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INTERNALITY OF GENERALIZED AVERAGED GAUSS RULES AND THEIR
TRUNCATIONS FOR BERNSTEIN-SZEGŐ WEIGHTS∗

D. LJ. DJUKIĆ†, L. REICHEL‡, M. M. SPALEVIĆ†, AND J. D. TOMANOVIĆ†

Abstract. Generalized averaged Gauss quadrature formulas may have nodes outside the interval of integration.
Quadrature rules with nodes outside the interval of integration cannot be applied to approximate integrals with an
integrand that is defined on the interval of integration only. This paper investigates when generalized averaged Gauss
quadrature rules for Bernstein-Szegő weight functions have all nodes in the interval of integration. Also truncated
variants of these quadrature rules are considered. The relation between generalized averaged Gauss quadrature
formulas and Gauss-Kronrod rules is explored.
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1. Introduction. Let w be a given weight function on a bounded interval [a, b] with
infinitely many points of support. We call an interpolatory quadrature formula of the form

(1.1) I[f ] =

∫ b

a

f(t)w(t)dt = Qn[f ] +Rn[f ], Qn[f ] =

n∑
j=1

ωjf(tj),

a (2n−m−1, n, w) quadrature formula (q.f.) if the remainder term satisfiesRn[f ] = 0 for all
f ∈ P2n−m−1. Here t1 < t2 < · · · < tn are distinct nodes, ω1, ω2, . . . , ωn are weights, Pk
denotes the set of all polynomials of degree at most k, and 0 ≤ m ≤ n. A (2n−m− 1, n, w)
q.f. is said to be internal if all nodes are in the closed interval [a, b]. A node not belonging to
the interval [a, b] is said to be external. We say that a polynomial

qn(t) =

n∏
j=1

(t− tj)

with distinct nodes t1 < t2 < · · · < tn generates a (2n−m− 1, n, w) q.f. if the interpolatory
q.f. (1.1) with these nodes is a (2n−m− 1, n, w) q.f.

Let π0, π1, π2, . . . denote the monic orthogonal polynomials with respect to the inner
product (f, g) = I[fg]. Thus, πk is of degree k and

(tj , πk) = 0, j = 0, 1, . . . , k − 1.

The polynomials πj satisfy a three-term recurrence relation of the form

(1.2) πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, . . . ,

where π−1(t) ≡ 0, π0(t) ≡ 1, and the coefficients βk are positive.
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It is known that the unique interpolatory q.f. with l nodes and the highest possible degree
of precision 2l − 1 is the Gauss formula with respect to the weight function w,

Gl[f ] =

l∑
j=1

ωGj f(t
G
j ).

The nodes tGj are the eigenvalues of the symmetric tridiagonal Jacobi matrix

(1.3) JGl (w) =

α0

√
β1 0

√
β1 √

βl−1

0
√
βl−1 αl−1




∈ Rl×l,

and the weights ωGj are the squares of the first components of suitably normalized eigenvectors.
The latter was probably first observed by Wilf [21]; see Gautschi [4, 5] and Golub and
Meurant [7] for more recent discussions. Golub and Welsch [8] developed an efficient
algorithm for the computation of the nodes and weights of Gl based on this characterization.

It is often important to know how accurately a Gauss rule Gl[f ] approximates the desired
integral I[f ]. The estimation of the error I[f ] − Gl[f ] therefore has received considerable
attention in the literature. A common approach, when applicable, is to estimate the error in
Gl[f ] by approximating I[f ] by a (2l + 1)-node Gauss-Kronrod q.f., which we denote by
H2l+1. This rule uses the l nodes of Gl and can be expressed as

H2l+1[f ] =

l∑
j=1

ωGKj f(tGj ) +

l+1∑
k=1

ω̃GKk f(t̃GKk )

with

I[f ] = H2l+1[f ] +RGK2l+1[f ],

where the remainder term satisfies RGK2l+1[f ] = 0 for all f ∈ P3l+1; see Notaris [15] for a nice
recent discussion of Gauss-Kronrod rules. The nodes t̃GKk , k = 1, 2, . . . , l + 1, are the zeros
of the so-called Stieltjes polynomial. This polynomial is characterized by an orthogonality
relation with respect to a sign-changing weight function and therefore might have complex
(non-real) zeros, in which case the Gauss-Kronrod rule H2l+1 is said not to exist. Moreover,
some of the real nodes t̃GKk of H2l+1 may lie outside the interval of integration. These
difficulties arise for several of the classical weight functions such as the Hermite and Laguerre
weight functions as well as the Gegenbauer and Jacobi weight functions in certain situations;
see, e.g., [1, 15] for references and some computed examples.

The fact that certain Gauss-Kronrod formulas have complex (non-real) nodes led Laurie [9]
to develop anti-Gauss quadrature formulas and averaged Gauss quadrature rules. These
quadrature rules can be used to estimate the error in Gl[f ]. Both the anti-Gauss and averaged
Gauss quadrature rules are guaranteed to exist and have real nodes, at most two of which may
be outside of the interval of integration. Moreover, all weights are positive and the quadrature
rules can be constructed easily.

Based on work by Peherstorfer [16], Spalević [18] proposed a novel method for construct-
ing generalized averaged Gauss quadrature formulas Ĝ2l+1. The nodes of these quadrature
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rules are the zeros of the polynomial

(1.4) qn ≡ q2l+1 = πl · Fl+1,

where

(1.5) Fl+1 = πl+1 − β̂l+1 · πl−1.

