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DIRICHLET-NEUMANN AND NEUMANN-NEUMANN WAVEFORM
RELAXATION ALGORITHMS FOR PARABOLIC PROBLEMS∗

MARTIN J. GANDER†, FELIX KWOK‡, AND BANKIM C. MANDAL§

Abstract. We present and analyze waveform relaxation variants of the Dirichlet-Neumann and Neumann-
Neumann methods for parabolic problems. These methods are based on a non-overlapping spatial domain decomposi-
tion, and each iteration involves subdomain solves with Dirichlet boundary conditions followed by subdomain solves
with Neumann boundary conditions. However, unlike for elliptic problems, each subdomain solve now involves a
solution in space and time, and the interface conditions are also time-dependent. We show for the heat equation
that when we consider finite time intervals, the Dirichlet-Neumann and Neumann-Neumann methods converge
superlinearly for an optimal choice of the relaxation parameter, similar to the case of Schwarz waveform relaxation
algorithms. Our analysis is based on Laplace transforms and detailed kernel estimates. The convergence rate depends
on the size of the subdomains as well as the length of the time window. For any other choice of the relaxation
parameter, convergence is only linear. We illustrate our results with numerical experiments.

Key words. waveform relaxation, Dirichlet-Neumann waveform relaxation, Neumann-Neumann waveform
relaxation, Schwarz waveform relaxation
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1. Introduction. The space-time parallel method for the numerical solution of partial
differential equations (PDE) is currently an active research topic; see [14] for a review. This is
driven by the increasing demand of high resolution simulation of complex systems, as well
as the increasing availability of computing clusters with thousands of cores or more. One
attractive way of speeding up the computation is to parallelize the solution process using
domain decomposition (DD) methods. In such methods, one divides the computational domain
into several subdomains and decouples the problem by making an initial guess on the data
along subdomain interfaces; one then solves the subdomain problems in parallel, checks for
discrepancies (e.g., non-smoothness) along subdomain interfaces, and iterates the process
until a smooth solution is obtained. For an introduction to DD methods and their convergence
properties, the reader may refer to the survey paper [9], as well as the volumes [42, 45] and the
references therein. To parallelize the solution of time-dependent PDEs, the classical approach
consists of discretizing in time to obtain a sequence of steady problems (which is known as
Rothe’s method in honor of the German analyst Erich Rothe). These steady problems are then
solved by DD methods [7, 8]. One drawback of this approach is that one is obliged to take
the same time step across the whole domain, which can be very restrictive when the problem
contains variable coefficients or multiple time scales.

A different approach consists of the so-called Waveform Relaxation (WR) methods: here,
one solves the time-dependent problem approximately by regarding certain functions, e.g., the
source terms, as fixed and integrating the remaining ODE or PDE. One then updates the
frozen terms using the new approximate solution and iterates to obtain a consistent solution.
WR methods have their origin in the 19th century, with the invention of Picard–Lindelöf
iterations for proving the existence of local solutions to ODEs; see [31, 41]. Lelarasmee,
Ruehli and Sangiovanni-Vincentelli [30] were the first to introduce WR as a parallel method
for solving systems of ODEs: there, they decouple a feedback circuit into many subcircuits; the
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interactions between subcircuits are lagged by one iteration, thereby allowing the subcircuits
to be simulated independently. The extension of WR methods to time-dependent PDEs
was started independently in [19, 21]: in these papers, the authors use the DD paradigm to
decompose the PDEs into several subdomain problems, each posed in space and time. At
each iteration, one solves the space-time subproblem over the entire time horizon, before
communicating interface data across subdomains. This approach has some advantages over
Rothe’s method, namely the more efficient bulk communication of interface data, which is
now done over the whole time horizon instead of per time step. It is not immediately obvious
that the WR approach allows across-time parallelism in the same way that parareal [32] and
parabolic multigrid [26] do. However, as Ong et al. [40] pointed out, it is possible to implement
WR in a way that allows several iterations to run simultaneously on different parts of the
time horizon, and without changing the mathematical properties of the algorithm. Thus, WR
exposes opportunities for parallelism across time, and can be regarded as a space-time parallel
method. We will explain this in more detail in Section 7.4, where we also show that the WR
approach can lead to a net reduction in wall-clock time over Rothe’s method, especially when
the number of available cores is larger than can be exploited by spatial parallelism alone. This
is in addition to the added flexibility of allowing for different spatial and temporal grids (or
even methods) for each subdomain, which is only possible for WR methods; we show one
such example in Section 7.3 and refer to [22] for a further discussion of these issues.

For WR methods applied to ODEs, we have two classical convergence results: (i) linear
convergence on unbounded time intervals under some dissipation assumptions on the splitting
([27, 36, 37, 38]); and (ii) superlinear convergence for general, possibly nonlinear systems on
bounded time intervals, assuming a Lipschitz condition on the splitting function ([1, 3, 37, 38]).
For parabolic PDEs, Gander and Stuart [19] showed linear convergence of the overlapping
Schwarz WR iteration for the heat equation on unbounded time intervals, with a rate depending
on the size of the overlap. Giladi and Keller [21] proved superlinear convergence of the
overlapping Schwarz WR method on bounded time intervals for the convection-diffusion
equation. As is the case for stationary elliptic problems, the Schwarz WR method with
classical (Dirichlet) interface conditions converges relatively slowly, except when the time
window size is very short. A remedy is to use optimized interface conditions, which lead
to much faster algorithms; see [2, 16] for parabolic problems, and [15, 17] for hyperbolic
problems. This is in analogy with elliptic problems, where the use of optimized interface
conditions also leads to large improvements; see for example [13] and the references therein.
In fact, it is straightforward to generalize any DD method formulated for steady problems
into one for time-dependent problems using the WR approach, at least formally. A different
class of space-time methods based on a discontinuous Galerkin discretization using space-time
elements has been developed in the finite element community; see [43, 44].

