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DOUBLE ANGLE THEOREMS FOR DEFINITE MATRIX PAIRS∗

LUKA GRUBIŠIĆ†, SUZANA MIODRAGOVIĆ‡, AND NINOSLAV TRUHAR‡

Abstract. In this paper we present new double angle theorems for the rotation of the eigenspaces of Hermitian
matrix pairs (H,M), where H is a non-singular matrix which can be factorized as H = GJG∗, J = diag(±1),
and M is non-singular. The rotation of the eigenspaces is measured in the matrix-dependent scalar product, and the
bounds belong to relative perturbation theory. The quality of the new bounds are illustrated in the numerical examples.
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1. Introduction. Controlling the size of the rotation of an invariant subspace of a matrix
or operator A under a perturbation V is one of the fundamental problems in operator theory or
matrix analysis; see [1, 6, 18, 19, 20] for results in operator theory and [4, 7, 14, 16, 23, 25]
for recent results in the context of matrix analysis.

Among the most prominent results in this field of research is the series of papers by
C. Davis on the rotation of invariant subspaces under the influence of a perturbation; see,
e.g., [6] and the references therein. A sequence of three papers culminated with the cornerstone
paper of Davis and Kahan [6], which had both fundamental importance in operator theory
(scattering theory in mathematical physics) as well as ramifications in matrix analysis. In
particular, it influenced the development of mathematical software for highly accurate solutions
of singular value and eigenvalue problems [15].

The main objective in these studies was to obtain a bound of a trigonometric function of the
angle operator associated with spectral subspaces of the unperturbed and perturbed operators,
respectively. In what follows, we use Spec(H) to denote the spectrum of a matrix H . Let us
consider matrices H and H̃ = H + δH, and let the claims Spec(H) = L1 ∪L2, L1 ∩L2 = ∅,
and Spec(H̃) = L̃1 ∪ L̃2, L̃1 ∩ L̃2 = ∅ hold for the spectra of H and H̃ . We use E(L1)

and Ẽ(L̃1) to denote the spectral projection of H and H̃ associated to the sets L1 and L̃1,
respectively. We define the angle operator Θ by spectral calculus as

(1.1) Θ := arcsin
(
E(L1)− Ẽ(L̃1)

)
since orthogonal projections are Hermitian (self-adjoint) and idempotent matrices/operators.
The eigenvalues of the Hermitian matrix Θ are called the canonical angles. For easier ref-
erence, we also introduce the notation for the associated subspaces I = Ran(E(L1)) and
Ĩ = Ran(Ẽ(L̃1)). We freely associate the angle operator with either the subspaces or the
corresponding projections whatever is appropriate in a given context. We use Ran(·) to denote
the range of a matrix. A generic estimate can be formulated as the following sin 2Θ-bound,
which is taken from a recent paper by Albeverio and Motovilov [1]:

(1.2) ‖ sin 2Θ‖ ≤ π ‖H − H̃‖
d
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where d = Dist(L1,L2) is the Hausdorff distance. In the case d = 0, we take 1/d =∞ and
the bound trivially holds. Following [1, 2, 20], we call such estimates a priori since only the
separation d between the wanted and unwanted components of the spectrum of the unperturbed
matrix H is appearing in the estimates. Alternatively, we can obtain estimates which feature
only a posteriori distances (those in the spectrum of H̃) by reversing the roles of the matrices.

Our main contribution is to establish such an estimate for the definitizable generalized
eigenvalue problem in a matrix-dependent scalar product. For a discussion of the geometry of
an Euclidean space in a matrix-dependent scalar product, see [13].

A matrix pair (H,M) is called definitizable if there exist scalars α and β such that
αH + βM is a positive definite matrix. Given definite Hermitian matrix pairs (H,M) and
(H̃, M̃) = (H + δH,M + δM), where H, H̃ , M , and M̃ are non-singular matrices and their
spectral subspaces I and Ĩ are of the same dimension, we are interested in providing estimates
for the size of the rotation which moves I to Ĩ. We shall do this by bounding the sines of
the double canonical angles between I and Ĩ in the scalar product (x, y)M = x∗My. Note
that (1.1) depends on the scalar product since it is required that a projection be self-adjoint
in the chosen Hilbert space structure. We denote this by adding the subscript M to the angle
operator and write ΘM (I, Ĩ).

It is obvious that the double angle theorems do not directly bound the difference between
the old invariant subspace I and the new one Ĩ. One possibility to interpret them is using
spectral calculus as is shown in (1.2). This is, however, technically quite involved when also
allowing for perturbations of a matrix-dependent scalar product. Alternatively, recall that
there is a direct geometric interpretation for the double angle formulas. Perturbation measures
as given by sin 2Θ-theorems can be viewed as bounds for the difference between Ĩ and its
reflection SĨ. Here S is a reflection operator where the mirror hyperplane is I and S reverses
the orthogonal complement of I. A direct bound on the angle between the original subspaces
can be obtained by the same argument used for (1.2).

In this paper, at first, we consider the case when the matrices M and M̃ are positive
definite. Truhar and Li [21] and Li [17] studied a similar perturbation problem for the standard
eigenvalue problem, and our bounds contain their results as a special case. Let us point out that
almost all the known theorems for the standard eigenvalue problem have been generalized to
the generalized eigenvalue problem; see, e.g., Li [14], who studied the generalized eigenvalue
problem of a diagonalizable matrix pencil H − λM with real spectrum. A comprehensive
overview of results from the point of view of relative perturbation theory can be found in [14]
while in [5] similar questions have been considered using the standard (absolute) perturbation
theory.

In the context of known operator theoretic results, this work also extend [8, 9, 22]. An
advantage of new sin 2Θ-theorems over the existing sin Θ-theorems given in [8, 22] is that
the relative gaps do not depend on the eigenvalues of the matrix pairs (H,M), (H̃,M), and
(H̃, M̃) but just on the eigenvalues of the perturbed ones (H̃,M) and (H̃, M̃). Our estimates
in their simplest form read as

‖ sin 2ΘM (I, Ĩ)‖F ≤
ν1‖B‖42
RelGap1

‖H−1‖2‖H − H̃‖F

+
ν2 RelGap2 +ν3

RelGap2

‖M− 1
2 (M − M̃)M−

1
2‖F .

Here the constants RelGapi, i = 1, 2, measure the separation between the wanted and un-
wanted components of the spectrum of the matrix pairs (H̃,M) and (H̃, M̃). The constants νi,
i = 1, 2, 3, measure the stability of the inertia of a matrix pair (H,M) under a perturbation in
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both matrices. Note that νi > 1 for i = 1, 2, 3. Compared with (1.2), we observe that in the
setting of the generalized eigenvalue problem, we have two a posteriori gaps to consider. One
of them, namely the gaps in the spectrum of (H̃,M), is a purely artificial measure of spectral
stability. However, it cannot be avoided due to the technique from [8] that we use.

The second result of this paper are extensions of a sin Θ-theorem from [8] and new sin 2Θ-
theorems for the matrix pairs (H,M) with M positive definite to the case when the matrix M
is indefinite non-singular. This is done so that instead of the definite pairs (H,M), where both
matrices H and M are non-singular indefinite, we consider matrix pairs (H,H −αM), where
α ∈ R is such that H − αM is a positive definite matrix. Our bounds are directly derived
from the earlier results and are dependent on the parameter α. Also, the rotation between the
unperturbed and perturbed subspaces is measured in the H − αM -scalar product. One of
the criteria for the choice of α is given by Veselić in [24, Theorem A1]. We will follow this
approach in our discussion of the dependence of the bounds on the choice of α.

The paper has the following structure. In Section 2 we present new relative sin 2Θ-
theorems for matrix pairs (H,M) with M positive definite. This is the main technical result of
this paper. Section 3 contains relative sin Θ- and sin 2Θ-theorems which are generalizations
of the known results given in [8] as well as extensions of the results from Section 2 to the
case when M is an indefinite non-singular Hermitian matrix. All results are illustrated by
numerical examples in Section 4.

Notations. ‖ · ‖2 and ‖ · ‖F denote the spectral and Frobenius norms, respectively, and
‖ · ‖ denotes any unitary invariant norm. X∗ is the conjugate transpose. In denotes the n× n
identity matrix (we may simply write I instead if no confusion can arise).

2. Main results. Throughout the first part of this paper, we study the perturbation theory
for spectral projections of Hermitian matrix pairs (H,M), whereH is a non-singular Hermitian
matrix which can be factorized as

H = GJG∗, J = diag(±1).