It is shown in [18] that Ĝ2l+1 has algebraic degree of precision 2l + 2 when β̂l+1 = βl+1

in (1.5). In this case, we denote Ĝ2l+1 by ĜS2l+1. When, instead, qn in (1.4) is determined
by β̂l+1 = βl in (1.5), the quadrature formula Ĝ2l+1 becomes the averaged Gauss quadra-
ture formula introduced by Laurie [9]. We denote this rule by ĜL2l+1. It has algebraic
degree of precision 2l + 1. Both rules ĜS2l+1 and ĜL2l+1 exist for all l ≥ 1, but they might
have nodes outside the interval of integration. The symmetric tridiagonal Jacobi matrix
JS2l+1(w) ∈ R(2l+1)×(2l+1) associated with the rule ĜS2l+1 is given by

α0

√
β1 0

√
β1 √

βl−1√
βl−1 αl−1

√
βl

√
βl αl

√
βl+1√

βl+1 αl−1
√
βl−1√

βl−1

√
β1

0
√
β1 α0





.

Spalević [19] investigated conditions under which the degree of precision of generalized
averaged Gauss formulas ĜS2l+1 can be as high as 3l + 1. In this situation ĜS2l+1 provides an
attractive alternative to Gauss-Kronrod formulas for estimating the quadrature error in Gauss
formulas. This is discussed further below.

Truncated versions of the quadrature formulas ĜS2l+1 of the same algebraic degree of
precision were first considered in [17]. The simplest truncated generalized averaged Gauss
quadrature formulas are of the form

Q
(1)
l+2[f ] =

l+2∑
j=1

ωjf(t
(1)
j ).

They have been analyzed in more detail in [3]. The nodes of the rule Q(1)
l+2 are the zeros of the

polynomial

(1.6) ql+2(t) = (t− αl−1)πl+1(t)− βl+1πl(t);

see [3, Equation (4.2)]. Our interest in truncated versions of the quadrature rule ĜS2l+1 stems
from the fact that they may be internal when ĜS2l+1 is not. The nodes and weights of truncated
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generalized averaged Gauss rules can be computed as the eigenvalues and the squares of
the first components of suitably normalized eigenvectors of a truncation of the Jacobi matrix
JS2l+1(w); see [17]. The internality of the quadrature formulas ĜL2l+1, ĜS2l+1, andQ(1)

l+2 (l ≥ 2)
with classical weight functions has been investigated in [9], [18], and [3], respectively.

This paper discusses the internality of the quadrature formulas ĜL2l+1, ĜS2l+1 (l ≥ 1), and

Q
(1)
l+2 (l ≥ 2) for the classes of Bernstein-Szegő weight functions considered by Gautschi and

Notaris [6]. We note that the internality of Gauss-Kronrod quadrature formulas H2l+1 for
Bernstein-Szegő weight functions has been studied in [6, 12, 13, 14].

We conclude this section with some comments on the quality of the estimate of the
quadrature error determined by generalized averaged Gauss quadrature rules and truncated
variants. Let the integrand f in (1.1) have an expansion in terms of orthonormal polynomials
p0, p1, p2, . . . with respect to the weight function w. Thus, we have

f(t) =

∞∑
j=0

ηjpj(t), ηj = I[fpj ],

where pj is of degree j and the pi satisfy

I[pjpk] =

{
1 j = k,

0 j 6= k.

Assume for notational simplicity that the weight function w is scaled so that I[1] = 1. Then

I[f ] =

∞∑
j=0

ηjI[pj ] = η0,

Gl+1[f ] =

∞∑
j=0

ηjGl+1[pj ] = η0 +

∞∑
j=2l+2

ηjGl+1[pj ],(1.7)

ĜS2l+1[f ] = η0 +

∞∑
j=2l+3

ηjĜ
S
2l+1[pj ].(1.8)

Numerical results reported in Section 4 as well as in [17] indicate that the magnitude of the
quadrature error

(1.9) |I[f ]−Gl+1[f ]| =

∣∣∣∣∣∣
∞∑

j=2l+2

ηjGl+1[pj ]

∣∣∣∣∣∣
for many integrands and various weight functions w is quite well approximated by the differ-
ence

(1.10)
∣∣∣Gl+1[f ]− ĜS2l+1[f ]

∣∣∣ =
∣∣∣∣∣∣η2l+2Gl+1[p2l+2] +

∞∑
j=2l+3

ηj(Gl+1[pj ]− ĜS2l+1[pj ])

∣∣∣∣∣∣ .
This holds, in particular, when the coefficients ηj decrease to zero rapidly with increasing j
because then the right-hand sides of both (1.9) and (1.10) are dominated by |η2l+2Gl+1[p2l+2]|.
It also holds when |ηj | decreases to zero with increasing index j and ĜS2l+1[pj ] ≈ 0 for
some j = 2l + 3, 2l + 4, . . . . The latter property holds for weight functions considered by
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Spalević [19]; see also Corollary 3.2 below. We remark that the symmetric tridiagonal Jacobi
matrices JGl+1(w) and JS2l+1(w), with which the quadrature rules Gl+1[f ] and ĜS2l+1[f ] are
computed, are defined by about the same recurrence coefficients αj and βj . Therefore, the
determination of the entries of the matrix JS2l+1(w) is inexpensive when the entries of the
matrix JGl+1(w) are available; see [17] for further discussions on the computation of JS2l+1(w).