Recently, we have been interested in studying the WR variants of two substructuring
methods: the Dirichlet–Neumann (DN) algorithm, first considered by Bjørstad and Widlund [4]
and further studied in [6, 34, 35]; and the Neumann–Neumann (NN) method, introduced by
Bourgat et al. [5], see also [11, 29]. Our study is motivated by several reasons: in the elliptic
case, such methods are closely related to FETI methods [12], which are some of the most
commonly used and thoroughly tested DD methods in existence. Moreover, when used with
a coarse grid, NN and FETI methods for elliptic problems scale very well in the mesh size
and in the number of subdomains: it is shown in [29] that the NN-preconditioned system
matrix has a condition number proportional to H−2(1 + log(H/h))2 without coarse grid and
to (1 + log(H/h))2 in case of a coarse grid correction, where h is the mesh size and H is the
size of the subdomains. A systematic formulation of WR variants of the DN and NN methods
does however not yet appear in the literature (two exceptions are [23] for a variant for control
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problems, and [25] for diffusion problems in mixed formulations). Thus, the main goals of
this paper are as follows:

• To introduce the Dirichlet–Neumann Waveform Relaxation (DNWR) and Neumann–
Neumann Waveform Relaxation (NNWR) methods for parabolic initial value prob-
lems, for a general decomposition into subdomains;

• To analyze the convergence of these methods for model problems in 1D, and in 2D
for simple geometries;

• To illustrate numerically the theoretical convergence rates, and to test if similar
convergence behavior can also be observed for examples with spatially varying
coefficients, and more general geometric decompositions, where our analysis does
not apply.

Our analysis shows that the convergence speed of these methods depends on the number of
subdomains, except if the time interval under consideration is shortened appropriately when
the number of subdomains increases. Otherwise, a coarse grid correction is needed for true
scalability, just as in the elliptic case. However, even without coarse grid correction, there is to
our knowledge no convergence analysis of the DN and NN methods for initial value problems
in the literature. This is because parabolic initial value problems are highly non-normal in
the time direction, and existing techniques for estimating the condition number based on
abstract Schwarz theory [45] cannot be used to analyze such methods, although they have been
successful in dealing with elliptic problems in a very general setting.

In the remainder of this paper, we will formulate and analyze the new algorithms for
the following parabolic equation on an open and bounded domain Ω ⊂ Rd, 0 < t < T ,
d = 1, 2, 3:

(1.1)

∂u

∂t
= ∇ · (κ(x, t)∇u) + f(x, t), x ∈ Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T,

where κ(x, t) ≥ κ > 0. In Section 2, we introduce the non-overlapping DNWR algorithm
with two subdomains for the model problem (1.1), and we present convergence estimates
for DNWR obtained for the special case of the one dimensional heat equation, κ(x, t) = 1,
d = 1. In Section 3 we present the NNWR algorithm for multiple subdomains for the
general problem (1.1), and present convergence estimates again for the one dimensional heat
equation. Our convergence analysis shows that both the DNWR and NNWR algorithms
converge superlinearly on finite time intervals, T < ∞. It is based on detailed, technical
kernel estimates, which we show in Section 4. Section 5 contains the proofs of our main
convergence results for both DNWR and NNWR. We then show in Section 6 how the analysis
of the NNWR can be generalized to two spatial dimensions, and prove that the convergence
estimates do not change for a particular decomposition into rectangular strips. We finally show
numerical results in Section 7, which illustrate our analysis. We also test the algorithms in a
few configurations not covered by our analysis.

2. The Dirichlet-Neumann Waveform Relaxation algorithm. To define the Dirichlet-
Neumann WR algorithm for the model problem (1.1) on the space-time domain Ω× (0, T )
with Dirichlet data given on ∂Ω, we assume that the spatial domain Ω is partitioned into
two non-overlapping subdomains Ω1 and Ω2, as illustrated in Figure 2.1. We denote by ui
the restriction of the solution u of (1.1) to Ωi, i = 1, 2, and by ni the unit outward normal
for Ωi on the interface Γ := ∂Ω1 ∩ ∂Ω2. The Dirichlet-Neumann Waveform Relaxation
algorithm consists of the following steps: given an initial guess w(0)(x, t) along the interface
Γ× (0, T ), compute for k = 1, 2, . . . with u(k)

1 = g on ∂Ω1 \ Γ and u(k)
2 = g on ∂Ω2 \ Γ the
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FIG. 2.1. Splitting into two non-overlapping subdomains.

approximations

(2.1)

∂tu
(k)
1 −∇ ·

(
κ(x, t)∇u(k)

1

)
= f, in Ω1,

u
(k)
1 (x, 0) = u0(x), in Ω1,

u
(k)
1 = w(k−1), on Γ,

∂tu
(k)
2 −∇ ·

(
κ(x, t)∇u(k)

2

)
= f, in Ω2,

u
(k)
2 (x, 0) = u0(x), in Ω2,

∂n2
u

(k)
2 = −∂n1

u
(k)
1 , on Γ,

and then update the value along the interface using

(2.2) w(k)(x, t) = θu
(k)
2

∣∣
Γ×(0,T ) + (1− θ)w(k−1)(x, t),

with θ ∈ (0, 1] being a relaxation parameter. Now the main goal of the analysis is to study how
the error w(k−1)(x, t)− u

∣∣
Γ×(0,T ) converges to zero, and by linearity it suffices to consider

the so-called error equations, with f(x, t) = 0, g(x, t) = 0, u0(x) = 0 in (2.1), and examine
how w(k−1)(x, t) converges to zero as k →∞.

We now present convergence estimates for algorithm (2.1)–(2.2) for the special case of
the heat equation, κ(x, t) = 1, on the one dimensional domain Ω = (−a, b) with subdomains
Ω1 = (−a, 0) and Ω2 = (0, b). Our convergence analysis is based on Laplace transforms. We
define the Laplace transform of a function u(x, t) with respect to time t as

(2.3) û(x, s) := L{u(x, t)} :=

∫ ∞
0

e−stu(x, t) dt,

where s is a complex variable. If L{u(x, t)} = û(x, s), then the inverse Laplace transform of
û(x, s) is defined by

L−1 {û(x, s)} := u(x, t), t ≥ 0,

and maps the Laplace transform of a function back to the original function. For more informa-
tion on Laplace transforms, see [10, 39].