HereG is assumed to be non-singular, andM is positive definite. The corresponding perturbed
pair (H̃, M̃) = (H + δH,M + δM) has the form

H̃ = G̃JG̃∗, J = diag(±1),

with G̃ non-singular and M̃ positive definite. We emphasize that H and H̃ are assumed, as it
is customary in relative perturbation theory, to have the same inertia.

Under these assumptions, the matrix pairs (H,M) and (H̃, M̃) can be simultaneously
diagonalized. That is, there exist non-singular matrices X and X̃ such that

X∗HX = Λ, X∗MX = I, and X̃∗H̃X̃ = Λ̃, X̃∗M̃X̃ = I,(2.1)

where Λ = diag(λ1, . . . , λn), Λ̃ = diag(λ̃1, . . . , λ̃n), λi, λ̃i ∈ R, for i = 1, . . . , n.
Given k, 1 ≤ k < n, let us partition the matrices X and X̃ as

X =
[
X1 X2

]
and X̃ =

[
X̃1 X̃2

]
,

where X1, X̃1 ∈ Cn×k and X2, X̃2 ∈ Cn×(n−k). The eigendecomposition (2.1) can now be
written as[

X∗1
X∗2

]
H
[
X1 X2

]
=

[
Λ1 0
0 Λ2

]
,

[
X∗1
X∗2

]
M
[
X1 X2

]
=

[
Ik 0
0 In−k

]
.(2.2)
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From (2.2) it follows that

HX1 = MX1Λ1, HX2 = MX2Λ2,

where Λ1 = diag(λ1, . . . , λk) ∈ Ck×k, Λ2 = diag(λk+1, . . . , λn) ∈ C(n−k)×(n−k) such
that Spec(Λ1)∩ Spec(Λ2) = ∅ and similarly for X̃ . We are interested in bounding the change
in the subspaces Ran(X1) spanned by the X1’s columns. We shall do this by estimating the
sines of the double canonical angles between the subspaces Ran(X1) and Ran(X̃1) in the
M -dependent scalar product; for more details, see [9].

A bound for these will be obtained using the simple triangle inequality for the angle
function as given by [9, Lemma 2.2]∥∥∥sin 2ΘM (Ran(X1),Ran(X̃1))

∥∥∥ ≤ ∥∥∥sin 2ΘM (Ran(X1),Ran(X̂1))
∥∥∥

+
∥∥∥sin 2ΘM (Ran(X̂1),Ran(X̃1))

∥∥∥ .(2.3)

Here X̂ = [X̂1 X̂2] ∈ Cn×n is a non-singular matrix which simultaneously diagonalizes the
matrix pair (H̃,M) = (H + δH,M). We would like to emphasize that the bounds are given
in the Frobenius norm since then they can be stated without any restrictions on the position
of the spectra of the matrix pairs (H,M), (H̃,M), and (H̃, M̃). After imposing additional
assumptions on these spectra, similar bounds are derived for any unitary invariant norm, which
we generically denote by ‖ · ‖. Such estimates are presented as corollaries to the main results
below. As suggested by inequality (2.3), the bound for

∥∥∥sin 2ΘM (Ran(X1),Ran(X̃1))
∥∥∥ is

obtained using a two-step procedure.

2.1. The first step. First, we estimate
∥∥∥sin 2ΘM (Ran(X1),Ran(X̂1))

∥∥∥. Before we
formulate the main results, we present some notational conventions for the block-matrix
calculus that we use extensively in the proofs of the main results.

Let (H,M) be a Hermitian pair defined by (2.1) and (H̃,M) the corresponding perturbed
pair. Let X =

[
X1 X2

]
be the non-singular matrix from (2.2). Assume that k (1 ≤ k < n)

is given as in (2.2), and let X̂ =
[
X̂1 X̂2

]
be a non-singular matrix such that

[
X̂∗1
X̂∗2

]
(H + δH)

[
X̂1 X̂2

]
=

[
Λ̂1 0

0 Λ̂2

]
,[

X̂∗1
X̂∗2

]
M
[
X̂1 X̂2

]
=

[
Ik 0
0 In−k

]
,

(2.4)

where Λ̂1 = diag(λ̂1, . . . , λ̂k), Λ̂2 = diag(λ̂k+1, . . . , λ̂n), λ̂i ∈ R, for i = 1, . . . , n, and
where we assume that Spec(Λ̂1) ∩ Spec(Λ̂2) = ∅.

Define

Sr := X

[
Ik
−In−k

]
X−1 = X

[
Ik
−In−k

]
X∗M,(2.5)

and note that

S2
r = In, ‖Sr‖2 ≤ κ(X) and S∗rHSr = H, S∗rMSr = M.
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Now we define the auxiliary matrix Ĥ = S∗r H̃Sr = S∗r X̂
−∗Λ̂X̂−1Sr = Ŷ −∗Λ̂Ŷ −1 , where

Ŷ := SrX̂ and

(2.6) Ŷ ∗ĤŶ = Λ̂ and Ŷ ∗MŶ = I.

For a given k (1 ≤ k < n), let us partition the matrix Ŷ such that

(2.7) Ŷ =
[
Ŷ1 Ŷ2

]
, Ŷ1 = SrX̂1 ∈ Cn×k, Ŷ2 = SrX̂2 ∈ Cn×(n−k).

The norm of the sines of the double angle between the subspaces Ran(X1) and Ran(X̂1) is
the same as the norm of the sines of the single angle between the subspaces Ran(Ŷ1) and
Ran(X̂1) as described in the following lemma.

LEMMA 2.1. Let X =
[
X1 X2

]
and X̂ =

[
X̂1 X̂2

]
with X1, X̂1 ∈ Cn×k and

X2, X̂2 ∈ Cn×(n−k) be non-singular matrices which simultaneously diagonalize the Hermi-
tian matrix pairs (H,M) and (H̃,M) as in (2.2) and (2.4), whereH, H̃ ∈ Cn×n are indefinite

and M ∈ Cn×n is positive definite. Let Ŷ = SrX̂ =
[
Ŷ1 Ŷ2

]
be an M -orthogonal matrix

where Sr ∈ Cn×n is defined in (2.5). Then

‖ sin 2ΘM (Ran(X1),Ran(X̂1))‖ = ‖ sin ΘM (Ran(Ŷ1),Ran(X̂1))‖ = ‖Ŷ ∗2 MX̂1‖.

Proof. The matrix X∗MX̂ =

[
X∗1MX̂1 X∗1MX̂2

X∗2MX̂1 X∗2MX̂2

]
is unitary. Using a CS decompo-

sition of X∗MX̂, there exists unitary matrices U1, V1 ∈ Ck×k and U2, V2 ∈ C(n−k)×(n−k)

such that[
U1

U2

]∗
X∗MX̂

[
V1

V2

]
=

 C 0 −S
0 In−k 0
S 0 C

 when k <
n

2
,

[
U1

U2

]∗
X∗MX̂

[
V1

V2

]
=

[
C −S
S C

]
when k =

n

2
,

[
U1

U2

]∗
X∗MX̂

[
V1

V2

]
=

 I2k−n 0 0
0 C −S
0 S C

 when k ≥ n

2
·

Here C = diag(cos θ1, . . . , cos θp) and S = diag(sin θ1, . . . , sin θp), and θ1, . . . , θn are the
canonical angles between subspaces measured in the M -inner product.

Without loss of generality let us assume that k = n
2 . Then note that

Ŷ ∗MX̂ =

[
Ŷ ∗1 MX̂1 Ŷ ∗1 MX̂2

Ŷ ∗2 MX̂1 Ŷ ∗2 MX̂2

]

is a unitary matrix, and its CS decomposition states—recall that k = n
2 is assumed—

that there exist unitary matrices W1 ∈ Ck×k, W2 ∈ C(n−k)×(n−k), Z1 ∈ Ck×k and
Z2 ∈ C(n−k)×(n−k) such that

(2.8)
[
W1

W2

]∗
Ŷ ∗MX̂

[
Z1

Z2

]
=

[
C1 −S1

S1 C1

]
.
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From (2.5) and (2.7) we have

Ŷ1 = X1X
∗
1MX̂1 −X2X

∗
2MX̂1,

Ŷ2 = X1X
∗
1MX̂2 −X2X

∗
2MX̂2 .(2.9)

Inserting (2.9) into (2.8) it is easy to see that[
W1

W2

]∗
Ŷ ∗MX̂

[
Z1

Z2

]
=

[
C2 + S2 −(C · S + S · C)

S · C + C · S S2 − C2

]
.(2.10)

Now the proof simply follows by equating the right-hand side blocks (1, 2) of (2.8) and (2.10)
and taking the norm of both sides.

Using the previous lemma, we observe that in order to establish the estimate of the first
term in the inequality (2.3), we have to bound ‖Ŷ ∗2 MX̂1‖F . This can be done using a similar
technique as in [8]. Before we formulate the main result, we recall the following remark which
we need later; see [21].