Similarly to (1.8), we have

Q
(1)
l+2[f ] = η0 +

∞∑
j=2l+3

ηjQ
(1)
l+2[pj ],

which suggests that |Gl+1[f ] − Q
(1)
l+2[f ]| may be used as an estimate for the quadrature

error (1.9). The feasibility of this approach to estimate the quadrature error is illustrated in
Section 4 as well as in [3, 17].

This paper is organized as follows. Section 2 introduces Bernstein-Szegő weight functions.
The internality of generalized averaged Gauss quadrature rules and truncated variants for
Bernstein-Szegő weight functions is analyzed in Section 3. Computed examples that illustrate
the usefulness of applying the expressions (1.10) and |Gl+1[f ] − Q(1)

l+2[f ]| to estimate the
magnitude of the quadrature error |I[f ]−Gl+1[f ]| are presented in Section 4, and concluding
remarks can be found in Section 5.

2. Bernstein-Szegő weight functions. This section reviews some properties of Bernstein-
Szegő weight functions with support in the open interval (a, b) = (−1, 1). These weight
functions have been considered by Gautschi and Notaris [6]. Introduce the Bernstein-Szegő
weight functions

w(±1/2)(t) =
(1− t2)±1/2

ρ(t)

and

w(±1/2,∓1/2)(t) =
(1− t)±1/2(1 + t)

∓1/2

ρ(t)
,

where

ρ(t) = ρ(t;α, β, δ) = β(β − 2α)t2 + 2δ(β − α)t+ α2 + δ2

with the coefficients α, β, and δ chosen such that

0 < α < β, β 6= 2α, |δ| < β − α.

Then ρ(t) is positive for −1 < t < 1; see [6, Proposition 2.1]. Denote the associated
monic orthogonal polynomials of degree l and the coefficients of the three-term recurrence
relation (1.2) by

π
(±1/2)
l , π

(±1/2,∓1/2)
l and α

(±1/2)
k , β

(±1/2)
k , α

(±1/2,∓1/2)
k , β

(±1/2,∓1/2)
k ,

respectively. Then we have (see [6])

π
(−1/2)
l (t) =

1

2l−1

[
Tl(t) +

2δ

β
Tl−1(t) +

(
1− 2α

β

)
Tl−2(t)

]
, l ≥ 2,
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π
(−1/2)
1 (t) = t+

δ

β − α
,

[
π
(−1/2)
0 (t) ≡ 1, π

(−1/2)
−1 (t) ≡ 0

]
,

π
(1/2)
l (t) =

1

2l

[
Ul(t) +

2δ

β
Ul−1(t) +

(
1− 2α

β

)
Ul−2(t)

]
, l ≥ 1,[

π
(1/2)
0 (t) ≡ 1, π

(1/2)
−1 (t) ≡ 0

]
,

π
(1/2,−1/2)
l (t) =

1

2l

[
Wl(t) +

2δ

β
Wl−1(t) +

(
1− 2α

β

)
Wl−2(t)

]
, l ≥ 2,

π
(1/2,−1/2)
1 (t) = t+

α+ δ

β
,

[
π
(1/2,−1/2)
0 (t) ≡ 1, π

(1/2,−1/2)
−1 (t) ≡ 0

]
,

π
(−1/2,1/2)
l (t;α, β, δ) = (−1)lπ(1/2,−1/2)

l (−t;α, β,−δ),

where for t = cos θ,

Tl(cos θ) = cos lθ, Ul(cos θ) =
sin(l + 1)θ

sin θ
, Wl(cos θ) =

sin(l + 1/2)θ

sin(θ/2)

are the Chebyshev orthogonal polynomials of the first, second, and fourth kind, respectively,
with T0(t) ≡ U0(t) ≡W0(t) ≡ 1 and U−1(t) ≡ 0. Moreover,

α
(−1/2)
0 = − δ

β − α
, β

(−1/2)
1 = α

(β − α)2 − δ2

β(β − α)2
,

α
(−1/2)
1 =

α δ

β(β − α)
, β

(−1/2)
2 =

β − α
2β

,

α
(−1/2)
k = 0, k ≥ 2, β

(−1/2)
k =

1

4
, k ≥ 3,

α
(1/2)
0 = − δ

β
, β

(1/2)
1 =

α

2β
,

α
(1/2)
k = 0, k ≥ 1, β

(1/2)
k =

1

4
, k ≥ 2,

α
(1/2,−1/2)
0 = −α+ δ

β
, β

(1/2,−1/2)
1 =

α(β − α− δ)
β2

,

α
(1/2,−1/2)
1 =

2α− β
2β

, β
(1/2,−1/2)
k =

1

4
, k ≥ 2,

α
(1/2,−1/2)
k = 0, k ≥ 2,

and

α
(−1/2,1/2)
k (α, β, δ) = −α(1/2,−1/2)

k (α, β,−δ), k ≥ 0,

β
(−1/2,1/2)
k (α, β, δ) = β

(1/2,−1/2)
k (α, β,−δ), k ≥ 0.

Note that for all Bernstein-Szegő weight functions, all but the first few diagonal entries of
the Jacobi matrix (1.3) vanish and all but the first few subdiagonal entries are independent of
the row number.