After a Laplace transform, the DNWR algorithm (2.1)–(2.2) for the error equations in the
one dimensional heat equation setting becomes

(2.4)

(s− ∂xx)û
(k)
1 = 0, on (−a, 0), (s− ∂xx)û

(k)
2 = 0, on (0, b),

û
(k)
1 (−a, s) = 0, ∂xû

(k)
2 (0, s) = ∂xû

(k)
1 (0, s),

û
(k)
1 (0, s) = ŵ(k−1)(s), û

(k)
2 (b, s) = 0,
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followed by the updating step

(2.5) ŵ(k)(s) = θû
(k)
2 (0, s) + (1− θ)ŵ(k−1)(s).

Solving the two-point boundary value problems in the Dirichlet and Neumann step in (2.4),
we get

û
(k)
1 (x, s) =

ŵ(k−1)(s)

sinh(a
√
s)

sinh
(
(x+ a)

√
s
)
,

û
(k)
2 (x, s) = ŵ(k−1)(s)

coth(a
√
s)

cosh(b
√
s)

sinh((x− b)
√
s).

By induction, we therefore find for the updating step the relation

(2.6) ŵ(k)(s) =
(
1− θ − θ tanh(b

√
s) coth(a

√
s)
)k
ŵ(0)(s), k = 1, 2, 3, . . .

THEOREM 2.1 (Convergence of DNWR for a = b). When the subdomains are of the
same size, a = b in (2.4)–(2.5), the DNWR algorithm converges linearly for 0 < θ < 1,
θ 6= 1/2. For θ = 1/2, it converges in two iterations. Convergence is independent of the time
window size T .

Proof. For a = b, equation (2.6) reduces to ŵ(k)(s) = (1 − 2θ)kŵ(0)(s), which has
the simple back transform w(k)(t) = (1 − 2θ)kw(0)(t). Thus the convergence is linear for
0 < θ < 1, θ 6= 1/2. If θ = 1/2, we have w(1)(t) = 0, and hence one more iteration produces
the desired solution on the entire domain.

Having treated the simple case where the subdomains are of the same size, a = b, we
focus now on the more interesting case where a 6= b. Defining

(2.7) F (s) := tanh(b
√
s) coth(a

√
s)− 1 =

sinh((b− a)
√
s)

sinh(a
√
s) cosh(b

√
s)
,

the recurrence relation (2.6) can be rewritten as

(2.8) ŵ(k)(s) =

{
((1− 2θ)− θF (s))

k
ŵ(0)(s), θ 6= 1/2,

(−1)
k

2−kF k(s)ŵ(0)(s), θ = 1/2.

Note that for Re(s) > 0, F (s) is O(s−p) for every positive p, which can be seen as follows:
setting s = reiϑ, we obtain for a ≥ b the bound

|spF (s)| ≤
∣∣∣∣ sp

cosh(b
√
s)

∣∣∣∣ ≤ 2rp∣∣∣eb√r/2 − e−b√r/2∣∣∣ → 0, as r →∞,

and for a < b, we get the bound

|spF (s)| ≤
∣∣∣∣ sp

sinh(a
√
s)

∣∣∣∣ ≤ 2rp∣∣∣ea√r/2 − e−a√r/2∣∣∣ → 0, as r →∞.

Therefore, by [10, p. 178], F (s) is the Laplace transform of an infinitely differentiable function
f1(t), which is the reason why we introduced F (s) in (2.7). We now define

(2.9) fk(t) := L−1
{
F k(s)

}
, for k = 1, 2, . . . .
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In what follows, we study the special case θ = 1/2, when w(k) is given by a convolution of
w(0) with the analytic function fk (see (4.1) for the definition of convolution). For θ not equal
to 1/2, different techniques are required to analyze the behavior of the DNWR algorithm,
and this will be done in a future paper. We also have to consider two cases: a > b, which
means that the Dirchlet subdomain is bigger than Neumann subdomain, and a < b, when
the Neumann subdomain is bigger than the Dirichlet subdomain. We have the following two
convergence results, whose proofs will be given in Section 5.

THEOREM 2.2 (Convergence of DNWR for a > b). If θ = 1/2 and the Dirichlet
subdomain is larger than the Neumann subdomain, then the error of the DNWR algorithm
(2.4)–(2.5) satisfies for t ∈ (0,∞) the linear convergence estimate

(2.10) ‖w(k)‖L∞(0,∞) ≤
(
a− b

2a

)k
‖w0‖L∞(0,∞).

On a finite time interval t ∈ (0, T ), the DNWR method converges superlinearly with the
estimate

(2.11) ‖w(k)‖L∞(0,T ) ≤
(
a− b
a

)k
erfc

(
kb

2
√
T

)
‖w(0)‖L∞(0,T ).

THEOREM 2.3 (Convergence of DNWR for a < b). If θ = 1/2 and the Dirichlet
subdomain is smaller than the Neumann subdomain, then the error of the DNWR algorithm
(2.4)–(2.5) over t ∈ (0,∞) satisfies the linear bound

(2.12) ‖w(2k)‖L∞(0,∞) ≤
(
b− a

2a

)2k

‖w(0)‖L∞(0,∞).

For a finite time interval t ∈ (0, T ), the DNWR converges superlinearly with the estimate

(2.13) ‖w(2k)‖L∞(0,T ) ≤

( √
2

1− e−
(2k+1)a2

T

)2k

e−k
2a2/T ‖w(0)‖L∞(0,T ).

REMARK 2.4. The linear estimate (2.12) does not always imply convergence, because
b− a can be larger than 2a. In other words, when b > 3a, i.e., when the Neumann subdomain
is much larger than the Dirichlet one, it is not clear, at least from the expression of the
estimate (2.12), whether the iteration converges to zero as k → ∞. In that case, as a
remedy, one should switch the interface conditions and solve a Dirichlet problem on the larger
subdomain.

