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A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE
HELLAN-HERRMANN-JOHNSON METHOD∗

WOLFGANG KRENDL†, KATHARINA RAFETSEDER‡, AND WALTER ZULEHNER‡

Abstract. For the first biharmonic problem a mixed variational formulation is introduced which is equivalent to a
standard primal variational formulation on arbitrary polygonal domains. Based on a Helmholtz decomposition for an
involved nonstandard Sobolev space it is shown that the biharmonic problem is equivalent to three (consecutively to
solve) second-order elliptic problems. Two of them are Poisson problems, the remaining one is a planar linear elasticity
problem with Poisson ratio 0. The Hellan-Herrmann-Johnson mixed method and a modified version are discussed
within this framework. The unique feature of the proposed solution algorithms for the Hellan-Herrmann-Johnson
method and its modified variant is that they are solely based on standard Lagrangian finite element spaces and standard
multigrid methods for second-order elliptic problems and that they are of optimal complexity.
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1. Introduction. We consider the first biharmonic boundary value problem: for given f ,
find w such that

(1.1) ∆2w = f in Ω, w = ∂nw = 0 on Γ,

where Ω is an open and bounded set in R2 with a polygonal Lipschitz boundary Γ and ∆ and
∂n denote the Laplace operator and the derivative in the direction normal to the boundary,
respectively. Problems of this type occur, for example, in fluid mechanics, where w is the
stream function of a two-dimensional Stokes flow (see, e.g., [22]) and in linear elasticity,
where w is the vertical deflection of a clamped Kirchhoff plate; see, e.g., [18].

In this paper we focus on finite element methods for discretizing the continuous prob-
lem (1.1). The aim is to construct and analyze efficient iterative methods for solving the
resulting linear system. In particular, the Hellan-Herrmann-Johnson (HHJ) mixed finite el-
ement method is studied (see [26, 27, 30]), which is strongly related to the non-conforming
Morley finite element; see [2, 33]. The proposed iterative method consists of the application
of the preconditioned conjugate gradient method to three discretized elliptic problems of
second order. The implementation requires only manipulations with standard conforming
Lagrangian finite elements for second-order problems. The proposed preconditioners are
standard multigrid preconditioners for second-order problems that lead to mesh-independent
convergence rates.

The results are based on a decomposition of the continuous problem into three second-
order elliptic problems that are to be solved consecutively. The first and the last problem are
Poisson problems with Dirichlet conditions, the second problem is a pure traction problem in
planar linear elasticity with Poisson ratio 0. The HHJ method is a non-conforming method in
this setup. A conforming modification will be discussed as well.

There are many alternative approaches for biharmonic problems discussed in literature.
Finite element discretizations range from conforming and classical non-conforming finite
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element methods for fourth-order problems, discontinuous Galerkin (dG) methods for fourth-
order problems to various mixed methods including mixed dG methods; see, e.g., [4, 5, 7, 15,
18, 20, 29] and the references cited therein. Solution techniques proposed for the linear systems
that show mesh-independent or nearly mesh-independent convergence rates are typically based
on two-level or multilevel additive or multiplicative Schwarz methods (including multigrid
methods); see, e.g., [12, 13, 14, 16, 25, 36, 38, 39] and the references cited therein.

We are not aware of any other approach that is based solely on standard components
for second-order elliptic problems (regarding both the discretization and the solver for the
discretized problem) and for that optimal convergence behavior could be shown. Regarding
the discretization, the method introduced in [5, 7] also uses only standard C0 finite element
spaces for second-order problems but for a different formulation in the kinematic variables
w and∇w. The analysis of the method in [5, 7] is based on a mesh-dependent energy norm,
which requires some extra nonstandard techniques for constructing and analyzing an efficient
iterative solver. The Hellan-Herrmann-Johnson method is strongly related to the mixed dG
method introduced in [29] for plate bending problems. This method allows a reduction to a
linear system for an approximation of w from a standard C0 finite element space, where the
associated system matrix can be seen as a discretization matrix of a fourth-order operator (in
our case of the biharmonic operator). This again requires some extra techniques beyond the
case of second-order problems for constructing and analyzing an efficient iterative solver.

An additional feature of the approach in this paper is a new formulation of the underlying
continuous mixed variational problem that is fully equivalent to the original primal variational
problem without any further assumptions on Ω like convexity. This is achieved by introducing
an appropriate nonstandard Sobolev space.

The results of this paper can be extended to boundary conditions of the formw = ∆w = 0
on Γ, which represent simply supported Kirchhoff plates in linear elasticity, as well as to
non-homogeneous variants. An extension to plate bending problems with free boundaries
and, more generally, to mixed variants involving all three types of boundary conditions is not
straightforward and subject of further investigations.

The paper is organized as follows. Section 2 contains a modification of a standard mixed
formulation of the biharmonic problem, for which well-posedness will be shown. A Helmholtz
decomposition of an involved nonstandard Sobolev space is derived in Section 3 and the
resulting decomposition of the biharmonic problem is presented. In Section 4 the Hellan-
Herrmann-Johnson method and a modified version are discussed. Section 5 contains the
discrete version of the Helmholtz decomposition of Section 3. In Section 6 we briefly discuss
error estimates. The paper closes with a few numerical experiments in Section 7 for illustrating
the theoretical results.

2. A modified mixed variational formulation. Here and throughout the paper we use
L2(Ω), Wm,p(Ω), Hm(Ω) = Wm,2(Ω), and Hm

0 (Ω) with its dual space H−m(Ω) to de-
note the standard Lebesgue and Sobolev spaces with corresponding norms ‖ · ‖0, ‖ · ‖m,p,
‖ · ‖m = ‖ · ‖m,2, | · |m, and ‖ · ‖−m for p ≥ 1 and positive integers m; see, e.g., [1]. A
standard (primal) variational formulation of (1.1) reads as follows: for given f ∈ H−1(Ω),
find w ∈ H2

0 (Ω) such that

(2.1)
∫

Ω

∇2w : ∇2v dx = 〈f, v〉 for all v ∈ H2
0 (Ω),

where∇2 denotes the Hessian,A : B =
∑2

i,j=1AijBij forA,B ∈ R2×2, and 〈·, ·〉 denotes
the duality product in H∗ × H for a Hilbert space H with dual H∗, here for H = H1

0 (Ω).
Existence and uniqueness of a solution to (2.1) is guaranteed even for more general right-hand
sides f ∈ H−2(Ω) by the theorem of Lax-Milgram; see, e.g., [32, 34].
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For the HHJ mixed method the auxiliary variable

(2.2) w = ∇2w

is introduced, whose elements can be interpreted as bending moments in the context of
linear elasticity. This allows to rewrite the biharmonic equation in (1.1) as a system of two
second-order equations,

(2.3) ∇2w = w, div divw = f in Ω,

with the following notation for a matrix-valued function v and a vector-valued function φ,

div v =

[
∂1v11 + ∂2v12

∂1v21 + ∂2v22

]
and div φ = ∂1φ1 + ∂2φ2.

In the standard approach a mixed variational formulation is directly derived from the
system (2.3). We take here a little detour, which better motivates the nonstandard Sobolev
space we use in this paper for a modified mixed variational formulation. Starting point is the
following unconstrained optimization problem: find w ∈ H2

0 (Ω) such that

(2.4) J(w) = min
v∈H2

0 (Ω)
J(v) with J(v) =

1

2

∫
Ω

∇2v : ∇2v dx− 〈f, v〉.

It is well-known that (2.4) is equivalent to (2.1). Actually, (2.1) can be seen as the opti-
mality system characterizing the solution of (2.4). By introducing the auxiliary variable
w = ∇2w ∈ L2(Ω)sym with

L2(Ω)sym = {v : vji = vij ∈ L2(Ω), 1 ≤ i, j ≤ 2},

equipped with the standard L2-norm ‖v‖0 for matrix-valued functions v, the objective func-
tional becomes a functional depending on the original and the auxiliary variable:

(2.5) J(v,v) =
1

2

∫
Ω

v : v dx− 〈f, v〉.

