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CROSS-POINTS IN DOMAIN DECOMPOSITION METHODS WITH A
FINITE ELEMENT DISCRETIZATION∗

MARTIN J. GANDER† AND KÉVIN SANTUGINI‡

Abstract. Non-overlapping domain decomposition methods necessarily have to exchange Dirichlet and Neumann
traces at interfaces in order to allow for convergence to the underlying mono-domain solution. Well-known such non-
overlapping methods are the Dirichlet-Neumann method, the FETI and Neumann-Neumann methods, and optimized
Schwarz methods. For all these methods, cross-points in the domain decomposition configuration where more than
two subdomains meet do not pose any problem at the continuous level, but care must be taken when the methods are
discretized. We show in this paper two possible approaches for the consistent discretization of Neumann conditions at
cross-points in a finite element setting: the auxiliary variable method and complete communication.
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1. Introduction. Domain decomposition methods (DDMs) are among the best paral-
lel solvers for elliptic partial differential equations; see the books [29, 30, 32] and refer-
ences therein. While classical Schwarz methods only exchange Dirichlet information from
subdomain to subdomain and converge because of overlap, non-overlapping methods like
Dirichlet-Neumann, FETI, Neumann-Neumann, and optimized Schwarz methods (OSMs)
also exchange Neumann traces or combinations of Dirichlet and Neumann traces between
subdomains. In a general decomposition of a domain Ω ⊂ R2 into non-overlapping sub-
domains (Ωi)1≤i≤I , naturally cross-points arise. Such cross-points, where more than two
subdomains meet, do not pose any problem in a continuous variational setting, but as soon as
one introduces a finite-dimensional approximation, the discretization of a Neumann condition
over a cross-point does not follow naturally. The earliest paper dedicated to cross-points
dates, to our knowledge, back to 1986: in [8], a Dirichlet-Neumann method is presented for
domain decompositions with Cartesian topology that can be colored with only two colors.
Boundary points, including cross-points, are part of the Neumann subdomains, and all Neu-
mann subdomains are coupled at cross-points while Dirichlet subdomains are fully decoupled.
In [2], a Krylov-accelerated DDM to compute the collocation solution of the Poisson equation
in a square with Hermite finite elements is studied. There are four subdomains in a 2 × 2
grid configuration, thus involving a cross-point, and theoretical convergence estimates are
provided. The FETI-DP algorithm [9, 25] modifies the FETI algorithm [28] at cross-points
by replacing the dual variables by primal ones and thus avoiding the problem of Neumann
conditions there. Similarly, strong coupling at cross-points is also proposed in [1, 3] for nodal
finite elements. In [14], it was shown for OSMs in an algebraic setting that optimized Robin
parameters scale differently at cross-points, namely like O(1/h) in contrast to O(1/

√
h) at

interface points which are not cross-points; see also [27] for condition number estimates in the
presence of cross-points. Cross-points can also be handled in the context of mortar methods,
and in very special symmetric configurations, it is actually possible for cross-points not to
pose any problems; see [15]. The cross-point problem can be avoided entirely when using
cell-centered finite volume discretizations because they do not contain cross-points at the
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discrete level; see [4] for the convergence of the cell-centered finite volume OSM with Robin
transmission conditions, see [19] for the convergence of the cell-centered finite volume OSM
with Ventcell transmission conditions in the absence of cross-points and [16] for the extension
of the convergence proof to symmetric positive definite transmission operators even in the
presence of cross-points.

We describe in this paper in detail two approaches to exchange Neumann traces over
cross-points in a finite element setting for two-dimensional problems: the auxiliary variable
method and complete communication. The auxiliary variable method keeps in addition to
the primal unknowns also auxiliary unknowns representing interface data in each subdomain.
These auxiliary variables permit a consistent discretization of the Neumann traces at cross-
points while only communicating with neighboring domains that share a boundary of non-zero
one-dimensional measure. As a first main result, we show that with auxiliary variables, one
can prove convergence of the discretized DDM using energy estimates, which is not possible
for finite element discretizations with cross-points otherwise [15]. A disadvantage of the
auxiliary variables is that they are not necessarily converging to a limit, but this does not
affect the convergence of the primal unknowns in the iteration; see Section 3.2. Complete
communication needs to exchange information with all subdomains touching at cross-points,
also those which touch only at a point, in order to have a consistent discretization of Neumann
conditions. Our second main result answers the question of how to determine for complete
communication a splitting of Neumann traces that minimizes oscillation among the many
possible ones.

Our paper is organized as follows: in Section 2, we describe for the concrete example of an
OSM why the discretization of the Neumann part of the transmission condition is ambiguous
at cross-points. In Section 3, we present the first approach to how to transmit Neumann
information near cross-points using auxiliary variables and give a general convergence proof
for a non-overlapping OSM discretized by finite elements with cross-points. In Section 4,
we describe how Neumann information can be transmitted near cross-points by complete
communication among all subdomains sharing the cross-point, and we propose a specific
method minimizing oscillation. After our conclusions in Section 5, we show in Appendix A that
instead of using higher-order, so-called Ventcell transmission conditions (see for example [5,
10, 12, 21, 22, 23, 24]), one can obtain algebraically naturally such conditions from Robin
conditions using mass lumping techniques in a finite element setting. This avoids the need for
discretizing higher-order differential operators in the tangential direction and even works at
cross-points, which is our third important result.

2. The discrete optimized Schwarz method. For the elliptic problem Lu = f in Ω and
a non-overlapping decomposition (Ωi)1≤i≤I , the OSM with Robin transmission conditions at
the continuous level is (see for example [10]):

ALGORITHM 2.1 (OSM).
1. Set p > 0.
2. Start with an initial guess u0

i in each subdomain Ωi.
3. Until convergence, compute for n = 0, 1, . . . , in parallel the unique solution un+1

i to

Lun+1
i = f in Ωi,

∂un+1
i

∂nii′
+ pun+1

i =
∂uni′

∂nii′
+ puni′ on ∂Ωi ∩ ∂Ωi′ ,(2.1)

where ni,i′ is the normal to ∂Ωi ∩ ∂Ωi′ pointing from Ωi to Ωi′ .
In a variational formulation of Algorithm 2.1, cross-points do not pose any problem since

they have zero measure. In a finite-dimensional approximation however, using for example
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finite elements, the Neumann part of the Robin transmission conditions is only known as a
variational quantity, i.e., as an integral over the edges connected to the cross-point. When
discretizing an OSM (or any DDM), one should strive to make the DDM consistent at the
discrete level:

DEFINITION 2.2 (Consistent Discrete DDM). A discrete DDM is called consistent if
1. the discrete mono-domain solution is a fixed-point of the discrete DDM,
2. the discrete DDM has a unique fixed-point.

