
Electronic Transactions on Numerical Analysis.
Volume 45, pp. 342–353, 2016.
Copyright c© 2016, Kent State University.
ISSN 1068–9613.

ETNA
Kent State University

http://etna.math.kent.edu

ROBUST A POSTERIORI ERROR BOUNDS FOR SPLINE COLLOCATION
APPLIED TO SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS∗

TORSTEN LINSS† AND GORAN RADOJEV‡

Abstract. Collocation with arbitrary order C1-splines for a singularly perturbed reaction-diffusion problem in
one dimension is studied. Robust a posteriori error bounds are derived for the collocation method on arbitrary meshes.
These bounds are used to drive an adaptive mesh moving algorithm. Numerical results are presented.
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1. Introduction. Consider the reaction-diffusion problem of finding a function u with
u ∈ C2(0, 1) ∩ C[0, 1] such that

Lu := −ε2u′′ + ru = f in (0, 1), u(0) = γ0, u(1) = γ1,(1.1)

where ε ∈ (0, 1] and r ≥ %2 on [0, 1] with some constant % > 0. Standard numerical methods
fail to capture the boundary layers present in the solution of (1.1). Layers are regions where a
function changes rapidly as the perturbation parameter ε tends to zero. In the vicinity of x = 0
and x = 1 the solution of u exhibits layers of width O (ε). Further layers may form at points
in the interior of the domain where f or r (or their derivatives) have discontinuities.

One goal for numerical methods applied to (1.1) is robustness with regard to the per-
turbation parameter, i.e., the method should perform equally well no matter how small the
perturbation parameter. Special procedures have been devised to achieve this goal. For a sur-
vey, we refer the reader to the recent monographs [13] and earlier books [5, 12] and references
therein. One possible approach is the use of layer-adapted meshes; see [9]. In the present
contribution we focus on mesh adaptivity based on a posteriori error estimation.

Most of the literature is devoted to difference schemes and various types of FEMs, while
there are only very few publications on collocation methods. This motivates our interest in the
subject.

Collocation methods with polynomial trial functions play a very important role in the
context of spectral methods. Section 9.7 of Funaro’s monograph [6] is dedicated to the
application of these methods to problems with boundary layers. For problem (1.1), polynomials
of degree p ≈ ε−1/2 must be used to resolve the layers satisfactorily. For small values of ε,
this leads to dense linear systems of high dimension. In practice, this is not viable.

A general theory for spline-collocation methods applied to classical, not singularly per-
turbed, boundary-value problems was derived in [4]. An immediate application of those results
to (1.1) yields error bounds with “constants” that tend to infinity when ε→ 0, because they
involve norms of certain derivatives of the exact solution.

In the present paper we shall present a posteriori error bounds for arbitrary order C1-
spline collocation applied to (1.1), thus extending the analysis for quadratic splines in [11].
These error bounds allow us to judge the quality of a numerical approximation after it has been
computed. Unlike a priori error bounds, this approach does not require knowledge of the exact
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solution and its derivatives. As we deal with singularly perturbed problems, any dependence
of error constants on a singular perturbation parameter is shown explicitly.

Notation. Throughout, C will denote a generic positive constant that is independent
of the perturbation parameter ε and of the number N of degrees of freedom. For any set
D ⊂ [0, 1] and any function v defined on D we set ‖v‖∞,D := supx∈D |v(x)|. If D = [0, 1]
then we drop D from the notation.

2. The collocation method. Let ∆ : 0 = x0 < x1 < · · · < xN = 1 be an arbitrary par-
tition of [0, 1]. Let Ji := [xi−1, xi] and hi = xi − xi−1, i = 1, . . . , N . For κ ∈ [0, 1], we set
xi−κ := xi − κhi. For m, ` ∈ N0, m < `, we introduce the spline space

Sm` (∆) :=
{
s ∈ Cm[0, 1] : s|Ji ∈ Π`, for i = 1, . . . , N

}
.

We shall use this notation with m = −1 to denote piecewise polynomial splines of degree `
that are discontinuous at the nodes of the partition ∆. For any function g ∈ C[0, 1], we set
gi := g(xi), i = 0, . . . , N .

