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A NEW GEOMETRIC ACCELERATION OF THE VON NEUMANN-HALPERIN
PROJECTION METHOD∗

WILLIAMS LÓPEZ†

Abstract. We develop a geometrical acceleration scheme for the von Neumann-Halperin alternating projection
method, when applied to the problem of finding the projection of a point onto the intersection of a finite number of
closed subspaces of a Hilbert space. We study the convergence properties of the new scheme. We also present some
encouraging preliminary numerical results to illustrate the performance of the new scheme when compared with a
well-known geometrical acceleration scheme, and also with the original von Neumann-Halperin alternating projection
method.
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1. Introduction. Let H be a Hilbert space with inner product 〈., .〉. For a given x0 ∈ H
and many closed subspaces M1, . . . ,Mp in H , we consider the best approximation problem:
find the closest point to x0 in M = ∩pi=1Mi, which can be stated as an optimization problem
as follows:

(1.1) minimize ‖x0 − x‖ subject to x ∈M,

where, for any z ∈ H , ‖z‖2 = 〈z, z〉. The unique solution x∗ of problem (1.1) is called the
projection of x0 onto M and is denoted as PM (x0).

In 1933, von Neumann solved problem (1.1) for the particular case of two closed sub-
spaces.

THEOREM 1.1 (von Neumann [28]). If M1 and M2 are closed subspaces in H , then for
each x0 ∈ H ,

lim
k→∞

(PM2
PM1

)k(x0) = PM1∩M2
(x0).

Figure 1.1 shows the geometric interpretation of Theorem 1.1. The extension to more
than two subspaces was established in 1962 by Halperin.

THEOREM 1.2 (I. Halperin [23]). If M1, . . . ,Mp are closed subspaces in H , then for
each x0 ∈ H ,

lim
k→∞

(PMpPMp−1 · · ·PM1)k(x0) = P∩p
i=1Mi

(x0).

Theorem 1.2 suggests an algorithm, called the method of alternating projections (or MAP
for short); see [11, 16], which can be described as follows: for any x0 ∈ H , set

xk0 = xk−1
p

xki = PMi
(xki−1) i = 1, 2, . . . , p,

(1.2)

for k ∈ Z+, with initial value x0
p = x0. The MAP is closely related to Kaczmarz alternating

projection method [25] for solving linear systems of equations.
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FIG. 1.1. lim
k→∞

(PM2PM1 )
k(x0) = PM1∩M2 (x0).

THEOREM 1.3. For any i = 1, 2, . . . , p, the sequence {xki } generated by (1.2) converges
to PM (x0).

Proof. Let i ∈ {1, 2, . . . , p}. Then xk+1
i = (PMiPMi−1 · · ·PM1)(xkp), for all k ≥ 0,

where xkp = (PMp
PMp−1

· · ·PM1
)k(x0). From Theorem 1.2 we have that xkp → PM (x0)

when k →∞ and since PMi , PMi−1 , . . . , PM1 are bounded linear operators, then

xk+1
i = (PMi

PMi−1
· · ·PM1

)(xkp)→ (PMi
PMi−1

· · ·PM1
)(PM (x0)) = PM (x0)

when k →∞.
Applications of MAP in various areas of mathematics can be found in [16, 9, 10, 3, 7,

8, 22]. The MAP has an r-linear rate of convergence that can be very slow when the angles
between the subspaces (in the sense of Friedrichs [20]) are small; see, e.g., [16]. Franchetti and
Light [19] showed that the convergence in Theorem 1.1 may be arbitrarily slow if M1 +M2 is
not closed (i.e., if the angle between M1 and M2 is zero). Consequently, several acceleration
schemes have been proposed; see, e.g., [4, 21, 24, 12]. Motivated by a recent work of López
and Raydan [26], in this work we present and analyze a geometrical acceleration scheme for
MAP in (1.2), which solves problem (1.1). The new scheme involves finding points closest to
a solution (x∗, x∗) in the product space H ×H , where x∗ is the solution of (1.1).

The rest of this paper is organized as follows. In Section 2 we provide information about
already existing acceleration schemes for MAP. In Section 2.1 we develop the new acceleration
scheme and discuss its theoretical properties. In Section 3 we present encouraging preliminary
numerical results.