We show in this section that it is not completely straightforward to design a consistent
discrete iterative DDM when cross-points are present.

2.1. Geometric setting and notation. Let T be a polygonal mesh of Ω ⊂ R2. Let
(Ωi)1≤i≤I be a non-overlapping partition of the domain Ω. We assume that the subdomains
Ωi are polygonal and that each cell of T is included in exactly one subdomain. Let Ti be the
restriction of the mesh T to Ωi, and denote by xj the vertices of the mesh T . We consider a
finite element space P(T ) being a subset of H1

0 (Ω) with the following properties:
1. There is exactly one degree of freedom at each vertex of T for P(T ).
2. For any edge [xjxj′ ] of P(T ) and for any u in P(T ), u(xj) = 0 and u(xj′) = 0

imply that u vanishes on the entire edge [xjxj′ ].
Both of these conditions are satisfied for P1-elements on triangular meshes and Q1-elements
on Cartesian ones. We define P(Ti) := {u|Ωi

|u ∈ P(T )}. We denote the hat-functions by φj ,
i.e., the unique function in P(T ) such that

φj(xj′) =

{
1 if j = j′,
0 if j 6= j′,

and by φi;j we denote (φj)|Ωi
. We will systematically use the letter i for subdomain indices

and separate it from nodal indices j using a semicolon. The discretized OSM operates then on
the space

V :=

N⊗
i=1

P(Ti).

Since a node located on a subdomain boundary may belong to more than one subdomain, we
use the index i in xi;j to distinguish degrees of freedom located at the same node but belonging
to different subdomains.

2.2. Discretization of Robin transmission conditions. The discrete Neumann bound-
ary condition must be computed variationally in an FEM setting; see for example [32, p. 3,
equation (1.7)]. Near cross-points, the Neumann boundary condition is similar to an integral
over both edges that are adjacent to the cross-point and belong to the boundary of the subdo-
main. As there is no canonical way to split that variational Neumann boundary condition, it is
not clear how we should split that quantity when it comes to transmitting Neumann information
between adjacent subdomains near cross-points. Any splitting should be consistent according
to Definition 2.2.

To investigate this problem, it suffices to study the case of the elliptic operator L := η−4,
η > 0, in Algorithm 2.1 with homogenous Dirichlet boundary conditions on ∂Ω. Since we
want to study the consistency of an iterative discrete DDM according to Definition 2.2, we
first need to specify the mono-domain solution. Following finite element principles, we need
to solve

η

∫
Ω

uφj +

∫
Ω

∇u · ∇φj =

∫
Ωi

fφj ,
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where u =
∑
j u

n+1
j φj . If we define the matrix A by

Aj,j′ := η

∫
Ω

φj(x)φj′(x)dx+

∫
Ω

∇φj(x)∇φj′(x)dx,

then the discrete mono-domain equation is

(2.2) Au = f ,

where the components of f satisfy fj =
∫

Ωi
fφj for every nodal index j.

In the discrete OSM, at every new iteration n+ 1, following finite element principles, we
solve for every subdomain Ωi the equation

(2.3) η

∫
Ωi

un+1
i φi;j +

∫
Ωi

∇un+1
i · ∇φi;j + p

∫
∂Ωi

un+1
i φi;jdσ(x) = fi;j + gn+1

i;j

for all j such that xi;j is a node of mesh T located in Ωi, in order to find the new finite
element subdomain solution approximation by un+1

i =
∑
j u

n+1
i;j φi;j . The data gn+1

i;j needs to
be gathered from neighboring subdomains satisfying (2.1) in a discrete sense which makes the
discrete OSM consistent according to Definition 2.2. We will see that this means computing
the Neumann contribution to gn+1

i;j variationally, i.e., using (2.8) and (2.9). We denote by
the matrix Ai the sum of the mass and stiffness contributions corresponding to the interior
equation η −4 in each subdomain Ωi,

(2.4) Ai;j,j′ := η

∫
Ωi

φi;j(x)φi;j′(x)dx+

∫
Ωi

∇φi;j(x)∇φi;j′(x)dx.

The matrix Bcons
i contains the boundary contribution p

∫
∂Ωi

un+1
i φi;jdσ(x) including the

Robin parameter p: if the finite elements are linear on each edge, which holds for Q1- and
P1-elements, we have the consistent interface mass matrix

(2.5) Bcons
i;j,j′ :=


p
3

∑
j′′ |xi;j − xi;j′′ | if j′ = j and xi;j lies on ∂Ωi,

p
6 |xi;j − xi;j′ | if [xi;jxi;j′ ] is an edge of ∂Ωi,

0 otherwise,

where the sum is taken over all j′′ 6= j such that [xjxj′′ ] is a boundary edge of Ti. A lumped
version of the interface mass matrix Bcons

i is

(2.6) Blump
i;j,j′ :=

{
p
2

∑
j′′ |xi;j − xi;j′′ | if j = j′ and xi;j lies on ∂Ωi,

0 otherwise,

where again the sum is taken over all j′′ 6= j such that [xjxj′′ ] is a boundary edge of Ti.
We explain in Appendix A why using a lumped interface mass matrix Blump

i leads to faster
convergence than using a consistent mass matrix Bcons

i by interpreting the lumping process
at the continuous level as introducing a higher-order term in the transmission condition; see
also [7]. This higher-order term can even be optimized using a new concept of overlumping
which we introduce in this paper in Appendix A. Note that in the context of discrete duality
finite volume methods, it was shown in [13] that the consistent mass matrix can even completely
destroy the asymptotic performance of the OSM even without cross-points. This is however
not the case for the finite element discretizations we consider here. To simplify notations and
shorten formulas, we only consider the lumped Robin boundary conditions throughout the rest
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of this paper except in Appendix A, where we also consider consistent and overlumped Robin
boundary conditions.