Fix k ∈ {1, 2, . . . }. We discretise (1.1) by seeking a spline in S1
k+1(∆) that satifies the

boundary conditions and the differential equation (1.1) in certain points. For problems that are
not singularly perturbed, it is well known that the best choice for collocation are the zeros of
the Legendre polynomials; see [4].

Let τi,j , j = 1, . . . , k, i = 1, . . . , N , be the zeros of the local Legendre polynomial

Mk,i(x) :=
dk

dxk

(
(x− xi−1)

k
(x− xi)k

)
.

Our discretisation is: Find u∆ ∈ S1
k+1(∆) such that

u∆,0 = γ0,
(
Lu∆

)
(τi,j) = f(τi,j), i = 1, . . . , N, j = 1, . . . , k, u∆,N = γ1.(2.1)

2.1. A priori error estimates. For classical problems, i.e., problems with ε = 1, it is
well known that on a uniform mesh of step size h,

‖u− u∆‖ ≤ Chk
∗

with

{
k∗ = 2 for k = 1,

k∗ = k + 2 for k > 1;

see [4]. In view of this result and based on numerical experiments as well as results for other
discretisations [9, 13] we expect that for the singularly perturbed problem (1.1)

‖u− u∆‖ ≤

{
CN−k

∗
for Bakhvalov meshes,

C
(
N−1 lnN

)k∗
for Shishkin meshes.

(2.2)

We shall discuss the construction of these layer-adapted meshes in detail later in Section 3.1.
Despite disparate attempts, we have been able to prove (2.2) for quadratic splines on a modified
Shishkin mesh only; see [11].

2.2. A posteriori error bounds. The case of quadratic splines, i.e., k = 1, is somewhat
special as is illustrated by the results mentioned in Section 2.1. For them the order of
convergence equals the degree of the spline, while for higher order splines the order of
convergence exceeds the degree of the spline by one. As a result, the a posteriori error
analyses differ in a number of details. Therefore, we consider k > 1 in the present publication.
Quadratic splines have been analysed in detail in [11].
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Before presenting our results, let us introduce two interpolation operators:
I0
k+1 : ϕ 7→ I0

k+1ϕ ∈ S0
k+1 with

ϕ(xi−1) =
(
I0
k+1ϕ

)
(xi−1), ϕ(xi) =

(
I0
k+1ϕ

)
(xi)

ϕ(τi,j) =
(
I0
k+1ϕ

)
(τi,j), j = 1, . . . , k,

}
i = 1, . . . , N.

I−1
k−1 : ϕ 7→ I−1

k−1ϕ ∈ S
−1
k−1 with

ϕ(τi,j) =
(
I−1
k−1ϕ

)
(τi,j), j = 1, . . . , k, i = 1, . . . , N.(2.3)

THEOREM 2.1. Let u be the solution of (1.1) and u∆ ∈ S1
k+1(∆), k > 1, its approxima-

tion by the collocation method (2.1) on an arbitrary mesh ∆. Then

‖u− u∆‖∞ ≤ η
k(f − ru∆,∆),

where ηk(q,∆) = ηk,I(q,∆) + ηk,D(q,∆),

ηk,I(q,∆) :=

∥∥∥∥I0
k+1q − q

r

∥∥∥∥
∞
,

ηk,D(q,∆) :=
3

2%2
max

i=1,...,N

[
Qmax
k,i min

{
2,
h2
i %

2

4ε2

}
+Qdk,i min

{
1,
hi%

2ε

}]
with

Q−k,i := qi−1 −
(
I−1
k−1q

)
(xi−1 + 0), Q+

k,i := qi −
(
I−1
k−1q

)
(xi − 0),

and

Qmax
k,i := max

{∣∣Q−k,i∣∣, ∣∣Q+
k,i

∣∣} , Qdk,i :=
∣∣Q+

k,i − (−1)kQ−k,i
∣∣.