REMARK 2.2. Let us assume that the matrix H = GJG∗ is perturbed such that
H̃ = G(J + E)G∗. Since ‖H−1‖2‖δH‖2 < 1, it follows that ‖E‖2 < 1. From this we
conclude that ‖EJ‖2 < 1, and hence, we can define N := (I +EJ)1/2. Recall the following
series expansion from [11, Theorem 6.2.8]:

N = (I + EJ)1/2 = I +

∞∑
i=1

(−1)n−1
(2n− 1)!!

2nn!
(EJ)n,

where (2n− 1)!! = 1 · 3 · 5 · · · (2n− 1). Since ‖EJ‖2 < 1, the series obviously converges,
and it can be verified that N = JN∗J . Subsequently,

J + E = NJN∗,

and so ‖E‖2 < 1 implies that H = GJG∗, J + E, and H̃ = G(J + E)G∗ all have the same
inertia as J .

Now we can state our first theorem:
THEOREM 2.3. Let H = GJG∗, H̃ = G̃JG̃∗, and M be positive definite, and let

X =
[
X1 X2

]
and X̂ =

[
X̂1 X̂2

]
be non-singular matrices from (2.2) and (2.4) which

simultaneously diagonalize the pairs (H,M) and (H̃,M), respectively. Further, let B and B̃
be J-unitary matrices which simultaneously diagonalize the pairs (G∗G, J) and (G̃∗G̃, J),
respectively. If ‖H−1‖2‖δH‖2 < 2/3, then

1

2
‖ sin 2ΘM (Ran(X1),Ran(X̂1))‖F ≤

‖B‖22‖B̂2‖2‖B̃1‖2 νfr
RelGap1

‖H−1‖2‖δH‖F ,(2.11)

where

RelGap1 = min
i=k+1,...,n

j=1,...,k

|λ̂i − λ̂j |√
|λ̂i||λ̂j |

and

νfr =
2− ‖H−1‖2‖δH‖2

(1− ‖H−1‖2‖δH‖2)(2− 3‖H−1‖2‖δH‖2)
·(2.12)
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Proof. As it has been shown in Lemma 2.1, it is enough to bound ‖Ŷ ∗2 MX̂1‖F . From
(2.4) and (2.6) we have

H̃X̂1 = MX̂1Λ̂1, ĤŶ2 = MŶ2Λ̂2 .

Multiply the first equation from the left by Ŷ ∗2 and the second by X̂∗1 to get

(2.13) Ŷ ∗2 H̃X̂1 = Ŷ ∗2 MX̂1Λ̂1, X̂∗1 ĤŶ2 = X̂∗1MŶ2Λ̂2 .

Transposing the second equation in (2.13) and subtracting them, we obtain

Λ̂2Ŷ
∗
2 MX̂1 − Ŷ ∗2 MX̂1Λ̂1 = Ŷ ∗2 (Ĥ − H̃)X̂1.

Also, using hyperbolic singular value decomposition of the matrices G̃ and Ĝ, we have that

G̃∗X̂ = B̃|Λ̂|1/2

Ĝ∗Ŷ = B̂|Λ̂|1/2 ,(2.14)

where B̃ and B̂ are J-unitary matrices which simultaneously diagonalize the matrix pairs
(G̃∗G̃, J) and (Ĝ∗Ĝ, J), respectively. Starting from

Λ̂2Ŷ
∗
2 MX̂1 − Ŷ ∗2 MX̂1Λ̂1 = Ŷ ∗2 ĜĜ

−1(Ĥ − H̃)G̃−∗G̃∗X̂1

and (2.14), we establish a structured Sylvester equation

(2.15) Λ̂2Ŷ
∗
2 MX̂1 − Ŷ ∗2 MX̂1Λ̂1 = |Λ̂2|1/2B̂∗2Ĝ−1(Ĥ − H̃)G̃−∗B̃1|Λ̂1|1/2 .

Using [16, Lemma 2.4] for (2.15), we find the bound

(2.16) ‖Ŷ ∗2 MX̂1‖F ≤
‖B̂2‖2‖B̃1‖2‖Ĝ−1(Ĥ − H̃)G̃−∗‖F

RelGap1

,

where

RelGap1 = min
i=k+1,...,n

j=1,...,k

|λ̂i − λ̂j |√
|λ̂i||λ̂j |

·

We have now reduced the problem to that of estimating ‖Ĝ−1(Ĥ − H̃)G̃−∗‖F in (2.16).
Towards this end, set

(2.17) H = GJG∗, H̃ = GNJN∗G∗ ≡ G̃JG̃∗, G̃ = GN,

and define

(2.18) W := G−1S∗rG = B−∗
[
Ik 0
0 −In−k

]
B∗.

First, note that

WJW ∗ = G−1S∗rGJG
∗SrG

−∗ = G−1HG−∗ = J,

and so W is J-unitary. Further, we have that

W 2 = I, W ∗J = JW, ‖W‖2 ≤ ‖B‖22.
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We use the identity GW = S∗rG, which follows from (2.18), to get

Ĥ = S∗r H̃Sr = S∗r G̃JG̃
∗Sr = S∗rGNJN

∗G∗Sr

= GWNJN∗W ∗G∗ = GNN−1WNJN∗W ∗N−∗N∗G∗,

where G̃ is given as in (2.17),

Ñ = N−1WN, Ĝ = G̃Ñ ,

and, hence,

ĜŶ = B̂|Λ̂|1/2.

Now, it is easy to see that

‖Ĝ−1(Ĥ − H̃)G̃−∗‖F = ‖JĜ∗G̃−∗ − Ĝ−1G̃J‖F = ‖JÑ∗ − Ñ−1J‖F .

We express a bound for ‖JÑ∗ − Ñ−1J‖F in terms of the norm of E (and thus of ‖δH‖F ).
Similarly as in [21, Section 3.1] and Remark 2.2, one can obtain the following inequality:

(2.19) ‖JÑ∗ − Ñ−1J‖F ≤ 2‖B‖22 νfr ‖H−1‖2‖δH‖F ,

where

(2.20) νfr =
2− ‖H−1‖2‖δH‖2

(1− ‖H−1‖2‖δH‖2)(2− 3‖H−1‖2‖δH‖2)
·

The proof now simply follows from (2.16) and (2.19).
The bound (2.11) given in the previous theorem depends on the norm of the J-unitary

matrices B̃ and B̂. Here we want to emphasize that ‖B̃‖2 and ‖B̂‖2 can be bounded in terms
of ‖B‖2 as it is done in [21, Section 3.2]. Using these results, we can state the following
corollary.

COROLLARY 2.4. To the conditions of Theorem 2.3 add the following:

γ :=
‖H−1‖2‖δH‖F

2− 3‖H−1‖2‖δH‖2
≤ 1

4‖B‖22
·

Then

1

2
‖ sin 2ΘM (Ran(X1),Ran(X̂1))‖F ≤

‖B‖42 νfr
1− 4γ‖B‖22

‖H−1‖2‖δH‖F
RelGap1

·(2.21)

The bounds (2.11) and (2.21) can be also given in any unitary invariant norm ‖ · ‖ by imposing
additional assumptions on the spectra of the matrix pairs (H̃,M). This is stated in the next
corollary.

COROLLARY 2.5. Let the same assumptions as in Theorem 2.3 and Corollary 2.4 hold. If
there exists a ≥ 0 and δ > 0 such that

‖|Λ̂1|‖2 ≤ a and ‖|Λ̂2|−1‖−12 ≥ a+ δ

or

‖|Λ̂1|−1‖−12 ≥ a+ δ and ‖|Λ̂2|‖2 ≤ a ,
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then

1

2
‖ sin 2ΘM (Ran(X1),Ran(X̂1))‖ ≤ ‖B‖42 νfr

1− 4γ‖B‖22
‖H−1‖2‖δH‖

a√
a(a+δ)

·(2.22)

Proof. The proof follows by applying [8, Lemma 2.1] to the structured Sylvester equa-
tion (2.15).

The estimates given here contain an additional factor which depends on the J-unitary
matrix B from (2.14), whose norm may be large for the case when the matrix H in the
matrix pair (H,M) is any indefinite Hermitian matrix. There exist several different estimates
for ‖B‖2 which are given for certain classes of matrices H = GJG∗. For example, in [23]
and [21], one can find such estimates for the case when H = GJG∗ belongs to the class
of so-called “well-behaved matrices” as defined by Demmel and Barlow [3]. This class
of matrices contains scaled diagonal dominant matrices, block-scaled diagonally dominant
(BSDD) matrices, and quasi-definite matrices. For basic properties of the J-unitary matrices
and for some other bounds for ‖B‖2, see, e.g., [24].

