid solution)
solve A`+1vc = r̃c with a sparse direct solver

else
compute vc with 2 FCG(1) iterations for A`+1vc = r̃c with preconditioner B`+1

end if
5. Form v2 such that (v2)i = (vc)s for all i ∈ G(`)

s , s = 1, . . . , n`+1 (prolongation)
6. r = r̃−A` v2 (residual update)
7. Solve U`v3 = r , where U` is the upper triangular part of A` (post-smoothing)
8. v = v1 + v2 + v3 (final result of the preconditioner application)

Let us now briefly elaborate on the complexity of the aforementioned recursive algorithms.
Denoting by nnz(A2) , . . . , nnz(AL) the number of nonzero entries in the successive coarse
grid matrices, the operator complexity

CA = 1 +

L∑
`=2

nnz(A`)
nnz(A)

is used to assess the memory requirements associated with the multigrid method; it is indepen-
dent of the multigrid cycle being used. Roughly speaking, the amount of space needed to store
the preconditioner is CA times the amount of space needed to store the fine grid matrix A .
With the V-cycle, CA also characterizes the computational cost needed for one application of
the preconditioner. Roughly speaking, it can be assessed as CA times the cost of the smoothing
iterations at fine grid level.

However, the W- and K-cycles are more costly, and their complexity is better characterized
by the weighted complexity

CW = 1 +

L∑
`=2

2`−1 nnz(A`)
nnz(A)

.

The factor 2`−1 takes into account the two iterations performed at each level, and hence the
cost needed for one application of the preconditioner is roughly equal to CW times the cost of
smoothing iterations at fine grid level (see [19] for details).

Both complexities are typically controlled by ensuring that the coarsening ratio
nnz(A`−1)/nnz(A`) is above a given threshold at each level ` . For the operator complexity
CA to be below, say, 3 , it is enough to request that the coarsening ratio remains above 3/2 for
all levels. On the other hand, for the weighted complexity to stay below the same value 3 , the
coarsening ratio should be two times larger, namely at least 3 .

The extra cost of the W- and K-cycles comes together with less restrictive requirements on
the associated two-grid cycle. This is especially the case for the K-cycle, for which numerical
experiments consistently show good behavior even when the two-grid condition number is by
far larger than allowed by the theory available so far.

It is false to think that any combination of a two-grid method and a multigrid cycle leads
to a sensible multigrid method, especially if AMG methods are considered. Typically, when it
is foreseen to use the V-cycle, the design is focused on the criteria needed to obtain a level-
independent convergence rate; in “difficult” cases, this is often incompatible with coarsening
ratio values sufficiently large for allowing a sensible use of the K-cycle. On the other hand,
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TABLE 3.1
Condition number and coarsening ratio for a two-grid method based on several aggregation strategies. The

superscripts †, ‡ and the subscript lcc have the same meaning as in Table 1.1.

PA3κ=∞ DRAr=1 DRAr=2 DRAmix

Graph κeff
nnz(A)
nnz(A2) κeff

nnz(A)
nnz(A2) κeff

nnz(A)
nnz(A2) κeff

nnz(A)
nnz(A2)

bcsstk29‡ 2.5 19.0 2.6 115.7 4.8 378.7 2.8 121.6
144† ‡ 3.1 7.2 2.8 7.9 5.3 28.4 3.3 10.5
t60k† ‡ 8.4 5.3 3.4 1.6 4.0 3.0 4.0 3.0

nopoly† 6.1 8.3 3.7 4.0 9.3 10.5 6.7 8.0
as-22july06† 2.7 1.3 7.8 2.6 14.7 5.2 7.8 2.7

Oregon-2†lcc 2.5 1.4 6.1 3.8 11.3 10.7 6.1 3.9
web-BerkStan‡lcc 24.1 3.2 85.5 34.8 481.8 69.6 85.5 39.9

when one has the K-cycle in mind, the primary objective is to keep CW reasonably small,
whereas ensuring some minimal two-grid convergence properties is often enough. Then, again
in “difficult” cases, using the V-cycle instead of the K-cycle may lead to a severe deterioration
of the convergence.