REMARK 2.2. The term ηk,I captures the data oscillations and inevitably requires
sampling of r and f . In view of the collocation condition (2.1), we have q ≈ ε2u′′∆. Therefore,
ηk,D involves approximations of derivatives of u of order k + 2 and k + 3.

Proof. The proof is based on a representation for arbitrary v ∈W 1,∞
0 (0, 1) involving the

Green’s function G associated with the operator L:

v(x) =

∫ 1

0

G(x, ξ) (Lv) (ξ) dξ.(2.4)

We shall use this representation with v := u− u∆. For G and its derivatives we have the
following (weighted) L1-norm estimates; see [7] or [9, Th. 3.31]:

‖rG(x, ·)‖1 ≤ 1, ‖Gξ(x, ·)‖1 ≤ (%ε)
−1
, and ‖Gξξ(x, ·)‖1 ≤ 2ε−2,(2.5)

with the L1-norm ‖v‖1 :=
∫ 1

0
|v(x)|dx. Furthermore, note that as a function of the second

argument G satisfies, for any fixed x ∈ (0, 1),

−ε2Gξξ(x, ξ) + r(ξ)G(x, ξ) = δ(ξ − x) ξ ∈ (0, 1), G(x, 0) = G(x, 1) = 0,(2.6)

where δ(·) is the Dirac δ-distribution.
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For arbitrary, but fixed x ∈ (0, 1), set Γ := G(x, ·). Using (2.4), we write the error of the
method as

(u− u∆) (x) =

∫ 1

0

Γ(ξ)
(
L(u− u∆)

)
(ξ) dξ =

∫ 1

0

Γ(ξ)
(
f − Lu∆

)
(ξ) dξ.(2.7)

In view of (2.1) and (2.3), we have I−1
k−1 (f − Lu∆) ≡ 0. Therefore,

N∑
i=1

∫
Ji

Γ(ξ)I−1
k−1 (f − Lu∆) dξ = 0.

Set q := f − ru∆. Subtracting the last equation from (2.7) and employing that u′′∆ ≡ I
−1
k−1u

′′
∆

on each Ji, we obtain

(u− u∆) (x) =

N∑
i=1

∫
Ji

Γ(ξ)
(
q − I−1

k−1q
)
(ξ) dξ.

Introducing

Ψk,i :=

∫
Ji

Γ(ξ)
(
I0
k+1q − I−1

k−1q
)
(ξ) dξ,(2.8)

we have

(u− u∆) (x) =

∫ 1

0

(
q − I0

k+1q
)
(ξ)Γ(ξ) dξ +

N∑
i=1

Ψk,i.

A triangle inequality and (2.5) yield

|(u− u∆) (x)| ≤
∥∥∥∥I0

k+1q − q
r

∥∥∥∥
∞

∫ 1

0

r(ξ)Γ(ξ) dξ +

N∑
i=1

|Ψk,i|

≤ ηk,I(q,∆) +

N∑
i=1

|Ψk,i| .

(2.9)

Next, we bound the sum of the Ψk,i. Suppose the following three bounds hold:

|Ψk,i| ≤ Qmax
k,i

∫
Ji

Γ(ξ) dξ,(2.10)

|Ψk,i| ≤
1

2
Qdk,i

∫
Ji

Γ(ξ) dξ +
hi
2
Qmax
k,i

∫
Ji

|Γ′(ξ)| dξ,(2.11)

and

|Ψk,i| ≤
hiΞi
ε%

{
1

4
Qdk,i +

hi%

8ε
Qmax
k,i

}
,(2.12)

with

Ξi := %ε

∫
Ji

|Γ′(ξ)| dξ +

∫
Ji

r(ξ)Γ(ξ) dξ +

∫
Ji

δ(ξ − x) dξ.
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Inequalities (2.10) and (2.11) imply

|Ψk,i| ≤ %−2Qmax
k,i Ξi and |Ψk,i| ≤

{
1

2%2
Qdk,i +

hi
2ε%

Qmax
k,i

}
Ξi, respectively.