In [8] one can find a new sharp estimate for the condition number of all J-unitary matrices
which diagonalize a pair (G∗G, J), where H = GJG∗ is a quasi-definite block matrix. A
matrix H is a quasi-definite matrix if there exists a permutation matrix P such that

Hqd ≡ P ∗HP =

[
H11 H12

H∗12 −H22

]
,

where H11 and H22 +H∗12H
−1
11 H12 are positive definite. Such matrices can be factorized in

the form H = GJG∗, where

G =

[
I 0

H∗12H
−1
11 I

] [
H

1/2
11 0
0 (H22 +H∗12H

−1
11 H12)1/2

]
, J =

[
I
−I

]
.

The bound given in [8, Theorem 4.1] has the following form:

‖B‖2 ≤
‖H∗12H−111 ‖2

2
+

√
1 +

(
‖H∗12H

−1
11 ‖2

2

)2

.

2.2. The second step. In a second step we consider upper bounds for the expression∥∥∥sin 2ΘM (Ran(X̂1),Ran(X̃1))
∥∥∥. The corresponding estimate will be stated in our second

theorem. As in Section 2.1, we start by specifying the notation for the block-matrix representa-
tion of the matrices involved. This matrix calculus will be used extensively in the proofs that
follow.

Assume k (1 ≤ k < n) as in (2.2) and (2.4), and let X̃ =
[
X̃1 X̃2

]
be a non-singular

matrix such that

(2.23)

[
X̃∗1
X̃∗2

]
H̃
[
X̃1 X̃2

]
=

[
Λ̃1 0

0 Λ̃2

]
,

[
X̃∗1
X̃∗2

]
M̃
[
X̃1 X̃2

]
=

[
Ik 0
0 In−k

]
,

where Λ̃1 = diag(λ̃1, . . . , λ̃k) and Λ̃2 = diag(λ̃k+1, . . . , λ̃n), λ̃i ∈ R, for i = 1, . . . , n, and
Spec(Λ̃1) ∩ Spec(Λ̃2) = ∅. Also, recall that X̂ =

[
X̂1 X̂2

]
satisfies (2.4).

Similarly as in the previous section, we define the matrix

(2.24) Tr = X̂

[
Ik
−In−k

]
X̂−1 = X̂

[
Ik
−In−k

]
X̂∗M.
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Note that

T 2
r = In, ‖Tr‖2 ≤ κ(X̂) and T ∗r H̃Tr = H̃, T ∗rMTr = M.

Also, we define an auxiliary matrix M̂ as

M̂ = T ∗r M̃Tr = Ỹ −∗InỸ
−1,

where Ỹ = TrX̃ . The matrix Ỹ is M̂ -orthogonal and

Ỹ ∗H̃Ỹ = X̃∗T ∗r H̃TrX̃ = X̃∗H̃X̃ = Λ̃.

For a given k (1 ≤ k < n), let us partition the matrix Ỹ such that

Ỹ =
[
Ỹ1 Ỹ2

]
, Y1 ∈ Cn×k, Y2 ∈ Cn×(n−k).

Using a similar argument as in the previous section, the norm of the sines of the double angles
between the subspaces Ran(X̂1) and Ran(X̃1) is the same as the norm of the sines of the
single angles between the subspaces Ran(X̃1) and Ran(Ỹ1).

First, let us define the sines of the angles between the subspaces Ran(X̃1) and Ran(Ỹ1)

in the M -inner product space. The matrix Ỹ is M̂ -orthogonal, and X̃ is M̃ -orthogonal. The
relationship between matrices which are orthogonal in the M̃ (M̃ = M + δM)- and M̂
(M̂ = M + T ∗r δMTr)-scalar product is important for our perturbation theory. For X̃ such
that X̃∗M̃X̃ = I, we compute

X̃∗MX̃ = I − X̃∗δMX̃.

Assume that I − X̃∗δMX̃ is positive definite. Then it has the block-Cholesky decomposition

(2.25) KK∗ = I − X̃∗δMX̃,

where

K =

[
K11 0
K21 K22

]
and K11 ∈ Ck×k, K21 ∈ C(n−k)×k, K22 ∈ C(n−k)×(n−k). A direct computation proves
that the matrix X̃K−∗ is M -orthogonal. Similarly, we conclude that the columns of X̃1K

−∗
11 ,

where K11K
∗
11 = Ik − X̃∗1 δMX̃1, are M -orthogonal. Also, for Ỹ such that

Ỹ ∗M̂Ỹ = Ỹ ∗T ∗r (M + δM)TrỸ = I,

using the fact that X̃ = TrỸ , it follows that

Ỹ ∗MỸ = I − Ỹ ∗T ∗r δMTrỸ = I − X̃∗δMX̃ = KK∗.

It is easy to see now that the matrix Ỹ K−∗ is an M -orthogonal matrix, and by direct com-
putation we conclude that the columns of the matrix −Ỹ1K−∗11 K

∗
21K

−∗
22 + Ỹ2K

−∗
22 are M -

orthogonal.
Finally, we obtain

‖ sin ΘM (Ran(X̃1),Ran(Ỹ1))‖

= ‖ −K−122 K21K
−1
11 Ỹ

∗
1 MX̃1K

−∗
11 +K−122 Ỹ

∗
2 MX̃1K

−∗
11 ‖ ,(2.26)



ETNA
Kent State University

http://etna.math.kent.edu

DOUBLE ANGLE THEOREMS FOR DEFINITE MATRIX PAIRS 43

which will be used to provide estimates of the angle operator in the next lemma.

LEMMA 2.6. Let X̂ =
[
X̂1 X̂2

]
and X̃ =

[
X̃1 X̃2

]
, with X̂1, X̃1 ∈ Cn×k and

X̂2, X̃2 ∈ Cn×(n−k), be non-singular matrices which simultaneously diagonalize the Hermi-
tian matrix pairs (H̃,M) and (H̃, M̃) as in (2.4) and (2.23), respectively, where H̃ ∈ Cn×n

is indefinite and M , M̃ ∈ Cn×n are positive definite matrices. Let Ỹ = TrX̃ =
[
Ỹ1 Ỹ2

]
be

an M̂ -orthogonal matrix, where Tr ∈ Cn×n is defined in (2.24) (M̂ = T ∗r M̃Tr). Then

(2.27) ‖ sin 2ΘM (Ran(X̂1),Ran(X̃1))‖ = ‖ sin ΘM (Ran(X̃1),Ran(Ỹ1))‖.

Proof. It is easy to see that

(2.28) K−1X̃∗MX̂ =

[
K−111 X̃

∗
1MX̂1 K−111 X̃

∗
1MX̂2

(K−1X̃∗MX̂)21 (K−1X̃∗MX̂)22

]

is a unitary matrix, where

(K−1X̃∗MX̂)21 = −K−122 K21K
−1
11 X̃

∗
1MX̂1 +K−122 X̃

∗
2MX̂1,

(K−1X̃∗MX̂)22 = −K−122 K21K
−1
11 X̃

∗
1MX̂2 +K−122 X̃

∗
2MX̂2.

Similarly as in the proof of Lemma 2.1, without loss of generality, it can be assumed that
k = n

2 . Then by a CS decomposition, there exists unitary matrices U1, V1 ∈ Ck×k and
U2, V2 ∈ C(n−k)×(n−k) such that

(2.29)
[
U1

U2

]∗
K−1X̃∗MX̂

[
V1

V2

]
=

[
C −S
S C

]
.

Here C = diag(cos θ1, . . . , cos θp) and S = diag(sin θ1, . . . , sin θp), and θ1, . . . , θn are
canonical angles between subspaces measured in the M -inner product.

Since

‖ sin ΘM (Ran(X̃1),Ran(Ỹ1))‖F
= ‖ −K−122 K21K

−1
11 Ỹ

∗
1 MX̃1K

−∗
11 +K−122 Ỹ

∗
2 MX̃1K

−∗
11 ‖F(2.30)

and

Ỹ1 = TrX̃1 = X̂1X̂
∗
1MX̃1 − X̂2X̂

∗
2MX̃1

Ỹ2 = TrX̃1 = X̂1X̂
∗
1MX̃2 − X̂2X̂

∗
2MX̃2 ,(2.31)

and by inserting (2.31) into (2.30) and using (2.29), we obtain

(2.32) ‖ sin ΘM (Ran(X̃1),Ran(Ỹ1))‖ = ‖2SC‖.

As C and S are diagonal matrices with the cosine and sine of the canonical angles between
the subspaces Ran(X̃1) and Ran(X̂1) in (2.27) on its diagonal, the proof follows from (2.32).