In the present work, we deliberately focus on the K-cycle, which seems to fit better with
aggregation-based multigrid: on one hand, optimal V-cycle convergence is very difficult to
obtain with mere aggregation, even for PDE problems [5, 31]; on the other hand, the control
of CW is easier than with other AMG approaches, since the number of nonzeros in the next
coarse grid matrix can be decreased just by increasing the mean aggregates’ size. The AGMG
method also illustrates that a cheap two-grid method in combination with the K-cycle can
represent all in all a cost effective option [20, 22]. In this way, we also work in a direction
complementary to that explored by Livne and Brandt [17], whose aggregation-based method
is primarily designed for the V-cycle, even if a fractional cycle (intermediate between V and
W [6]) is finally used.

3. Coarse grid solution strategies for graph Laplacians.

3.1. Towards the new aggregation algorithm. We have seen in Table 1.1 that the
AGMG solver is quite ineffective for certain types of graphs. In fact, this method corresponds
to the framework described in the preceding section, and, looking into the details, it turns out
that the slowness comes from a weighted complexity CW that is unacceptably large.

Thus, we seek for a new aggregation algorithm capable to form larger aggregates while
ensuring some minimal two-grid convergence properties. The results of our successive attempts
are illustrated in Table 3.1, where we consider a sample of test graphs that is representative
of the different types of difficulties met during our study. In this table, we focus on the basic
two-grid method and we report the two associated key quantities: on one hand, the effective
two-grid condition number κeff of the preconditioned matrix, and, on the other hand, the
coarsening ratio nnz(A)/nnz(A2) . As mentioned earlier, the values above 3 of this latter
parameter are typically considered as acceptable.

The AGMG method [22, 19] uses a multiple pairwise aggregation strategy, which is
nowadays popular in the context of PDE solvers. The strategy proceeds in several passes.
During the first pass, pairs are formed via a pairwise matching procedure applied to the initial
graph. This gives aggregates of size at most 2, which is too low. Then, during the second
pass, the corresponding coarse matrix is temporarily formed and the process is repeated,
forming pairs based on this matrix, and thus pairs of pairs with respect to the initial matrix (i.e.,
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aggregates of size at most 4). This can be further repeated, yielding aggregates of size at most
8 after three passes, 16 after four passes, etc. Two parameters control the process: the number
of passes, equal to 2 by default, and a quality control parameter that helps to avoid “bad”
aggregates; that is, aggregates that have potentially a negative impact on the convergence speed
[18, 19]. For our first attempt we use this same algorithm, but change the default parameters
so as to increase mean aggregates’ size (remember that AGMG is slow when CW turns out
to be too large). In Table 3.1, this corresponds to PA3κ=∞ , where PA stands for pairwise
aggregation, 3 stands for three passes (instead of 2 by default), and κ =∞ denotes that the
quality control has been deactivated by setting the corresponding parameter equal to infinity.
The rationale for this is that the quality control is most useful when there is a big contrast in
the matrix coefficients, whereas, as noted in Section 1, we focus in this study on unweighted
graphs or graphs whose weights have similar magnitude.

Despite this radical increase of parameter values, the ratio nnz(A)/nnz(A2) remains
unsatisfactory for as-22july06 and Oregon-2 graphs. This is mainly because in these
graphs a significant number of vertices of low degree are only connected to few vertices of
high degree. Hence, once the high-degree vertices (or aggregates) are consumed during the
pairwise aggregation pass, the low degree vertices become orphans and can no longer form
any aggregate. Moreover, it turns out that further increasing the number of passes is not really
helpful in such cases.

This suggests to consider another aggregation scheme. Such a scheme is called here
rooted aggregation. The details of the scheme are as follows. The algorithm runs until all the
vertices are aggregated. At each step, a root vertex is picked among the unaggregated vertices;
then, an aggregate is formed with all the unaggregated vertices that have a path of length at
most r to the root, where r is a given parameter.