From these and (2.12) we get

|Ψk,i| ≤
Ξi
2%2

[
Qmax
k,i min

{
2,
hi%

ε
,
h2
i %

2

4ε2

}
+Qdk,i min

{
1,
hi%

2ε

}]
.(2.13)

Furthermore,
N∑
i=1

Ξi = %ε

∫ 1

0

|Γ′(ξ)| dξ +

∫ 1

0

r(ξ)Γ(ξ) dξ +

∫ 1

0

δ(ξ − x) dξ ≤ 3,

by (2.5). Therefore, (2.13) and a Hölder inequality applied to the Ψk,i-sum in (2.9) would
complete the proof.

We are left with proving (2.10), (2.11), and (2.12). Which we will do now. First, note that(
I0
k+1q − I

−1
k−1q

)
(τi,j) = 0, i = 1, . . . , N , j = 1, . . . , k. Therefore,(

I0
k+1q − I−1

k−1q
)
(ξ)

= Mk,i(ξ)

(
Q+
k,i

ξ − xi−1

hiMk,i(xi)
−Q−k,i

ξ − xi
hiMk,i(xi−1)

)
=: Mk,i(ξ)pi(ξ),

(2.14)

with Q−k,i and Q+
k,i, as defined in Theorem 2.1. The function pi is linear and attains its extrema

at the end points of the interval Ji. Furthermore,

‖Mk,i‖∞,Ji = Mk,i(xi) = (−1)
k
Mk,i(xi−1).

Thus, ∥∥I0
k+1q − I−1

k−1q
∥∥
∞,Ji

≤ ‖pi‖∞,Ji ‖Mk,i‖∞,Ji ≤ Q
max
k,i(2.15)

and

‖p′i‖∞,Ji ‖Mk,i‖∞,Ji ≤ h
−1
i Qdk,i.(2.16)

Combining (2.8) and (2.15), we get (2.10).
From (2.8) and (2.14), an alternative estimate is derived as follows:

Ψk,i =

∫
Ji

[(
Γpi
)
(ξ)−

(
Γpi
)
(xi−1/2)

]
Mk,i(ξ) dξ

=

∫
Ji

∫ ξ

xi−1/2

(
Γpi
)′

(σ) dσMk,i(ξ) dξ,

because
∫
Ji
Mk,i(ξ) dξ = 0. The Hölder inequality, (2.15), and (2.16) give (2.11).

The polynomial Mk,i is orthogonal to polynomials of highest degree k − 1 with respect
to the standard L2(Ji) scalar product. Consequently,

Ψk,i =

∫
Ji

[(
Γpi
)
(ξ)−

(
Γpi
)
(xi−1/2)

]
Mk,i(ξ) dξ

=

∫
Ji

[(
Γpi
)
(ξ)−

(
Γpi
)
(xi−1/2)−

(
ξ − xi−1/2

) (
Γpi
)′

(xi−1/2)
]
Mk,i(ξ) dξ

=

∫
Ji

∫ ξ

xi−1/2

∫ τ

xi−1/2

(
Γpi
)′′

(σ) dσ dτMk,i(ξ) dξ.
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Thus,

|Ψk,i| ≤ ‖Mk,i‖∞,Ji

∫ xi

xi−1

∫ xi−1/2

ξ

∫ xi−1/2

τ

∣∣∣(Γpi)′′(σ)
∣∣∣ dσ dτ dξ

≤ ‖Mk,i‖∞,Ji

{∫ xi−1/2

xi−1

∫ xi−1/2

ξ

∫ xi−1/2

xi−1

∣∣∣(Γpi)′′(σ)
∣∣∣ dσ dτ dξ

+

∫ xi

xi−1/2

∫ ξ

xi−1/2

∫ xi

xi−1/2

∣∣∣(Γpi)′′(σ)
∣∣∣ dσ dτ dξ

}

≤ ‖Mk,i‖∞,Ji

{
h2
i

8

∫ xi−1/2

xi−1

∣∣∣(Γpi)′′(σ)
∣∣∣ dσ +

h2
i

8

∫ xi

xi−1/2

∣∣∣(Γpi)′′(σ)
∣∣∣ dσ

}
.