We collect these observations and results in the next theorem, which will be proved in
Appendix A.
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THEOREM 2.7. Let X̂ =
[
X̂1 X̂2

]
and X̃ =

[
X̃1 X̃2

]
be non-singular matrices

which simultaneously diagonalize the pairs (H+δH,M) and (H+δH,M+δM), respectively,
as in (2.4) and (2.23). If

ηM := ‖M−1/2δMM−1/2‖2 <
1

2
,(2.33)

then

‖ sin 2ΘM (Ran X̂1,Ran X̃1)‖F ≤ νsec1 ‖M̃−1/2δMM̃−1/2‖F

+
νsec2

RelGap2

‖M̃−1/2δMM−1/2‖F ,(2.34)

where

(2.35) RelGap2 := min
i=k+1,...,n

j=1,...,k

|λ̃i − λ̃j |√
|λ̃i|2 + |λ̃j |2

,

and

νsec1 :=
1− ηM
1− 2ηM

, νsec2 :=
(2− 3ηM )(1− ηM )√

2(1− 2 ηM )2
·

By additional assumptions on the spectra of the matrix pairs (H̃, M̃), the bound (2.34)
can be derived for any unitary invariant norm which we generically denote by ‖ · ‖. This is
shown in the next corollary.

COROLLARY 2.8. Let the same assumptions as in Theorem 2.7 hold. If there exists a ≥ 0
and δ > 0 such that

‖|Λ̃1|‖2 ≤ a and ‖|Λ̃2|−1‖−12 ≥ a+ δ(2.36)

or

‖|Λ̃1|−1‖−12 ≥ a+ δ and ‖|Λ̃2|‖2 ≤ a ,

then

‖ sin 2ΘM (Ran X̂1,Ran X̃1)‖

≤ νsec1 ‖M̃1/2δMM̃−1/2‖+
νsec2 ‖M̃−1/2δMM−1/2‖

δ√
|a|+|a+δ|

,(2.37)

and

νsec1 =
1− ηM
1− 2ηM

, νsec2 =
(2− 3ηM )(1− ηM )√

2(1− 2 ηM )2
·

Proof. The proof follows by applying [15, Lemma 2.3] to the structured Sylvester
equation (A.10).

2.3. The main result. As indicated earlier (see (2.3)), without any additional assump-
tions on the location of the spectra, we obtain an upper bound for

‖ sin 2ΘM (I, Ĩ)‖F = ‖ sin 2ΘM (Ran(X1),Ran(X̃1))‖F
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as the sum of the bounds for

‖ sin 2ΘM (Ran(X1),Ran(X̂1))‖F and ‖ sin 2ΘM (Ran(X̂1),Ran(X̃1))‖F .

The following is our main result:
THEOREM 2.9. Let (H,M) be a Hermitian pair, and let (H̃, M̃) be the perturbed pair.

Let X =
[
X1 X2

]
and X̃ =

[
X̃1 X̃2

]
be non-singular matrices which simultaneously

diagonalize the pairs (H,M) and (H + δH,M + δM) as in (2.2) and (2.23), respectively.
Let B be the J-unitary matrix from Theorem 2.3. If

ηM := ‖M−1/2δMM−1/2‖2 <
1

2
,

then

‖ sin 2ΘM (Ran(X1),Ran(X̃1))‖F ≤
2‖B‖42

1− 4γ‖B‖22
νfr ‖H−1‖2‖δH‖F

RelGap1

+
νsec1 RelGap2 + νsec2

RelGap2

‖M̃−1/2δMM−1/2‖F ,(2.38)

where

νsec1 =
1− ηM
1− 2ηM

, νsec2 :=
(2− 3ηM )(1− ηM )√

2(1− 2 ηM )2
, γ =

‖H−1‖2‖δH‖F
2− 3‖H−1‖2‖δH‖2

,

RelGap1, νfr are as in (2.12), and RelGap2 is as in (2.35).
Proof. The proof follows by inserting (2.21) and (2.34) into (2.3).
Using the estimates (2.22) and (2.37), we can derive a bound similar to (2.38) for any

unitary invariant norm ‖ · ‖.
COROLLARY 2.10. Assuming the conditions of Theorem 2.9 and Corollaries 2.5 and 2.8

hold. Using the same notation, we have

‖ sin 2ΘM (Ran(X1),Ran(X̃1))‖ ≤ 2‖B‖42 νfr
1− 4γ‖B‖22

‖H−1‖2‖δH‖
δ√

a(a+δ)

+
νsec1

δ√
|a|+|a+δ|

+ νsec2

δ√
|a|+|a+δ|

‖M̃−1/2δMM−1/2‖ .

Proof. The proof can be derived in a similar way as that of Theorem 2.9.
Since the estimate (2.38) in Theorem 2.9 is rather technical, we propose a simplification

which gives a reasonable upper bound for (2.38) under certain restrictions.
Starting from (2.38), we define the function

νsec2(ηM ) :=
(2− 3ηM )(1− ηM )√

2(1− 2 ηM )2
·

It is an increasing function for ηM ∈ [0, 12 [. Also, νsec2(0) =
√

2, which means that the
minimal value of that function on the interval [0, 12 [ is

√
2. Since

lim
ηM→ 1

2

νsec2(ηM ) =∞,
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we may reasonably further restrict the range of ηM . For example, letting ηM < 1
7 yields

νsec2(ηM ) < 33
√
2

25 . It means that νsec2(ηM ) ∈ [
√

2, 33
√
2

25 [ for ηM ∈ [0, 17 [, and so if we
substitute a constant for νsec2(ηM ), it will not significantly affect the estimate in (2.38). Using
similar consideration as above, we state the simpler upper bound for (2.38) in the following
corollary.

COROLLARY 2.11. Let all of the conditions from Theorem 2.9 hold. If in addition

γ‖B‖22 <
1

32
and ηM = ‖M−1/2δMM−1/2‖2 <

1

7
,

then

‖ sin 2ΘM (Ran(X1),Ran(X̃1))‖F ≤
32‖B‖42

7 RelGap1

‖H−1‖2‖δH‖F

+
36 RelGap2 +60

35 RelGap2

‖M− 1
2 δMM−

1
2‖F ,

where RelGap1 and RelGap2 are defined in (2.12) and (2.35), respectively.
Proof. Recall the relationship (2.20). It follows that

2− ‖H−1‖2‖δH‖2
(1− ‖H−1‖2‖δH‖2)(2− 3‖H−1‖2‖δH‖2)

‖H−1‖2‖δH‖F < 2‖H−1‖2‖δH‖F .

Further, using the estimates from [10], it follows that

‖M̃−1/2δMM−1/2‖ ≤ ‖M
−1/2δMM−1/2‖√

1− ηM
,

‖M̃−1/2δMM̃−1/2‖ ≤ ‖M
−1/2δMM−1/2‖

1− ηM
,

and hence,

‖M̃−1/2δMM−1/2‖ ≤
√

7
6‖M

−1/2δMM−1/2‖

and

‖M̃−1/2δMM̃−1/2‖ ≤ 7
6‖M

−1/2δMM−1/2‖.
Analogously, it can be easily seen that

1− ηM
1− 2ηM

≤ 6

5
if ηM <

1

7
·

Finally, from the above inequities, it follows that ηM < 1/7 implies νsec2 ≤ 2. The bound
from the statement of the theorem is now obtained from (2.38).

3. sin Θ- and sin 2Θ-theorems for definite matrix pairs. In this section we present
new sin Θ- and sin 2Θ-theorems which generalize results form [8] and from the previous
section. Here we consider definite matrix pairs (H,M), where H is an indefinite Hermitian
matrix which can be factorized as

H = GJG∗, J = diag(±1),

G is assumed to be a non-singular matrix, and M is a non-singular indefinite Hermitian matrix.
This means that there exists α ∈ R such that Mα := H − αM is positive definite. That is,
there is a non-singular matrix X such that

X∗HX = DH = diag(a1, . . . , an) and X∗MX = DM = diag(b1, . . . , bn).
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More to the point, we consider the following generalized eigenvector problem

(3.1) Hx = λMx

and the corresponding perturbed one

(H + δH)x̃ = λ̃(M + δM)x̃,

such that the matrix pair (H̃, M̃) is also definite, which means that there exists a non-singular
matrix X̃ such that

(3.2) X̃∗H̃X̃ = D̃H = diag(ã1, . . . , ãn) and X̃∗M̃X̃ = D̃M = diag(̃b1, . . . , b̃n).

One of the criteria by which we can choose α so that Mα = H − αM is positive definite is
given in the next theorem.