2. Accelerations for MAP. The sequences generated by the method of alternating pro-
jections often converge very slowly. Such a slow convergence is observed, e.g., if M1 and
M2 are two closed subspaces with angles close to 0 (see, e.g., [19]). Since the method of
alternating projections has many practical applications, any acceleration technique seems to be
important.

Several acceleration schemes with a geometrical flavor have been proposed to improve
the performance of MAP; see, e.g., De Pierro and Iusem [13], Dos Santos [14], Gearhart
and Koshy [21], Bauschke et al. [4], Gubin, Polyak and Raik [22], Martínez [27], Appleby
and Smolarski [1] and Censor [6]. In Section 2.1, we describe a geometrically appealing
acceleration scheme following the presentation in [21]. Some other different acceleration ideas
have also been developed (see, e.g., Echebest et al. [17, 18] and Scolnik et al. [29, 30]) based
on the so-called projected aggregation method (PAM). Other specialized acceleration scheme
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ideas have been developed by Hernández-Ramos et. al. [24] based on the use of the conjugate
gradient method for minimizing a related convex quadratic map. Usually vector extrapolation
algorithms are used for accelerating the convergence of MAP; see, e.g., [3, 8, 7].

Dykstra’s algorithm [15, 5] solves problem (1.1) when the involved sets are closed and
convex (not necessarily closed subspaces). Dykstra’s algorithm can be viewed as a natural
extension to convex sets of von Neumann-Halperin’s MAP for subspaces in a Hilbert space.
The sequences generated by Dykstra’s algorithm often converge very slowly. Such a slow
convergence is observed, e.g., if M1 is a hyperplane and M2 is a ball which is tangent to M1;
see, e.g., [2, Example 5.3]. An acceleration scheme has been developed for Dykstra’s algorithm
[26]. In Section 2.1 we develop a new acceleration scheme for von Neumann-Halperin’s MAP
on closed subspaces, which is related to the scheme given in [26].

2.1. A new acceleration scheme. We now discuss an acceleration scheme for MAP
to solve problem (1.1). For that we need to consider an auxiliary sequence in the product
space H × H that will be denoted as H2. If H is a Hilbert space with inner product 〈., .〉,
we will use the inner product in H2 defined by 〈(x, y), (w, z)〉 = 〈x,w〉 + 〈y, z〉, for all
(x, y), (w, z) ∈ H2 and norm ‖(x, y)‖2 = 〈(x, y), (x, y)〉 = ‖x‖2 +‖y‖2, for all (x, y) ∈ H2.
Thus H2 is a Hilbert space. For each k ∈ Z+, let us define

(2.1) x̂k = (xkp−1, x
k
p) ∈ H2,

where xkp−1 and xkp are defined in (1.2). Let us also denote

x̂∗ = (PM (x0), PM (x0)) ∈ H2.

It follows that {x̂k} is a sequence in H2 that converges to x̂∗. Our idea to accelerate the
convergence of MAP consists in building another sequence in H2 which converges faster to
x̂∗ than {x̂k}. For that we need to define a suitable subspace Π of H2 that contains x̂∗, as
follows:

Π = {(x, x) : x ∈ H} .

Clearly, Π is a closed subspace inH2 and x̂∗ ∈ Π. Let us denote by PΠ(x̂) the orthogonal
projection of x̂ ∈ H2 onto Π. For each k ∈ Z+, let us consider PΠ(x̂k) ∈ Π, where {x̂k} is
given by (2.1).

THEOREM 2.1. For all k ≥ 1, ‖PΠ(x̂k)− x̂∗‖ ≤ ‖x̂k − x̂∗‖.
Proof. For all k ≥ 1, since x̂k − PΠ(x̂k) is orthogonal to Π, and since PΠ(x̂k) and x̂∗

belong to Π, then x̂k − PΠ(x̂k) is orthogonal to PΠ(x̂k)− x̂∗. Hence

‖x̂k − x̂∗‖2 = ‖x̂k − PΠ(x̂k) + PΠ(x̂k)− x̂∗‖2 = ‖x̂k − PΠ(x̂k)‖2 + ‖PΠ(x̂k)− x̂∗‖2 .