Hence,

|Ψk,i| ≤ ‖Mk,i‖∞,Ji
h2
i

8

∫
Ji

∣∣(Γpi)′′ (ξ)∣∣ dξ

≤ hi
4
Qdk,i

∫
Ji

|Γ′(ξ)| dξ +
h2
i

8
Qmax
k,i

∫
Ji

|Γ′′(ξ)| dξ,

by the Hölder inequality, (2.15), and (2.16). Next, note that from (2.6) we have

ε2

∫
Ji

|Γ′′(ξ)| dξ ≤
∫
Ji

r(ξ)Γ(ξ) dξ +

∫
Ji

δ(ξ − x) dξ.

Therefore, (2.12) holds true. The proof of Theorem 2.1 is complete.

3. Numerical experiments.

3.1. Layer-adapted meshes. Two frequently used layer-adapted meshes are those of
Bakhvalov [1] and of Shishkin [14]. The former yields more accurate results, while the latter
is in general easier to analyse, because it consists of piecewise uniform subpartitions.

Bakhvalov’s mesh-generating function [9] can be expressed as

ϕB(t) =


χ(t) := −σε

%
log

(
1− t

q

)
, t ∈ [0, τ ],

π(t) := χ(τ) + χ′(τ)(t− τ), t ∈ [τ, 0.5],

1− λ(1− t), t ∈ [0.5, 1].

where the scaling parameter q ∈ (0, 1/2) and σ ∈ (0, q%/ε) are user-chosen parameters. The
transition point τ satisfies

χ′(τ) =
0.5− χ(τ)

0.5− τ
.

Geometrically this means that the point (τ, χ(τ)) is the contact point of the tangent π to χ that
passes through the point (0.5, 0.5). An algorithm to rapidly computing the transition point τ
is given in [1]. The Bakhvalov mesh with N + 1 mesh nodes is formed as follows:

∆B,N =

{
xi = ϕB(ti), ti =

i

N
, i = 0, 1, . . . , N

}
.
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Shishkin meshes may be constructed as follows. Assume N , the number of mesh intervals,
is divisable by 4. Define the mesh transition parameter

λ := min

{
σε

%
lnN,

1

4

}
.

Then the mesh ∆S,N is obtained by uniformly dissecting the intervals [0, λ] and [1− λ, 1] into
N/4 subintervals of equal length and [λ, 1− λ] into N/2 subintervals.

Numerical results. We verify the theoretical results of the preceding section by applying
the collocation method to the test problem

−ε2u′′(x) + (1 + x2 + cosx)u(x) = e−x, x ∈ (0, 1), u(0) = u(1) = 0.(3.1)

The exact solution of this problem is not available. Therefore, we approximate the errors using
the so called double-mesh principle, i.e., we comparing the numerical solution to a solution
obtained on a mesh that is twice as fine. Given a mesh ∆N = {x0, x1, . . . xN}, we construct
the refined mesh by adding the midpoints of the original mesh to that mesh:

∆∗2N := ∆N ∪
{
xi−1/2 : i = 1, 2, . . . , N

}
.

Then ‖u−u∆N
‖∞ ≈ ‖u∆∗

2N
−u∆N

‖∞. Computing the latter requires us to find the extrema of
polynomials of potentially high degree. This too cannot be done exactly. Thus, we approximate
the maximum-norm errors by

‖u− u∆N
‖∞ ≈ ‖u∆∗

2N
− u∆N

‖∞
≈ χN := max

i=1,...,N
m=0,...,M

∣∣(u∆∗
2N
− u∆N

)
(xi−1 +mM−1hi)

∣∣ .
In our experiments we have chosen M = 7. Larger values will give more accurate approxima-
tions of the actual errors. However, the difference is negligible. The rates of convergence are
approximated by

pN := log2(χN/χ2N ) and sN :=
lnχN − lnχ2N

ln 2 + ln lnN − ln ln 2N
.(3.2)

The latter approximates the “Shishkin rate” s in the error bound C
(
N−1 lnN

)s
.

