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A NOTE ON OPTIMAL RATES FOR LAVRENTIEV REGULARIZATION WITH
ADJOINT SOURCE CONDITIONS∗

ANDREAS NEUBAUER†

Abstract. In a recent paper, Plato, Mathé, and Hofmann proved several convergence rate results for Lavrentiev
regularization. Especially, they also proved new results for the case when the exact solution u of an ill-posed linear
problem Au = f satisfies the adjoint source condition u ∈ R((A∗)p), 0 < p ≤ 1

2
. In this note we slightly improve

the rate for p = 1
2

and also prove the rate O(δ
1
3 ) if p > 1

2
.
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1. Introduction. In the recent paper [5], Plato, Mathé, and Hofmann proved new conver-
gence rate results for Lavrentiev regularization when the exact solution satisfies adjoint source
conditions. Using their notations, we deal with the following problem: find u ∈ H in

(1.1) Au = f , f ∈ R(A) ,

where A : H → H is a bounded linear accretive operator in an infinite-dimensional and
separable complex Hilbert spaceH. Accretive means that

(1.2) Re 〈Au, u 〉 ≥ 0 for all u ∈ H .

We assume that the rangeR(A) is not closed, i.e., the problem of solving (1.1) is ill-posed and
has to be regularized (see, e.g., [1]), especially since instead of the exact data f one usually
only has perturbed data fδ ∈ H with ∥∥f − fδ∥∥ ≤ δ ,
where δ > 0 denotes the noise level. As in [5] we consider Lavrientiev regularization, i.e., u is
approximated by

uδγ = (A+ γI)−1fδ , γ > 0 .

Using the estimate (see [5, (1.4)])

(1.3)
∥∥u− uδγ∥∥ ≤ ∥∥γ(A+ γI)−1u

∥∥+ δ

γ
,

one can prove convergence rates if u satisfies certain source conditions.
For selfadjoint operators it is well known that∥∥∥u− uδγ(δ)∥∥∥ = O

(
δ

p
p+1

)
if u ∈ R(Ap), 0 < p ≤ 1, and γ(δ) ∼ δ

1
p+1 . It is shown in [5, Proposition 4] that these

rates are also true for general accretive operators. One can even prove converse and saturation
results (see [4]).
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For adjoint source conditions

(1.4) u = (A∗)pv , v ∈ H ,

convergence rates are proven based on the following result by Kato [2]: let 0 < p < 1
2 , then

(1.5) ‖(A∗)pu‖ ≤ ep ‖Apu‖ for all u ∈ H ,

where

(1.6) ep := tan
π(1 + 2p)

4
·

(Obviously, this estimate also holds for p = 0.) This implies that one can also get the rate
O(δ

p
p+1 ) for the source condition (1.4) if p < 1

2 (see [5, Theorem 1]). For the case p = 1
2 , the

rate

(1.7) O
((
δ| ln δ|2

) 1
3

)
is shown if γ(δ) is chosen appropriately; see [5, Theorem 2]. We will improve this rate a little
bit.

It is well known from [3] that for p ≥ 1, the rate

(1.8) O
(
δ

1
3

)
holds. In [5, Section 6], results on limit orders were obtained that suggest that this rate could
also hold for p > 1

2 . We show in the next section that this is true. Moreover, we improve
several constants appearing in certain estimates from [5].

2. Improvements. Using the formulas∥∥(A+ sI)−1A
∥∥ ≤ 1 , s > 0 ,∥∥s(A+ sI)−1
∥∥ ≤ 1 , s > 0 ,

Ap :=
sinπp

π

∫ ∞
0

sp−1(A+ sI)−1Ads , 0 < p < 1 ,

(see [5, Remark 3, (2.2), (2.3)]), it follows with a > 0 that

‖Apx‖ ≤ sinπp

π

(∫ a

0

sp−1 ‖x‖ ds+
∫ ∞
a

sp−2 ‖Ax‖ ds
)

=
sinπp

π

(
1

p
ap ‖x‖+ 1

1− p
ap−1 ‖Ax‖

)
.

When x 6= 0, this bound is minimized for a = ‖Ax‖ ‖x‖−1 and yields

‖Apx‖ ≤ cp ‖Ax‖p ‖x‖1−p

with

(2.1) cp :=
sinπp

πp(1− p)
≤ c 1

2
=

4

π
·
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For x = 0 the estimate trivially holds. This improves the estimate [5, (2.7)] since cp < 2. Of
course, then also the constant 2 in [5, Proposition 4] can be replaced by this better constant cp,
i.e.,

(2.2)
∥∥γ(A+ γI)−1Ap

∥∥ ≤ cpγp , 0 < p ≤ 1 .