REMARK 2.5. Note that the factor multiplying e−k
2a2/T in the estimate (2.13) is an

increasing function of k in general, since
√

2

1−e−(2k+1)a2/T
> 1. Thus, the bound (2.13) may

increase initially for small iteration numbers k, before the factor e−k
2a2/T starts dominating

and causing the bound to decrease to zero superlinearly; see the right panel of Figure 3.2. To
estimate the turning point, let us fix an integer l > 0 and consider the behavior of the algorithm
for iteration numbers k > 2l. Then by writing σ = T/a2 and α = e−l/σ, we can bound the
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FIG. 3.1. Splitting into many non-overlapping subdomains.

convergence factor by( √
2

1− e−
(2k+1)a2

T

)2k

e−k
2a2/T ≤

( √
2

1− e− 2k+1
σ

)2k

e−2kl/σe−k(k−2l)/σ

≤

(√
2e−l/σ

1− e− 2k
σ

)2k

e−k(k−2l)/σ ≤

( √
2α

1− α4

)
︸ ︷︷ ︸

=(∗)

2k

e−
(k−2l)2

σ .

Thus, if
√

2α/(1 − α4) < 1, then the factor (∗) is less than 1 and the bound contracts
superlinearly for k > 2l. This is true whenever α < α0, where α0 ≈ 0.6095 is the unique
positive root of ψ(α) = α4 +

√
2α− 1. Hence, we get superlinear convergence for k > 2l >

0.99T/a2.

3. The Neumann-Neumann Waveform Relaxation algorithm. We now introduce the
NNWR algorithm for the model problem (1.1) for multiple subdomains; for the case of two
subdomains in 1D, see [28]. For the well-posedness of this method, we refer to [24]. Suppose
Ω is partitioned into non-overlapping subdomains {Ωi, 1 ≤ i ≤ N}, as illustrated in Figure 3.1.
For i = 1, . . . , N set Γi := ∂Ωi\∂Ω, Λi := {j ∈ {1, . . . , N} : Γi∩Γj has nonzero measure}
and Γij := ∂Ωi ∩ ∂Ωj , so that the interface of Ωi can be rewritten as Γi =

⋃
j∈Λi

Γij . We
denote by nij the unit outward normal for Ωi on the interface Γij .

The NNWR algorithm starts with an initial guess w(0)
ij (x, t) along the interfaces Γij ×

(0, T ), j ∈ Λi, i = 1, . . . , N , and then performs the following two-step iteration: at each
iteration k, one first solves Dirichlet problems on each Ωi in parallel,

∂tu
(k)
i −∇ ·

(
κ(x, t)∇u(k)

i

)
= f, in Ωi,

u
(k)
i (x, 0) = u0(x), in Ωi,

u
(k)
i = g, on ∂Ωi \ Γi,

u
(k)
i = w

(k−1)
ij , on Γij , j ∈ Λi.

One then solves Neumann problems on all subdomains in parallel,

(3.1)

∂tψ
(k)
i −∇ ·

(
κ(x, t)∇ψ(k)

i

)
= 0, in Ωi,

ψ
(k)
i (x, 0) = 0, in Ωi,

ψ
(k)
i = 0, on ∂Ωi \ Γi,

∂nijψ
(k)
i = ∂niju

(k)
i + ∂njiu

(k)
j , on Γij , j ∈ Λi.
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The interface values are then updated with the formula

(3.2) w
(k)
ij (x, t) = w

(k−1)
ij (x, t)− θ

(
ψ

(k)
i

∣∣
Γij×(0,T ) + ψ

(k)
j

∣∣
Γij×(0,T )

)
,

where θ ∈ (0, 1] is a relaxation parameter1.
As in the case of the DNWR algorithm, we prove our results first for the one dimensional

heat equation on the domain Ω := (0, L) with boundary conditions u(0, t) = g0(t) and
u(L, t) = gL(t); for a special case in two spatial dimensions, see Section 6. We decompose
Ω into non-overlapping subdomains Ωi := (xi−1, xi), i = 1, . . . , N , and define the subdo-
main length hi := xi − xi−1, and hmin := min1≤i≤N hi. Our initial guess is denoted by{
w

(0)
i (t)

}N−1

i=1
on the interfaces xi. By linearity, we again study the error equations, f = 0,

g0 = gL = 0 and u0 = 0, which leads with w(k)
0 (t) = w

(k)
N (t) = 0 for all k to

(3.3)

∂tu
(k)
i − ∂xxu

(k)
i = 0, in Ωi,

u
(k)
i (x, 0) = 0, in Ωi,

u
(k)
i (xi−1, t) = w

(k−1)
i−1 (t),

u
(k)
i (xi, t) = w

(k−1)
i (t),

∂tψ
(k)
i − ∂xxψ

(k)
i = 0, in Ωi,

ψ
(k)
i (x, 0) = 0, in Ωi,

−∂xψ(k)
i (xi−1, t) = (∂xu

(k)
i−1 − ∂xu

(k)
i )(xi−1, t),

∂xψ
(k)
i (xi, t) = (∂xu

(k)
i − ∂xu

(k)
i+1)(xi, t),

except for the first and last subdomains, where in the Neumann step the Neumann conditions
are replaced by homogeneous Dirichlet conditions at the physical boundaries. The new
interface values for the next step are then defined as

(3.4) w
(k)
i (t) = w

(k−1)
i (t)− θ

(
ψ

(k)
i (xi, t) + ψ

(k)
i+1(xi, t)

)
.

We have the following convergence result for NNWR:
THEOREM 3.1 (Convergence of NNWR). For θ = 1/4 and T > 0 fixed, the NNWR

algorithm (3.3)–(3.4) converges superlinearly with the estimate
(3.5)

max
1≤i≤N−1

‖w(k)
i ‖L∞(0,T ) ≤

( √
6

1− e−
(2k+1)h2

min
T

)2k

e−k
2h2

min/T max
1≤i≤N−1

‖w(0)
i ‖L∞(0,T ).

The proof of Theorem 3.1 will also be given in Section 5. Similar to the DNWR case, the
parameter choice θ = 1/4 leads to convergence in two iterations in the two-subdomain case
when the subdomain sizes are equal; see [28] for a full discussion. Thus, it is reasonable to
expect superlinear convergence when the subdomains have different sizes. The case θ 6= 1/4
requires different analysis techniques and is the subject of further studies.