Table 3.1 displays the results of cubic-spline collocation applied to the test problem (3.1)
on a Bakhvalov mesh. The columns of the table contain the discretisation parameter N , the
approximate error χN , the two components ηk,I and ηk,D of the estimator, and the a posteriori
error estimator. In the last column we give the ratio of the error estimator and the actual error,
i.e., the efficiency of the estimator.

As expected the method converges with fourth order; cf. Section 2.1. Furthermore, we see
that the efficiency of the error estimator is independent of of the level of refinement, although
the errors are overestimated by a factor of approximately 30.

In Table 3.2 we fix the discretisation parameter N = 212 and vary the perturbation
parameter ε. Looking at the errors and their estimates, we see that both are independent
of ε. This illustrates the robustness – with respect to the perturbation parameter – of both the
discretisation and the error estimator.

Table 3.3 gives results for uniform meshes. No convergence is observed which is to
be expected, because the mesh is not adapted to the boundary layers of the problem. More
important in the context of this paper, the a posteriori error estimator does not decrease
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TABLE 3.1
Cubic C1-splines (k = 2) on Bakhvalov meshes (σ = 4 and q = 1/4) applied to (3.1), ε = 10−6.

N χN pN ηk,I ηk,D η χN/η

26 4.873e-06 4.03 4.187e-10 1.358e-04 1.358e-04 3.588e-02
27 2.981e-07 4.01 2.617e-11 8.487e-06 8.487e-06 3.513e-02
28 1.850e-08 3.99 1.636e-12 5.304e-07 5.304e-07 3.488e-02
29 1.165e-09 3.99 1.022e-13 3.314e-08 3.314e-08 3.514e-02
210 7.305e-11 4.00 6.390e-15 2.071e-09 2.071e-09 3.527e-02
211 4.574e-12 4.00 3.994e-16 1.294e-10 1.294e-10 3.534e-02
212 2.861e-13 — 2.496e-17 8.086e-12 8.086e-12 3.538e-02

TABLE 3.2
Cubic C1-splines (k = 2) on Bakhvalov meshes (σ = 4 and q = 1/4) applied to (3.1), N = 212.

ε χN ηk,I ηk,D η χN/η

10−2 2.861e-13 5.039e-16 6.095e-12 6.095e-12 4.694e-02
10−3 2.861e-13 4.976e-17 6.484e-12 6.484e-12 4.412e-02
10−4 2.861e-13 2.449e-17 8.060e-12 8.060e-12 3.550e-02
10−5 2.861e-13 2.491e-17 8.077e-12 8.077e-12 3.542e-02
10−6 2.861e-13 2.496e-17 8.086e-12 8.086e-12 3.538e-02
10−7 2.861e-13 2.497e-17 8.092e-12 8.092e-12 3.536e-02
10−8 2.940e-13 2.497e-17 8.095e-12 8.095e-12 3.632e-02

with increasing N . Thus, the error estimator correctly indicates that uniform refinement is
inappropriate for this kind of problem.

Finally, let us consider a higher-order method and a different mesh. Table 3.4 shows
results for sixtic C1-splines on a Shishkin mesh. Note that the third column displays the
“Shishkin rates” sN computed according to (3.2). It is observed that the error bounds strongly
correlate with the actual errors and decreases like O

(
N−7 ln7N

)
. This time the errors are

overestimated by a factor of approximately 250.

3.2. An adaptive algorithm. Using the a posteriori estimates of the preceding section
an adaptive algorithm can be devised. It is based on an idea by de Boor [3] and uses an
equidistribution principle. Its convergence in connection with an error estimator for a central
difference scheme was recently studied by Kopteva and Chadha [2].

The idea is to adaptively design a mesh for which the local contributions to the a posteriori
error estimator

µi (u∆,∆) :=

∥∥∥∥I0
k+1q − q

r

∥∥∥∥
∞,Ji

+
3

2%2

[
Qmax
k,i min

{
2,
h2
i %

2

4ε2

}
+Qdk,i min

{
1,
hi%

2ε

}]
,

q = ru∆ − f , are the same on each mesh interval, i.e.,

µi−1 (u∆,∆) = µi (u∆,∆) , for i = 1, . . . , N.
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TABLE 3.3
Cubic C1-splines (k = 2) on uniform meshes applied to (3.1), ε = 10−6.