THEOREM 3.1 ([24, Theorem A1]). Suppose that the Hermitian matrix pair (H,M) is
definite, where M ∈ Cn×n is non-singular with m positive eigenvalues and n−m negative
eigenvalues. Then there exists a non-singular matrix X such that

(3.3) X∗HX =

[
Λ+

−Λ−

]
X∗MX =

[
I∗m

−In−m

]
,

Λ+ = diag(λ+1 , . . . , λ
+
m), Λ− = diag(λ−1 , . . . , λ

−
n−m),

λ+1 ≥ · · · ≥ λ+m, λ−1 ≥ · · · ≥ λ
−
n−m.

Moreover for α ∈ R, H − αM is positive definite if and only if

λ+m > α > λ−1 ,

with the convention that λ−1 = −∞ when m = n and λ+m = +∞ when m = 0.
We want to derive sin Θ- and sin 2Θ-theorems using results from [8, Theorem 3.4] and

the previous section. For this purpose, note that the matrices X and X̃ from (3.2) and (3.3)
simultaneously diagonalize the matrix pairs (H,Mα) and (H̃, M̃α) = (H+ δH,Mα+ δMα),
respectively, such that

X∗HX = DH and X∗MαX = X∗HX − αX∗MX = DH − αDM =: DMα
,

where DMα = diag(a1 − αb1, . . . , an − αbn) is a diagonal matrix with positive diagonal
entries, i.e., ai − αbi > 0, for all i = 1, . . . , n, and similarly for the perturbed matrix pairs.
This means that the eigenvectors of the matrix pairs (H,M) and (H,Mα) span the same
eigenspace and similarly for the perturbed matrix pairs.

Instead of the eigenproblem (3.1), we consider

Hx = µMαx

and the corresponding perturbed one

H̃x̃ = µ̃M̃αx̃,

where H̃ = G̃JG̃∗, J = diag(±1), δH = H̃ −H , and δMα = δH − αδM . Eigenvalues
of the matrix pairs (H,Mα) and (H̃, M̃α) are of the form µi = ai

ai−αbi , µ̃i = ãi
ãi−αb̃i

,

i = 1, . . . , n, respectively. The subspaces remain the same.
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Using the result given in [8, Theorem 3.4], we can state our first theorem.

THEOREM 3.2. Let (H,Mα) be a Hermitian pair, and let (H̃, M̃α) be the perturbed pair.

Let X =
[
X1 X2

]
and X̃ =

[
X̃1 X̃2

]
be non-singular matrices which simultaneously

diagonalize (H,Mα) and (H̃, M̃α), respectively. If

ηMα
(α) := ‖M−1/2α δMαM

−1/2
α ‖2 <

1

2
,

then

‖ sin ΘMα(Ran(X1),Ran(X̃1))‖F ≤
‖B‖2‖B̃‖2
RelGap(α)

‖G−1δHG̃−∗‖F

+
1

RGap(α)

√
1− ηMα

(α)√
1− 2 ηMα(α)

‖M−1/2α δMαM̃
−1/2
α ‖F ,(3.4)

where sin ΘMα(Ran(X1),Ran(X1)) is a diagonal matrix with the sines of the canonical an-
gles in the weighted Mα-inner product space between Ran(X1) and Ran(X̃1) on its diagonal,
and where

RelGap(α) = min
i=k+1,...,n

j=1,...,k

|µi − µ̂j |√
|µi||µ̂j |

= min
i=k+1,...,n

j=1,...,k

| ai
ai−αbi −

ãj
aj−αbj |√

| ai
ai−αbi ||

ãj
aj−αbj |

and

RGap(α) = min
i=k+1,...,n

j=1,...,k

|µ̂i − µ̃j |
|µ̃j |

= min
i=k+1,...,n

j=1,...,k

∣∣∣ ãi
ai−αbi −

ãj

ãj−αb̃j

∣∣∣∣∣∣ ãj

ãj−αb̃j

∣∣∣ ·

Proof. For a proof see that of [8, Theorem 3.4].
Using the same approach, by applying Theorem 2.9 to the matrix pairs (H,Mα) and

(H̃, M̃α), one can state a bound for the sines of the double angle between the subspaces
Ran(X1) and Ran(X̃1). Here we only mention a simplified form of this theorem. Using a
similar discussion as in the previous section, in the next corollary we present such estimates.
Here it is particularly useful to obtain α-independent bounds for the stability constants νsec2
and νsec1.

COROLLARY 3.3. Let all the conditions from Theorem 2.9 hold. If

γ‖B‖22 <
1

32
and ηMα(α) <

1

7
,

then

‖ sin 2ΘM (Ran(X1),Ran(X̃1))‖F ≤
32‖B‖42

7 RelGap1(α)
‖H−1‖2‖δH‖F

+
36 RelGap2(α) + 60

35 RelGap2(α)
‖M−1/2α δMαM

−1/2
α ‖F ,(3.5)
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where

RelGap1(α) = min
i=k+1,...,n

j=1,...,k

|µ̂i − µ̂j |√
|µ̂i||µ̂j |

= min
i=k+1,...,n

j=1,...,k

| ãi
ai−αbi −

ãj
aj−αbj |√

| ãi
ai−αbi ||

ãj
aj−αbj |

,

RelGap2(α) = min
i=k+1,...,n

j=1,...,k

|µ̃i − µ̃j |√
|µ̃i|2 + |µ̃j |2

= min
i=k+1,...,n

j=1,...,k

| ãi
ãi−αb̃i

− ãj

ãj−αb̃j
|√

| ãi
ãi−αb̃i

|2 + | ãj

ãj−αb̃j
|2
·

REMARK 3.4. Note that the bounds (3.4) and (3.5) depend on α ∈ (λ−1 , λ
+
m) from

Theorem 3.1. Since both inverses of the relative gaps tend to infinity when α is close to λ−1
or λ+m and our bound is pessimistic in that case, for α we choose α =

λ−1 +λ+
m

2 . This choice
is further justified since in applications one frequently observes that the inverses of the gaps
decay very rapidly from the boundary towards the middle of the interval. In particular note that
in (3.5), we see that both terms in the estimate essentially depend on the relative gaps. Only
the bound for the perturbation in the factor Mα can be optimized. It is, however, assumed to
be less than 1/7. This is a reasonable assumption since for the asymptotic considerations we
assume that δH → 0 and δMα → 0. This indicates that in optimizing the effectivity of the
bounds, we should concentrate on optimizing the relative gaps RelGap1(α) and RelGap2(α)
by increasing them. Our choice furthermore seems to be reasonable for this. This is illustrated
in the numerical examples.

4. Numerical examples. The purpose of this section is to experimentally compare the
bounds of several sin Θ-theorems.

4.1. A family of random matrices. In this example we consider a family of random
perturbations of a quasi-definite matrix motivated by considerations of the abstract Bogoliubov-
de-Gennes model from [12]. Our results can be applied to this problem, assuming that M = I
and δM = 0. Let

H =

[
H11

−H11

]
be a quasi-definite matrix, and let

H̃ =

[
H11 Ωω
Ωω −H11

]
be a corresponding perturbed matrix. Here H11 is a fixed positive definite matrix given as (in
MATLAB notation):

n=25;
h11=0.01:0.001:0.013;
h11=[h11,10*(1:n-4)];
[Qtmp,temp]=qr(rand(25));

H11=Qtmp*diag(h11)*Qtmp’+ 5*eye(n);
H11=1/2*(H11+H11’);

and Ω = ε · rand(n) ,Ωω = Ω + ΩT is a random Hermitian matrix, where ε = 10−8. We
are interested in estimating the bound in (2.38) for k = 1 : 4 : 49, where k is such that
X1 = X(:, 1 : k) and X2 = (:, n − k + 1 : 2n). This means that we have to estimate
perturbations of an invariant subspace which corresponds to the first k eigenvalues of the



ETNA
Kent State University

http://etna.math.kent.edu
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FIG. 4.1. ε = 10−8.

matrix pair (H,M). As an illustration of the performance of our estimator, we study the
mapping

k 7→
2‖B‖42

1−4γ‖B‖22
νfr ‖H−1‖2‖δH‖F

RelGap1
+ νsec1 RelGap2 + νsec2

RelGap2
‖M̃−1/2δMM−1/2‖F

‖ sin ΘMα
(Ran(X1),Ran(X̃1))‖F

,(4.1)

where X1 and X̃1 span the eigensubspace of the first k eigenvalues (counting from left to
right).