The weak formulation of (2.2) leads to the constraint

(2.6) c((w,w), τ ) = 0 for all τ ∈M ,

where

c((v,v), τ ) = −
∫

Ω

v : τ dx−
∫

Ω

∇v · div τ dx,

andM is a (not yet specified) space of sufficiently smooth matrix-valued test functions. By
this the unconstrained optimization problem (2.4) is transformed to the following constrained
optimization problem: find (w,w) ∈ H1

0 (Ω)×L2(Ω)sym that minimizes the objective func-
tional (2.5) subject to the constraint (2.6). The Lagrangian functional associated with this
constrained optimization problem is given by

L ((v,v), τ ) = J(v,v) + c((v,v), τ ),

which leads to the following first-order optimality system:

(2.7)

∫
Ω

w : v dx+ c((v,v),σ) = 〈f, v〉 for all (v,v) ∈ H1
0 (Ω)×L2(Ω)sym,

c((w,w), τ ) = 0 for all τ ∈M .
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Here σ ∈ M denotes the Lagrangian multiplier associated with the constraint (2.6). The
optimality system is a saddle point problem on the spaceX = H1

0 (Ω)×L2(Ω)sym, equipped
with the standard norm

‖(v,v)‖X =
(
|v|21 + ‖v‖20

)1/2

for the primal variable (v,v), and the (not yet specified) Hilbert space M , equipped with a
norm ‖τ‖M for the dual variable τ . An essential condition for the analysis of (2.7) is the
inf-sup condition for the bilinear form c, which reads: there is a constant β > 0 such that

sup
06=(v,v)∈X

c((v,v), τ )

‖(v,v)‖X
≥ β ‖τ‖M .

It is easy to see that

(2.8) sup
06=(v,v)∈X

c((v,v), τ )

‖(v,v)‖X
=
(
‖τ‖20 + ‖div div τ‖2−1

)1/2

for sufficiently smooth functions τ . If the right-hand side in (2.8) is chosen as the norm in
M , then the inf-sup condition is trivially satisfied with constant β = 1. This motivates to set
M = H−1(div div,Ω)sym with

H−1(div div,Ω)sym = {τ ∈ L2(Ω)sym : div div τ ∈ H−1(Ω)},

equipped with the norm

‖τ‖−1,div div =
(
‖τ‖20 + ‖div div τ‖2−1

)1/2
.(2.9)

Here div div τ is meant in the distributional sense. It is easy to see thatH−1(div div,Ω)sym
is a Hilbert space. In order to have a well-defined bilinear form c, the original definition has to
be replaced by

c((v,v), τ ) = −
∫

Ω

v : τ dx+ 〈div div τ , v〉,

which coincides with the original definition if τ is sufficiently smooth, say τ ∈ H1(Ω)sym
with

H1(Ω)sym = {τ ∈ L2(Ω)sym : τij ∈ H1(Ω), 1 ≤ i, j ≤ 2},

equipped with the standard H1-norm ‖τ‖1 and H1-semi-norm |τ |1 for matrix-valued func-
tions τ . Observe that

H1(Ω)sym ⊂H−1(div div,Ω)sym ⊂ L2(Ω)sym.

From the first row of the optimality system (2.7) for v = 0 it easily follows that w = σ.
So the auxiliary variable w can be eliminated and we obtain after reordering the following
reduced optimality system: For f ∈ H−1(Ω), find σ ∈H−1(div div,Ω)sym and w ∈ H1

0 (Ω)
such that ∫

Ω

σ : τ dx− 〈div div τ , w〉 = 0 for all τ ∈H−1(div div,Ω)sym,

−〈div divσ, v〉 = −〈f, v〉 for all v ∈ H1
0 (Ω).

(2.10)
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REMARK 2.1. The presented approach to derive the mixed method via the optimality
system of a constrained optimization problem is the same approach as taken in [19] for the
Ciarlet-Raviart mixed method. See [40] for a reformulation involving a similar nonstandard
Sobolev space H−1(∆,Ω) = {v ∈ H1(Ω) : ∆v ∈ H−1(Ω)} as in this paper.

Problem (2.10) has the typical structure of a saddle point problem

(2.11)
a(σ, τ ) + b(τ , w) = 0 for all τ ∈ V ,
b(σ, v) = −〈f, v〉 for all v ∈ Q.

If the linear operator A : V ×Q −→ (V ×Q)∗ is introduced by〈
A
[
σ
w

]
,

[
τ
v

]〉
= a(σ, τ ) + b(τ , w) + b(σ, v),

then the mixed variational problem (2.11) can be rewritten as a linear operator equation

A
[
σ
w

]
= −

[
0
f

]
.

If the bilinear form a is symmetric and non-negative, i.e., a(σ, τ ) = a(τ ,σ) and a(τ , τ ) ≥ 0,
which is the case for (2.10), it is well-known that A is an isomorphism from V × Q onto
(V ×Q)∗, if and only if the following conditions are satisfied; see, e.g., [10]:

1. a is bounded: there is a constant ‖a‖ > 0 such that

|a(σ, τ )| ≤ ‖a‖ ‖σ‖V ‖τ‖V for all σ, τ ∈ V .

2. b is bounded: there is a constant ‖b‖ > 0 such that

|b(τ , v)| ≤ ‖b‖ ‖τ‖V ‖v‖Q for all τ ∈ V , v ∈ Q.

3. a is coercive on the kernel of b: there is a constant α > 0 such that

a(τ , τ ) ≥ α ‖τ‖2V for all τ ∈ kerB

with kerB = {τ ∈ V : b(τ , v) = 0 for all v ∈ Q}.
4. b satisfies the inf-sup condition: there is a constant β > 0 such that

inf
06=v∈Q

sup
06=τ∈V

b(τ , v)

‖τ‖V ‖v‖Q
≥ β.

Here ‖τ‖V and ‖v‖Q denote the norms in V and Q, respectively. We will refer to these
conditions as Brezzi’s conditions with constants ‖a‖, ‖b‖, α, and β. (We tacitly assume that
‖a‖ and ‖b‖ are the smallest constants for estimating the bilinear forms a and b. Then ‖a‖
and ‖b‖ match the standard notation for the norms of the bilinear forms a and b.)

In the next theorem we show that Brezzi’s conditions are satisfied for (2.10). For the
proof as well as for later use, we first introduce the following simple but useful notation for a
function v ∈ H1

0 (Ω):

(2.12) π(v) = v I with I =

[
1 0
0 1

]
.

THEOREM 2.2. The bilinear forms

a(σ, τ ) =

∫
Ω

σ : τ dx and b(τ , v) = −〈div div τ , v〉
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satisfy Brezzi’s conditions on V = H−1(div div,Ω)sym and Q = H1
0 (Ω), equipped with the

norms ‖τ‖−1,div div and |v|1, respectively, with the constants

‖a‖ = ‖b‖ = α = 1 and β = (1 + 2c2F )−1/2,

where cF denotes the constant in the Friedrichs’ inequality: ‖v‖0 ≤ cF |v|1 for all v ∈ H1
0 (Ω).

Proof.
1. Let σ, τ ∈H−1(div div,Ω)sym. Then

|a(σ, τ )| ≤ ‖σ‖0‖τ‖0 ≤ ‖σ‖−1,div div‖τ‖−1,div div.

2. Let τ ∈H−1(div div,Ω)sym and v ∈ H1
0 (Ω). Then

|b(τ , v)| = |〈div div τ , v〉| ≤ ‖ div div τ‖−1 |v|1 ≤ ‖τ‖−1,div div |v|1.

3. Observe that kerB = {τ ∈ L2(Ω)sym : div div τ = 0}. Therefore,

a(τ , τ ) = ‖τ‖20 = ‖τ‖2−1,div div for all τ ∈ kerB.

4. Here we follow the proofs in [10, 17]. For v ∈ H1
0 (Ω) it is easy to see that

b(π(v), v) = |v|21 and ‖π(v)‖2−1,div div = ‖π(v)‖20 + |v|21 ≤ (1 + 2c2F ) |v|21.

Therefore

sup
0 6=τ∈V

|b(τ , v)|
‖τ‖−1,div div

≥ |b(π(v), v)|
‖π(v)‖−1,div div

=
|v|21

‖π(v)‖20 + |v|21)1/2

≥ 1

(1 + 2c2F )1/2
|v|1.

COROLLARY 2.3. The problems (2.1) and (2.10) are fully equivalent, i.e., if w ∈ H2
0 (Ω)

solves (2.1), then σ = ∇2w ∈H−1(div div,Ω)sym and (σ, w) solves (2.10). And, vice versa,
if (σ, w) ∈H−1(div div,Ω)sym×H1

0 (Ω) solves (2.1), then w ∈ H2
0 (Ω) and w solves (2.1).