3. Internality of quadrature formulas. The recursion formulas for the monic orthogo-
nal polynomials πl with respect to Bernstein-Szegő weight functions are of the form

πl+1(t) = (t− αl)πl(t)− βlπl−1(t), l = 0, 1, . . . ,

αl = α, βl = β for l ≥ r,
(3.1)
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where αl ∈ R, βl > 0, r is a non-negative integer, and π0(t) ≡ 1 and π−1(t) ≡ 0. Thus,
the coefficients αl and βl are equal to some constants α ∈ R and β > 0, respectively, for all
l ≥ r. We note that any weight function w that yields a recursion relation of the form (3.1)
is known to be supported on a finite interval [a, b]; see [11]. LetMα,β

r [a, b] denote the set
of weight functions w that give a recursion relation of the form (3.1). In addition to the
Bernstein-Szegő weight functions, also the Chebyshev weight functions w(t) = (1− t2)1/2

and w(t) = (1− t2)−1/2 belong to setsMα,β
r [a, b] for a = −1, b = 1, and suitable values

of r ≥ 0. Polynomials that satisfy a recursion relation of the form (3.1) also are considered
in [3, Example 5.3]. The following result is shown in [20].

THEOREM 3.1. Let w be a weight function inMα,β
r [a, b]. Then, for l ≥ 2r − 1, the

generalized averaged Gauss quadrature formula ĜS2l+1 has algebraic degree of precision at
least 3l+1. Therefore, it coincides with the corresponding Gauss-Kronrod quadrature formula
and the monic polynomial Fl+1 coincides with the corresponding monic Stieltjes polynomial
given by

El+1(t) = πl+1(t)− βπl−1(t) for l ≥ 2r − 1.

The fact that generalized averaged Gauss quadrature formulas agree with Gauss-Kronrod
formulas is important because the former quadrature rules are quite easy to compute; see [17].
The computation of Gauss-Kronrod rules is more complicated. Numerical methods for this
task are discussed in [1, 2, 5, 10, 15]. The following result is a consequence of the above
theorem.

COROLLARY 3.2. Let the conditions of Theorem 3.1 hold. Then the error estimate (1.10)
can be expressed as

∣∣∣Gl+1[f ]− ĜS2l+1[f ]
∣∣∣ =

∣∣∣∣∣∣
3l+1∑
j=2l+2

ηjGl+1[pj ] +

∞∑
j=3l+2

ηj(Gl+1[pj ]− ĜS2l+1[pj ])

∣∣∣∣∣∣ .
Proof. By Theorem 3.1, the analogue of the expression (1.8) is

ĜS2l+1[f ] = η0 +

∞∑
j=3l+2

ηjĜ
S
2l+1[pj ].

Combining this expression with (1.7) shows the desired result.
It follows from Theorem 3.1 that for Bernstein-Szegő weights, the quadrature rules ĜL2l+1

and ĜS2l+1 coincide with the corresponding Gauss-Kronrod quadrature formula H2l+1 if
l ≥ 2r − 1. The rule ĜL2l+1 coincides with ĜS2l+1 and differs from the corresponding rule
H2l+1 if r ≤ l < 2r − 1. Finally, ĜL2l+1 differs from ĜS2l+1, and both these quadrature
formulas generally differ from the corresponding Gauss-Kronrod formula H2l+1 for l < r.

3.1. The Bernstein-Szegő weight function w(−1/2). For this weight function, recur-
sion formulas of the form (3.1) hold with r = 3. Therefore, ĜL2l+1 and ĜS2l+1 coincide with
the corresponding Gauss-Kronrod quadrature formula H2l+1 for l ≥ 5. Moreover, ĜL2l+1 co-
incides with ĜS2l+1, and both ĜL2l+1 and ĜS2l+1 differ from the corresponding Gauss-Kronrod
rule H2l+1 for l = 3, 4. Finally, ĜL2l+1 differs from ĜS2l+1, and both ĜL2l+1 and ĜS2l+1, in
general, differ from the corresponding Gauss-Kronrod rule H2l+1 for l = 1, 2.
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PROPOSITION 3.3. The quadrature rules ĜL2l+1 and ĜS2l+1 for the Bernstein-Szegő
weight function w(−1/2) have the following properties: the rules ĜL2l+1 are internal for l ≥ 2

and the rule ĜL3 is internal if

(3.2) |δ| ≤ (β − α)(β − 2α)

α
·

The rules ĜS2l+1 are internal for l ≥ 3, the rule ĜS5 is internal if β > 2α, and the rule ĜS3 is
internal if

(3.3) |δ| ≤ 1

2
(β − α).

Proof. In addition to verifying the proposition, the proof also provides findings on
whether the rules ĜL2l+1 and ĜS2l+1 coincide with the corresponding Gauss-Kronrod quadrature
formula H2l+1. This connection and results by Gautschi and Notaris [6] for the rules H2l+1

can in some cases be used to determine if the quadrature formulas ĜL2l+1 and ĜS2l+1 are
internal.

It follows from the properties Tl(1) = 1 and Tl(−1) = (−1)l for l = 0, 1, 2, . . ., and
from the relations of Section 2, that

π
(−1/2)
0 (1) = 1,

π
(−1/2)
1 (1) = 1 +

δ

β − α
=
δ + β − α
β − α

,

π
(−1/2)
l (1) =

1

2l−1

[
1 +

2δ

β
· 1 +

(
1− 2α

β

)
· 1
]
=
δ + β − α
2l−2β

, l ≥ 2,(3.4)

π
(−1/2)
0 (−1) = 1,

π
(−1/2)
1 (−1) = −1 + δ

β − α
=
δ − β + α

β − α
,

π
(−1/2)
l (−1) = 1

2l−1

[
(−1)l + 2δ

β
(−1)l−1 +

(
1− 2α

β

)
(−1)l−2

]
(3.5)

= (−1)l β − α− δ
2l−2β

, l ≥ 2.