Consequently, ‖x̂k − x̂∗‖2 ≥ ‖PΠ(x̂k)− x̂∗‖2, thus ‖PΠ(x̂k)− x̂∗‖ ≤ ‖x̂k − x̂∗‖.
The sequence {PΠ(x̂k)} will play a key role in the development of the acceleration

scheme for MAP.
REMARK 2.2. If (x, y) ∈ H2, then (see, e.g., [26])

(2.2) PΠ(x, y) = 1/2(x+ y, x+ y).

Notice that computing the projection onto Π only requires us to compute the average of the
two involved vectors, i.e., it requires a very inexpensive calculation.

Let {x̂k} be the sequence defined by (2.1). For any k ≥ 1, with PΠ(x̂k+1) 6= PΠ(x̂k),
let ôk ∈ Π be the projection of x̂∗ onto the line that goes through PΠ(x̂k+1) and PΠ(x̂k) (see
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Figure 2.1). Then 〈ôk − x̂∗, PΠ(x̂k+1)− PΠ(x̂k)〉 = 0 and there exists a unique αk ∈ R such
that

ôk = PΠ(x̂k) + αk(PΠ(x̂k+1)− PΠ(x̂k)).

Therefore

(2.3) 〈PΠ(x̂k)− x̂∗ + αk(PΠ(x̂k+1)− PΠ(x̂k)), PΠ(x̂k+1)− PΠ(x̂k)〉 = 0.

Solving for αk, from (2.3), gives

(2.4) αk =
〈PΠ(x̂k)− x̂∗, PΠ(x̂k)− PΠ(x̂k+1)〉

‖PΠ(x̂k+1)− PΠ(x̂k)‖2
.

In the following result we will give a formula for αk in (2.4) that does not require
knowledge of x̂∗.

PΠ(x̂k+1)
PΠ(x̂k)

Π

x̂∗

ôk

FIG. 2.1. 〈ôk − x̂∗, PΠ(x̂k+1)− PΠ(x̂k)〉 = 0.

THEOREM 2.3. Let {x̂k} be defined by (2.1). Then 〈x̂∗, PΠ(x̂k)− PΠ(x̂k+1)〉 = 0 for
all k ≥ 1.

Proof. Let k ≥ 1. Since x̂∗ ∈ Π and the projection PΠ is self-adjoint, we obtain

〈x̂∗, PΠ(x̂k)− PΠ(x̂k+1)〉 = 〈x̂∗, x̂k − x̂k+1〉

=
〈
(x∗, x∗), (xkp−1 − xk+1

p−1, x
k
p − xk+1

p )
〉

=
〈
x∗, xkp−1 − xk+1

p−1

〉
+
〈
x∗, xkp − xk+1

p

〉
.

On the other hand, since x∗ ∈ M = ∩pi=1Mi and the projections PMi
are self-adjoint, we

have 〈
x∗, xkp − xk+1

p

〉
=
〈
x∗, xkp

〉
−
〈
x∗, xk+1

p

〉
=
〈
x∗, xkp

〉
−
〈
x∗, (PMp

PMp−1
. . . PM1

)(xkp)
〉

=
〈
x∗, xkp

〉
−
〈
x∗, xkp

〉
= 0.

Similarly, we also obtain
〈
x∗, xkp−1 − xk+1

p−1

〉
= 0.

COROLLARY 2.4. Let αk, for some k, be given by (2.4). Then

(2.5) αk =
〈PΠ(x̂k), PΠ(x̂k)− PΠ(x̂k+1)〉
‖PΠ(x̂k+1)− PΠ(x̂k)‖2

.

Proof. This is a consequence of Theorem 2.3 and (2.4).