Proof. Both problems are uniquely solvable. Therefore, it suffices to show that (w,σ)
with σ = ∇2w solves (2.10), if w solves (2.1). So, assume that w ∈ H2

0 (Ω) is a solution of
(2.1). Then, obviously, σ ∈ L2(Ω)sym and∫

Ω

σ : ∇2v dx = 〈f, v〉 for all v ∈ H2
0 (Ω),

which implies that div divσ = f ∈ H−1(Ω) in the distributional sense. Therefore,
σ ∈H−1(div div,Ω)sym and the second row in (2.10) immediately follows.

By the definition of div div τ in the distributional sense we have

〈div div τ , v〉 =

∫
Ω

τ : ∇2v dx ∀v ∈ C∞0 (Ω).

Since C∞0 (Ω) is dense in H2
0 (Ω), it follows for v = w that

〈div div τ , w〉 =

∫
Ω

τ : ∇2w dx =

∫
Ω

τ : σ dx,

which shows the first row in (2.10).
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REMARK 2.4. The spaceH−1(div div,Ω)sym was already introduced in [35, 37] within
linear elasticity problems—not for the plate bending problem of linear elasticity considered
here, however.

There is a natural trace operator associated with H−1(div div,Ω)sym, which was dis-
cussed in [35, 37]. We briefly recall here the basic properties for later reference.

Let the boundary Γ of the polygonal domain Ω be written in the form

Γ =

K⋃
k=1

Γk,

where Γk, k = 1, 2, . . . ,K, are the edges of Γ, considered as open line segments. Γk denotes
the corresponding closed line segment. For τ ∈ H−1(div div,Ω)sym that are additionally
twice continuously differentiable and v ∈ H2(Ω) ∩H1

0 (Ω) we obtain the following identity
by integration by parts,

(2.13)
∫

Ω

(div div τ ) v dx =

∫
Ω

τ : ∇2v dx−
∫

Γ

τnn ∂nv ds

with the outer normal unit vector n of Γ and

τnn = nT τn.

Following standard procedures this identity allows to extend the trace τnn to all functions
τ ∈ H−1(div div,Ω)sym as an element of the dual of the image of the Neumann traces of
functions from H2(Ω) ∩H1

0 (Ω), i.e.,

τnn ∈ H−1/2
pw (Γ) =

K∏
k=1

H−1/2(Γk),

where H−1/2(Γk) is the dual of H̃1/2(Γk); see [23] for details. Another widely used notation
for H̃1/2(Γk) is H1/2

00 (Γk); see [32].
From (2.13) we obtain the corresponding Green’s formula for τ ∈H−1(div div,Ω)sym

and v ∈ H2(Ω) ∩H1
0 (Ω):

(2.14) 〈div div τ , v〉 =

∫
Ω

τ : ∇2v dx− 〈τnn, ∂nv〉Γ .

Here 〈·, ·〉Γ denotes the duality product in a Hilbert space of functions on Γ.

3. A Helmholtz decomposition ofH−1(div div,Ω)sym. In this section we study some
important structural properties of H−1(div div,Ω)sym which are helpful for analyzing the
HHJ method in the next sections.

THEOREM 3.1. For each τ ∈H−1(div div,Ω)sym there is a unique decomposition

τ = τ0 + τ1,

where τ0 = π(p) for some p ∈ H1
0 (Ω) and τ1 ∈ L2(Ω)sym with div div τ1 = 0. Moreover,

c
(
|p|21 + ‖τ1‖20

)
≤ ‖τ‖2−1,div div ≤ c

(
|p|21 + ‖τ1‖20

)
for all τ ∈ H−1(div div,Ω)sym with positive constants c and c that depend only on the
constant cF of the Friedrichs’ inequality.
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Proof. For τ ∈ H−1(div div,Ω)sym, let p ∈ H1
0 (Ω) be the unique solution to the

variational problem∫
Ω

∇p · ∇v dx = −〈div div τ , v〉 for all v ∈ H1
0 (Ω),(3.1)

and set τ0 = π(p). Since

−〈div div τ0, v〉 =

∫
Ω

∇p · ∇v dx,

it follows that div div τ0 = div div τ , and, therefore, div div τ1 = 0 for τ1 = τ − τ0 in the
distributional sense. On the other hand, if τ = τ0 + τ1 with τ0 = π(p) and div div τ1 = 0,
then −div div τ0 = −div div τ + div div τ1 = −div div τ , which implies (3.1). This
shows the uniqueness.

Furthermore, (3.1) implies |τ0|21 = 2 |p|21 = 2 ‖ div div τ‖2−1. Hence

‖τ‖2−1,div div = ‖τ‖20 + ‖ div div τ‖2−1 = ‖τ0 + τ1‖20 + |p|21
≤ 2 ‖τ0‖20 + 2 ‖τ1‖20 + |p|21 ≤

(
1 + 4c2F

)
|p|21 + 2 ‖τ1‖20

and

|p|21 + ‖τ1‖20 = |p|21 + ‖τ − τ0‖20 ≤ |p|21 + 2 ‖τ‖20 + 2 ‖τ0‖20
≤ 2 ‖τ‖20 + (1 + 4c2F ) |p|21 = 2 ‖τ‖20 + (1 + 4c2F ) ‖div div τ‖2−1.

Then the estimates immediately follow with the constants 1/c = c = max(2, 1 + 4c2F ).
In short, we have algebraically as well as topologically

H−1(div div,Ω)sym = π(H1
0 (Ω))⊕H (div div,Ω)

with

H (div div,Ω) = {τ ∈ L2(Ω)sym : div div τ = 0}.

Here ⊕ denotes the direct sum of Hilbert spaces.
REMARK 3.2. The Helmholtz decomposition of L2(Ω)sym in [28], based on previous

results in [6], has the same second component. The first component in [6, 28] is different
and requires the solution of a biharmonic problem in contrast to Theorem 3.1, where the first
component requires to solve only a Poisson problem.

Next an explicit characterization of H (div div,Ω) is given.
THEOREM 3.3. Let Ω be simply connected. For each τ ∈ H (div div,Ω), there is a

function φ ∈
(
H1(Ω)

)2
such that

τ = HTε(φ)H with H =

[
0 −1
1 0

]
and ε(φ)ij =

1

2
(∂jφi + ∂iφj) .

On the other hand, each function of the form τ = HTε(φ)H with φ ∈
(
H1(Ω)

)2
lies in

H (div div,Ω). The function φ is unique up to an element from

RM =

{
τ (x) = a

[
−x2

x1

]
+ b : a ∈ R, b ∈ R2

}
,
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and there is a constant cK such that

cK ‖φ‖1 ≤ ‖τ‖0 = ‖ε(φ)‖0 ≤ ‖φ‖1 for all φ ∈
(
H1(Ω)

)2
/RM.

Proof. From [6, Lemma 1] it follows that τ ∈ H (div div,Ω) can be written in the
following way:

τ =

[
0 −ρ
ρ 0

]
+ Curlφ with Curlφ =

[
−∂2φ1 ∂1φ1

−∂2φ2 ∂1φ2

]
for some ρ ∈ L2

0(Ω) and φ ∈
(
H1(Ω)

)2
. The proof in [6] relies on the characterization

of the kernel of the divergence operator in
(
L2(Ω)

)2
, which is well-known (see, e.g., [22,

Theorem 3.1]) and in
(
H−1(Ω)

)2
, for which we refer to Lemma A.1 in the appendix.

To ensure symmetry of τ , it follows (see [28]) that

ρ =
1

2
div φ.

Replacing φ = (φ1, φ2)T by (−φ2, φ1)T yields the representation. The estimates follow from
Korn’s inequality.

Therefore, we have the following representation of the solution σ to (2.10):

(3.2) σ = π(p) +HTε(φ)H.

The analogous representation for the test functions τ = π(q) +HTε(ψ)H leads to the fol-
lowing equivalent formulation of (2.10). Find p ∈ H1

0 (Ω), φ ∈
(
H1(Ω)

)2
/RM, w ∈ H1

0 (Ω)
such that

(3.3)

∫
Ω

π(p) : π(q) dx +

∫
Ω

π(q) : ε(φ) dx +

∫
Ω

∇w · ∇q dx = 0,∫
Ω

π(p) : ε(ψ) dx+

∫
Ω

ε(φ) : ε(ψ) dx = 0,∫
Ω

∇p · ∇v dx = −〈f, v〉

for all q ∈ H1
0 (Ω), ψ ∈

(
H1(Ω)

)2
/RM, v ∈ H1

0 (Ω).
Observe that π(p) : π(q) = 2 p q and π(q) : ε(ψ) = q divψ, which allows to simplify

parts of (3.3).
In summary, the biharmonic problem is equivalent to three (consecutively to solve) elliptic

second-order problems. The first problem is a Poisson problem with Dirichlet boundary
conditions for p, which reads in the strong form

∆p = f in Ω, p = 0 on Γ.