Using the matrix notation that we introduced, we have to solve at each Schwarz iteration
a matrix problem equivalent to (2.3), namely

(2.7) (Ai + Blump
i )un+1

i = fi + gn+1
i ,

where the vector gn+1
i is zero at interior nodes of Ωi and contains the values gni,i′ transmitted

from the neighboring subdomains Ωi′ to the interface nodes of Ωi. The computation of fi
and gn+1

i should be done in such a way that the discrete DDM is consistent according to
Definition 2.2. At the continuous level, fi would just be the restriction of f to Ωi, and hence,
if the continuous function f is known, one can set

fi;j :=

∫
Ωi

f(x)φi;jdx.

In some cases, the right-hand side f is not known at the continuous level, and only the right-
hand side f of the discrete mono-domain equation (2.2) is given. In such cases, one has to
choose a decomposition of f into the right-hand sides fi of the local subdomain problems (2.7).
Such a decomposition (fi)1≤i≤I should satisfy fj =

∑
i fi;j for each nodal index j, and the

sum is over all indices i such that xj belongs to Ωi. For the transmitted values gni,i′ with a finite
element discretization, the Neumann contribution must be defined by a variational problem for
the discrete mono-domain solution to be a fixed-point of the discrete OSM iteration. At the
continuous level, if (η −4)ui = f inside Ωi, we have by Green’s formula∫

∂Ωi

∂ui
∂ni

v = η

∫
Ωi

uv +

∫
Ωi

∇u∇v −
∫

Ωi

fv.

This formula must be used to define discrete Neumann boundary conditions: for xi;j a vertex of
the fine mesh located on ∂Ωi, we define, for every wi in P(Ti) that satisfies (Aiwi)i;j = fi;j
at every interior node xj of Ti, the Neumann quantity

(2.8) Ni;j(wi) := η

∫
Ωi

wiφi;j +

∫
Ωi

∇wi∇φi;j − fi;j

for every boundary node xj of Ti. The discrete mono-domain solution satisfies the identity∑
iNi;j(ui) = 0, where the sum is over all i such that xj is a boundary vertex of Ti. This is

the discrete equivalent of the condition that the continuous solution does not have jumps in the
Neumann traces. For interface points xj that belong to exactly two subdomains Ωi and Ωi′ ,
the Robin update is not ambiguous, and we set

(2.9) gni,i′;j := −Ni′;j(uni′) +
p

2
uni′;j

∑
j′

|xi;j − xi;j′ |,

where the sum is over all j′ such that [xjxj′ ] is a boundary edge of both Ti and Ti′ . The
subdomain Ωi′ must then send gni,i′;j to the subdomain Ωi, which uses it for its transmission
condition gn+1

i;j = gni,i′;j since there is only one contribution from the unique neighbor Ωi′ .

2.3. Ambiguity of the Robin update at cross-points. To see why the Robin update (2.9)
cannot be used at cross-points, consider as an example the cross-point x1 belonging to the
subdomain Ω1 shown in Figure 2.1. Following (2.9), to compute gn+1

1 at cross-point x1, one
would intuitively set

gn+1
1;1 = −N2;13(un2 ) +

p

2
|x1 − x3|un2;1 −N5;12(un5 ) +

p

2
|x1 − x2|un5;1,
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FIG. 2.1. Example of a cross-point in the decomposition.

where N2;13 is the part of N2;1 located on the edge [x1x3] and likewise for N5;12. Unfortu-
nately, at the discrete level, the Neumann contributions of un2 and un5 at x1 are only known as
an integral over the edges coming from x1. We cannot distinguish the contribution of each
edge to the Neumann conditions N2;1(un2 ) and N5;1(un5 ). We only know that

N2;1(un2 ) = N2;13(un2 ) +N2;14(un2 ), N5;1(un5 ) = N5;12(un5 ) +N5;16(un5 ).

When transmitting the Robin condition at a cross-point, the Neumann contribution must be
split across each edge in such a way that the discrete mono-domain solution remains a fixed-
point of the OSM; see item 1 in Definition 2.2. The discrete mono-domain solution satisfies

(2.10) ui;j = ui′;j for all i′ with xj in Ωi′ , and
∑

i,xj∈∂Ωi

Ni;j(ui) = 0.

The discrete algorithm should therefore split the Neumann contributions at cross-points in
such a way that whenever (2.10) holds, we have reached a fixed-point of the discrete algorithm.
We show in the next two sections that such a splitting can either be obtained using auxiliary
variables and communicating only with neighbors or by communicating with all subdomains
that share the cross-point.

3. Auxiliary variable method. We now show how to introduce auxiliary variables near
the cross-points to resolve the ambiguity. At the continuous level, we have on the interface
between the subdomain Ωi and Ωi′ from (2.1) the identity

gn+1
i =

∂un+1
i

∂nii′
+ pun+1

i =
∂uni′

∂nii′
+ puni′ = − ∂uni′

∂ni′i
+ puni′ = −gni′ + 2puni′ ,

since by definition gni′ =
∂un

i′
∂ni′i

+ puni′ and the normals are in opposite directions. At the
discrete level, as long as we are away from cross-points, the same equality can be used to
update the Robin transmission conditions,

(3.1) gn+1
i;j = −gni′;j + puni′;j

∑
j′

|xi;j − xi;j′ |,

where the sum1 is over all j′ such that [xjx
′
j ] is a boundary edge of Ti and the factor 2 is

cancelled with the factor 1/2 in formula (2.9). This is very useful in practice because one then

1For two-dimensional edges, there are only two terms in the sum.
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does not even need to implement a normal derivative evaluation [17]. At interface points which
are not cross-points, this update will give the same update as applying formula (2.9) using the
definition of the discrete Neumann condition (2.8). Inspired by the update formula (3.1), we
introduce the following update of the discrete Robin transmission conditions at cross-points:

ALGORITHM 3.1 (Discrete OSM with auxiliary variables).

1. Initialize g0
i,i′;j for all nodes xj that are boundary nodes of both Ti and Ti′ .

2. For n = 0, 1, 2, . . . , until convergence do
(a) Compute

(3.2) gn+1
i;j =

∑
i′

gni,i′;j

where the sum is over all subdomains Ωi′ such that there exists an edge origi-
nating from the vertex xj that belongs to both Ti and Ti′ .