ETNA
Kent State University

http://etna.math.kent.edu

334 W. LÓPEZ

Let us define the sequence {ôk} in Π, for k ≥ 1, as follow

(2.6) ôk =

{
PΠ(x̂k+1) if ‖PΠ(x̂k+1)− PΠ(x̂k)‖ = 0,

PΠ(x̂k) + αk(PΠ(x̂k+1)− PΠ(x̂k)) if ‖PΠ(x̂k+1)− PΠ(x̂k)‖ 6= 0,

where αk is given by (2.5).
THEOREM 2.5. Let {ôk} be given by (2.6). Then ‖ôk − x̂∗‖ ≤ ‖x̂k+1 − x̂∗‖ for all

k ≥ 1.
Proof. Let k ≥ 1. If ‖PΠ(x̂k+1) − PΠ(x̂k)‖ = 0, then from Theorem 2.1 and (2.6)

it follows that ‖ôk − x̂∗‖ = ‖PΠ(x̂k+1) − x̂∗‖ ≤ ‖x̂k+1 − x̂∗‖. On the other hand, if
‖PΠ(x̂k+1)− PΠ(x̂k)‖ 6= 0, then ôk is chosen to minimize the distance to x̂∗ along the line
connecting PΠ(x̂k+1) and PΠ(x̂k). Therefore ‖ôk − x̂∗‖ ≤ ‖PΠ(x̂k+1) − x̂∗‖ and, from
Theorem 2.1, it follows that ‖ôk − x̂∗‖ ≤ ‖x̂k+1 − x̂∗‖.

Theorem 2.5 guarantees than the sequence {ôk} defined by (2.6) accelerates the conver-
gence of the sequence {x̂k} defined by (2.1).

REMARK 2.6. For the particular case of closed subspaces, the sequence {ôk} defined
by (2.6) accelerates the convergence of the sequence {ẑk} defined in [26]. For any k ≥ 1, ẑk
defined in [26] is the intersection of the subspace Π with the line that goes through x̂k and
x̂k+1 (see Figure 2.2). Consequently

ẑk = x̂k + α′k(x̂k+1 − x̂k) ∈ Π,

for some α′k ∈ R. Since ẑk ∈ Π and PΠ is a linear operator,

ẑk = PΠ(ẑk) = PΠ(x̂k) + α′k(PΠ (x̂k+1)− PΠ(x̂k)) .

Therefore we have that ẑk belongs to the line connecting PΠ(x̂k+1) and PΠ(x̂k). Since ôk
is chosen to minimize the distance to x̂∗ along the line connecting PΠ(x̂k+1) and PΠ(x̂k),
‖ôk − x̂∗‖ ≤ ‖ẑk − x̂∗‖ (see Figure 2.2).

x̂k

PΠ(x̂k)

ẑk
Π

x̂∗

ôk

PΠ(x̂k+1)

x̂k+1

FIG. 2.2. ôk vs. ẑk .

REMARK 2.7. Since the sequence {ôk} defined by (2.6) belongs to Π, for any k ≥ 1,
there exists a unique ok ∈ H such that

(2.7) ôk = (ok, ok) ∈ Π.
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THEOREM 2.8. Let {ok} the sequence defined by (2.7). Then, for each k ≥ 1,

‖ok − PM (x0)‖ ≤ max{‖xk+1
p−1 − PM (x0)‖, ‖xk+1

p − PM (x0)‖}.

Proof. Let k ≥ 1. From Theorem 2.5, we have that

√
2‖ok − PM (x0)‖ =

√
‖ok − PM (x0)‖2 + ‖ok − PM (x0)‖2

= ‖ôk − x̂∗‖

≤ ‖x̂k+1 − x̂∗‖

=
√
‖xk+1

p−1 − PM (x0)‖2 + ‖xk+1
p − PM (x0)‖2

≤
√

2 max{‖xk+1
p−1 − PM (x0)‖2, ‖xk+1

p − PM (x0)‖2}

=
√

2 max{‖xk+1
p−1 − PM (x0)‖, ‖xk+1

p − PM (x0)‖},

and the result is established.
COROLLARY 2.9. The sequence {ok} defined by (2.7) converges to PM (x0).
Proof. This is a consequence of Theorem 2.8 and Theorem 1.3.
REMARK 2.10. Observe that the sequence {ôk} in H2 accelerates the convergence of

the sequence {x̂k} in H2 (see Theorem 2.5). However, Theorem 2.8 does not guarantee
acceleration when the sequence {ok} in H is compared to the original MAP sequence {xkp}
in H , since a “maximal” is involved. Nevertheless, based on numerical experimentation,
the sequence {ok} almost always accelerates the convergence of the original MAP sequence
{xkp}.