1The second step of NNWR computes a correction ψ for the jump in the normal derivative of u, so θ is indeed a
relaxation parameter: it is like when solving Ax = b with the matrix splitting A = M − N , M x̃ = Nxn + b
followed by the relaxation xn+1 = (1 − θ)xn + θx̃, which can be rewritten as a correction, xn+1 = (1 − θ)xn +
θ(M−1Nxn +M−1b) = xn + θ(M−1Nxn +M−1b− xn), which is now of the form (3.2).
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TABLE 3.1
Comparison of estimates of various known WR methods.

Methods 2 subdomains N equal subdomains

Classical Schwarz WR [16, 20] erfc
(
kδ√
T

)
2kerfc

(
kδ

2
√
T

)
OSWR with overlap δ [2, 16] 1− C(∆x)

1
3 if β ≥ 4

3 convergence proof only
1− C(∆x)

β
4 if β < 4

3

OSWR without overlap [2, 16] 1− C(∆t)
1
4 convergence proof only

DNWR
(
a−b
a

)k
erfc

(
kb

2
√
T

)
(N − 2)

k erfc
(

kh
2
√
T

)
NNWR

(
(a−b)2
ab

)k
erfc

(
kb√
T

) ( √
6

1−e−
(2k+1)h2

T

)2k

e
−k2h2
T

0 5 10 15 20
10

−10

10
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10
0

iteration
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FIG. 3.2. Comparison of estimates of various WR algorithms on the left for two subdomains and on the right for
many subdomains.

Before proceeding further with the analysis and proofs of the theorems, we give a summary
of the known bounds in Table 3.1 for other WR algorithms to compare the effectiveness of
the newly found DNWR and NNWR algorithms. In Figure 3.2 we compare the theoretical
estimates of various known WR methods with that of the DNWR and NNWR methods from
Table 3.1, where ∆t = (∆x)β . For the Schwarz WR methods, we use an overlap δ of length
4∆x, where ∆x = 1/50, β ≈ 1.4114, subdomain lengths a = 3, b = 2 and C = 2. For the
many subdomains case, we take δ = 12∆x,N = 5, h = 1. We observe that the estimates of
DNWR and NNWR algorithms indicate faster convergence than the other methods for this
particular choice.

REMARK 3.2. Table 3.1 states that NNWR converges in about half as many iterations
as DNWR. However, in comparison to DNWR, the NNWR has to solve twice the number of
subproblems (once for Dirichlet subproblems, and once for Neumann subproblems) on each
subdomain at each iteration. Therefore, the computational cost is almost double for the NNWR
compared to the DNWR algorithm at each step, so the actual amount of computation necessary
for convergence is similar for both methods. Nonetheless, the NNWR has the advantage of
being easily generalizable to multiple subdomains, unlike DNWR (but see [18]).

REMARK 3.3. Just as we mentioned in Remark 2.5, the error bound for NNWR may
increase for the first few iterations for large T , before superlinear convergence kicks in. This
behavior is reminiscent of the behavior of ‖Ak‖ for non-normal matrices A as k increases.
This is not a coincidence: in fact, one can rewrite the discretized parabolic PDE as a large
linear system whose unknowns are the solution values at all grid points and at all time steps.
Because of causality, this is a block lower triangular matrix with the same diagonal blocks if
the diffusion coefficients do not vary in time. NNWR can then be seen as a stationary iterative
method applied to this non-normal, non-diagonalizable matrix. Thus, we observe the same
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hump behavior in the initial iterates as for powers of Jordan blocks.
REMARK 3.4. For the model problem (1.1) posed on the time interval (0, T ), one may

consider applying NNWR to the whole interval (0, T ), or to a sequence of smaller time
windows (0, T/M), (T/M, 2T/M), . . . , ((M − 1)T/M, T ). Since the total number of time
steps across all time windows remains constant, the best time window size should be chosen
to minimize the running time per time step; for a simple computational model of NNWR, this
is given by

R = Kw

(
Ts + Tt +

Tm
Nt

)
,

where Nt is the number of time steps in the time window, Kw is the number of WR iterations
required for convergence, Ts is the solution time per time step of a subdomain problem, Tt
is the time required to transfer interface data over one time step (since the amount of data
to be transferred is proportional to the number of time steps), and Tm is the set-up time for
data transfer (once per iteration). The convergence estimate (3.5) can help us choose a time
window size to minimize running time. Let B(α, k, t) be the contraction factor of NNWR, as
defined in (4.4). Then for a moderately-sized positive constant c (i.e., c is O(1)), we have

B(α, ck, ct) .

(
2

1− e−(k+1/c)α2/t

)ck
e−ck

2α2/4t ≈ (B(α, k, t))c.

We can use this scaling property to choose our time window size adaptively as follows.
Suppose we have previously chosen a time window Tinit and obtained a convergence curve
E(k), where k is the iteration count and E(k) represents the error at step k. Then for a given
tolerance ε and a given time window size Tnew, the number of iterations Kw required for
convergence is approximately Kw ≈ ck∗, where c = Tnew/Tinit and k∗ satisfies

log ε

log(E(k∗))
= c.

Thus, for each Tnew, there is a corresponding Kw, so one can solve the minimization problem
by trying different values of Nt = Tnew/∆t. This technique will allow us to adjust the
time window size as the solver progresses, without needing access to the machine-dependent
parameters Ts, Tt and Tm.

4. Kernel estimates. The convergence results given in Theorems 2.2, 2.3, and 3.1 are
based on technical estimates of kernels arising in the Laplace transform of the DNWR and
NNWR algorithms. We present in this section the precise estimates needed.

4.1. Properties of Laplace transforms. We start with several elementary properties
of non-negative functions and their Laplace transforms. We define the convolution of two
functions g, w : (0,∞)→ R by

(4.1) (g ∗ w)(t) :=

∫ t

0

g(t− τ)w(τ)dτ.