The second problem is a pure traction problem in linear elasticity with Poisson ratio 0 for φ,
which reads in the strong form

−div ε(φ) = ∇p in Ω, ε(φ)n = 0 on Γ.

And, finally, the third problem is a Poisson problem with Dirichlet boundary conditions for the
original variable w, which reads in the strong form

∆w = 2 p+ div φ in Ω, w = 0 on Γ.
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4. The Hellan-Herrmann-Johnson method. Let Th be an admissible triangulation of
the polygonal domain Ω. For k ∈ N the standard finite element spaces Sh and Sh,0 are given
by

Sh = {v ∈ C(Ω): v|T ∈ Pk for all T ∈ Th} and Sh,0 = Sh ∩H1
0 (Ω),

where Pk denotes the set of bivariate polynomials of total degree less than or equal to k.
A quite natural discretization of (3.3) is the following conforming method. Find ph ∈ Sh,0,

φh ∈ (Sh)
2
/RM, wh ∈ Sh,0 such that

(4.1)

∫
Ω

π(ph) : π(q)dx +

∫
Ω

π(q) : ε(φh) dx +

∫
Ω

∇wh · ∇q dx = 0,∫
Ω

π(ph) : ε(ψ) dx+

∫
Ω

ε(φh) : ε(ψ) dx = 0,∫
Ω

∇ph · ∇v dx = −〈f, v〉

for all q ∈ Sh,0, ψ ∈ (Sh)
2
/RM, v ∈ Sh,0. In this and the subsequent section we will see that

this method is strongly related to the HHJ method, which we introduce next.
For the approximation of the Lagrangian multiplier σ, the HHJ method uses the finite

element space

Vh = {τ ∈ L2(Ω)sym : τ |T ∈ Pk−1 for all T ∈ Th, and
τnn is continuous across inter-element boundaries}.

For the approximation of the original variable w the standard finite element space

Qh = Sh,0

is used. So, the HHJ method reads as follows: find σh ∈ Vh and wh ∈ Qh such that

(4.2)

∫
Ω

σh : τ dx − 〈div divh τ , wh〉 = 0 for all τ ∈ Vh,

− 〈div divh σh, v〉 = − 〈f, v〉 for all v ∈ Qh

with

〈div divh τ , v〉 =
∑
T

{∫
T

τ : ∇2v dx−
∫
∂T

τnn ∂nv ds

}
for τ ∈ Vh, v ∈ Qh.

Similarly to the linear functional div div τ ∈ H−1(Ω) (for τ ∈ H−1(div div,Ω)sym),
we consider div divh τ (for τ ∈ Vh) as a linear functional from the dual of Qh. And as
introduced in Section 2 we use 〈·, ·〉 as the generic symbol for duality products, here for the
Hilbert space Qh.

If compared with (2.14), this definition of 〈div divh τ , v〉 for τ ∈ Vh and v ∈ Qh in the
HHJ method is just an element-wise assembled version of corresponding expressions on the
continuous level, a standard technique in non-conforming methods.

REMARK 4.1. Using integration by parts we obtain

〈div divh τ , v〉 = −
∑
T∈Th

{∫
T

div τ · ∇v dx−
∫
∂T

τns ∂sv ds

}
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with the normal vector n = (n1, n2)T , the vector s = (−n2, n1)T , which is tangent to Γ, the
tangential derivative ∂s, and

τns = sT τn.

The HHJ method is often formulated with this representation, which allows an extension to all
functions τ from the (mesh-dependent) infinite-dimensional function space

(4.3)
Ṽ = {τ ∈ L2(Ω)sym : τij |T ∈ H1(T ) for all T ∈ Th, 1 ≤ i, j ≤ 2, and

τnn is continuous across inter-element boundaries}.

This space was used for the analysis of the method in [3, 17, 21] and others. Existence and
uniqueness of a solution for the corresponding variational problem on the continuous level
could be shown under additional smoothness assumptions. For the approach taken in this
paper, this is not required.

Similar to the continuous case, the well-posedness of the discrete problem can be shown.
For the proof of the discrete inf-sup condition, the discrete analogue to π(v) (see (2.12)) is
needed. For vh ∈ Sh,0, we define

πh(vh) = Πhπ(vh)

with the linear operator Πh, introduced in [17] by the conditions

(4.4)
∫
e

((τh)nn − τnn) q ds = 0, for all q ∈ Pk−1, for all edges e of T, T ∈ Th,

and

(4.5)
∫
T

((τh)ij − τij) q dx = 0, for all q ∈ Pk−2, T ∈ Th, 1 ≤ i, j ≤ 2,

for τh = Πhτ ∈ Vh and τ ∈ π(Qh). Observe that Πh was originally introduced in [17] as a
linear operator on the infinite-dimensional space Ṽ from above.

From the corresponding properties of Πh in [17, Lemma 4], the next result directly
follows.

LEMMA 4.2. Assume that Th is a regular family of triangulation. Then there exists a
constant cB > 0 that is independent of h such that

‖πh(v)‖0 ≤ cB |v|1 for all v ∈ Sh,0.

Moreover, we need the following simple identity.
LEMMA 4.3. For all p, v ∈ Sh,0, we have

−〈div divh πh(p), v〉 =

∫
Ω

∇p · ∇v dx.

Proof. By integration by parts we have

〈div divh πh(p), v〉 =
∑
T∈Th

{∫
T

Πhπ(p) : ∇2v dx−
∫
∂T

(Πhπ(p))nn ∂nv ds

}
=
∑
T∈Th

{∫
T

π(p) : ∇2v dx−
∫
∂T

(π(p))nn ∂nv ds

}
=
∑
T∈Th

{∫
T

p∆v dx−
∫
∂T

p ∂nv ds

}
= −

∫
Ω

∇p · ∇v dx.
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Now the well-posedness of the discrete problem can be shown.
THEOREM 4.4. The bilinear forms

a(σ, τ ) =

∫
Ω

σ : τ dx, bh(τ , v) = −〈div divh τ , v〉

satisfy Brezzi’s conditions on Vh and Qh, equipped with the norms ‖τ‖−1,div div,h and |v|1,
respectively, where

‖τ‖−1,div div,h =
(
‖τ‖20 + ‖ div divh τ‖2−1,h

)1/2
(4.6)

and

‖`‖−1,h = sup
vh∈Sh,0

|〈`, vh〉|
|vh|1

for ` ∈ (Sh,0)∗,

with the constants

‖a‖ = ‖b‖ = α = 1 and β = (1 + c2B)−1/2,

where cB denotes the constant in Lemma 4.2.
Proof.

1. Let σ, τ ∈ Vh. Then

|a(σ, τ )| ≤ ‖σ‖0 ‖τ‖0 ≤ ‖σ‖−1,div div,h ‖τ‖−1,div div,h.

2. Let τ ∈ Vh and v ∈ Qh. Then

|b(τ , v)| = |〈div divh τ , v〉 ≤ ‖div divh τ‖−1,h|v|1 ≤ ‖τ‖−1,div div,h‖v‖1.

3. Observe that kerBh = {τ ∈ Vh : div div τh = 0}. Therefore,

a(τ , τ ) = ‖τ‖20 = ‖τ‖2−1,div div,h for τ ∈ kerBh.

4. From Lemma 4.2 and Lemma 4.3 we obtain for v ∈ Qh,

bh(πh(v), v) = |v|21

and

‖πh(v)‖2−1,div div,h = ‖πh(v)‖20 + |v|21 ≤ (1 + c2B) |v|21.

Therefore,

sup
06=τ∈Vh

|bh(τ , v)|
‖τ‖−1,div div,h

≥ |bh(πh(v), v)|
‖πh(v)‖−1,div div,h

=
|v|21

(‖πh(v)‖20 + |v|21)1/2

≥ 1

(1 + c2B)1/2
|v|1.