We will now describe explicitly the sequence {ok} defined by (2.7). If
‖PΠ(x̂k+1)− PΠ(x̂k)‖ = 0, then from (2.1) and (2.2) we have that

ôk = PΠ(x̂k+1) = PΠ

(
xk+1
p−1, x

k+1
p

)
= 1/2

(
xk+1
p−1 + xk+1

p , xk+1
p−1 + xk+1

p

)
= (ok, ok) ∈ Π.

In this case ok = 1/2
(
xk+1
p−1 + xk+1

p

)
∈ H . If, on the other hand, ‖PΠ(x̂k+1)−PΠ(x̂k)‖ 6= 0,

then

ôk = PΠ(x̂k) + αk(PΠ(x̂k+1)− PΠ(x̂k)) = (ok, ok) ∈ Π,

where

ok = 1/2
(
xkp + αk

(
xk+1
p − xkp

)
+ xkp−1 + αk

(
xk+1
p−1 − xkp−1

))
∈ H.

From Corollary 2.9 it follows that

ok = 1/2
(
xkp + αk

(
xk+1
p − xkp

)
+ xkp−1 + αk

(
xk+1
p−1 − xkp−1

))
→ PM (x0)

when k →∞. Since PMp is a bounded linear operator (where PMp is the projection operator
onto Mp),

PMp

[
1/2

(
xkp + αk

(
xk+1
p − xkp

)
+ xkp−1 + αk

(
xk+1
p−1 − xkp−1

))]
→ PMp

(PM (x0))

when k →∞. Consequently

1/2
[
xkp + αk

(
xk+1
p − xkp

)
+ xkp + αk

(
xk+1
p − xkp

)]
→ PM (x0)
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when k →∞. Therefore

(2.8) xkp + αk

(
xk+1
p − xkp

)
→ PM (x0)

when k → ∞. Equation (2.8) suggests how to define an accelerated sequence in H and a
specialized algorithm for which convergence to the solution PM (x0) will be later established.
Nevertheless, to achieve this it is convenient to write αk given by (2.5) as a function of the
original MAP iterations in H .

LEMMA 2.11. Let αk, for some k, be given by (2.5). Then

(2.9) αk =

〈
xkp−1 + xkp, x

k
p−1 − xk+1

p−1

〉
+
〈
xkp−1 + xkp, x

k
p − xk+1

p

〉
‖xk+1

p−1 + xk+1
p − xkp−1 − xkp‖2

.

Proof. Let k ≥ 1. The numerator in (2.5) can be written as

〈PΠ(x̂k), PΠ(x̂k) − PΠ(x̂k+1)〉
= 〈PΠ(x̂k), x̂k − x̂k+1〉
=
〈
1/2

(
xkp−1 + xkp, x

k
p−1 + xkp

)
,
(
xkp−1 − xk+1

p−1, x
k
p − xk+1

p

)〉
= 1/2

(〈
xkp−1 + xkp, x

k
p−1 − xk+1

p−1

〉
+
〈
xkp−1 + xkp, x

k
p − xk+1

p

〉)
.

On the other hand

PΠ(x̂k+1)− PΠ(x̂k) = 1/2
(
xk+1
p−1 + xk+1

p , xk+1
p−1 + xk+1

p

)
− 1/2

(
xkp−1 + xkp, x

k
p−1 + xkp

)
= 1/2

(
xk+1
p−1 + xk+1

p − xkp−1 − xkp, xk+1
p−1 + xk+1

p − xkp−1 − xkp
)
.

Therefore the denominator in (2.5) can be written as

‖PΠ(x̂k+1)− PΠ(x̂k)‖2 = 1/4
(
2‖xk+1

p−1 + xk+1
p − xkp−1 − xkp‖2

)
= 1/2‖xk+1

p−1 + xk+1
p − xkp−1 − xkp‖2,

and the result holds.
Let {xki } be the MAP’s iterates given by (1.2). Let us now define a new sequence {o′k} in

H , for k ≥ 1, as follows

(2.10) o′k =

{
xk+1
p if ‖xk+1

p−1 + xk+1
p − xkp−1 − xkp‖ = 0,

xkp + αk(xk+1
p − xkp) if ‖xk+1

p−1 + xk+1
p − xkp−1 − xkp‖ 6= 0,

where αk is given by (2.9).
THEOREM 2.12. The sequence {o′k} defined by (2.10) converges to PM (x0).
Proof. This is a consequence of Corollary 2.9, equation (2.8), and Theorem 1.3.
We are now ready to present our acceleration scheme for MAP.