These equations are used to show whether the quadrature rules ĜL2l+1 and ĜS2l+1 are internal.
For l ≥ 5, the rules ĜL2l+1 and ĜS2l+1 coincide with the corresponding Gauss-Kronrod

quadrature formula H2l+1. This formula is internal if the conditions (3.6) below hold. Alter-
natively, we can use [6, Theorem 5.1 (b)], which shows that H2l+1 is internal and therefore so
are ĜL2l+1 and ĜS2l+1.

For l = 3, 4, the quadrature formulas ĜS2l+1 and ĜL2l+1 are internal if Fl+1(1) ≥ 0 and
(−1)l+1

Fl+1(−1) ≥ 0, i.e., if

(3.6)
4π

(−1/2)
l+1 (1)

π
(−1/2)
l−1 (1)

≥ 1 and
4π

(−1/2)
l+1 (−1)

π
(−1/2)
l−1 (−1)

≥ 1.

Substituting (3.4) and (3.5) into the above expressions shows that ĜS2l+1 and ĜL2l+1 are internal.
For l = 1, 2, the rule ĜL2l+1 is internal if Fl+1(1) ≥ 0 and (−1)l+1

Fl+1(−1) ≥ 0, i.e., if

(3.7)
π
(−1/2)
l+1 (1)

β
(−1/2)
l π

(−1/2)
l−1 (1)

≥ 1 and
π
(−1/2)
l+1 (−1)

β
(−1/2)
l π

(−1/2)
l−1 (−1)

≥ 1.
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If l = 2, it follows from the identities (3.4) and (3.5) that ĜL5 is internal. In case l = 1, the
conditions (3.7) are equivalent to (3.2). Thus, ĜL3 is internal if (3.2) holds.

For l = 2, the quadrature formula ĜS5 is internal if F3(1) ≥ 0 and −F3(−1) ≥ 0, which
can be expressed as

4π
(−1/2)
3 (1)

π
(−1/2)
1 (1)

≥ 1 and
4π

(−1/2)
3 (−1)

π
(−1/2)
1 (−1)

≥ 1.

Straightforward computations show that ĜS5 is internal if β > 2α.
For l = 1, the quadrature formula ĜS3 has the same algebraic degree of precision

(2l + 2 = 4) as the corresponding Gauss-Kronrod quadrature formula H3 (3l + 1 = 4).
Therefore, these quadrature formulas coincide. Gautschi and Notaris [6, Theorem 5.1(b)] show
that H3 is internal if (3.3) holds.

We turn to the quadrature rules Q(1)
l+2.

PROPOSITION 3.4. The quadrature rules Q(1)
l+2 for the Bernstein-Szegő weight function

w(−1/2) are internal for l ≥ 3. If δ 6= 0, then the rule Q(1)
4 is internal provided that

(3.8) |δ| ≤ β(β − α)
2α

·

The rule Q(1)
4 is internal if δ = 0.

Proof. It follows from [3, Theorem 4.1] that the rules Q(1)
l+2 are internal for l ≥ 3 because

α
(−1/2)
l−1 = α

(−1/2)
l+1 = 0.

If l = 2 and δ 6= 0, then we obtain from (1.6) that Q(1)
4 is internal if q4(1) ≥ 0 and

q4(−1) ≥ 0, i.e., if

4
(
1− α(−1/2)

1

)
π
(−1/2)
3 (1)

π
(−1/2)
2 (1)

≥ 1 and −
4
(
1 + α

(−1/2)
1

)
π
(−1/2)
3 (−1)

π
(−1/2)
2 (−1)

≥ 1.

These conditions simplify to (3.8).
If l = 2 and δ = 0, then since α(−1/2)

1 = 0, we conclude, using [3, Theorem 4.1], that the
quadrature formula Q(1)

4 is internal.
EXAMPLE 3.5. We have shown that for the Bernstein-Szegő weight function w(−1/2) and

l = 3, the quadrature rule ĜS7 and therefore also the rule ĜL7 are internal. The corresponding
Gauss-Kronrod quadrature formula H7 = H

(−1/2)
7 is internal if

δ2 <
1

32

(3β − 2α)
2
(β + 6α)

β + 2α
, β > 2α

(see [6, Theorem 5.1]) and may have exterior nodes otherwise. Table 3.1 displays the exterior
nodes of the Gauss-Kronrod quadrature formula H(−1/2)

7 (l = 3) for some α, β, δ.
We showed for l = 2 that ĜL5 is always internal and that ĜS5 is internal if β > 2α. The

corresponding Gauss-Kronrod quadrature formula H5 = H
(−1/2)
5 (l = 2) is internal if

β > 2α, |δ| ≤ β − 2α;

see [6, Theorem 5.1]. Therefore, if H(−1/2)
5 is internal, then ĜS5 is internal. The converse

is not necessarily true. For example, for α = 0.05, β = 0.2, and δ = 0.14, the rule ĜS5 is
internal, but H(−1/2)

5 has an exterior node near −1.0580.
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TABLE 3.1
Approximate values of exterior nodes in the Gauss-Kronrod quadrature formula H7 = H

(−1/2)
7 (l = 3) for

some α, β, δ.