N χN ηk,I ηk,D η χN/η

26 1.975e-01 1.101e-04 2.196 2.196 8.994e-02
27 1.975e-01 5.504e-05 2.196 2.196 8.995e-02
28 1.975e-01 2.752e-05 2.196 2.196 8.995e-02
29 1.975e-01 1.376e-05 2.196 2.196 8.995e-02
210 1.975e-01 6.882e-06 2.196 2.196 8.994e-02
211 1.975e-01 3.441e-06 2.196 2.196 8.993e-02

TABLE 3.4
Sixtic C1-splines (k = 5) on Shishkin meshes (σ = 7) applied to (3.1) with ε = 10−6.

N χN sN ηk,I ηk,D η χN/η

26 9.642e-07 6.37 7.722e-13 2.549e-04 2.549e-04 3.782e-03
27 3.119e-08 6.64 9.321e-20 7.980e-06 7.980e-06 3.909e-03
28 7.610e-10 6.79 2.496e-21 1.922e-07 1.922e-07 3.960e-03
29 1.527e-11 6.88 5.288e-23 3.835e-09 3.835e-09 3.981e-03
210 2.677e-13 6.93 9.538e-25 6.688e-11 6.688e-11 4.003e-03
211 4.247e-15 6.96 1.535e-26 1.057e-12 1.057e-12 4.019e-03
212 6.242e-17 — 2.275e-28 1.550e-14 1.550e-14 4.028e-03

This is equivalent to

Qi (u∆,∆) =
1

N

N∑
j=1

Qj (u∆,∆) , Qi (u∆,∆) := µi (u∆,∆)
1/k∗

,(3.3)

where k∗ is the order of convergence. However, de Boor’s algorithm, which we are going
to describe now, becomes numerically unstable when the equidistribution principle (3.3) is
enforced strongly. Instead, we shall stop the algorithm as proposed in [2, 8] when

Q̃i (u∆,∆) ≤ γ

N

N∑
j=1

Q̃j (u∆,∆) ,

for some user chosen constant γ > 1 (in our experiments, we have chosen γ = 2). Here we
have also modified Qi by choosing

Q̃i (u∆,∆) :=
(
hk

∗

i + µi (u∆,∆)
)1/k∗

,

where k∗ = k + 2. Adding this constant floor to µi avoids mesh starvation and smoothes the
convergence of the adaptive mesh algorithm.

Algorithm (de Boor [3])
1. Fix N , r, and a constant γ > 1. The initial mesh ∆[0] is uniform with mesh size

1/N .
2. For k = 0, 1, . . . , given the mesh ∆[k], compute the discrete solution u[k]

∆[k] on this

mesh using the S1
k+1-collocation method. Set h[k]

i = x
[k]
i −x

[k]
i−1 for each i. Compute
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TABLE 3.5
The adaptive algorithm with cubic C1-splines (k = 2) applied to (3.1), ε = 10−6.

N χN pN η2,I η̃2,D η χN/η iter

26 8.943e-07 4.10 5.923e-09 2.084e-05 2.085e-05 4.290e-02 5
27 5.221e-08 2.63 3.630e-10 1.189e-06 1.190e-06 4.389e-02 4
28 8.434e-09 5.72 2.645e-11 1.896e-07 1.896e-07 4.448e-02 3
29 1.600e-10 4.10 1.362e-12 3.899e-09 3.900e-09 4.103e-02 3
210 9.299e-12 2.75 8.347e-14 2.421e-10 2.422e-10 3.839e-02 3
211 1.382e-12 5.02 6.144e-15 3.078e-11 3.078e-11 4.488e-02 2
212 4.269e-14 — 3.364e-16 9.824e-13 9.827e-13 4.344e-02 2

ave. rate 4.05 4.06

the piecewise constant monitor function M [k] defined by

M [k](x) :=
Q

[k]
i

h
[k]
i

:=
Qi

(
u

[k]

∆[k] ,∆
[k]
)

h
[k]
i

for x ∈
(
x

[k]
i−1, x

[k]
i

)
.