The obtained results are presented in Figure 4.1. Figure 4.1(a) displays our bound (2.38)
and the exact value. Figure 4.1(b) displays the effectivity quotient, which is the best for
k = 25 where its value is 1.6916. We see that the bound is dominated by the influence of the
relative gaps. Recalling Remark 3.4, we consider this as a further justification of our choice of
the parameter α. Also, note that the relative gap does not correctly capture the trend in the
perturbation estimate far from the origin. On the other hand, the estimates for a cluster of
eigenvalues, which are smallest in the absolute value, are very sharp. This is a known feature
of relative estimates which are designed as a sharp tool to study the stability of the inertia of a
matrix or matrix pair.

4.2. Analysis of a parameter-dependent family of problems. Let (H,M) be a definite
matrix pair. Consider the quasi-definite matrix H with

H =


2.0010 0.0092 0.0071 0.4667 0.3968 0.1007
0.0092 2.0189 0.0069 0.9746 0.4793 0.3459
0.0071 0.0069 2.0186 0.2708 −0.2937 −0.5863
0.4667 0.9746 0.2708 −2.0010 −0.0092 −0.0071
0.3968 0.4793 −0.2937 −0.0092 −2.0189 −0.0069
0.1007 0.3459 −0.5863 −0.0071 −0.0069 2.0186

 .

The bounds given here are compared with the bound given in [14, Theorem 5.5], which is of
the form

‖ sin 2Θ(Ran(X1),Ran(X̃1))‖F − 2ω‖X1‖2‖W1‖2‖ sin Θ(Ran(X1),Ran(X̃1))‖2F

≤ κ(X)3κ(X̃)[1 + κ(X)2]‖X̃‖22
δ

‖δH − λδM‖F ,(4.2)
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where ω = ‖(W ∗1W1)−1/2W ∗1W2(W ∗2W2)−1/2‖2, W = X−1 = [W1 W2], W1 ∈ Cn×k,
W2 ∈ Cn×(n−k), and

δ = min

{
|λ̃− λ|√

1 + λ̃2
√

1 + λ2
;λ ∈ σ(Λ1), λ̃ ∈ σ(Λ̃2)

}
.

Note that in (4.2), the sines of the double angle are not bounded directly, and it is necessary
to have the information about the sines of the single angles between the subspaces available.
Also, for a not so large condition number of the matrix X , this bound can be pessimistic.

Case 1: Let M be the positive definite symmetric matrix given in MATLAB notation as
M=diag(1:n)+0.1*rand(n);
M=(M+M’)/2;

We consider random perturbations δH and δM , which satisfy

|(δH)ij | ≤ η|Hij |, |(δM)ij | ≤ η|(δM)ij |,

where η = 10−8. We derive a bound for ‖ sin 2ΘM (Ran(X1),Ran X̃1)‖F , where X1 and
X̃1 contains eigenvectors corresponding to the two smallest eigenvalues of the matrix pair
(H,M). The estimate (2.38) from Theorem 2.9 gives

‖ sin 2ΘM (Ran(X1),Ran X̃1)‖F ≤ 1.3296e-06 ,

in comparison with the exact value of ‖ sin 2ΘM (Ran(X1),Ran X̃1)‖ ≈ 3.6229e-08. Also,
the estimate (4.2) gives ‖ sin 2ΘM (Ran(X1),Ran X̃1)‖F ≤ 1.1173e-03, which is three
orders of magnitude larger than our bound.

Case 2: Let M be the real symmetric indefinite matrix given in MATLAB notation as
M=-eye(n)+0.1*rand(n);
M=(M+M’)/2;
M(3,3)=0.01;

The matrix pair (H,M) is definite, which means that there exists anα such thatH − αM=Mα

is a positive definite matrix. From Theorem 3.1, it follows that the matrix Mα = H − αM
is positive definite for α ∈ (2.6729, 75.1301). From now on, let (H,Mα) be a symmetric
definite pair. We consider random perturbations δH and δMα = δH − αδM , which satisfy

|(δH)ij | ≤ η|Hij |, |(δMα)ij | ≤ η|δ(Mα)ij |,

where η = 10−8. In the following experiment, we estimate the perturbation of an invariant
subspace which corresponds to the two smallest eigenvalues of the matrix pair (H,Mα).
Figure 4.2 and Figure 4.3 display the bounds (3.4) and (3.5), respectively, and also the
effectivity quotients for α chosen as (in MATLAB notation)

alpha=(2.6729e+000 + 0.00001):0.1:(7.5130e+001-0.00001)
The minimal value of the function (bound (3.4)) shown in Figure 4.2(a) is 2.5213e-08,

thus, (3.4) yields

‖ sin ΘMα(Ran(X1),Ran(X̃1)‖F ≤ 2.5213e-08,

in comparison with the exact value ‖ sin ΘMα
(Ran(X1),Ran X̃1)‖F ≈ 1.5665e-09. Also,

the minimal value for the effectivity quotient shown in Figure 4.2(b) is 9.0242.
The minimum of the function (the bound in (3.5)) shown in Figure 4.3(a) is 1.0225e-07,

hence, the bound (3.5) in Theorem 2.9 gives

‖ sin 2ΘMα
(Ran(X1),Ran(X̃1))‖F ≤ 1.0225e-07 ,
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FIG. 4.2. Bound (3.4) for α ∈ (λ−1 , λ
+
m).
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FIG. 4.3. Bound (3.5) for α ∈ (λ−1 , λ
+
m).

in comparison with the exact value ‖ sin 2ΘMα(Ran(X1),Ran(X̃1))‖F ≈ 3.7249e-09. The
minimal value for the effectivity quotient shown in Figure 4.3(b) is 9.8767. The minimum
of the function (the bound (4.2)) is 2.0671e-02, and the maximum is 2.3900e+20, which is a
consequence of the dependence of the bounds on the condition numbers of the matrices X
and X̃ from (3.2). This is illustrated in Figure 4.4.

As we have previously pointed out in Remark 3.4, our estimates depend on the parame-
ter α, and from Figure 4.2 and Figure 4.3, it is easy to notice that our bounds are worse for the
case when α is close to the edges of interval (2.6729, 75.1301) since the matrix Mα is close

to being singular there. We observe that α =
λ−1 +λ+

m

2 = 38.9015 is close to the optimal value
of the effectivity quotient. The experiments furthermore suggest that with this choice of α, we
improve the sharpness of the estimates (measured by the effectivity quotient of the bounds).
To this end we compute

‖ sin ΘMα
(Ran(X1),Ran(X̃1))‖F ≤ 6.1705e-08

and

‖ sin 2ΘMα
(Ran(X1),Ran(X̃1))‖F ≤ 1.1696e-07 .

Note that these bounds are of the same order of magnitude as the minimal values of the
functions shown in Figure 4.2 and Figure 4.3.
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FIG. 4.4. Condition of the non-singular matrix X from (3.2) and bound (4.2) for α ∈ (λ−1 , λ
+
m).

5. Conclusion. In this paper we have presented estimates for the double angle operator
associated to the rotation of invariant subspaces of a definite Hermitian pair under the influence
of a perturbation of both factors. The angle operator has been defined relative to the scalar
product in which the matrix pair is definite. We have obtained, as it is characteristic for double
angle theorems, a subspace perturbation estimate in which only the separation of the spectral
components of the perturbed matrix pairs appears. As a byproduct, we also obtained bounds
for the condition number of the J-unitary matrices B which diagonalize a quasi-definite
matrix H . The norm of B is a measure of the reliability of the spectral calculus for H—which
yields relative gaps—and convenient for establishing measures of spectral stability, e.g., the
relative gap to the unwanted component of the spectrum, for a targeted group of eigenvalues.
Numerical experiments confirm that the new bounds are sharper compared to other results
in the literature, and they offer the possibility for optimizing the effectivity by the choice of
the appropriate scalar product in which to measure the subspace rotation. Investigation of
the choice of an appropriate scalar product for a particular application will be the subject of
further research.
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Appendix A. Proof of Theorem 2.7. Before we start with the proof of Theorem 2.7, in
the next remark we state some useful facts.