Rooted aggregation is a common strategy. For instance, smoothed aggregation AMG
methods [33] typically use an algorithm similar to rooted aggregation with r = 1 . Here we
combine it with an unusual feature: to pick the next root, we consider the vertices in the
decreasing order of their degree. This ensures that high-degree vertices form aggregates with
most of their low-degree neighbors, and not only with a few of them. Since the complete
sort of degrees may be expensive, in practice we use a partial sort: the vertices of degree
between 2k − 1 and 2k−1 are enumerated before those of degree between 2k−1 − 1 and 2k−2 ,
k = 2, . . . . This partial sort may be achieved within a linear complexity (that is, with the
number of operations proportional to the number of nonzeros of the matrix).

The resulting method is called degree-aware rooted aggregation, denoted by DRA. The
simplest variants of this scheme – and the only ones considered here – are DRAr=1 and
DRAr=2 schemes; they build aggregates that consist of the root vertex, its unaggregated
neighbors, and (in the case of r = 2) the unaggregated neighbors of these neighbors.

Regarding the DRAr=1 scheme, the resulting coarsening factor is still less than two for
the graph t60k; see Table 3.1. As of the DRAr=2 aggregation, this difficulty seems no longer
present; however, the condition number κeff of the two-grid method may then become quite
large.

The above results suggest to consider a mix of DRAr=1 and DRAr=2 approaches. Here
we consider one such strategy, denoted by DRAmix, described as follows: for every root
vertex, we first attempt to form an aggregate with its unaggregated neighbors (as in DRAr=1);
however, if the number of vertices in the resulting aggregate is at most 6 , we further add to the
aggregate the unaggregated neighbors (as in DRAr=2).

As can be seen from the last column of Table 3.1, the coarsening factor is acceptable in all
the cases (as in DRAr=2). On the other hand, the condition number is improved considerably
compared with DRAr=2 aggregation, and becomes close to that of the DRAr=1 variant.
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TABLE 3.2
Condition number and coarsening ratios with respect to the original matrix A (and the Schur complement S) for

a two-grid method based on DRAmix alone, and on DRAmix combined with the recursive elimination of vertices of
degree 1. The superscripts †, ‡ and the subscript lcc have the same meaning as in Table 1.1.

DRAmix Elim. deg. 1 & DRAmix

Graph κeff
nnz(A)
nnz(A2) κeff

nnz(S)
nnz(A2)

nnz(A)
nnz(A2)

as-22july06† 7.8 2.7 6.8 3.3 4.1
Oregon-2†lcc 6.1 3.9 4.7 5.3 6.1

web-BerkStan‡lcc 85.5 39.9 85.5 51.5 52.3

3.2. Elimination of low-degree vertices. Returning to the results of DRAmix aggrega-
tion from Table 3.1, we note that the coarsening ratio is still a bit low for the as-22july06
graph. Typically, relatively slow coarsening with DRAmix arises when there are many vertices
with very low degree. For instance, if there is a chain of vertices of degree 2 ended by a
vertex of degree 1, the aggregates along the chain will have size 2 or 3. This suggests to
improve the approach by combining it with an idea already used by Livne and Brandt [17]. It
consists in statically eliminating vertices of low degree before applying the iterative solver.
The latter is thus applied to the Schur complement resulting from this elimination. The gain in
coarsening speed is twofold: the aggregation algorithm is applied to an already smaller matrix,
and the latter contains fewer vertices with very low degrees. Note that this is considered at
each level of the hierarchy: the fine grid iterative solver is effectively applied to the Schur
complement; but, also, to approximately solve the coarse grid system at step 4 in Algorithm 2,
we pre-process with the static elimination before performing the 2 flexible conjugate gradient
iterations associated with the K-cycle. Eventually, we note that the resulting Schur complement
has negative off-diagonal entries and a zero row sum; hence, it also corresponds to a Laplacian
of some weighted graph.