Observe that the norms introduced for the space V = H−1(div div,Ω)sym in (2.9) and
its discrete counterpart Vh in (4.6) are similar but different. For the discrete problem the norm
is mesh-dependent.
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5. A discrete Helmholtz decomposition. We have the following discrete version of
Theorem 3.1.

THEOREM 5.1. For each τ ∈ Vh, there is a unique decomposition

τ = τ̂0 + τ̂1,

where τ̂0 = πh(p̂) for some p̂ ∈ Qh and τ̂1 ∈ Vh with div divh τ̂1 = 0. Moreover,

c
(
|p̂|21 + ‖τ̂1‖20

)
≤ ‖τ‖2−1,div div,h ≤ c

(
|p̂|21 + ‖τ̂1‖20

)
for all τ ∈ Vh, with positive constants c and c, which depend only on the constant cB of the
inequality in Lemma 4.2.

The proof is completely analogous to the proof for the continuous case and is therefore
omitted. The only difference is the use of the estimate from Lemma 4.2 instead of the
Friedrichs’ inequality.

So, in short,

Vh = πh(Sh,0)⊕Hh(div divh,Ω)

with

Hh(div divh,Ω) = {τ ∈ Vh : 〈div divh τ , vh〉 = 0 for all vh ∈ Qh}.

For describing the space Hh(div divh,Ω) more explicitly, we consider the subspace of
all functions in H (div div,Ω) that can be represented by a finite element function φ ∈ (Sh)

2,
for which we show the following result.

THEOREM 5.2. Let Ω be simply connected. Then

Hh(div divh,Ω) = {HTε(φ)H : φ ∈ (Sh)
2}.

Proof. Let φ ∈ (Sh)
2. Then τ = HTε(φ)H ∈ Pk−1 for all triangles T ∈ Th.

Furthermore, let e be an edge of a triangle T with outer unit normal vector n = (n1, n2)T and
unit tangent vector s = (−n2, n1)T . By elementary computations we obtain

τnn = nTHTε(φ)Hn = s · ∂sφ.

So, τnn depends only on values of φ on the edge e, which immediately implies that τnn
is continuous on inter-element boundaries. This shows that τ lies in Vh, and therefore the
inclusion {τ = HTε(φ)H : φ ∈ (Sh)

2} ⊂Hh(div divh,Ω) follows.
The equality follows by comparing the dimensions. We have

dim{τ = HTε(φ)H : φ ∈ (Sh)
2} = 2 dimSh − dim RM = 2 dimSh − 3.

On the other hand, by Theorem 5.1, it follows that

dim Hh(div divh,Ω) = dimVh − dimSh,0.

A simple count of the degrees of freedom for Vh yields

dimVh = dimSh,0 + 2 dimSh − 3.

Therefore, Hh(div divh,Ω) = 2 dimSh − 3, which completes the proof.
REMARK 5.3. A consequence of the last theorem is the important inclusion

Hh(div divh,Ω) ⊂H (div div,Ω),

that resembles the corresponding result of [17, Lemma 5].
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Therefore, we have the following representation of the approximate solution σh ∈ Vh of
(4.2):

(5.1) σh = πh(ph) +HTε(φh)H.

The analogous representation for the test functions τ = πh(q) + HTε(ψ)H leads to the
following equivalent formulation of (4.2). Find ph ∈ Sh,0, φh ∈ (Sh)

2
/RM, wh ∈ Sh,0 such

that

(5.2)

∫
Ω

π̂h(ph) : π̂h(q)dx+

∫
Ω

π̂h(q) : ε(φh) dx+

∫
Ω

∇wh · ∇q dx = 0,∫
Ω

π̂h(ph) : ε(ψ) dx +

∫
Ω

ε(φh) : ε(ψ) dx = 0,∫
Ω

∇ph · ∇v dx = −〈f, v〉

for all q ∈ Sh,0, ψ ∈ (Sh)
2
/RM, v ∈ Sh,0, and with

π̂h(q) = Hπh(q)HT .

Observe that the HHJ method in the form of (5.2) is a non-conforming method for (3.3),
while (4.1) can be seen as a conforming variant. Compared to (5.2), the conforming variant is
slightly less costly since the linear operator Πh is not needed.

6. Error estimates. Since the new mixed variational formulation is equivalent to the
original primal variational formulation (without any additional assumption on Ω) and the finite
element space Vh of the original Hellan-Herrmann-Johnson method has not changed (but
only its representation, which amounts to a change of basis), all known error estimates for
the original Hellan-Herrmann-Johnson method are still valid. For completeness we briefly
recall some of the most important estimates from [3, 9, 17, 21] and give a sketch of the proofs
using the framework of the new variational formulation. Afterwards we will present new error
estimates for the conforming variant (4.1).

6.1. The original Hellan-Herrmann-Johnson method. We closely follow the approach
in [3], which is based on two essential assumptions, regularity and consistency. Regularity
is ensured in [3] by considering only convex domains Ω. Consistency is ensured in [3] by
setting up a framework in which the Hellan-Herrmann-Johnson method becomes a conforming
method. Then the estimates easily follow from the existence of two interpolation operators
Πh and Ih for σ and w, respectively, and their approximation properties.

Here we recall a (weaker) regularity result from [8, 9], which is valid without any
additional assumption on Ω.

THEOREM 6.1. If f ∈ H−1(Ω), then the solution w of (2.1) lies in W 3,p(Ω) for some
p ∈ (4/3, 2] and there is a constant c > 0 such that

(6.1) ‖w‖W 3,p(Ω) ≤ c ‖f‖−1.

Actually, the regularity results in [8, 9] cover a much larger class of boundary conditions.
Although the Hellan-Herrman-Johnson method is a non-conforming method with respect to
(2.10), we still have consistency. In order to show this, we need to extend the bilinear form bh,
originally defined on Vh ×Qh by

bh(τ , v) = −
∑
T∈Th

{∫
T

τ : ∇2v dx−
∫
∂T

τnn ∂nv ds

}
,
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to the larger domain Ṽ × Q̃, given by

Ṽ = {τ ∈ L2(Ω)sym : τij |T ∈W 1,p(T ) for all T ∈ Th, 1 ≤ i, j ≤ 2, and
τnn is continuous across inter-element boundaries}

and

Q̃ = {v ∈ H1
0 (Ω): v|T ∈ H2(T ) for all T ∈ Th}.

The well-definedness of bh on Ṽ × Q̃ follows from standard embedding theorems for Sobolev
spaces; see, e.g., [1]. Observe that Ṽ coincides with the space in (4.3) for p = 2. Therefore,
we keep the same notation.

Now we can show the following consistency result.
THEOREM 6.2. For the solution (σ, w) of (2.10), we have

(6.2)
a(σ, τ ) + bh(τ , w) = 0 for all τ ∈ Ṽ ,

bh(σ, v) = −〈f, v〉 for all v ∈ Q̃.

Proof. From Theorem 6.1 it follows that bh(τ , w) and bh(σ, v) are well-defined for all
(τ , v) ∈ Ṽ × Q̃.

We have

bh(τ , w) = −
∑
T∈Th

{∫
T

τ : ∇2w dx−
∫
∂T

τnn ∂nw ds

}
= −

∑
T∈Th

∫
T

τ : ∇2w dx = −
∫

Ω

τ : ∇2w dx

since τnn is continuous and ∂nw changes sign across interelement boundaries and ∂nw = 0
on ∂Ω. With∇2w = σ, the first line in (6.2) follows.

Moreover, we have

bh(σ, v) = −
∑
T∈Th

{∫
T

σ : ∇2v dx−
∫
∂T

σnn ∂nv ds

}
=
∑
T∈Th

{∫
T

(divσ) · ∇v dx−
∫
∂T

(σn) · ∇v ds+

∫
∂T

σnn ∂nv ds

}
=
∑
T∈Th

{∫
T

(divσ) · ∇v dx−
∫
∂T

σns ∂sv ds

}
=
∑
T∈Th

∫
T

(divσ) · ∇v dx

since ∂sv is continuous and σns changes sign across interelement boundaries and v = 0 on
∂Ω. Therefore,

bh(σ, v) =

∫
Ω

(divσ) · ∇v dx = −〈div divσ, v〉,

where the last identity follows from the corresponding identity

〈div divσ, v〉 =

∫
Ω

σ : ∇2v dx = −
∫

Ω

(divσ) · ∇v dx for all v ∈ C∞0 (Ω)
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by a continuity argument in H1
0 (Ω). With div divσ = f the second line in (6.2) follows,

which completes the proof.
Having again regularity and consistency we proceed as in [3, 17]. The interpolation

operator Πh is defined on Ṽ by the conditions (4.4) and (4.5) for τh = Πhτ ∈ Vh and
τ ∈ Ṽ . The second interpolation operator Ih is given by the conditions

vh(a) = v(a) for all vertices a of T, T ∈ Th,∫
e

vh q ds =

∫
e

v q ds, for all q ∈ Pk−2, for all edges e of T, T ∈ Th,∫
T

vh q dx =

∫
T

v q dx, for all q ∈ Pk−3, T ∈ Th,

for vh = Ihv ∈ Qh and v ∈ Q̃. It is easy to see that the two interpolation operators satisfy the
following properties.

bh(τ −Πhτ , vh) = 0 for all τ ∈ Ṽ , vh ∈ Qh,

bh(τh, v − Ihv) = 0 for all τh ∈ Vh, v ∈ Q̃.