(b) Solve2 for each subdomain Ωi

(Ai + Blump
i )un+1

i = fi + gn+1
i ,

where Ai and Blump
i are defined in (2.6) and (2.4).

(c) Set

(3.3) gn+1
i′,i;j := −gni,i′;j + pun+1

i;j

∑
j′

|xi;j − xi;j′ |,

where the sum is over all j′ such that [xjxj′ ] is a boundary edge of both Ti and
Ti′ .

Algorithm 3.1 requires storing the auxiliary variables gni′,i;j because it is not possible
to recover gni′,i;j from uni when xj is a cross-point. Only the sum over i′ of gni′,i;j can be
recovered from uni .

3.1. Convergence of the auxiliary variable method. At the continuous level, one can
prove convergence of the OSM using energy estimates; see for example [6, 26]. At the discrete
level, this technique fails in general [15] precisely because of the cross-points. In this section,
we prove convergence of the discrete OSM in the presence of cross-points when auxiliary
variables are used, i.e., convergence of Algorithm 3.1.

To do so, we first need to prove that the discrete mono-domain solution is a fixed-point of
Algorithm 3.1. We thus need to introduce the splitting of the discrete Neumann conditions at
the cross-points induced by the splitting of the Robin interface conditions at cross-points: we
set

(3.4) Nn+1
i,i′;j := gni,i′;j −

p

2

∑
j′

|xj − xj′ |

un+1
i;j ,

where the sum is over all j′ such that [xjxj′ ] is a boundary edge of both Ti and Ti′ .
By (2.6), (2.8), and (2.7), we obtain

(3.5) Ni;j(un+1
i ) =

∑
i′

Nn+1
i,i′;j ,

2For the sake of simplicity, we only write the algorithm for lumped boundary conditions.
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where the sum is over all i′ such that there exists an edge originating from xj that is a boundary
edge of both Ti and Ti′ .

LEMMA 3.2. Let f = (fj) be a right-hand side of the discretized operator η −4 with
fi;j such that

∑
i fi;j = fj . Then there exist values gi,i′;j which are a fixed-point of the

discrete OSM with auxiliary variables near cross-points.
Proof. Let u be the discrete mono-domain solution. Let ui be the restriction of u to Ti.

We define two sets of nodes: Ei;j is the set of all nodal indices j′ such that xj and xj′ are
endpoints of a boundary edge of Ti, and Ei;i′;j is the set of all nodal indices j′ such that xj
and xj′ are endpoints of a boundary edge of both Ti and Ti′ , i.e.,

Ei;j := {j′, [xjxj′ ] boundary edge of Ti},
Ei;i′;j := {j′, [xjxj′ ] boundary edge of Ti and of Ti′ }.

We use formula (2.8) to obtain the existence of values gi;j such that the solution of (2.7) is ui.
For any given cross-point node xj , we have to split the variables gi;j into gi,i′;j that satisfy

gi;j =
∑

i′ s.t. Ei;i′;j 6=∅

gi,i′;j ,

gi′,i;j = −gi,i′;j + puj
∑

j′∈Ei;i′;j

|xi,j − xi,j′ |.

Subtracting the Dirichlet parts on both sides in the first equation and transferring half the
Dirichlet part in the second equation from the right to the left, we get

gi;j −
p

2
uj

∑
j′∈Ei;j

|xi,j − xi,j′ | =
∑

i′ s.t. Ei;i′;j 6=∅

(gi,i′;j −
p

2
uj

∑
j′∈Ei,i′;j

|xi,j − xi,j′ |),

gi′,i;j −
p

2
uj

∑
j′∈Ei,i′;j

|xi,i′,j − xi,j′ | = −(gi,i′;j −
p

2
uj

∑
j′∈Ei,i′;j

|xi,j − xi,j′ |).

We recognize the discrete Neumann conditions; see (3.4). So the problem becomes that of the
concrete splitting problem of Neumann conditions: given Ni;j , find Ni,i′;j such that

Ni;j =
∑

i′ s.t. Ei;i′;j 6=∅

Ni,i′;j , Ni,i′;j = −Ni′,i;j .

By (2.10), since u is the discrete mono-domain solution, we have
∑
iNi;j = 0. For each

cross-point xj , we define a graph G whose set of vertices V (G) and set of edges E(G) are
defined as

V (G) = {i, xj ∈ Ωi},
E(G) = {{i, i′} ⊂ V (G), Ti and Ti′ share an edge originating from xj}.

We set φ(i) := Ni;j for all i in V (G) and apply Lemma B.1. Setting Ni,i′,;j = ψ(i, i′) from
Lemma B.1 for all (i, i′) in E(G) then concludes the proof.

THEOREM 3.3. The OSM, Algorithm 2.1, discretized with finite elements (2.3) and using
auxiliary variables for the transmission conditions is convergent.

Proof. Because of Lemma 3.2, we can assume without loss of generality that fi = 0. For
each subdomain Ωi, we multiply the definition of the discrete Neumann condition (2.8) by
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FIG. 3.1. Error using the OSM with auxiliary variables for 4× 1 (solid) and 2× 2 (dashed-dotted) subdomains.

ui;j , then sum over all j such that xj belongs to Ωi to obtain∫
Ωi

|∇un+1
i |2 + η

∫
Ωi

|un+1
i |2 =

∑
xj∈∂Ωi

Nn+1
i;j un+1

i;j

=
∑
i′

∑
xj∈∂Ωi∩∂Ωi′

Nn+1
i,i′;ju

n+1
i;j (by (3.5))

=
∑
i′

∑
xj∈∂Ωi∩∂Ωi′

|Nn+1
i,i′;j + p

2

∑
j′ |xj − xj′ |u

n+1
i;j |2

2p
∑
j′ |xj − xj′ |

−
|Nn+1

i,i′;j −
p
2

∑
j′ |xj − xj′ |u

n+1
i;j |2

2p
∑
j′ |xj − xj′ |

,

=
∑
i′

∑
xj∈∂Ωi∩∂Ωi′

|gni,i′;j |2 − |g
n+1
i′,i;j |2

2p
∑
j′ |xj − xj′ |

(by (3.4) and (3.3)).