Now, which vertices to eliminate? Livne and Brandt consider vertices of degree up to 4,
arguing that the corresponding fill-in in the Schur complement is still moderate. We consider a
simpler approach. We only eliminate all the vertices of degree 1, which does not generate any
fill-in and thus does not require data structure manipulations to insert new entries. The impact
is nevertheless not marginal because we proceed recursively: we in turn eliminate all vertices
whose degree is reduced to 1 because of the eliminations of all its neighbors but one, and we
pursue until the Schur complement has only vertices of degree at least 2. In this way, chains of
vertices described above are completely eliminated. More generally speaking, all trees that are
connected to the main part of the graph by a single edge are removed.

The results of this approach combined with DRAmix are displayed in Table 3.2 for the
three graphs from Table 3.1 for which the elimination brings some difference (the other graphs
don’t have vertices of degree 1). One sees significant improvements in the coarsening ratios,
but also that the condition number either does not deteriorate (web-BerkStan) or improves
(as-22july06 and Oregon-2). Since this combined approach yields fully satisfactory
results regarding complexity (see the next section for complete results), we did not consider
eliminating vertices of larger degree as done in [17].

It remains to discuss the condition number. Leaving web-BerkStan asides, κeff is at
most 6.7 for the combination of DRAmix with the recursive elimination of vertices of degree 1.
This is typically within the range for which the K-cycle is known (in practice) to deliver near
optimal performance [25]. A condition number of 6.7 looks a bit large for a multigrid method,
but the approach can be competitive because the preconditioner is cheap: smoothing iterations
are kept to a minimum and the complexities are low; this will be further illustrated in the next
section.
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On the other hand, regarding web-BerkStan, κeff = 85.5 is certainly too large to
pretend that the method is free from any drawback. However, after looking closely at the
results for this specific graph, and also inspecting the results for complete test suite (see next
section), we conclude that it is still far from a severe robustness failure. The main reasons for
this conclusion are as follows.

• The standard upper bound for the number of conjugate gradient iterations is equal
to 68 for κeff = 85.5 and a 10−6 reduction in the residual norm. In practice,
for a random right hand side (see next section), 53 iterations are needed with the
two-grid preconditioner. This is large but still reasonable taking into account that,
with nnz(A)/nnz(A2) > 50 , the weighted complexity is practically equal to 1; 53
iterations with CW = 1 amount to about 18 iterations with CW = 3 .

• With such a large condition number, one could expect a significant deterioration in the
converge speed when switching from two-grid to multigrid solver, even if the latter
is used with K-cycle. However, for this specific example, the number of iterations
grows only from 53 to 68, which is still acceptable. We have no explanation for this
behavior, besides the fact that, thanks to very large coarsening ratios, only 3 levels
are needed and, hence, the effects induced by the recursive use are minimal.

• We in fact deliberately include in Tables 3.1 and 3.2 the web-BerkStan graph for
which conditioning issues are the most severe out of a collection of 142 examples.
The iteration count of 68 corresponds to the maximum, and the number of iteration
is actually larger than 35 in less than 4 % of the cases. Moreover, thanks to low
complexities, none of these cases corresponds to examples for which the solution
time per nonzero is the largest: largest solution times are actually observed when the
number of iteration is around 30 and the weighted complexity around 2.

3.3. Summary of the new method. We now briefly summarize the main features of
the new preconditioner. When applied to system (1.1), it first recursively eliminates all the
vertices of degree 1, yielding a reduced system with system matrix A1 . This system is solved
with FCG(1), using the preconditioner defined by Algorithm 2 for ` = 1 , in which step 4 is
slightly modified when n`+1 > n

1/3
1 , the vertices of degree 1 being first eliminated, and the 2

FCG(1) iterations being applied to the reduced Schur complement system. The aggregates
G

(`)
i , i = 1, . . . , n`+1 , used at each level ` are obtained with the DRAmix scheme applied

to the Schur complement matrix resulting from the elimination of degree 1 vertices. The
corresponding aggregation algorithm is explicitly given below for the sake of completeness.