Algorithm 1. Let Mi, i = 1, . . . , p, be p closed subspaces in H . Given x0 ∈ H; set k = 1.
set x0

p = x0

xkp−1 = (PMp−1
. . . PM1

)(xk−1
p )

xkp = PMp(xkp−1)

for k = 1, 2, . . . do
xk+1
p−1 = (PMp−1 . . . PM1)(xkp)

xk+1
p = PMp

(xk+1
p−1)
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if ‖xk+1
p−1 + xk+1

p − xkp−1 − xkp‖ 6= 0 then

compute αk using (2.9), and set o′k = xkp + αk(xk+1
p − xkp)

else
set o′k = xk+1

p

end if
end for
In the following, we will compare our scheme, given in Algorithm 1, with the acceleration

scheme given by Gearhart and Koshy [21]. Therefore, we will give a brief explanation of the
Gearhart-Koshy scheme. Let us denote by x0 the given starting point and byQ the composition
of the projection operators, i.e,Q = PMp

PMp−1
· · ·PM1

, where PMi
is the projection operator

onto Mi for all i. Let xk be the k th iterate, and let Qxk be the next iterate after applying a
sweep of MAP. The idea is to search along the line through the points xk and Qxk to obtain
the point closest to the solution x∗ = P∩p

i=1Mi
(x0). Let us represent any point on this line as

xk(t) = tQxk + (1− t)xk = xk + t(Qxk − xk),

for some real number t. Let tk be the value of t for which this point is the closest to x∗. Then,

(2.11)
〈
xk(tk)− x∗, xk −Qxk

〉
= 0.

Now, since x∗ ∈ ∩pi=1Mi and the projections PMi are self-adjoint, it follows

〈x∗, Qxk〉 =
〈
PM1

PM2
· · ·PMp

x∗, xk
〉

= 〈x∗, xk〉 .

Consequently, 〈x∗, xk −Qxk〉 = 0, and so x∗ can be eliminated from (2.11) to obtain〈
xk(tk), xk −Qxk

〉
= 0.

Solving for tk gives

tk =
〈xk, xk −Qxk〉
‖xk −Qxk‖2

.

To summarize, we have the following steps.

Algorithm 2. (Gearhart-Koshy) Let Mi, i = 1, . . . , p, be p closed subspaces in H . Given
x0 ∈ H .

for k = 1, 2, . . . do
Qk = Qxk

tk = 〈xk, xk −Qxk〉 /‖xk −Qxk‖2

xk+1 = tkQk + (1− tk)xk
end for

3. Numerical experiments. We compare our acceleration scheme, given in Algorithm 1,
with the acceleration scheme given by Gearhart and Koshy (Algorithm 2), and with the original
MAP with no acceleration given by (1.2). All computations were performed in MATLAB. For
all experiments we know the exact solution x∗, and we stop each algorithm when the absolute
error (the distance from the k-th iterate to x∗) is less than or equal to 10−6.
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For our first experiment, we consider the following three subspaces of the space of square
real matrices R3×3, with the Frobenius norm ‖A‖2F = 〈A,A〉 = trace(ATA):

M1 =
{
A ∈ R3×3 : AT = A

}
,

M2 =
{
A ∈ R3×3 : ai,j+1 = 0, i = 1, 2, j = i+ 1, . . . , 3

}
,

M3 =
{
A ∈ R3×3 : a1,1 = a1,3 = a3,1 = a3,3

}
.

If A = (Aij) ∈ R3×3, then PM1(A) = (AT +A)/2,

PM2
(A) =

 A11 0 0
A21 A22 0
A31 A32 A33

 , and PM3
(A) =

 P A12 P
A21 A22 A23

P A32 P

 ,
where P = (A11 +A13 +A31 +A33)/4.
We choose

A0 =

 10 20 30
40 50 60
70 80 90


as the initial given point. Then

PM1∩M2∩M3
(A0) =

 0 0 0
0 50 0
0 0 0

 ,
since

A ∈


 0 0 0

0 x 0
0 0 0

 : x ∈ R

 = M1 ∩M2 ∩M3,

〈A,A0 − PM1∩M2∩M3(A0)〉 = trace


 0 0 0

0 x 0
0 0 0

T  10 20 30
40 0 60
70 80 90


 = 0.