We now sum over all subdomains i and over the iteration index n to get

N∑
n=0

I∑
i=1

∫
Ωi

|∇un+1
i |2 + η

∫
Ωi

|un+1
i |2 =

∑
i,i′

∑
xj∈∂Ωi∩∂Ωi′

|g0
i,i′;j |2 − |g

N+1
i′,i;j |2

2p
∑
j′ |xj − xj′ |

≤
∑
i,i′

∑
xj∈∂Ωi∩∂Ωi′

|g0
i,i′;j |2

2p
∑
j′ |xj − xj′ |

·

This shows that the sum over the energy over all iterates and subdomains stays bounded as the
iteration number N goes to infinity, which implies that the energy of the iterates and hence the
iterates converge to zero.

3.2. Numerical observation using auxiliary variables. Using auxiliary variables can
have surprising numerical side effects. In Figure 3.1 we display the error measured in the
L∞-norm of the OSM with auxiliary variables for the domain Ω = (0, 4)2 decomposed once
into 2× 2 subdomains and once into 4× 1 subdomains, for p = 2.0 and η = 0.0 and a mesh
size h = 1/10. We iterate directly on the error equations, f = 0, and initialize the transmission
conditions with random values (for the importance of random values, see [11]). We observe
that in the presence of cross-points, convergence stagnates around machine precision, whereas
without them, stagnation appears much later.
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Ω1Ω2

Ω3 Ω4

u1u2

u3 u4

g1,2

g1,4

g2,1

g2,3

g3,4

g3,2

g4,3

g4,1

FIG. 3.2. Degenerate case.

To understand these results, we need to consider floating-point arithmetic (see [18, 20,
31]) and in particular the machine precision macheps and the smallest positive floating-
point number minreal. In the above experiment we used double precision in C++, so
macheps= 2−53 ≈ 1.1·−16 and minreal≈ 4.9 · 10−324. Had we been computing a real
problem with nonzero right-hand side f , we would expect stagnation near machine precision.
However, when iterating directly on the errors, stagnation should occur much later at the level
of the smallest positive floating-point number.

To analyze the early stagnation observed, we consider a simple model problem with
2 × 2 subdomains (see Figure 3.2) where there is exactly one Q1-element per subdomain
and the only interior node is a cross-point. This means that the mono-domain solution u is
a scalar. We thus have Ω = (−h, h) × (−h, h) and the subdomains Ω1 = (0, h) × (0, h),
Ω2 = (−h, 0)× (0, h), Ω3 = (−h, 0)× (−h, 0), Ω4 = (0, h)× (−h, 0). We apply the OSM
with lumped Robin transmission conditions and f = 0. Since there is only one interior node
in the whole mesh, there is only a single test function φ with φ(x, y) = (1 − |x|)(1 − |y|).
By (2.7), we have

A1 = A2 = A3 = A4 = ηh2

(∫ 1

0

(1− x)2dx

)2

+

∫ 1

0

(1− x)2dx+

∫ 1

0

(1− y)2dy

=
ηh2

9
+

2

3
·

We use lumped Robin transmission conditions, and by (2.6), we get

B1 = B2 = B3 = B4 =
p

2
h

(∫ 1

0

(1− x)dx+

∫ 1

0

(1− y)dy

)
= ph.

Therefore, we have by (2.7) and (3.2)

un+1
i =

gn+1
i

2
3 + ηh2

9 + ph
, i = 1, . . . , 4.
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Thus, for the OSM iteration, we obtain

(3.6)

un+1
1 =

gn12 + gn14

2
3 + ηh2

9 + ph
, un+1

2 =
gn23 + gn21

2
3 + ηh2

9 + ph
,

un+1
3 =

gn32 + gn34

2
3 + ηh2

9 + ph
, un+1

4 =
gn43 + gn41

2
3 + ηh2

9 + ph
,

and by (3.3), we get

gn+1
i′,i := −gni,i′ + phun+1

i .

Eliminating the variables un+1
i from the iteration leads to

gn+1
1,2

gn+1
2,1

gn+1
2,3

gn+1
3,2

gn+1
3,4

gn+1
4,3

gn+1
4,1

gn+1
1,4


=



0 α− 1 α 0 0 0 0 0
α− 1 0 0 0 0 0 0 α

0 0 0 α− 1 α 0 0 0
0 α α− 1 0 0 0 0 0
0 0 0 0 0 α− 1 α 0
0 0 0 α α− 1 0 0 0
α 0 0 0 0 0 0 α− 1
0 0 0 0 0 α α− 1 0





gn1,2
gn2,1
gn2,3
gn3,2
gn3,4
gn4,3
gn4,1
gn1,4,


,

where we introduced the scalar quantity

α =
ph

ηh2

9 + 2
3 + ph

·

Since 0 < α < 1, the `∞-norm of this iteration matrix is 1, and hence its spectral radius is
bounded by 1. Note however that 1 and −1 are eigenvalues of this matrix with the correspond-
ing eigenvectors

(−1, 1,−1, 1,−1, 1,−1, 1)T and (1, 1,−1,−1, 1, 1,−1,−1)T .

This shows that the vector of auxiliary variables will not converge to 0 in general. However,
the modes with eigenvalue +1 and −1 make no contribution to ui, see (3.6), so in the
algorithm, the iterates uni will converge as proved in Theorem 3.3. In floating-point arithmetic
however, the fact that the auxiliary variables do not converge (and remain O(1) because of
their initialization) prevents the algorithm applied to the error equations to converge in the
iterates uni below the machine precision as we observed in Figure 3.1. Luckily, this has no
influence when solving a real problem with non-zero right-hand side but must be remembered
when testing codes.

4. Complete communication. We now present a different approach not using auxiliary
variables but still guaranteeing that the discrete mono-domain solution is a fixed-point of
the discrete OSM. This requires the subdomains to communicate at cross-points with every
subdomain sharing the cross-point. Most methods obtained algebraically using matrix splittings
use complete communication. To get DDMs directly from the matrix, one usually duplicates
the components corresponding to the nodes lying on the interfaces between the subdomains so
that each node is present in the matrix as many times as the number of subdomains it belongs
to; see for example [14, 27]. To obtain an auxiliary variable method instead of a complete
communication from a matrix splitting, further duplication of nodal components would be
necessary: nodal components would have to be duplicated as many times as the number of
ordered pairs of distinct subdomains sharing at least one interface edge having that node as
an endpoint. To prove convergence of this approach requires, however, other techniques than
energy estimates; see [14, 27].
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Ω1

Ω2

Ω3

Ω4

Ω5

N+
1

N−2

N−4

N+
4

FIG. 4.1. Splitting ofNi intoN+
i andN−i .