The rest of the arguments are identical to the arguments used in [3] with a straightforward
adaptation to the weaker regularity condition (6.1), where it is needed. This leads directly to
the following known estimate for σ; see [3].

THEOREM 6.3. Let (σ, w) and (σh, wh) solve (2.10) and (4.2), respectively. Then

‖σh − σ‖0 ≤ ‖σ −Πhσ‖0.

The error estimates for w read as follows. For completeness we give a sketch of the proof,
which closely follows the arguments in [3].

THEOREM 6.4. Assume that (6.1) is satisfied for some p ∈ (4/3, 2]. Then there is a
constant c > 0 such that

|wh − w|1 ≤ |w − Ihw|1 +

{
c h |w|3,p for k = 1,

c h2−2/p ‖σ −Πhσ‖0,h for k ≥ 2,

with the mesh-dependent norm ‖τ‖0,h, given by

‖τ‖20,h = ‖τ‖20 + h
∑
e∈Eh

‖(τ )nn‖2L2(e).

Here Eh denotes the set of all edges of triangles from Th.
Proof. By the triangle inequality we have

|wh − w|1 ≤ |w − Ihw|1 + |Ihw − wh|1.

For estimating |Ihw − wh|1 a duality trick is used. For d ∈ H−1(Ω), let wd ∈ H2
0 (Ω) be the

unique solution to ∫
Ω

∇2wd : ∇2v dx = 〈d, v〉 for all v ∈ H2
0 (Ω),
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and set σd = ∇2wd. Then it follows from Theorem 6.1 that wd ∈W 3,p(Ω), σd ∈W 1,p(Ω),
and

a(σd, τ ) + b(τ , wd) = 0 for all τ ∈H−1(div div,Ω)sym,

b(σd, v) = −〈d, v〉 for all v ∈ H1
0 (Ω).

From the consistency result in Theorem 6.2 applied to this problem it follows that:

a(σd, τ̃ ) + bh(τ̃ , wd) = 0 for all τ̃ ∈ Ṽ ,

bh(σd, ṽ) = −〈d, ṽ〉 for all ṽ ∈ Q̃.

In particular, for τ̃ = σ − σh and ṽ = Ihw − wh we obtain

a(σd,σ − σh) + bh(σ − σh, wd) = 0,

bh(σd, Ihw − wh) = −〈d, Ihw − wh〉.

Using Galerkin orthogonality it follows that

− 〈d, Ihw − wh〉
= a(σd,σ − σh) + bh(σ − σh, wd) + bh(σd, Ihw − wh)

= a(σd,σ − σh) + bh(σ − σh, wd) + bh(σd, w − wh) + bh(σd, Ihw − w)

= a(σd −Πhσd,σ − σh) + bh(σ − σh, wd − Ihwd) + bh(σd −Πhσd, w − wh)

+ bh(σd, Ihw − w).

The properties of the interpolation operators imply

bh(σ − σh, wd − Ihwd) = bh(σ −Πhσ, wd − Ihwd)

and

bh(σd −Πhσd, w − wh) = bh(σd −Πhσd, w − Ihw),

bh(σd, Ihw − w) = bh(σd −Πhσd, Ihw − w).

Therefore,

−〈d, Ihw − wh〉 = a(σd −Πhσd,σ − σh) + bh(σ −Πhσ, wd − Ihwd),

which implies

|〈d,wh − Ihw〉| ≤ ‖σd −Πhσd‖0 ‖σ − σh‖0 + |bh(σ −Πhσ, wd − Ihwd)|
≤ ‖σd −Πhσd‖0 ‖σ −Πhσ‖0 + |bh(σ −Πhσ, wd − Ihwd)|

using Theorem 6.3. We have

bh(τ̃ , ṽ) ≤ ‖τ̃‖0,h ‖ṽ‖2,h

with a second mesh-dependent norm ‖v‖2,h, given by

‖v‖22,h =
∑
T∈Th

‖v‖2H2(T ) +
1

h

∑
e∈Eh

‖[∂nv]e‖
2
L2(e)

,
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where [∂nv]e denotes the jump of ∂nv across an edge; see [3, Equation (4.48)]. Then it follows
that

|wh − Ihw|1 = sup
d∈H−1(Ω)

|〈d,wh − Ihw〉|
‖d‖−1

≤

[
sup

d∈H−1(Ω)

‖σd −Πhσd‖0 + ‖wd − Ihwd‖2,h
‖d‖−1

]
‖σ −Πhσ‖0,h

≤ c h2(1−1/p) ‖σ −Πhσ‖0,h,

using the interpolation error estimates

‖σd −Πhσd‖0 ≤ c h2−2/p |σd|1,p,
‖wd − Ihwd‖2,h ≤ c h2−2/p |wd|3,p for k ≥ 2,

and the regularity estimates

|σd|1,p ≤ c ‖d‖−1 and |wd|3,p ≤ c ‖d‖−1.

For k = 1 we have

bh(σ −Πhσ, wd − Ihwd) = bh(σ, wd − Ihwd) =

∫
Ω

(divσ) · ∇(wd − Ihwd) dx.

Therefore,

|bh(σ −Πhσ, wd − Ihwd)| ≤ ‖divσ‖0,p |wd − Ihwd|1,q ≤ c ‖σ‖1,p |wd − Ihwd|1,q
≤ c ‖w‖3,p |wd − Ihwd|1,q with q = p/(p− 1).

Now

|wd − Ihwd|1,q ≤ c h ‖wd‖2,q ≤ c h ‖wd‖3,p ≤ c h ‖d‖−1,

which implies

|wh − Ihw|1 = sup
d∈H−1(Ω)

|〈d,wh − Ihw〉|
‖d‖−1

≤ c h ‖w‖3,p.

This completes the proof.
Using standard approximation properties of the interpolation operators Πh and Ih (see

[3, 9, 17]) one immediately obtains the following consequences.
COROLLARY 6.5. If w ∈ Hk+2(Ω), then we have estimates of optimal order for σ.

‖σ − σh‖0 ≤ c hk ‖σ‖k.

COROLLARY 6.6. Assume that (6.1) is satisfied for some p ∈ (4/3, 2].
1. For f ∈ H−1(Ω) we have

‖σ − σh‖0 ≤ c h2−2/p‖f‖−1 and |w − wh|1 ≤ c hmin(k,4−4/p) ‖f‖−1.

2. If w ∈ Hk+1(Ω), then we have

|w − wh|1 ≤ c hk+1−2/p |w|k+1 for k ≥ 2.
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3. If Ω is convex and w ∈ Hk+1(Ω), then we have estimates of optimal order for w.

|w − wh|1 ≤ c hk |w|k+1 for k ≥ 2.

The first estimates in Corollary 6.6 are in accordance with [9]. Observe that 2−2/p > 1/2
and 4−4/p > 1 since p > 4/3. Therefore, we have convergence rates at least of orderO(h1/2)
andO(h) for ‖σ−σh‖0 and |w−wh|1, respectively. Observe that k+1−2/p > k−1/2 since
p > 4/3. Therefore, we have a convergence rate at least of order O(hk−1/2) for |w − wh|1, if
w ∈ Hk+1(Ω). If Ω is convex, then (6.1) holds for p = 2; see [9].