Algorithm 3 DRAmix (Degree-aware Rooted Aggregation with mixed distance to root)
1. Compute floor[log2(degree)] for all vertices
2. nc ← 0
3. while there are vertices outside ∪nc

s=1Gs
4. Select as root a vertex r not in ∪nc

s=1Gs with maximal value of floor[log2(degree(r))]
5. nc ← nc + 1 and Gnc

= {r} ∪ {j /∈ ∪nc−1
s=1 Gs | arj 6= 0}

6. if size(Gnc) ≤ 6
Gnc ← Gnc ∪ {j /∈ ∪

nc−1
s=1 Gs | ∃k ∈ Gnc : akj 6= 0}

end if
7. end while

4. Numerical results. In this section we provide some further numerical evidence of
the effectiveness of the new method. We begin by describing the extensive test set used
for the experiments, providing details of the experimental setting, and commenting on the
representation of the reported results. We then report on some key parameters that characterize
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the performance of the new method. Eventually, we report on the comparison of the new
method with LAMG [16].

General setting. We considered all the graphs coming from the two following sources.
• The University of Florida Sparse Matrix Collection [9], selecting the sparse matrices

whose description contains the keywords undirected and graph, as well as the
matrices in the collection which are from (or also available in) Walshaw’s Graph
Partitioning Archive [28]. In particular, most of the graphs from the 10th DIMACS
challenge [11] fall into this category.
• The LAMG test set suite [16]†.

In both cases, only the graphs with more than 104 vertices have been considered. Moreover,
according to the remark at the end of Section 1, we discarded the few graphs for which the
ratio between maximal and minimal weights exceeds 15. On the other hand, for graphs having
several connected components, only the largest one was considered for the tests.

This gives us a set of 142 graphs, of which 113 have more than 2 · 105 nonzero entries in
the corresponding graph Laplacian. This latter subset was used when elapsed time is reported.
The remaining 29 graphs were excluded because absolute times were too small and subject
to large relative variations from run to run. Time experiments were performed by running
a Fortran 90 implementation of the method on a single core of a computing node with two
Intel XEON L5420 processors at 2.50 GHz and 16 Gb RAM memory. When considering the
absolute value of the reported times, it is good to remember that this machine dates back from
2009.

Eventually, the right hand sides b in (1.1) were generated using a uniform random
distribution with a fixed seed; the condition b ∈ R(A) was enforced by replacing the so
generated b with its projection b− 1(bT1)/(1T1) , where 1 is the vector of all ones. In all
cases, we used the flexible conjugate gradient method (FCG(1)) with the zero vector as initial
approximation, the stopping criterion being 10−6 reduction in the residual norm.

Numerical results are reported using bar diagrams, see Figure 4.2 for an example. Each
abscissa segment corresponds to an individual graph from the test set, and each bar based on
this segment is a reported value. The problems on the diagram are gathered in three groups
defined below, depending on the value of the parameter p, which we define as the ratio between
the maximal and the average number of nonzeros per row. Note that p ≥ 1 in all cases; high
values of p typically correspond to problems with strongly varying distribution of degrees. In
Figure 4.1, we display the values of p as a function of the average number of nonzeros per
row (nnz/n , which is also the average degree plus 1). Somehow artificially, we distinct three
classes based on the value of p (they are delimited by dashed horizontal lines on the figure).

• Group g1 corresponds to p < 1.2 , and mainly contains the regular mesh graphs.
• Group g2 corresponds to 1.2 < p < 12 and includes some unstructured finite element

meshes, road network graphs, as well as some low-degree referencing graphs.
• Group g3 corresponds to p > 12 , and contains social networks, e-mail, citation and

web referencing graphs. (This group should contain all scale-free type of graphs [1],
but we were unable to determine whether all members of the group are scale free or
not.)

For the bar diagrams, within each group the problems are ordered by increasing value of their
average number of nonzeros per row (or nnz/n). The distribution of nnz/n inside each group
is further illustrated in Figure 4.2.