We define

I [k] :=

N∑
j=1

Q̃
[k]
j .

3. Test mesh: If

Q̃
[k]
j ≤ γI

[k]N−1 for all j = 1, . . . , N

then go to Step 5. Otherwise, continue to Step 4.
4. Generate a new mesh by equidistributing the monitor function M [k], i.e., choose the

new mesh ∆[k+1] such that∫ x
[k+1]
i

x
[k+1]
i−1

M [k](t) dt =
I [k]

N
, i = 1, . . . , N.

Return to Step 2.
5. Set ∆∗ = ∆[k] and u∗∆∗ = u

[k]

∆[k] then stop.

Numerical results. We first apply the adaptive algorithm to our test problem (3.1). The
results are presented in Table 3.5. It contains the same quantities and is organised in a similar
way as the previous tables. Furthermore, the last column gives the number of iterations
required by the de Boor algorithm to meet the stopping criterion. An additional last row gives
the averaged rates for the errors and the error estimator. These rates are close to 4 as expected
for a fourth-order method.

Finally, we consider a modification of (3.1) which is taken from [10]:

−ε2u′′(x) + (1 + x2 + cosx)u(x) = x3/2 + e−x, x ∈ (0, 1), u(0) = u(1) = 0.(3.4)

Because of the term x3/2 on the right-hand side, the second derivative of the reduced
solution u0 = f/c has a singularity at x = 0. Consequently, a mesh that resolves the layers
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TABLE 3.6
Quintic C1-splines (k = 4) on Shishkin meshes (σ = 6) for (3.4); ε = 10−6.

N χN sN η5,I η̃5,D η χN/η

26 1.687e-05 6.05 3.342e-06 2.508e-03 2.511e-03 6.718e-03
27 9.823e-07 2.14 1.146e-06 1.320e-04 1.332e-04 7.377e-03
28 3.289e-07 2.13 3.812e-07 5.504e-06 5.885e-06 5.590e-02
29 1.044e-07 2.23 1.195e-07 1.941e-07 3.136e-07 3.329e-01
210 3.005e-08 2.45 3.373e-08 1.933e-08 5.306e-08 5.663e-01
211 7.325e-09 2.78 8.003e-09 5.043e-09 1.305e-08 5.614e-01
212 1.431e-09 — 1.452e-09 1.060e-09 2.512e-09 5.695e-01

TABLE 3.7
Quintic C1-splines (k = 4) with adaptive mesh movement applied to (3.4), ε = 10−6.

N χN pN η5,I η̃5,D η χN/η iter

26 2.949e-08 5.55 2.551e-08 8.630e-08 1.118e-07 2.637e-01 5
27 6.280e-10 6.21 5.633e-10 1.336e-09 1.900e-09 3.306e-01 4
28 8.465e-12 6.19 7.056e-12 4.693e-11 5.399e-11 1.568e-01 3
29 1.160e-13 6.26 9.832e-14 2.862e-13 3.845e-13 3.018e-01 3
210 1.516e-15 5.73 2.156e-15 1.906e-13 1.928e-13 7.864e-03 2
211 2.848e-17 6.24 3.612e-16 1.584e-16 5.196e-16 5.482e-02 2
212 3.764e-19 — 3.280e-17 1.516e-18 3.432e-17 1.097e-02 3

ave. rate 6.03 4.92 5.95 5.27

only, but not the singularity, will give unsatisfactory approximations. This is confirmed by
Table 3.6. The error estimator correctly reflects this behaviour.

In contrast, C1-collocation with adaptive mesh movement using the de Boor algorithm
described earlier preserves the high order of the method; see Table 3.7. Both the errors and
their a posteriori bounds are converging with order close to k + 2.

The results of the experiments are promising. However, more systematic numerical
investigations are required, as is a rigorous theoretical justification for the adaptive algorithm.
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