6.2. The conforming variant (4.1). The only difference to the original HHJ method is
the use of the finite element space

V conf
h = {τ = π(q) +HTε(ψ)H : q ∈ Sh,0, ψ ∈ (Sh)2/RM}

instead of Vh for approximating the Lagrangian multiplier σ. As before the error analysis is
based on two interpolation operators Πconf

h and Iconf
h satisfying

b(τ −Πconf
h τ , vh) = 0 for all τ ∈H−1(div div,Ω)sym, vh ∈ Qh,

b(τh, v − Iconf
h v) = 0 for all τh ∈ V conf

h , v ∈ H1
0 (Ω),

with Iconf
h = Rh, and Πconf

h is given by

Πconf
h τ = π(Rhq) +HTε(Ĩhφ)H for τ = π(q) +HTε(φ)H.

Here Rh : H1
0 (Ω) −→ Sh,0 denotes the Ritz projection, given by∫

Ω

∇Rhv · ∇qh dx =

∫
Ω

∇v · ∇qh dx for all v ∈ H1
0 (Ω), qh ∈ Sh,0,

and Ĩh : H1(Ω)2/RM −→ (Sh)2/RM can be any reasonable interpolation operator like a Clé-
ment-type interpolation operator; see, e.g., [22]. It turns out that the Ritz projection is the only
candidate for Iconf

h . Thus, note that we have again the same properties of these interpolation
operators. However, these operators are no longer local operators as they were in the case of
the original HHJ methods. That does not effect the analog of Theorem 6.3 but it leads to a
deterioration of the estimates for the analog of Theorem 6.4 and the subsequent corollaries
for non-convex domains. For convex domains, the interpolation operators share the same
approximation properties as before provided p and φ in (3.2) are sufficiently smooth resulting
in the following error estimates.

THEOREM 6.7. Let Ω be convex.
1. If p ∈ Hk(Ω) and φ ∈ Hk+1(Ω), then we have estimates of optimal order for σ.

‖σ − σh‖0 ≤ c hk (|p|k + |φ|k+1) .

2. If p ∈ Hk−1(Ω) and φ ∈ Hk(Ω), then w ∈ Hk+1(Ω) and we have estimates of
optimal order for w.

|w − wh|1 ≤ c hk (|p|k−1 + |φ|k + |w|k+1) for k ≥ 2.

The proof of these estimates is a complete copy of the corresponding proofs for the
original HHJ method, however, this time based on the interpolation operators introduced
above, and is therefore omitted. Using the same techniques for estimating the errors in the
non-convex case leads to a deterioration of the estimates since standard L2-error estimates for
the Ritz projection are not of optimal approximation order.
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7. Numerical experiments. The obvious procedure for solving (5.2) consists of three
consecutive steps.
Step 1. For given f ∈ H−1(Ω), solve

(7.1)
∫

Ω

∇ph · ∇v dx = −〈f, v〉

by the preconditioned conjugate gradient (PCG) method with a standard multigrid
preconditioner for a Poisson problem.

Step 2. For ph, computed in Step 1, solve

(7.2)
∫

Ω

ε(φh) : ε(ψ) dx = −
∫

Ω

π̂h(ph) : ε(ψ) dx

by the PCG method with a standard multigrid preconditioner for a pure traction
problem. Observe that the bilinear form in (7.2) has a non-trivial kernel, namely
RM. See, e.g., [24] for the treatment of such singular problems. We have chosen the
alternative approach of regularizing the problem by replacing the original bilinear
form by∫

Ω

ε(φh) : ε(ψ) dx+

∫
Ω

φh dx ·
∫

Ω

ψ dx+

∫
Ω

curlφh dx

∫
Ω

curlψ dx,

which results in a coercive problem in (Sh)2 with respect to the H1-norm.
Step 3. For ph and φh, computed in Step 1 and 2, respectively, solve

(7.3)
∫

Ω

∇wh · ∇q dx = −
∫

Ω

π̂h(ph) : π̂h(q) dx−
∫

Ω

π̂h(q) : ε(φh) dx

by the PCG method with a standard multigrid preconditioner for a Poisson problem.
For the conforming variant (4.1), the right-hand sides in (7.2) and (7.3) have to be replaced by
the simpler expressions

−
∫

Ω

π(ph) : ε(ψ) dx = −
∫

Ω

ph divψ dx

and

−
∫

Ω

π(ph) : π(q)dx−
∫

Ω

π(q) : ε(φh) dx = −2

∫
Ω

ph q dx−
∫

Ω

q div φh dx,

respectively.
For each of the three multigrid preconditioners we choose one multigrid V-cycle with one

forward and one backward Gauss-Seidel sweep for pre- and post-smoothing, respectively. In
each of the three steps the initial guess for the PCG method is set to 0.

We will now discuss the accuracy and computational complexity of this procedure in
more detail.

It is well-known that the multigrid V-cycle algorithm described above converges with
a convergence rate in the energy norm that is bounded by a constant strictly smaller than 1
uniformly with respect to the mesh size h; see [11]. Therefore, the number of PCG iterations
that are necessary to reduce an initial error by a prescribed factor, say δ > 0, in the energy
norm is uniformly bounded. In particular, the number of PCG iterations necessary to obtain an
approximate solution p̃h to (7.1) such that

(7.4) |p̃h − ph|1 ≤ δ |ph|1,



ETNA
Kent State University

http://etna.math.kent.edu

THE HELLAN-HERRMANN-JOHNSON METHOD 277

is uniformly bounded. In the second step the PCG method is applied to (7.2) but with ph (which
is not available) replaced by p̃h on the right-hand side. Let φ̄h denote the exact solution of this
modified problem. Then the number of PCG iterations necessary to obtain an approximate
solution φ̃h to the modified problem in Step 2 such that

(7.5) ‖ε(φ̃h − φ̄h)‖0 ≤ δ ‖ε(φ̄h)‖0,

is uniformly bounded, too. Analogously, in Step 3 the number of PCG iterations necessary to
obtain an approximate solution w̃h to (7.3) but with ph and φh replaced by p̃h and φ̃h on the
right-hand side, respectively, such that

(7.6) |w̃h − w̄h|1 ≤ δ |w̄h|1,

is uniformly bounded, where w̄h denotes the exact solution to the modified problem in Step 3.
From p̃h and φ̃h we obtain an approximation σ̃h given by

σ̃h = πh(p̃h) +HTε(φ̃h)H.

Now we have
LEMMA 7.1. Assume that (7.4), (7.5), and (7.6) hold for some δ ≤ δ0. Then

(7.7) ‖σ̃h − σh‖0 ≤ c1 δ ‖f‖−1 and |w̃h − wh|1 ≤ c2 δ ‖f‖−1

with positive constants c1 and c2 that depend only on δ0 and the constant cB from Lemma 4.2.
Proof. We first estimate the difference between the solutions of the original and the

modified problems in Step 2 and 3 in terms of the difference of the data on the right-hand
sides.

Subtracting (7.2) from its modified variant for ψ = φ̄h − φh yields

‖ε(φ̄h − φh)‖20 = −
∫

Ω

π̂h(p̃h − ph) : ε(φ̄h − φh) dx ≤ cB |p̃h − ph|1 ‖ε(φ̄h − φh)‖0,

where Lemma 4.2 was applied. This implies

(7.8) ‖ε(φ̄h − φh)‖0 ≤ cB |p̃h − ph|1.

Analogously, subtracting (7.3) from its modified variant for q = w̄h − wh yields

|w̄h − wh|21 = −
∫

Ω

(σ̃h − σh) : πh(w̄h − wh) dx ≤ cB ‖σ̃h − σh‖0 |w̄h − wh|1,

which implies

(7.9) |w̄h − wh|1 ≤ cB ‖σ̃h − σh‖0.

Then we have

‖σ̃h − σh‖0 ≤ ‖πh(p̃h − ph)‖0 + ‖ε(φ̃h − φh)‖0
≤ cB |p̃h − ph|1 + ‖ε(φ̃h − φ̄h)‖0 + ‖ε(φ̄h − φh)‖0
≤ 2cB |p̃h − ph|1 + ‖ε(φ̃h − φ̄h)‖0 ≤ 2cB δ |ph|1 + δ ‖ε(φ̄h)‖0,

by (7.4) and using (7.5) for the last estimate. Next we estimate ‖ε(φ̄h)‖0. We have

‖ε(φ̄h)‖0 ≤ ‖ε(φ̄h − φh)‖0 + ‖ε(φh)‖0 ≤ cB δ |ph|1 + ‖ε(φh)‖0
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using (7.8) and (7.4) and

‖ε(φh)‖0 = ‖HTε(φh)H‖0 = ‖σh − πh(ph)‖0 ≤ cB |ph|1 + ‖σh‖0

using (5.1) and Lemma 4.2, which imply

‖ε(φ̄h)‖0 ≤ cB (1 + δ) |ph|1 + ‖σh‖0.