Bar diagrams may simultaneously report two parameters, which then correspond to
superposed bars of different color. In this case, the semi-transparent green (light gray) bar is

†https://code.google.com/p/lamg/downloads/list

 https://code.google.com/p/lamg/downloads/list
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FIG. 4.1. The values of the parameter p and the average number of nonzeros per row (nnz/n) for the considered
problems; the groups are separated by dashed lines.
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FIG. 4.2. The distribution of the average number of nonzeros per row (nnz/n) within the groups g1, g2 and
g3; the groups are separated by dashed lines; inside each group, the graphs are ordered by increasing number of
nonzero entries per row.

printed over the opaque blue (dark gray) bar; since the former bar is semi-transparent, the latter
bar is still clearly visible, but the color of the overlapping area becomes dark green (gray).
Hence, if the semi-transparent green bar is higher than the blue one, the diagram looks like the
one on Figure 4.3. However, if the blue bar is higher, as is the case for most of the bars on
Figure 4.8, the blue bar will remain partly uncovered.

Assessment of the new method. We start with the complexities of the new method (as
described in Section 2.2), reported on Figure 4.3. First note that the weighted complexity
is below 2 for most of the problems, and always below 3. This means that the work needed
for one application of the multigrid preconditioning is in most cases below 2 times that of
smoothing iterations at fine grid level. Since these latter amount to one forward and one
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FIG. 4.3. Weighted (CW ) and operator (CA) complexities for the new method.

backward Gauss–Seidel sweep, this also means that the multigrid preconditioning is never
excessively more costly per iteration than the mere SGS preconditioning.

As for the operator complexity, we note that it is at most 1.5 , meaning that at most 50 %
more memory is needed to store the preconditioner compared to the storage needed for the
system matrix itself. Eventually, we note that both complexities tend to 1 as the number of
nonzero entries per row increases.

The number of iterations is reported in Figure 4.4 for both the new method and the
conjugate gradient method with SGS preconditioning. The comparison with SGS is interesting
because the multigrid preconditioning boils down to SGS when the coarse grid correction is
skipped. One sees that the coarse grid correction has always a positive impact, the iteration
count being always less with the new method. More importantly, this impact is most significant
where needed; that is, where SGS is not robust, whereas only minor improvements are obtained
in the few cases for which SGS converges fast. One may also note that SGS is more often
competitive for the graphs of the third group. On the other hand, a closer look at the results
reveals that the number of iterations needed by the new method is virtually independent of the
problem size, when several matrices corresponding to the same kind of problem but having
different sizes are compared. More generally, as already mentioned in Section 3, the iteration
count for the new method is at worst 68 and in most cases within the range 15–30.

The importance of the K-cycle is illustrated in Figure 4.5, where the number of iterations
is reported for both the new method and a truncated variant that uses the V-cycle. Clearly, the
V-cycle is not a robust option, with a possible exception for the graphs of the third group. Note,
however, that for this group the difference between weighted and operator complexities is
marginal (see Figure 4.3), hence the computing time could be only slightly reduced by shifting
to the V-cycle, even if the number of iterations does not increase.

Eventually, we report in Figure 4.6 the total and setup times for the new method; the
solution time is implicitly given as the difference of these two times. One sees that most of the
time is spent in the solution phase, which typically requires less than 2 seconds per million
of nonzeros. The setup phase typically runs in less than 0.1 seconds per million of nonzeros.
One may also note that both the setup and solution times decrease with the number of nonzero
entries per row.
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FIG. 4.4. Iteration counts for the new method and the SGS preconditioner.
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FIG. 4.5. Iteration counts for the new method with K-cycle (default) and with V-cycle.

Comparison with LAMG. In Figure 4.7 we display a comparison of the new method
with the LAMG software [16] which implements the algorithm [17] by Livne and Brand. The
main LAMG driver is a Matlab function but computationally intensive routines are written in
C. The code was run on a single computing node, using the standard Matlab environment.

The top bar diagram of Figure 4.7 represents the setup time, the one in the center stands
for the solution time, and the bottom one for the total time. Clearly, the new method is always
faster in the setup stage, and often faster in the solution stage. Regarding the total time, the
new method is typically 2 to 5 times faster than LAMG. On the other hand, in the few cases
where LAMG is faster, the total time needed by the new method is only modestly larger.