REMARK A.1. From (2.25) it is easy to see that one of the possibilities to choose K11

and K22 in (2.26) is

K11 =

√
I − X̃∗1 δMX̃1 and

K22 =

√
I − X̃∗2 δMX̃2 −K21K∗21 .(A.1)
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Also, I − X̃∗2 δMX̃2 = K21K
∗
21 +K22K

∗
22. Then by a Cholesky decomposition we find that

I − X̃∗2 δMX̃2 = K21K
∗
21 +K22K

∗
22 = C22C

∗
22, where we can assume that

(A.2) C22 =

√
I − X̃∗2 δMX̃2,

and a direct computations proves that the columns of the matrix Ỹ2C−∗22 are M -orthogonal.
Proof of Theorem 2.7. From (2.30) it follows that

‖ sin 2ΘM (Ran(X̂1),Ran(X̃1))‖F ≤‖K−122 K21K
−1
11 Ỹ

∗
1 MX̃1K

−∗
11 ‖F

+ ‖K−122 Ỹ
∗
2 MX̃1K

−∗
11 ‖F .(A.3)

As indicated by the above inequality, a bound for ‖ sin 2ΘM (Ran(X̂1),Ran(X̃1))‖F can be
obtained by the sum of the bounds for ‖K−111 K21Ỹ

∗
1 MX̃1K

−∗
11 ‖F and ‖K−122 Ỹ

∗
2 MX̃1K

−∗
11 ‖F ,

thus the proof of this theorem contains two parts.
First let us derive a bound for ‖K−122 K21K

−1
11 Ỹ

∗
1 MX̃1K

−∗
11 ‖F . Using (2.31) it follows

that

‖K−122 K21K
−1
11 Ỹ

∗
1 MX̃1K

−∗
11 ‖F = ‖K−122 K21CC +K−122 K21SS‖F = ‖K−122 K21‖F ,

where C = K−111 X̃
∗
1MX̂1 and S = −K−111 X̃

∗
1MX̂2, which is easy to conclude from (2.28)

and (2.29).
It remains to derive a bound for ‖K−122 K21‖F . Note that

(A.4) ‖K−122 K21‖F ≤ ‖K−122 ‖2‖K21K
∗
11‖F ‖K−111 ‖2.

In (A.4), an estimate for ‖K−111 ‖2 and also for ‖K−122 ‖2 is provided in the proof of [8, Theo-
rem 3.4]:

(A.5) ‖K−111 ‖2 ≤
√

1− ηM√
1− 2ηM

and ‖K−122 ‖2 ≤
√

1− ηM√
1− 2ηM

,

where ηM is defined in (2.33).
From (2.25) it is easy to see that K21K

∗
11 = −X̃2δMX̃1. Using this and the fact that X̃

is an M̃ -orthogonal matrix, one can write

‖K21K11‖F = ‖X̃∗2M̃1/2M̃−1/2δMM̃−1/2M̃1/2X̃1‖F .

Since the columns of the matrices X̃∗2M̃
1/2 and M̃1/2X̃1 are orthogonal, we conclude that

(A.6) ‖K21K11‖F = ‖M̃−1/2δMM̃−1/2‖F .

Now, inserting (A.5) and (A.6) into (A.4), it follows that

(A.7) ‖K−122 K21‖F ≤
1− ηM
1− 2ηM

‖M̃−1/2δMM̃−1/2‖F .

In the second part of the proof, we derive an upper bound for ‖K−122 Ỹ
∗
2 MX̃1K

−∗
11 ‖F .

Note that

‖K−122 Ỹ
∗
2 MX̃1K

−∗
11 ‖F ≤ ‖K

−1
22 ‖2‖Ỹ ∗2 MX̃1‖F ‖K−111 ‖2 .



ETNA
Kent State University

http://etna.math.kent.edu

DOUBLE ANGLE THEOREMS FOR DEFINITE MATRIX PAIRS 55

Bounds for ‖K−111 ‖2 and ‖K−122 ‖2 are given in (A.5). It remains to estimate ‖Ỹ ∗2 MX̃1‖F .
From (2.23), it holds that

(A.8) H̃X̃1 = M̃X̃1Λ̃1.

Multiplying (A.8) from the left with Ỹ ∗2 and using that Ỹ ∗2 H̃ = Λ̃2Ỹ
∗
2 M̂, we have

Λ̃2Ỹ
∗
2 M̂X̃1 = Ỹ ∗2 M̃X̃1Λ̃1.

Since M̂ = M + T ∗r δMTr and M̃ = M + δM, the previous equation can be rewritten in the
form

Λ̃2Ỹ
∗
2 MX̃1 − Ỹ ∗2 MX̃1Λ̃1 = −Λ̃2Ỹ

∗
2 T
∗
r δMTrX̃1 + Ỹ ∗2 δMX̃1Λ̃1.

Also, we can use the fact that TrỸ1 = X̃1, Ỹ2 = TrX̃2, and then obtain the structured Sylvester
equation

(A.9) Λ̃2Ỹ
∗
2 MX̃1 − Ỹ ∗2 MX̃1Λ̃1 = −Λ̃2X̃

∗
2 δMỸ1 + Ỹ ∗2 δMX̃1Λ̃1.

In particular, the first part of the right-hand side of (A.9) can be rewritten as

−Λ̃2X̃
∗
2 δMỸ1 = −Λ̃2X̃

∗
2M̃

1/2M̃−1/2δMM−1/2M1/2Ỹ1K
−∗
11 K

∗
11.

Note that the matrices X̃∗2M̃
1/2 =: Q∗2 and M1/2Ỹ1K

−∗
11 =: Z1 have orthogonal columns.

The second part of the left-hand side in (A.9) can be expressed as

Ỹ ∗2 δMX̃1Λ̃1 = C22C
−1
22 Ỹ

∗
2 M

1/2M−1/2δMM̃−1/2M̃1/2X̃1Λ̃1.

Also, the matrices M̃1/2X̃1 =: Q1 and M1/2Ỹ2C
−∗
22 =: Z2 have orthogonal columns. Then

(A.9) reads as

Λ̃2Ỹ
∗
2 MX̃1 − Ỹ ∗2 MX̃1Λ̃1 = −Λ̃2Q

∗
2M̃
−1/2δMM−1/2Z1K

∗
11

+ C22Z
∗
2M

−1/2δMM̃−1/2Q1Λ̃1,(A.10)

which is also a Sylvester equation with a structured right-hand side. Applying [16, Lemma 2.2]
to (A.10), we obtain

(A.11) ‖X̃∗2MỸ1‖F ≤
√
‖K∗11‖22 + ‖C22‖22‖M̃−1/2δMM−1/2‖F

RelGap2

,

where RelGap2 is defined in (2.35).
It remains to determine a bound for

√
‖K11‖22 + ‖C22‖22, where K11 and C22 are defined

by (A.1) and (A.2), respectively. Let us just estimate ‖K11‖22; in a similar way, the results for
‖C22‖22 are obtained.

We assume that ‖X̃∗1 δMX̃1‖2 < 1, which ensures the existence of (I − X̃∗1 δMX̃1)1/2

defined by the following series from [11, Theorem 6.2.8]:

(A.12) K11 = (I − X̃∗1 δMX̃1)1/2 = I −
∞∑
i=1

(2n− 1)!!

2n · n!
(X̃∗1 δMX̃1)n ,
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where (2n− 1)!! = 1 · 3 · 5 · · · (2n− 1). Write K11 = I + Γ. From (A.12), we have

‖Γ‖2 ≤
∑
i=1∞

(2n− 1)!!

2n · n!
‖X̃∗1 δMX̃1‖n2

≤ 1

2

‖X̃∗1 δMX̃1‖2
1− ‖X̃∗1 δMX̃1‖2

≤ 1

2

‖X̃∗δMX̃‖2
1− ‖X̃∗δMX̃‖2

·(A.13)

Using the M̃ -orthogonality of the matrix X̃ , it can easily be seen that the matrices X̃ and
M−1/2(I +M−1/2δMM−1/2)−1/2 are unitary similar, that is, there exist a unitary matrix Q
such that

(A.14) X̃ = M−1/2(I +M−1/2δMM−1/2)−1/2Q.

Set V = M−1/2δMM−1/2, then from (A.14) it follows that

(A.15) ‖X̃∗δMX̃‖2 = ‖(I + V )−1/2V (I + V )−1/2‖2 ≤
ηM

1− ηM
·

Now, inserting (A.15) into (A.13), we have

(A.16) ‖Γ‖2 ≤
1

2

ηM
1− 2ηM

·

Using (A.16) it follows that

(A.17) ‖K11‖2 ≤
2− 3ηM
2− 4ηM

and similarly for ‖C22‖2. Using (A.17) we establish

(A.18)
√
‖K11‖22 + ‖C22‖22 ≤

√
2

2− 3ηM
2− 4ηM

·

Now insert (A.18) into (A.11) to obtain a bound for ‖Ỹ ∗2 MX̃1‖F . Finally, the proof simply
follows by inserting (A.7), (A.11), (A.5) into (A.3).
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[9] L. GRUBIŠIĆ, N. TRUHAR, AND K. VESELIĆ, The rotation of eigenspaces of perturbed matrix pairs, Linear
Algebra Appl., 436 (2012), pp. 4161–4178.



ETNA
Kent State University

http://etna.math.kent.edu

DOUBLE ANGLE THEOREMS FOR DEFINITE MATRIX PAIRS 57
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