4.1. Keeping the discrete mono-domain solution a fixed-point. Consider a cross-point
xj belonging to the subdomains Ωi, for i in {1, . . . , I}, with I ≥ 3. We consider local linear
updates for the discrete Robin transmission conditions at cross-points of the form

gn+1
i;j = `D((uni;j)1≤i≤I) + `N ((Ni;j(ui)))1≤i≤I),

where `D and `N are linear maps from RI to RI , which can be represented by matrices
gn+1

1;j
...
...

gn+1
I;j

 = AD


un1;j

...

...
unI;j

+ AN


Nn

1;j
...
...
Nn
I;j

 .

At the cross-point xj , the mono-domain solution satisfies (2.10), i.e.,

(4.1) ui;j = u1;j for all i in {1, . . . , I},
I∑
i=1

Ni;j(ui) = 0.

For the mono-domain solution to be a fixed-point, gn+1
i;j should be equal to gni;j whenever the

conditions (4.1) are satisfied. Therefore, the matrices must satisfy

(AN )ii′ = δi,i′ − αi,
I∑

i′=1

(AD)ii′ =
p

2

∑
j′ s.t. [xjxj′ ] is a
boundary edge of Ti

|xj − xj′ |,(4.2)

for some constants αi.
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4.2. An intuitive Neumann splitting near cross-points. Suppose we are given I values
(Ni)i=1,...,I , each representing the discrete Neumann values at xj for the subdomain Ωi. Our
goal is to find a splitting (N+

i ,N
−
i )i=1,...,I such that

Ni = N+
i +N−i .

There are obviously many such splittings. At the continuous level, the mono-domain solution
has no Neumann jumps at the interface between subdomains. It thus makes sense, at an
intuitive level, to search for a splitting minimizing the Neumann jumps N−i+1 + N+

i ; see
Figure 4.1. Therefore, we choose to minimize

I∑
i=1

|N+
i +N−i+1|

2,

where by convention N−I+1 denotes N−1 . We will see that this still does not give a unique
solution, but all such splittings give rise to the same transmission conditions in the OSM
discretized by finite elements.

We denote by a ∈ RI the vector with ai = N−i , which implies N+
i = Ni − ai. We thus

search for a in RI such that the function

a 7→
I∑
i=1

|−ai +Ni + ai+1|2

is minimized, i.e., we want to compute the solution of

(4.3) argmin
a∈RI

‖La−N ‖22,

where the matrix L = (`ii′)1≤i,i′≤I is given by

`ij =


1 if i′ = i,
−1 if i′ = i+ 1 mod I,

0 otherwise,

or more explicitly

L =



1 −1 0 . . . 0 0

0 1 −1
. . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

0
. . . . . . 0 1 −1

−1 0 . . . 0 0 1


.

Equation (4.3) is a standard least-squares problem, but its solution is not unique since
ker(L) = R[1, . . . , 1]T . If we require in addition that a is orthogonal to ker(L), then a
is unique and

a = L†N ,

where L† is the pseudo-inverse of L, and all the solutions to (4.3) are then of the form
L†N + R[1, . . . , 1]T .
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Since L is a circulant matrix, its pseudo-inverse L† is too. Let (µi)i∈Z be I-periodic such
that `†ii′ = µi′−i, which implies

L† =


µ0 µ1 · · · µI−1

µI−1 µ0
. . .

...
...

. . . . . . µ1

µ1 · · · µI−1 µ0

 .

In addition, since ker(L) = R[1, . . . , 1]T , we have

L†L = I− 1

I

1 . . . 1
...

. . .
...

1 . . . 1

 ,
and hence,

µ0 − µI−1 = 1− 1

I
and µi − µi−1 = −1

I
for all 1 ≤ i ≤ I.

Therefore, for all i = 0, . . . , I − 1, we get

µi = µ0 −
i

I
·

Moreover, range(L†) = ker(L)⊥ implies
∑I−1
i=0 µi = 0, which yields µ0 = I−1

2 . Hence, for
all i = 0, . . . , I − 1,

µi =
I − 1

2
− i

I
·

We thus obtain for the solution of the least squares problem

ai =

I∑
i′=1

µi′−iNi′ ,

which gives for the splitting of the Neumann values

N+
i =

I∑
i′=1

µi′−iNi′ , N−i = Ni −
I∑

i′=1

µi′−iNi′ .

We can use this splitting now in the OSM to exchange the Neumann contributions N+
i and

N−i+1 in the Robin transmission conditions, i.e., we set

(ANN )i = −N−i+1 −N
+
i−1

= −Ni−1 +

I∑
i′=1

µi′−i+1Ni′ −
I∑

i′=1

µi′−i−1Ni′

= −Ni−1 +

I∑
i′=1

(µi′−i+1 − µi′−i−1)Ni′ .
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FIG. 4.2. Numerical convergence of complete communication for 4 × 1 (solid) and 2 × 2 (dashed-dotted)
subdomains.

We have

µi′−i+1 − µi′−i−1 =


1− 2

I if i′ = i mod I,

1− 2
I if i′ = i− 1 mod I,

− 2
I otherwise.

Therefore, we set

(ANN )i = Ni −
2

I

I∑
i′=1

Ni′ .

4.3. An intuitive splitting of the Dirichlet part. We must choose a matrix AD satisfy-
ing (4.2), i.e.,

I∑
i′=1

(AD)ii′ =
p

2

∑
j′,xj′∈∂Ωi,

[xjxj′ ] edge of Ti

|xj − xj′ |.

There are also many possible choices for (AD)ii′ , but in contrast to the Neumann conditions,
which are only known variationally, the Dirichlet values are known on the boundary. Therefore,
to split the sum of |xj − xj′ |, we look at which neighbouring subdomain the edge [xjxj′ ]
belongs to: if one is Ωi and the other is Ωi′ , then we put p|xj − xj′ | into (AD)ii′ . Hence, we
set

(AD)ii′ =


p
2

∑
j′,xj′∈∂Ωi∩∂Ωi′ ,

[xjxj′ ] edge of both Ti and Ti′
|xj − xj′ | if i′ 6= i,

0 if i′ = i.