LEMMA 4.1. Let g and w be two real-valued functions in (0,∞) with ŵ(s) = L{w(t)}
the Laplace transform of w. Then for t ∈ (0, T ), we have the following properties:

1. If g(t) ≥ 0 and w(t) ≥ 0, then (g ∗ w)(t) ≥ 0.
2. ‖g ∗ w‖L1(0,T ) ≤ ‖g‖L1(0,T )‖w‖L1(0,T ).

3.
∣∣(g ∗ w)(t)

∣∣≤ ‖g‖L∞(0,T )

∫ T
0

∣∣w(τ)
∣∣dτ.
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4.
∫ t

0
w(τ)dτ = L−1

(
ŵ(s)
s

)
.

Proof. The proofs follow directly from the definitions.
LEMMA 4.2. Let w(t) be a continuous and L1-integrable function on (0,∞) with

w(t) ≥ 0 for all t ≥ 0, and ŵ(s) = L{w(t)} be its Laplace transform. Then, for τ > 0, we
have the bound ∫ τ

0

|w(t)|dt ≤ lim
s→0+

ŵ(s).

Proof. With the definition of the Laplace transform (2.3) and using positivity, we have∫ τ

0

|w(t)|dt =

∫ τ

0

w(t)dt ≤
∫ ∞

0

w(t)dt =

∫ ∞
0

lim
s→0+

e−stw(t)dt

= lim
s→0+

∫ ∞
0

e−stw(t)dt = lim
s→0+

ŵ(s),

where the dominated convergence theorem was used to exchange the order of limit and
integration.

LEMMA 4.3. Let w(t) be a function whose Laplace transform ŵ(s) =
∫∞

0
w(t)e−st dt

is defined for all s ∈ D ⊂ C. Then the function

v(t) = w(t)e−ηt

has a Laplace transform at s whenever s+ η ∈ D, and L{v}(s) = ŵ(s+ η).
Proof. We have

L{v}(s) =

∫ ∞
0

w(t)e−ηte−st dt =

∫ ∞
0

w(t)e−(s+η)t dt = ŵ(s+ η),

whenever the latter is defined.

4.2. Positivity. In order to use Lemma 4.2 in our analysis, we have to show positivity of
the inverse transforms of kernels appearing in the DNWR and NNWR iteration. These results
are established in the following lemma.

LEMMA 4.4. Let β > α ≥ 0 and s be a complex variable. Then, for t ∈ (0,∞)

ϕ(t) := L−1

{
sinh(α

√
s)

sinh(β
√
s)

}
≥ 0 and ψ(t) := L−1

{
cosh(α

√
s)

cosh(β
√
s)

}
≥ 0.

Proof. We first prove that ϕ and ψ are well-defined and continous functions on (0,∞).
Setting s = reiϑ, a short calculation shows that for β > α ≥ 0 and for every positive p∣∣∣∣sp sinh(α

√
s)

sinh(β
√
s)

∣∣∣∣ ≤ rp ·
∣∣∣∣∣eα
√
r/2 + e−α

√
r/2

eβ
√
r/2 − e−β

√
r/2

∣∣∣∣∣→ 0 as r →∞,

so by [10, p. 178], its inverse Laplace transform exists and is continuous (in fact, infinitely
differentiable). Thus, ϕ is a continuous function. A similar argument holds for ψ.

Next, we prove the non-negativity of ϕ and ψ by noting that these kernels are related
to solutions of the heat equation. Let us consider the heat equation ut − uxx = 0 on (0, β)
with initial condition u(x, 0) = 0 and boundary conditions u(0, t) = 0, u(β, t) = g(t). If g is
non-negative, then by the maximum principle, this boundary value problem has a non-negative
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solution u(α, t) for all α ∈ [0, β], t > 0. Now performing a Laplace transform of the heat
equation in time, we obtain the transformed solution along x = α to be

û(α, s) = ĝ(s)
sinh(α

√
s)

sinh(β
√
s)

=⇒ u(α, t) =

∫ t

0

g(t− τ)ϕ(τ)dτ.

We now prove that ϕ(t) ≥ 0 by contradiction: suppose ϕ(t0) < 0 for some t0 > 0. Then by
the continuity of ϕ, there exists δ > 0, such that ϕ(τ) < 0 for τ ∈ (t0 − δ, t0 + δ). Now for
t > t0 + δ, we choose a non-negative g as follows:

g(ζ) =

{
1, ζ ∈ (t− t0 − δ, t− t0 + δ) ,

0, otherwise.

Then u(α, t) =
∫ t0+δ

t0−δ g(t − τ)ϕ(τ)dτ =
∫ t0+δ

t0−δ ϕ(τ)dτ < 0, which is a contradiction, and
hence ϕ must be non-negative. To prove the result for ψ, we use again the heat equation
ut − uxx = 0, u(x, 0) = 0, but on the domain (−β, β) and with boundary conditions
u(−β, t) = u(β, t) = g(t). Using a Laplace transform in time gives as solution at x = α

û(α, s) = ĝ(s)
cosh(α

√
s)

cosh(β
√
s)
,

and hence a similar argument as in the first case proves that ψ is also non-negative.

4.3. Specific kernel estimates. The following lemma contains specific estimates for the
inverse Laplace transform of two kernels in terms of infinite sums.

LEMMA 4.5. For k = 1, 2, 3, . . ., we have the identities

L−1
(

cosechk(α
√
s)
)
=2k

∞∑
m=0

(
m+ k − 1

m

)
(2m+ k)α√

4πt3
e−(2m+k)2α2/4t,(4.2)

L−1

(
cosechk(α

√
s)

s

)
=2k

∞∑
m=0

(
m+ k − 1

m

)
erfc

(
(2m+ k)α

2
√
t

)
.(4.3)

In particular, both functions are positive for t > 0. Moreover, we have the estimate

(4.4) B(α, k, t) := L−1

(
cosechk(α

√
s)

s

)
≤
(

2

1− e−(k+1)α2/t

)k
e−k

2α2/4t.

Proof. First, we show that the Laplace transform of the right-hand side of (4.2) gives
cosechk(α

√
s). This is the same as showing that

(4.5) cosechk(α
√
s) = 2k

∫ ∞
0

e−st
∞∑
m=0

(
m+ k − 1

m

)
(2m+ k)α√

4πt3
e−(2m+k)2α2/4t dt.