The performance of each method is shown in Figure 3.1.

Consider the problem of solving the linear system of equations Ax = 0, where
A ∈ Rm×n and x ∈ Rn. This problem can be generalized to any Hilbert space H by consid-
ering the following formulation: find x in the intersection of m closed subspaces given by
Hi = {x ∈ H : 〈ai, x〉 = 0}, for every i = 1, . . . ,m. Here ai denotes the ith row of A or, in
general, a fixed given vector in H . If z ∈ H , then PHi

(z) = z − (〈ai, z〉 / 〈ai, ai〉)ai.
In the following two test problems we will solve the linear equations Ax = 0, where A

is a square nonsingular matrix which is randomly generated in MATLAB (we verified that
det(A) 6= 0 after randomly generating the matrixA in MATLAB). Therefore the predetermined
solutions is always x∗ = 0. In both experiments we chose x0 = (100, 100, . . . , 100) as the
initial given point. Figure 3.2 shows the performance for each methods for A ∈ R5×5 while
Figure 3.3 shows the performance for each method for A ∈ R10×10.

Our preliminary numerical experiments seem to indicate that our acceleration scheme,
when compared to the other two “competitors”, benefits from a reduction in the number of
cycles, as well as in the computational work.
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FIG. 3.1. Acceleration for three subspaces in R3×3.

FIG. 3.2. Acceleration for solving Ax = 0, where A ∈ R5×5.

Acknowledgements. I thank the three anonymous referees for constructive remarks and
additional references.

REFERENCES

[1] G. APPLEBY AND D. C. SMOLARSKI, A linear acceleration row action method for projecting onto subspaces,
Electron. Trans. Numer. Anal, 20 (2005), pp. 253–275.
http://etna.ricam.oeaw.ac.at/vol.20.2005/pp253-275.dir/pp253-275.pdf

[2] H. H. BAUSCHKE AND J. M. BORWEIN, Dykstra’s alternating projection algorithm for two sets, J. Approx.

http://etna.ricam.oeaw.ac.at/vol.20.2005/pp253-275.dir/pp253-275.pdf


ETNA
Kent State University

http://etna.math.kent.edu

340 W. LÓPEZ

FIG. 3.3. Acceleration for solving Ax = 0, where A ∈ R10×10.

Theory, 79 (1994), pp. 418–443.
[3] H. H. BAUSCHKE, P. L. COMBETTES, AND S. G. KRUK, Extrapolation algorithm for affine-convex feasibility

problems, Numer. Algorithms, 41 (2006), pp. 239–274.
[4] H. H. BAUSCHKE, F. DEUTSCH, H. HUNDAL, AND S. H. PARK, Accelerating the convergence of the method

of alternating projections, Trans. Amer. Math. Soc., 355 (2003), pp. 3433–3461.
[5] J. P. BOYLE AND L. DYKSTRA, A method for finding projections onto the intersection of convex sets in Hilbert

spaces, in Advances in Order Restricted Statistical Inference, R. Dykstra, T. Robertson, and F. T. Wright,
eds., Lecture Notes in Statistics, 37, Springer, Berlin, 1986, pp. 28–47.

[6] Y. CENSOR, Computational acceleration of projection algorithms for the linear best approximation problem,
Linear Algebra Appl., 416 (2006), pp. 111–123.

[7] P. L. COMBETTES, Convex set theoretic image recovery by extrapolated iterations of parallel subgradient
projections, IEEE Trans. Image Process., 6 (1997), pp. 493–506.

[8] , The convex feasibility problem in image recovery, in Advances in Imaging and Electron Physics, 95
P. W. Hawkes, ed., Academic Press, New York, 1996, pp. 155–270.

[9] F. DEUTSCH, Applications of von Neumann’s alternating projections algorithm, in Mathematical Methods in
Operations Research, P. Kenderov, ed., Bulgarian Academy of Science, Sofia, 1983, pp. 44–51.