4.4. Numerical simulations. We do the same experiment with complete communication
as we did for the auxiliary variable method in Section 3.2. The results are shown in Figure 4.2.
As expected, for complete communication, convergence is also observed up to the square root
of minreal for the 2 × 2 subdomain cases, i.e., when there are cross-points. In practice,
when using complete communication, the Robin parameters should be different at cross-points;
see [14] for details. In this paper, we chose not to do so and use the same p at cross-points.
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5. Conclusion. This paper contains two concrete propositions on how to discretize
Neumann conditions at cross-points in domain decomposition methods: the auxiliary variable
method and complete communication. We showed three new results: first, that the introduction
of auxiliary variables makes it possible to prove convergence of the discretized methods for
very general decompositions, including cross-points, using energy estimates. Second, that
Neumann conditions can be split at cross-points in a way minimizing artificial oscillation in
the domain decomposition, and third, in the Appendix, that lumping the mass matrix in a finite
element-discretized optimized Schwarz method leads to better performance. We explained this
by a reinterpretation at the continuous level, which shows a tangential higher-order operator
appearing. Its weight can even be optimized using the new concept of overlumping, and this
can be done purely at the algebraic level without need to discretize a complicated higher-order
operator.

We explained the auxiliary variable method and complete communication for the concrete
example of optimized Schwarz methods, but whenever an iterative domain decomposition
method requires the computation of Neumann contributions at cross-points, the discrete
version of the algorithm will not be a straightforward adaptation of the continuous version
of the algorithm, and one can consider to use the auxiliary variable method or complete
communication. Complete communication can always be used since it does not need to split
Neumann contributions along edges. Applying the auxiliary variable method can be trickier as
it requires the existence of an updating formula for the split quantities themselves. Advantages
of the auxiliary variable method are the existence of a convergence theorem and that it is
easier to program due to less direct communication needed between computational units.
An advantage of complete communication is that the iterates do not depend on additional
variables. The numerical results in Tables A.2 and A.3 do not show any significant convergence
advantage for one method over the other.

We have only considered one-level domain decomposition methods here, but since two-
level methods are in general based on one-level methods, both approaches of dealing with
the Neumann contribution near cross-points can be applied to the one-level step of the two-
level method. We have also restricted our presentation to two spatial dimensions. In higher
dimensions, in addition to cross-points, there would also be cross-edges. Both the auxiliary
variable method and complete communication can be adapted to higher dimensions, which is
work in progress.

Acknowledgements. This study has been carried out with financial support from the
French State, managed by the French National Research Agency (ANR) in the frame of the
"Investments for the future" Programme IdEx Bordeaux–CPU (ANR-10-IDEX-03-02).

Appendix A. (Over)lumping of the interface mass matrix. We start with a numerical
experiment using the consistent interface mass matrix Bi from (2.5) and the lumped interface
mass matrix Blump

i from (2.6) in the Robin transmission condition of the OSM. We solve the
Poisson equation with right-hand side f(x, y) = 2(y(4.0− y) + x(4.0− x)) on the square
domain Ω = (0, 4)2 with 3 × 3 subdomains of equal size and Robin parameter p = 2.0
discretized using Q1-finite elements with mesh size h = 1/15. Figure A.1 shows how the
error decreases as a function of the iteration index in the OSM for these two choices. We see
that initially the two methods converge at the same rate, but around iteration 40, the method
using the consistent mass interface matrix slows down. We display in Figure A.2 snapshots
of the error distribution for selected iteration indices. We see that a highly oscillatory mode
appears in the error along the interfaces. Snapshots of the error distribution using the lumped
mass matrix Blump

i are presented in Figure A.3 for the same experimental setting. We see that
with the lumped mass matrix, the high-frequency error mode along the interface is much less
pronounced and convergence is faster.
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FIG. A.1. Convergence with lumped Robin(dashed-dotted) and consistent Robin(solid).

FIG. A.2. Scaled error distribution at iteration 35, 50, 75, 100, 150, and 200 for the OSM with consistent
interface mass matrix using auxiliary variables at cross-points.

In order to understand this phenomenon, we reinterpret the effect of mass lumping at the
continuous level: the difference

Blump
i;j,j′ −Bi;j,j′ =


p
6

∑
j′′ |xi;j − xi;j′′ | if j′ = j and xi;j lies on ∂Ωi,

−p6 |xi;j − xi;j′ | if [xi;jxi;j′ ] is an edge of ∂Ωi,

0 otherwise,

looks like the discretization of a negative one-dimensional Laplacian. Technically, this holds
true only if the step size h is constant and we are not at a cross-point. In that case, the lumped
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FIG. A.3. Scaled error distribution at iteration 35, 50, 65, 80, 95, 110 for the OSM with lumped interface mass
matrix using auxiliary variables at cross-points.

matrix actually discretizes the higher-order transmission condition

∂u

∂ni
− ph2

6

∂2u

∂2τ
+ pu.

If we could modify the value of ph2, we would obtain a truly optimizable higher-order, or
Ventcell, transmission condition. This motivates the idea of overlumping: introducing a
relaxation parameter ω, we define

Bωi;j,j′ := (1− ω)Bi;j,j′ + ωBlump
i;j,j′

and thus obtain a discretization of the transmission condition

∂u

∂ni
− ωph

2

6

∂2u

∂2τ
+ pu.

We perform now a numerical experiment with this overlumped mass matrix. For a
rectangular domain Ω = (0, 4) × (0, 2) with two square subdomains Ω1 = (0, 2) × (0, 2)
and Ω2 = (2, 4)× (0, 2), we run the OSM on Laplace’s equation discretized with Q1-finite
elements and homogeneous boundary conditions, thus simulating directly the error equations.
We start with a random initial guess on the interface {2}×(0, 2) (for the importance of random
values, see [11]). We apply 50 optimized Schwarz iterations. We do this for 10× 10, 20× 20,
50× 50, and 100× 100 cells per subdomains with the Robin parameter p ranging from 1 to
20 with an increment of 0.5 and the lump parameter ω from 0 to 100 with an increment of
0.25. We present the optimal p and ω in Table A.1. Using the asymptotic results from [10],
the optimal asymptotic choice of p for the consistent mass interface matrix should behave
like p = O(1/h1/2), and in the emulated Ventcell case from overlumping, we should have
p = O(1/h1/4) and ω = O(1/h), which is well what we observe.
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TABLE A.1
Optimal Robin parameter p and overlumping factor ω with corresponding numerical convergence factor

κ = exp(log(‖u50‖∞/‖u0‖∞)/50) and 2 subdomains.