Now we turn to the case of adjoint source conditions: the following estimate will be
essential for the improvement of the results in [5]. It is an immediate consequence of (1.2) that

Re 〈 (A+ γI)u, u 〉 ≥ γ ‖u‖2

and hence that

(2.3)
∥∥γ(A+ γI)−1u

∥∥2 ≤ Re
〈
γ(A+ γI)−1u, u

〉
.

Let us now assume that u satisfies the source condition (1.4) with 0 < p < 1
2 . Noting

that (1.5) and (2.2) are also valid with A and A∗ interchanged, we obtain together with (2.3)
and (Ap)∗ = (A∗)p that∥∥γ(A+ γI)−1(A∗)pv

∥∥2 ≤ Re
〈
γ(A+ γI)−1(A∗)pv, (A∗)pv

〉
= Re

〈
v,Apγ(A∗ + γI)−1(A∗)pv

〉
≤ ep ‖v‖

∥∥γ(A∗ + γI)−1(A∗)2pv
∥∥ ≤ epc2pγ2p ‖v‖2 .

Thus, ∥∥γ(A+ γI)−1(A∗)p
∥∥ ≤ (epc2p)

1
2 γp.

The constant (epc2p)
1
2 is much smaller than the constant 2ep in the estimate of [5, Proposi-

tion 8], especially when p is close to 1
2 .

In the next theorem we slightly improve the rate (1.7) for p = 1
2 and prove the rate (1.8)

for 1
2 < p ≤ 1.
THEOREM 2.1. Let problem (1.1) have a solution u satisfying the source condition (1.4)

for some 1
2 ≤ p ≤ 1.

If p = 1
2 and γ(δ) ∼ δ 2

3 | ln δ|− 1
3 , then we obtain the rate∥∥∥u− uδγ(δ)∥∥∥ = O

(
(δ| ln δ|) 1

3

)
.

If 1
2 < p ≤ 1 and γ(δ) ∼ δ 2

3 , then we obtain the rate∥∥∥u− uδγ(δ)∥∥∥ = O
(
δ

1
3

)
.

Proof. Let us first consider the case p = 1
2 . Assuming that 0 < ε ≤ 1

2 , then (1.5), (2.2),
and (2.3) imply that∥∥∥γ(A+ γI)−1(A∗)

1
2 v
∥∥∥2 ≤ Re

〈
v,AεA

1
2−εγ(A∗ + γI)−1(A∗)

1
2 v
〉

≤ e 1
2−ε
‖Aε‖ ‖v‖

∥∥γ(A∗ + γI)−1(A∗)1−εv
∥∥

≤ e 1
2−ε

c1−ε ‖Aε‖ γ1−ε ‖v‖2 .
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Together with (1.6) and (2.1) we thus obtain that

∥∥∥γ(A+ γI)−1(A∗)
1
2

∥∥∥ ≤ (16

π2
cot

πε

2
‖A‖ε γ1−ε

) 1
2

.

Since it is trivial to show that

0 < x cotx < 1 , 0 < x <
π

2
,

we further get the estimate

∥∥∥γ(A+ γI)−1(A∗)
1
2

∥∥∥ ≤ (32

π3
‖A‖ε ε−1γ1−ε

) 1
2

.

This bound is minimized for ε = ln−1 ‖A‖γ if γ < ‖A‖ exp(−2) and for ε = 1
2 otherwise.

Therefore, we finally arrive at

∥∥∥γ(A+ γI)−1(A∗)
1
2

∥∥∥ ≤ (32

π3
exp(1)γ ln

‖A‖
γ

) 1
2

, γ < ‖A‖ exp(−2) .

This together with (1.3) and γ(δ) ∼ δ 2
3 | ln δ|− 1

3 yields the desired rate.
Let us now consider the case 1

2 < p ≤ 1. Then (1.5) (note that 1− p < 1
2 ), (2.1), (2.2)

(p = 1), and (2.3) imply that∥∥γ(A+ γI)−1(A∗)pv
∥∥2 ≤ Re

〈
v,A2p−1A1−pγ(A∗ + γI)−1(A∗)pv

〉
≤ e1−p

∥∥A2p−1∥∥ ‖v‖ ∥∥γ(A∗ + γI)−1A∗v
∥∥

≤ e1−p
∥∥A2p−1∥∥ γ ‖v‖2 .

Thus, ∥∥γ(A+ γI)−1(A∗)p
∥∥ ≤ (e1−p ∥∥(A)2p−1∥∥ γ) 1

2 .

This together with (1.3) and γ(δ) ∼ δ 2
3 yields the desired rate.
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