We would like to integrate term by term, i.e., interchange the sum and the integral. This is
possible as long as we have absolute summability, i.e., if

∞∑
m=0

(
m+ k − 1

m

)∫ ∞
0

∣∣∣∣e−st (2m+ k)α√
4πt3

e−(2m+k)2α2/4t

∣∣∣∣ dt <∞.
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We prove this for Re(s) ≥ s0 > 0. From Oberhettinger [39], we know that

(4.6) L−1
(
e−λ
√
s
)

=
λ√
4πt3

e−λ
2/4t, λ > 0.

So ∫ ∞
0

∣∣∣∣e−st (2m+ k)α√
4πt3

e−(2m+k)2α2/4t

∣∣∣∣ dt = e−(2m+k)α
√

Re(s) ≤ e−(2m+k)α
√
s0 .

Thus, using the binomial series

(4.7)
1

(1− z)β
=
∑
m≥0

(
m+ β − 1

m

)
zm, for |z| < 1,

with z = e−2α
√
s0 < 1, we get

∞∑
m=0

(
m+ k − 1

m

)∫ ∞
0

∣∣∣∣e−st (2m+ k)α√
4πt3

e−(2m+k)2α2/4t

∣∣∣∣ dt
≤ e−kα

√
s0

(1− e−2α
√
s0)k

=
cosechk(α

√
s0)

2k
<∞.

Therefore, term-by-term integration is possible, and the same calculation without the absolute
value proves (4.5). Moreover, since each term in the right-hand side of (4.2) is positive, the
sum must be positive.

The second identity is established in a similar way, except that we replaced (4.6) with

(4.8) L−1

(
1

s
e−λ
√
s

)
= erfc

(
λ

2
√
t

)
, λ > 0,

see Oberhettinger [39]. This function is again positive; to obtain a bound of the form (4.4)
without summations, we first note the estimate

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt =
2√
π

∫ ∞
0

e−(x+t)2dt ≤ 2√
π
e−x

2

∫ ∞
0

e−t
2

dt ≤ e−x
2

,

which is valid for all x ≥ 0. Substituting this into (4.3) leads to

B(α, k, t) ≤ 2k
∞∑
m=0

(
m+ k − 1

m

)
exp

(
− (2m+ k)2α2

4t

)

= 2ke−k
2α2/4t

∞∑
m=0

(
m+ k − 1

m

)
exp

(
− (m2 + km)α2

t

)

≤ 2ke−k
2α2/4t

∞∑
m=0

(
m+ k − 1

m

)
exp

(
−m(k + 1)α2

t

)

≤
(

2

1− e−(k+1)α2/t

)k
e−k

2α2/4t,

where we used the binomial series (4.7) with z = e−(k+1)α2/t for the last inequality.

5. Proofs of the main theorems. We now prove the main convergence results for the
DNWR and NNWR algorithms stated in Sections 2 and 3.
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5.1. Proof of Theorem 2.2 for DNWR. The goal is to obtain L∞ estimates for the
DNWR error w(k)(t) in the case of θ = 1/2 and a > b, i.e., when the Dirichlet domain is
larger. From (2.8), we see that for θ = 1/2, we have

ŵ(k)(s) = (−1)k2−kF k(s)ŵ(0)(s),

where F (s) = sinh((b−a)
√
s)

sinh(a
√
s) cosh(b

√
s)

. Denoting the inverse transform of F k(s) by fk(t), cf. (2.9),
we use part 3 of Lemma 4.1 to deduce that∣∣∣w(k)(t)

∣∣∣ =
∣∣∣2−k (w(0) ∗ fk

)
(t)
∣∣∣ ≤ 2−k‖w(0)‖L∞(0,T )

∫ T

0

|fk(τ)| dτ.

The estimates (2.10) and (2.11) now follow from different ways of bounding
∫ T

0
|fk(τ)| dτ .

In particular, we will prove that

(i)
∫ T

0

|fk(τ)| dτ ≤
(
a− b
a

)k
for all T > 0. Since this bound is independent of T ,

this leads to the linear estimate (2.10)

‖w(k)‖L∞(0,∞) ≤
(
a− b

2a

)k
‖w(0)‖L∞(0,∞);

(ii)
∫ T

0

|fk(τ)| dτ ≤ 2k
(
a− b
a

)k
erfc(kbT−1/2/2) for all T > 0, which leads to the

superlinear estimate (2.11)

‖w(k)‖L∞(0,T ) ≤
(
a− b
a

)k
erfc

(
kb

2
√
T

)
‖w(0)‖L∞(0,T ).

Proof of (i): We first consider the case k = 1, where we have

L(−f1(t)) = −F (s) =
sinh((a− b)

√
s)

sinh(a
√
s)

· 1

cosh(b
√
s)
.

Since a > b, we see by Lemma 4.4 that both factors are Laplace transforms of non-negative
functions. Thus, −f1(t) is the convolution of two non-negative functions and is therefore non-
negative. Convolving −f1(t) with itself k times shows that (−1)kfk(t) is also non-negative,
so by Lemma 4.2, we have∫ T

0

|fk(τ)| dτ =

∫ T

0

(−1)kfk(τ) dτ ≤ lim
s→0+

(−1)kF k(s) =

(
a− b
a

)k
.

The linear estimate (2.10) then follows from this inequality.

Proof of (ii): Here we rewrite fk(t) as the convolution (−1)k(pk ∗ qk)(t), where

L(pk(t)) = p̂k(s) =
sinhk((a− b)

√
s)

sinhk(a
√
s)

and L(qk(t)) = q̂k(s) =
1

coshk(b
√
s)
.

Using the same reasoning as in part (i), we obtain the bound

‖pk(t)‖L∞(0,T ) ≤
(
a− b
a

)k
,
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so part 3 of Lemma 4.1 implies

(5.1)
∫ T

0

|fk(τ)| dτ ≤
(
a− b
a

)k ∫ T

0

|qk(τ)| dτ.