[10] , The method of alternating orthogonal projections, in Approximation Theory, Spline Functions and
Applications, S. P. Singh, ed., Kluwer, Netherlands, 1992, pp. 105–121.

[11] , Best Approximation in Inner Product Space, Springer, New York, 2001.
[12] , Accelerating the convergence of the method of alternating projections via a line search: a brief

survey, in Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, D. But-
nariu, Y. Censor, S. Reich, eds., Studies in Computational Mathematics, 8, North-Holland Publishing,
Amsterdam, 2001, pp. 203–217.

[13] A. DE PIERRO AND A. N. IUSEM, A parallel projection method for finding a common point of a family of
convex sets, Pesquisa Operacional, 5 (1985), pp. 1–20.

[14] L. T. DOS SANTOS, A parallel subgradient projections method for the convex feasibility problem, J. Comput.
Appl. Math., 18 (1987), pp. 307–320.

[15] R. L. DYKSTRA, An algorithm for restricted least-squares regression, J. Amer. Statist. Assoc., 78 (1983),
pp. 837–842.

[16] R. ESCALANTE AND M. RAYDAN, Alternating Projection Methods, SIAM, Philadelphia, 2011.
[17] N. ECHEBEST, M. T. GUARDARUCCI, H. SCOLNIK, AND M. C. VACCHINO, An acceleration scheme for

solving convex feasibility problems using incomplete projection algorithms, Numer. Algorithms, 35 (2004),
pp. 335–350.

[18] , An accelerated iterative method with diagonally scaled oblique projections for solving linear feasibility
problems, Ann. Oper. Res., 138 (2005), pp. 235–257.

[19] C. FRANCHETTI AND W. LIGHT, On the von Neumann alternating algorithm in Hilbert space, J. Math. Anal.



ETNA
Kent State University

http://etna.math.kent.edu

ACCELERATION OF THE VON NEUMANN-HALPERIN PROJECTION METHOD 341

Appl., 114 (1986), pp. 305–314.
[20] K. FRIEDRICHS, On certain inequalities and characteristic value problems for analytic functions and for

functions of two variables, Trans. Amer. Math. Soc., 41 (1937), pp. 321–364.
[21] W. GEARHART AND M. KOSHY, Acceleration schemes for the method of alternating projection, J. Comput.

Appl. Math., 26 (1989), pp. 235–249.
[22] L. G. GUBIN, B. T. POLYAK, AND E. V. RAIK, The method of projections for finding the common point of

convex sets, USSR Comput. Math. Math. Phys., 7 (1967), pp. 1–24.
[23] I. HALPERIN, The product of projection operators, Acta Sci. Math. (Szeged), 23 (1962), pp. 96–99.
[24] L. M. HERNÁNDEZ-RAMOS, R. ESCALANTE, AND M. RAYDAN, Unconstrained optimization techniques for

the acceleration of alternating projection methods, Numer. Funct. Anal. Optim., 32 (2011), pp. 1041–1066.
[25] S. KACZMARZ, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Internat. Acad. Pol. Sci.

Lett. Ser. A, 35 (1937), pp. 355–357.
[26] W. LÓPEZ AND M. RAYDAN, An acceleration scheme for Dykstra’s algorithm, Comput. Optim. Appl., 63

(2016), pp. 29–44.
[27] J. M. MARTÍNEZ, An accelerated successive orthogonal projection method for solving large-scale linear

feasibility problems, Comput. Math. Appl., 15 (1988), pp. 367–373.
[28] J. VON NEUMANN, Functional operators. Vol II. The Geometry of Orthogonal Spaces, Annals of Math. Studies,

vol. 22, Princeton University Press, Princeton, 1951.
[29] H. SCOLNIK, N. ECHEBEST, M. T. GUARDARUCCI, AND M. C. VACCHINO, Acceleration scheme for parallel

projected aggregation methods for solving large linear systems, Ann. Oper. Res., 117 (2002), pp. 95–115.
[30] , A class of optimized row projection methods for solving large nonsymmetric linear systems, Appl.

Numer. Math., 41 (2002), pp. 499–513.