α β δ
Exterior nodes

of H(−1/2)
7

α β δ
Exterior nodes

of H(−1/2)
7

0.11 0.2 0.01 −1.0046; 1.0040 11.0 12 0.0 ∓1.0408
0.12 0.2 0.01 −1.0093; 1.0081 11.2 12 0.0 ∓1.0427
0.14 0.2 0.01 −1.0940; 1.0169 11.4 12 0.0 ∓1.0446
0.16 0.2 0.01 −1.0303; 1.0263 11.6 12 0.0 ∓1.0466
0.18 0.2 0.01 −1.0420; 1.0363 11.8 12 0.0 ∓1.0485

TABLE 3.2
Approximate values of exterior nodes in the quadrature rule Ĝ5 for some α > 1, β = 2, and δ = 0.

α Exterior nodes of ĜS5
1.1 ∓1.0124
1.2 ∓1.0247
1.3 ∓1.0368
1.4 ∓1.0488
1.5 ∓1.0607

EXAMPLE 3.6. This example illustrates that for the Bernstein-Szegő weight function
w(−1/2), the quadrature rule ĜS2l+1 may be external while the corresponding truncated rule

Q
(1)
l+2 is internal if l = 2. Thus, let l = 2 and consider the situation when β < 2α and δ = 0.

Then the quadrature formulas ĜS2l+1 and H2l+1 = H
(−1/2)
2l+1 coincide. This follows from the

fact that H(−1/2)
2l+1 has algebraic degree of precision 7 = 3l + 1 and, because of parity, the

rule ĜS2l+1 also has algebraic degree of precision 7 = 2l + 3; see [18]. Table 3.2 displays the
exterior nodes of ĜS2l+1 for several values of α > 1.

Since the condition (3.8) holds for the values of α, β, and δ used in Table 3.2, it follows
from Proposition 3.4 that the corresponding truncated quadrature rules Q(1)

l+2 are internal.

3.2. The Bernstein-Szegő weight function w(1/2). In this case, recursion formulas of
the form (3.1) hold with r = 2. Therefore, the quadrature rules ĜL2l+1 and ĜS2l+1 coincide
with the corresponding Gauss-Kronrod quadrature formula H2l+1 for l ≥ 3. If l = 2, then
the rule ĜL2l+1 coincides with ĜS2l+1, and none of these rules agrees with the Gauss-Kronrod
rule H2l+1. Moreover, if l = 1, then ĜL2l+1 differs from ĜS2l+1, and generally both these rules
differ from the corresponding Gauss-Kronrod rule H2l+1.

PROPOSITION 3.7. The quadrature rules ĜL2l+1 and ĜS2l+1 for the Bernstein-Szegő
weight function w(1/2) have the following properties: the rules ĜL2l+1 and ĜS2l+1 for l ≥ 2

are internal, and so is ĜL3 . Moreover, ĜS3 is internal if β ≤ 2α or

(3.9) β > 2α and |δ| ≤ 1

4
(3β − 2α).
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Proof. The following equations are used in the proof. We obtain from Ul(1) = l + 1 and
Ul(−1) = (l + 1)(−1)l, l = −1, 0, 1, . . ., and from the formulas of Section 2 that

π
(1/2)
0 (1) ≡ 1,

π
(1/2)
l (1) =

1

2l

[
(l + 1) +

2δ

β
l +

(
1− 2α

β

)
(l − 1)

]
=

(δ + β − α)l + α

2l−1β
, l ≥ 1,

π
(1/2)
0 (−1) ≡ 1,

π
(1/2)
l (−1) = 1

2l

[
(l + 1)(−1)l + 2δ

β
l(−1)l−1 +

(
1− 2α

β

)
(l − 1)(−1)l−2

]
= (−1)l (β − α− δ)l + α

2l−1β
, l ≥ 1.

For every l ≥ 3, the rules ĜL2l+1 and ĜS2l+1 coincide with the corresponding Gauss-
Kronrod quadrature formula H2l+1. Gautschi and Notaris [6, Theorem 5.2(b)] have shown
that H2l+1 is internal.

For l = 2, the quadrature formula ĜS5 and therefore also ĜL5 is internal if F3(1) ≥ 0 and
−F3(−1) ≥ 0, i.e., if

4π
(1/2)
3 (1)

π
(1/2)
1 (1)

≥ 1 and
4π

(1/2)
3 (−1)

π
(1/2)
1 (−1)

≥ 1.

From the first condition above, it follows that δ ≥ −(β − α). This inequality is true. The
second condition above yields δ ≤ β − α. This inequality also is valid. Therefore, ĜS5 and
ĜL5 are internal.

If l = 1, then the rule ĜL3 is internal if F2(1) ≥ 0 and F2(−1) ≥ 0, i.e., if

π
(1/2)
2 (1)

β
(1/2)
1 π

(1/2)
0 (1)

≥ 1 and
π
(1/2)
2 (−1)

β
(1/2)
1 π

(1/2)
0 (−1)

≥ 1.

These conditions yield

δ ≥ −(β − α) and δ ≤ β − α,

respectively. Both these inequalities hold. Therefore, ĜL3 is internal.
Finally, if l = 1, then the rule ĜS3 has the same algebraic degree of precision (2l+ 2 = 4)

as the corresponding Gauss-Kronrod quadrature formula H3 (3l + 1 = 4). Therefore, these
rules coincide. We can apply the analysis of internality of H3 provided by Gautschi and
Notaris [6, Theorem 5.2(b)], who show that H3 is internal except if β > 2α. In the latter
situation, the rule is internal if (3.9) holds.