In fact, LAMG is better only for graphs with few nonzero entries per row. Most of these
graphs correspond to road networks with the number of nonzero entries per row below 4,
meaning that the average degree of the vertices is below 3. In these cases, a fast reduction in
the size is in fact obtained thanks to the elimination procedure in LAMG, which, as mentioned
in Section 3, deals with vertices of degree up to 4. Such an extended elimination is thus worth
considering if the focus is on graphs with very small average degree.
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FIG. 4.6. Total and setup times for the new method, in seconds per million of nonzero entries in the Laplacian
matrix; graph Laplacians with more than 2 · 105 nonzero entries are considered.

To gain some further insight beyond computing time, we compare in Figure 4.8 the total
number of smoothing iterations at fine grid level. For the new method, this is twice the number
of main iterations (as seen in Algorithm 2, we use two smoothing iterations per preconditioner
call), whereas for LAMG this is three times since LAMG uses three Gauss–Seidel smoothing
iterations at each level. All in all, we note that LAMG requires less smoothing iterations on
the finest level but, up to a few exceptions, this number is comparable with, and more than the
half of, the number of iterations needed by the new method.

Many factors enter the scene to explain the differences between the comparison of the
computing times for the solve phase (see Figure 4.7, center) and that of the numbers of
smoothing iterations at fine grid level (Figure 4.8). The few obvious factors are the elimination
of vertices on the finest grid, the time spent on the coarser grids, and the efficiency of the
implementation. ‡ A more subtle factor is the intrinsic flop rate that a given algorithm can
achieve, which is influenced, for instance, by memory access issues (e.g., cache misses), or
operations not contributing to the flop rate. § Because the numerical results reported in [17]
are also focused on the computing time (and not on iteration count, complexities or so), we
believe that the LAMG code was designed to be a reasonably fast implementation of the used
method.

On the other hand, it is worth noting that most of the gain in total time obtained with the
new method (Figure 4.7, bottom) comes from a much cheaper setup phase (Figure 4.7, top),
which is explained by the extreme simplicity of our procedure, in which pre-elimination is
restricted to vertices of degree 1, whereas the used DRAmix algorithm (Algorithm 3) is clearly
among the cheapest aggregation schemes.

5. Conclusions. We have presented a new aggregation-based AMG method for the
iterative solution of graph Laplacian systems. The method combines the K-cycle with a novel
aggregation-based coarsening strategy, using the new DRAmix aggregation algorithm preceded
by the recursive static elimination of the vertices of degree 1. The DRAmix algorithm picks

‡Regarding this latter point, a pure Fortran code is expected to run faster than a mixed Matlab/C code, but, on
the other hand, Matlab is in general known to be quite fast when using scripts or functions that mainly call built-in
functions written in C.

§If a method is more memory consuming, it will induce more cache misses.
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FIG. 4.7. Setup (top), solution (center), and total (bottom) times for both the new method and the LAMG code,
in seconds per million of nonzeros; graph Laplacians with more than 2 · 105 nonzero entries are considered.
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FIG. 4.8. Total number of smoothing iterations at fine grid level; the green (light gray) bar of more than 150
iterations corresponds to a problem for which LAMG has failed.

the root vertices in the decreasing order of their degree, and builds aggregates from the root
itself, its unaggregated neighbors and, (if needed) their unaggregated neighbors.

Numerical experiments on a large set of test graphs demonstrate that the method is
efficient. It typically converges within 20-30 iterations, with a cost per iteration being roughly
equivalent to 2-3 symmetric Gauss–Seidel iterations. The total solution time on a single
processor is within 1-3 seconds per million of nonzeros, and the setup stage requires less than
0.1 seconds per million of nonzeros. Regarding the other AMG methods, the new approach
outperforms the state-of-the-art LAMG [16].

In less than 4 % of the tested cases, the two-grid condition number is larger than expected
for an AMG preconditioner, and the method is eventually effective thanks to a surprisingly
good performance of the K-cycle. These observations offer two directions for future research:
on one hand, it is worth trying to further improve the aggregation algorithm so as to avoid such
conditioning issues; on the other hand, efforts aiming at a better understanding of the K-cycle
are desirable as well.
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