Using this estimate we obtain

‖σ̃h − σh‖0 ≤ cB δ(3 + δ) |ph|1 + δ ‖σh‖0

≤ δ
(
1 + [(3 + δ) cB ]2

)1/2 (|ph|21 + ‖σh‖20
)1/2

= δ
(
1 + [(3 + δ) cB ]2

)1/2 ‖σh‖−1,div div,h.

Furthermore, using (7.6) we obtain

|w̃h − wh|1 ≤ |w̃h − w̄h|1 + |w̄h − wh|1 ≤ δ |w̄h|1 + |w̄h − wh|1
≤ δ |wh|1 + (1 + δ) |w̄h − wh|1,

and therefore,

|w̃h − wh|1 ≤ δ |wh|1 + cB (1 + δ) ‖σ̃h − σh‖0

using (7.9). From the stability estimates for saddle point problems (see, e.g., [31, Theorem 1])

‖σh‖−1,div div,h ≤
1

β

‖a‖
α
‖f‖−1 and |wh|1 ≤

‖a‖
β2

‖a‖
α
‖f‖−1

with ‖a‖ = α = 1 and β = (1 + c2B)−1/2 (see Theorem 4.4), we finally obtain (7.7) with

c1 =
(
1 + [(3 + δ0) cB ]2

)1/2 (
1 + c2B

)1/2
, c2 = 1 + c2B + cB (1 + δ0) c1.

This lemma eventually shows that the number of PCG iterations necessary to obtain
approximate solutions for wh and σh with a tolerance of order δ relative to the data ‖f‖−1

of the problem is bounded independently of the mesh size h. With respect to this criterion of
accuracy, the proposed procedure is of optimal computational complexity since the number
of arithmetic operations for applying one multigrid V-cycle is proportional to the number of
involved unknowns and the number of PCG iterations is uniformly bounded. As expected
no additional smoothness of the data f is required for these arguments. In case that δ is
not considered as a prescribed fixed quantity but is chosen proportional to the order of the
discretization error, full multigrid methods have to be considered instead to restore optimal
computational complexity.

REMARK 7.2. An estimate of the form (7.7) can also be shown for the conforming variant
with a completely analogous proof.

In order to illustrate the theoretical results we consider the following simple biharmonic
test problem:

∆2w = f in Ω, w = ∂nw = 0 on Γ

on two domains, the square Ω = ΩS = (−1, 1)2 and the L-shaped domain Ω = ΩL depicted
in Figures 7.1 and 7.2, where also the initial meshes (level ` = 0) are shown. (The initial
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TABLE 7.1
Number of iterations, Ω = ΩS (square).

L N1 iter1 N2 iter2 N3 iter3
6 65 025 16 132 098 18 65 025 16
7 261 121 17 526 338 19 261 121 17
8 1 046 529 17 2 101 250 20 1 046 529 17
9 4 190 209 18 8 396 802 21 4 190 209 18

TABLE 7.2
Number of iterations, Ω = ΩL (L-shaped domain).

L N1 iter1 N2 iter2 N3 iter3
6 48 641 17 99 330 19 48 641 17
7 195 585 18 395 266 20 195 585 18
8 784 385 18 1 576 962 21 784 385 18
9 3 141 633 19 6 299 650 22 3 141 633 19

meshes were created by distorting an originally uniform subdivision of ΩS into 32 and ΩL

into 24 triangles, in order to avoid any artificial super-convergence effects due to uniformity.)
The right-hand side f(x) is chosen such that

w(x) =
[
1− cos(2πx1)

] [
1− cos(4πx2)

]
is the exact solution to the problem. The initial meshes are uniformly refined until the final
level ` = L. In all experiments the polynomial degree k as introduced in the beginning of
Section 4 is chosen equal to 1, which represents the lowest order HHJ method. In each of the

FIG. 7.1. Ω = ΩS . FIG. 7.2. Ω = ΩL.

three steps, a reduction of the Euclidean norm of the initial residual by a factor of 10−8 was
used as stopping criterion for the PCG methods.

Table 7.1 shows the observed number of iterations for the solution procedure as described
above for Ω = ΩS . The first column contains the level L of refinement. The next three pairs of
columns show the total number Ni of degrees of freedom and the number of iterations iteri of
the PCG method for the linear system in Step i = 1, 2, 3. Table 7.2 shows the corresponding
results for the L-shaped domain Ω = ΩL representing a non-convex case. As expected the
number of PCG iterations is bounded uniformly with respect to the mesh size.

Finally, in Tables 7.3 and 7.4 the discretization errors of the original HHJ method (5.2)
and its conforming variant (4.1) are shown. For the original HHJ method, the H1-error of the
original variable w and the L2-error of the auxiliary variable σ decrease with the order h, in
accordance with known estimates; see Section 6. The last two columns contain the errors of p
and φ given by (3.2) and measured in the associated norms of the Helmholtz-decomposition
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TABLE 7.3
Discretization errors for the HHJ method (5.2), Ω = ΩL (L-shaped domain).

L |w − wh|1 ‖σ − σh‖0 |p− ph|1 ‖φ− φh‖1
6 7.14 ∗ 10−1 4.57 ∗ 101 1.24 ∗ 102 9.69 ∗ 100

7 3.56 ∗ 10−1 2.30 ∗ 101 6.18 ∗ 101 4.81 ∗ 100

8 1.78 ∗ 10−1 1.15 ∗ 101 3.02 ∗ 101 2.35 ∗ 100

9 8.90 ∗ 10−2 5.74 ∗ 100 1.35 ∗ 101 1.05 ∗ 100

TABLE 7.4
Discretization errors for the conforming variant (4.1), Ω = ΩL (L-shaped domain).

L |w − wh|1 ‖σ − σh‖0 |p− ph|1 ‖φ− φh‖1
6 7.11 ∗ 10−1 8.89 ∗ 100 1.24 ∗ 102 9.68 ∗ 100

7 3.56 ∗ 10−1 4.45 ∗ 100 6.18 ∗ 101 4.81 ∗ 100

8 1.78 ∗ 10−1 2.22 ∗ 100 3.02 ∗ 101 2.35 ∗ 100

9 8.90 ∗ 10−2 1.11 ∗ 100 1.35 ∗ 101 1.05 ∗ 100

(see Theorems 3.1 and 3.3), where the (analytically not available) exact solutions p and φ are
replaced by their approximate solutions on level ` = 10. The conforming variant behaves
similarly; see Table 7.4.

Acknowledgment. The authors would like to thank the anonymous referees for their
valuable comments and suggestions which helped to improve this manuscript considerably.

Appendix A. Divergence-free distributions in
(
H−1(Ω)

)2.
The proof of Theorem 3.3 relies on the following result for divergence-free distributions

in
(
H−1(Ω)

)2
, whose proof is given for completeness.

LEMMA A.1. Let Ω be a simply connected, open and bounded set in R2 with Lipschitz
boundary Γ. For each f ∈

(
H−1(Ω)

)2
with div f = 0 there exists a function ρ ∈ L2

0(Ω) such
that

f = curl ρ.

Proof. Let 〈f, v〉 = 〈f1, v1〉+ 〈f2, v2〉 ∈
(
H−1(Ω)

)2
with div f = 0, i.e.,

〈f1, ∂1ϕ〉+ 〈f2, ∂2ϕ〉 = 0 for all ϕ ∈ C∞0 (Ω).

Then, by continuity, it follows that

〈f1, ∂1ϕ〉+ 〈f2, ∂2ϕ〉 = 0 for all ϕ ∈ H2
0 (Ω).

Now, let v ∈
(
H1

0 (Ω)
)2

with div v = 0. Then from [22, Corollary 3.2] it follows that there is
a function ϕ ∈ H2

0 (Ω) with

v = curlϕ.

Therefore, for 〈g, v〉 ≡ 〈f2, v1〉 − 〈f1, v2〉, we have

〈g, v〉 = 〈f2, v1〉 − 〈f1, v2〉 = 〈f2, ∂2ϕ〉+ 〈f1, ∂1ϕ〉 = 0.

Then [22, Lemma 2.1] implies that there is a function ρ ∈ L2
0(Ω) with

g = ∇ρ, i.e., f = curl ρ.
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