PROPOSITION 3.8. The quadrature rules Q(1)
l+2 for the Bernstein-Szegő weight function

w(1/2) are internal for l ≥ 2.
Proof. The result follows from [3, Theorem 4.1] since α(1/2)

l−1 = α
(1/2)
l+1 = 0.

3.3. The Bernstein-Szegő weight function w(1/2,−1/2). The recursion formulas for
the orthogonal polynomials are of the form (3.1) with r = 2. Therefore, the rules ĜL2l+1 and
ĜS2l+1 coincide with the corresponding Gauss-Kronrod quadrature formula H2l+1 if l ≥ 3.
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For l = 2, the rules ĜL2l+1 and ĜS2l+1 are the same and differ from the corresponding Gauss-
Kronrod rule H2l+1. Finally, if l = 1, the rules ĜL2l+1 and ĜS2l+1 are not the same, and, in
general, both of them differ from the corresponding Gauss-Kronrod rule H2l+1.

PROPOSITION 3.9. The quadrature rules ĜL2l+1 and ĜS2l+1 for the Bernstein-Szegő
weight function w(1/2,−1/2) have the following properties: the rules ĜL2l+1 and ĜS2l+1 are
internal for l ≥ 2. The quadrature formula ĜL3 is internal if

(3.10)
β(3δ + 3β − α)
2α(β − α− δ)

≥ 1 and β > 2α (since β 6= 2α),

and ĜS3 is internal if

(3.11) 6δ + 5β − 2α ≥ 0 and 2δ + 2α− β ≤ 0.

Proof. We obtain from Wl(1) = 2l + 1 and Wl(−1) = (−1)l, for l = 0, 1, 2, . . ., and
from results of Section 2 that

π
(1/2,−1/2)
0 (1) = 1,

π
(1/2,−1/2)
1 (1) = 1 +

α+ δ

β
=
α+ β + δ

β
,

π
(1/2,−1/2)
l (1) =

1

2l

[
(2l + 1) +

2δ

β
(2l − 1) +

(
1− 2α

β

)
(2l − 3)

]
=

(δ + β − α)(2l − 1) + 2α

2l−1β
, l ≥ 2,

π
(1/2,−1/2)
0 (−1) = 1,

π
(1/2,−1/2)
1 (−1) = −1 + α+ δ

β
=
δ − β + α

β
,

π
(1/2,−1/2)
l (−1) = 1

2l

[
(−1)l + 2δ

β
(−1)l−1 +

(
1− 2α

β

)
(−1)l−2

]
= (−1)l β − α− δ

2l−1β
, l ≥ 2.

These equations are used to show the internality of some of the quadrature rules.
For l ≥ 3, the quadrature rules ĜL2l+1, ĜS2l+1, and H2l+1 coincide. Gautschi and No-

taris [6, Theorem 5.3(b)] have shown that the rules H2l+1 are internal.
For l = 2, the quadrature formulas ĜS5 and ĜL5 are internal ifF3(1)≥ 0 and−F3(−1)≥ 0,

i.e., if

4π
(1/2,−1/2)
3 (1)

π
(1/2,−1/2)
1 (1)

≥ 1 and
4π

(1/2,−1/2)
3 (−1)

π
(1/2,−1/2)
1 (−1)

≥ 1.

The first condition above is equivalent to β − α + δ ≥ 0, which holds true. The second
condition also is valid.

For l = 1, the quadrature rule ĜL3 is internal if F2(1) ≥ 0 and F2(−1) ≥ 0, i.e., if

π
(1/2,−1/2)
2 (1)

β
(1/2,−1/2)
1 π

(1/2,−1/2)
0 (1)

≥ 1 and
π
(1/2,−1/2)
2 (−1)

β
(1/2,−1/2)
1 π

(1/2,−1/2)
0 (−1)

≥ 1.
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TABLE 4.1
Estimates of the error in Gl+1[f ] for approximating I [f ] with f(t) = exp(−t) determined by ĜS

2l+1[f ] and

Q
(1)
l+2[f ] for some α, β, δ.

α β δ l Error
∣∣∣ĜS

2l+1[f ]−Gl+1[f ]
∣∣∣ ∣∣∣Q(1)

l+2[f ]−Gl+1[f ]
∣∣∣

1 1 +
√
2 −1/

√
2 4 1.1255(−09) 1.1255(−09) 1.1234(−09)

9 1.6635(−24) 1.6635(−24) 1.6626(−24)
14 1.4977(−41) 1.4977(−41) 1.4973(−41)
19 4.7675(−60) 4.7675(−60) 4.7668(−60)√

5 2 +
√
5 1 4 4.0268(−10) 4.0268(−10) 4.0193(−10)

9 5.6832(−25) 5.6832(−25) 5.6801(−25)
14 5.0339(−42) 5.0339(−42) 5.0326(−42)
19 1.5891(−60) 1.5891(−60) 1.5888(−60)

These conditions can be expressed as (3.10). It follows that ĜL3 is internal if the inequali-
ties (3.10) hold.