Cells in Ωi Consistent Lumped Best
10× 10 ω = 0.0, p = 6.0,

κ = 0.5791628
ω = 1.0, p = 3.5,
κ = 0.3887587

ω = 10.25, p = 1.5,
κ = 0.1245496

20× 20 ω = 0.0, p = 8.5,
κ = 0.6853493

ω = 1.0, p = 5.0,
κ = 0.5222360

ω = 17.75, p = 2.0,
κ = 0.1852617

50× 50 ω = 0.0, p = 14.0,
κ = 0.7847913

ω = 1.0, p = 8.0,
κ = 0.6643391

ω = 45.0, p = 2.5,
κ = 0.2863597

100× 100 ω = 0.0, p = 22.5,
κ = 0.8141025

ω = 1.0, p = 12.0,
κ = 0.7332624

ω = 89.25, p = 3.0,
κ = 0.3571062

TABLE A.2
Optimal Robin parameter p and overlumping factor ω with corresponding numerical convergence factor

κ = exp(log(‖u60‖∞/‖u30‖∞)/30) for 2× 2 subdomains using the auxiliary variable method.

Cells in Ωi Consistent Lumped Best
10× 10 ω = 0.0, p = 3.5,

κ = 0.7468911
ω = 1.0, p = 2.0,
κ = 0.6833862

ω = 17.25, p = 0.8,
κ = 0.4862979

20× 20 ω = 0.0, p = 5.0,
κ = 0.8073780

ω = 1.0, p = 3.0,
κ = 0.7053783

ω = 14.75, p = 1.5,
κ = 0.5045374

50× 50 ω = 0.0, p = 8.0,
κ = 0.8775996

ω = 1.0, p = 4.5,
κ = 0.8032485

ω = 82.0, p = 1.5,
κ = 0.5001431

100× 100 ω = 0.0, p = 11.0,
κ = 0.9102802

ω = 1.0, p = 6.5,
κ = 0.8547884

ω = 122.5, p = 2.0,
κ = 0.6013464

We perform a new numerical experiment with this overlumped mass matrix but in
the presence of a single cross-point. For this experiment, we use the auxiliary variable
method, see Table A.2, and complete communication3; see Table A.3. For a square domain
Ω = (0, 4)× (0, 4) with four square subdomains Ω1 = (0, 2)× (0, 2), Ω2 = (2, 4)× (0, 2),
Ω3 = (0, 2)× (2, 4), and Ω4 = (2, 4)× (2, 4), we run the OSM on Laplace’s equation dis-
cretized with Q1-finite elements and homogeneous boundary conditions, thus simulating di-
rectly the error equations. Starting with a random initial guess on the interface
{2} × (0, 4) ∪ (0, 4)× {2}, we apply 50 optimized Schwarz iterations. We do this for 10×10,
20 × 20, 50 × 50, and 100 × 100 cells per subdomains. We start with the Robin parameter
p ranging from 1 to 20 with an increment of 0.5 and the lump parameter ω from 0 to 100
with an increment of 0.25. For the case of 100 × 100 cells per subdomain with consistent
Robin conditions, we extended the search for the Robin parameter up to 24.5. For the best
(overlumping) case with 2× 2 subdomains and 10× 10 cells per subdomain, we extended the
search for the optimal p to the interval [0.1, 1] with an increment of 0.1.

Appendix B. A simple lemma on connected graphs.
LEMMA B.1. Let G be a connected graph. Let V (G) be its set of vertices and E(G) be

its set of edges. Let φ be a function from V (G) to R such that
∑
v∈V (G) φ(v) = 0. Let

Ef (G) = {(v1, v2) ∈ V (G)× V (G) s.t. {v1, v2} ∈ E(G)}.

3Using AD and AN of Section 4.2 and Section 4.2.
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TABLE A.3
Optimal Robin parameter p and overlumping factor ω with corresponding numerical convergence factor

κ = exp(log(‖u60‖∞/‖u30‖∞)/30) for 2× 2 subdomains using complete communication. Same p at the cross-
point as on the edge.

Cells in Ωi Consistent Lumped Best
10× 10 ω = 0.0, p = 3.5,

κ = 0.7553129
ω = 1.0, p = 2.0,
κ = 0.6967638

ω = 17.75, p = 1.0,
κ = 0.3989268

20× 20 ω = 0.0, p = 5.0,
κ = 0.8134911

ω = 1.0, p = 3.0,
κ = 0.7082014

ω = 15.0, p = 1.5,
κ = 0.4997952

50× 50 ω = 0.0, p = 8.0,
κ = 0.8778605

ω = 1.0, p = 4.5,
κ = 0.8034476

ω = 86.0, p = 1.5,
κ = 0.5141311

100× 100 ω = 0.0, p = 11.0,
κ = 0.9106798

ω = 1.0, p = 6.5,
κ = 0.8528811

ω = 122.0, p = 2.0,
κ = 0.6006753.

Then, there exists a function

ψ : Ef (G)→ R

such that

ψ(v1, v2) = −ψ(v2, v1) for all (v1, v2) in Ef (G),

φ(v1) =
∑

v2 s.t. (v1, v2) inEf (G)

ψ(v1, v2).

Proof. The proof is based on recurrence over the number of vertices. The lemma is
trivially true when the number of vertices is 1. Suppose the lemma is true when the number of
vertices is n with n ≥ 1. Let G be a connected graph with n + 1 vertices. It is well known
that there exists a vertex v such that G− {v} remains connected; see [33, Exercise 1.3.38].
Since G is connected, there are edges of G originating from v. Choose w0 adjacent to v. Set
ψ(v, w0) := φ(v), ψ(w0, v) := −φ(v), and ψ(v, w) := ψ(w, v) := 0 for all other vertices w
adjacent to v. Set

φ̂ : V (G) \ {v} → R

w 7→

{
φ(w) if w not adjacent to v,
φ(w)− ψ(w, v) if w adjacent to v.

We have
∑
w φ̂(w) =

∑
w φ(w) = 0. We apply the lemma to φ̂ and G − {v} which is

connected and get the remaining values of ψ.
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