The rule ĜS3 has the same algebraic degree of precision (2l+2 = 4) as the corresponding
Gauss-Kronrod quadrature formula H3 (3l + 1 = 4). Therefore, these rules coincide. We
apply [6, Theorem 5.3 (b)] to conclude that ĜS3 is internal if both inequalities (3.11) are valid.

PROPOSITION 3.10. The quadrature rules Q(1)
l+2 for the Bernstein-Szegő weight function

w(1/2,−1/2) are internal for l ≥ 2.
Proof. It follows from [3, Theorem 4.1] that Q(1)

l+2 is internal for l ≥ 3 since the weights

satisfy α(1/2,−1/2)
l−1 = α

(1/2,−1/2)
l+1 = 0.

If l = 2, then we obtain from (1.6) that the rule Q(1)
4 is internal if q4(1) ≥ 0 and

q4(−1) ≥ 0, i.e., if the inequalities

4
(
1− α(1/2,−1/2)

1

)
π
(1/2,−1/2)
3 (1)

π
(1/2,−1/2)
2 (1)

≥ 1, −
4
(
1 + α

(1/2,−1/2)
1

)
π
(1/2,−1/2)
3 (−1)

π
(1/2,−1/2)
2 (−1)

≥ 1

are satisfied. Straightforward computations show that both inequalities hold.

4. Numerical results. This section illustrates the use of the quadrature rules ĜS2l+1 and

Q
(1)
l+2 to estimate the magnitude of the quadrature error I[f ]−Gl+1[f ]. In applications, we

use the values ĜS2l+1[f ] or Q(1)
l+2[f ] as approximations of I[f ] together with the computed

error estimates because these quadrature rules typically furnish a more accurate approximation
of I[f ] than Gl+1[f ]. All computations have been carried out in MATLAB with high precision
arithmetic.

EXAMPLE 4.1. Consider the estimation of the magnitude of quadrature errors obtained
with the Gauss rules Gl+1[f ] when applied to the approximation of the integral

I[f ] =

∫ 1

−1
f(t)w(−1/2)(t) dt.

Approximation of these integrals has previously been considered by Notaris [13].
We estimate the magnitude of the quadrature error I[f ] − Gl+1[f ] by the differences

|ĜS2l+1[f ] − Gl+1[f ]| and |Q(1)
l+2[f ] − Gl+1[f ]|. As shown above, the quadrature formulas

ĜS2l+1 and Q(1)
l+2 are internal for the cases reported in Tables 4.1 and 4.2. Table 4.1 displays
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TABLE 4.2
Estimates of the error inGl+1[f ] for approximating I [f ] with f(t) = ln (2/(2− t)) determined by ĜS

2l+1[f ]

and Q(1)
l+2[f ] for some α, β, δ.

α β δ l Error
∣∣∣ĜS

2l+1[f ]−Gl+1[f ]
∣∣∣ ∣∣∣Q(1)

l+2[f ]−Gl+1[f ]
∣∣∣

1 1 +
√
2 −1/

√
2 4 1.0935(−06) 1.0939(−06) 1.0278(−06)

9 1.0569(−12) 1.0569(−12) 9.8786(−13)
14 1.3506(−18) 1.3506(−18) 1.2596(−18)
19 1.9372(−24) 1.9372(−24) 1.8046(−24)√

5 2 +
√
5 1 4 2.1627(−07) 2.1636(−07) 2.0337(−07)

9 2.0435(−13) 2.0435(−13) 1.9102(−13)
14 2.5904(−19) 2.5904(−19) 2.4161(−19)
19 3.7002(−25) 3.7002(−25) 3.4472(−25)

the results for f(t) = exp(−t). The column with the header Error shows the magnitude of the
error |I[f ]−Gl+1[f ]| for several values of the parameters α, β, and δ that define the weight
function w(−1/2). The computed estimates of |I[f ]−Gl+1[f ]| are seen to be very accurate
for all values of α, β, and δ.

Table 4.2 differs from Table 4.1 only in that the integrand is

f(t) = ln
2

2− t
·

The computed estimates of the magnitude of quadrature error |I[f ] − Gl+1[f ]| are seen
to be accurate for all values of α, β, and δ also for this integrand with the estimates
|ĜS2l+1[f ]−Gl+1[f ]| being somewhat more accurate than the estimates |Q(1)

l+2[f ]−Gl+1[f ]|.
We conclude that the generalized averaged Gauss quadrature rules ĜS2l+1 and the truncated

version Q(1)
l+2 provide accurate estimates of the quadrature error of the Gauss rule Gl+1 for

different integrands and several values of l.

5. Conclusion. The present paper investigates whether generalized averaged Gauss
quadrature rules associated with Bernstein-Szegő weight functions are internal. This issue
is important because internal quadrature rules can be applied to a larger class of integrands
than rules with one or several external nodes. Also truncated versions of generalized averaged
Gauss quadrature rules are studied. Our investigation complements the recent study [3]
of the internality of generalized averaged Gauss quadrature rules and truncated variants
for classical weights functions. The analysis of this paper shows that in many situations,
generalized averaged Gauss quadrature rules coincide with Gauss-Kronrod rules. This implies
that the simple numerical methods for computing generalized averaged Gauss quadrature
rules described in [17] can be applied to determine Gauss-Kronrod rules. The averaged rules
proposed by Laurie [9] are shown to coincide with the generalized averaged Gauss quadrature
rules in certain situations. Computed examples illustrate the high accuracy of quadrature error
estimates that can be achieved with generalized averaged Gauss quadrature rules and their
associated truncated variants.
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