Since
∫ T

0
|qk(τ)| dτ is difficult to calculate directly, we will use the following trick: we choose

a non-negative function rk(t), such that (a) rk(t) ≥ qk(t) for all t, and (b) its antiderivative
is known. This then allows us to bound

∫ T
0
qk(τ) dτ by the antiderivative of rk evaluated at

T . Let rk(t) = L−1(2ke−kb
√
s). To show that rk(t) − qk(t) is a non-negative function, we

calculate its Laplace transform:

L{rk(t)− qk(t)} = 2ke−kb
√
s − 2k

(eb
√
s + e−b

√
s)k

=
2k((1 + e−2b

√
s)k − 1)

(eb
√
s + e−b

√
s)k

=

k∑
j=1

(
k

j

)
e−2jb

√
sq̂k(s).

From (4.6), we know that L−1(e−2jb
√
s) is a non-negative function, and so is qk(t). Thus,

each term in the sum above corresponds to the convolution of two non-negative functions,
which is non-negative. Thus, rk(t)− qk(t) ≥ 0, so we deduce that∫ T

0

qk(τ) dτ ≤
∫ T

0

rk(τ) dτ = L−1

(
2ke−kb

√
s

s

)
= 2k erfc

(
kb

2
√
T

)
,

where we expressed the second integral as an inverse Laplace transform using Lemma 4.1, part
4, which we then evaluated using (4.8). Substituting into (5.1) leads to the required estimate.

5.2. Proof of Theorem 2.3 for DNWR. Recall that the recurrence in Laplace space
reads

ŵ(2k)(s) = 2−2kF 2k(s)ŵ(0)(s), where F (s) =
sinh((b− a)

√
s)

sinh(a
√
s) cosh(b

√
s)
.

The linear estimate (2.12) has already been given in [33], so we will focus on the superlinear
estimate. Here, we assume that a < b, i.e., the Dirichlet domain is smaller than the Neumann
domain. Unlike in Theorem 2.2, it is possible to have |b− a| > a in this case, so we can no
longer argue that sinh((b− a)

√
s)/ sinh(a

√
s) is the Laplace transform of a regular function.

(We say that this is an improper pairing between the numerator and denominator.) Here, we
use a different argument: the trick is to write F k(s) as a product of two kernels, one of which
corresponds to a superlinearly decaying term, and the other to a function whose L1 norm
grows at most geometrically. We write

F 2k(s) =
1

sinh2k(a
√
s)
·
(

sinh2((b− a)
√
s)

cosh2(b
√
s)

)k
=: Φ2k(s) ·Ψk(s),

where

Ψ(s) =
sinh2((b− a)

√
s)

cosh2(b
√
s)

=
cosh2((b− a)

√
s)

cosh2(b
√
s)︸ ︷︷ ︸

=:L(r1(t))

− 1

cosh2(b
√
s)︸ ︷︷ ︸

=:L(r2(t))

.
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Observe that r1 and r2 are regular functions by Lemma 4.4, since 0 < b− a < b. Denoting
the inverse Laplace transform of Ψk(s) by ψk(t) := L−1(Ψk(s)), we obtain by Lemma 4.2∫ T

0

|ψ1(τ)| dτ ≤
∫ T

0

|r1(τ)|+ |r2(τ)| dτ

≤ lim
s→0+

cosh2((b− a)
√
s)

cosh2(b
√
s)

+ lim
s→0+

1

cosh2(b
√
s)

= 2.

By part 2 of Lemma 4.1, we get

(5.2) ‖ψk‖L1(0,T ) ≤ ‖ψ1‖kL1(0,T ) ≤ 2k.

Next, denote the inverse Laplace transform of Φ2k(s) by φ2k(t) := L−1(Φ2k(s)). Then
Lemma 4.5 shows that φ2k is a non-negative function, so part 4 of Lemma 4.1 implies

‖φ2k‖L1(0,T ) = L−1

(
1

s
cosech2k(a

√
s)

)
= B(a, 2k, T ) ≤

(
2

1− e−(2k+1)a2/T

)2k

e−k
2a2/T ,

(5.3)

where B(a, k, t) is defined in (4.4). Combining (5.2), (5.3) and the definition of ŵ(2k)(s), we
find the required estimate

‖w(2k)‖L∞(0,T ) ≤

( √
2

1− e−(2k+1)a2/T

)2k

e−k
2a2/T ‖w(0)‖L∞(0,T ).

5.3. Proof of Theorem 3.1 for NNWR. The proof of Theorem 3.1 will be divided into
several parts. We first derive the recurrence relation between interface values in Laplace space.

LEMMA 5.1. Let w(k)
i (t) be the values along the interfaces {xi}N−1

i=1 at the kth iteration
of the NNWR algorithm (3.3)–(3.4), and let ŵ(k)

i (s) be its Laplace transform. Then we have
the recurrence

ŵ(k) = A(s)ŵ(k−1),

where ŵ(k) = (ŵ
(k)
1 , . . . , ŵ

(k)
N−1)T , and A is a pentadiagonal matrix, such that the following

recurrences are satisfied:

ŵ
(k)
1 = −1

4

(
ŵ

(k−1)
1

(
γ1γ2 − σ1σ2

σ1σ2
+
σ1γ2 − γ1σ2

γ1σ2

)
(5.4)

+
ŵ

(k−1)
2

σ2

(
γ3

σ3
− σ1

γ1

)
− ŵ

(k−1)
3

σ2σ3

)
,

ŵ
(k)
i = −1

4

(
ŵ

(k−1)
i

(
2(γiγi+1 − σiσi+1)

σiσi+1

)
+
ŵ

(k−1)
i+1

σi+1

(
γi+2

σi+2
− γi
σi

)
(5.5)

+
ŵ

(k−1)
i−1

σi

(
γi−1

σi−1
− γi+1

σi+1

)
−

ŵ
(k−1)
i+2

σi+1σi+2
−
ŵ

(k−1)
i−2

σiσi−1

)
,

i = 2, . . . , N − 2,
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ŵ
(k)
N−1 = −1

4

(
ŵ

(k−1)
N−1

(
γN−1γN − σN−1σN

σN−1σN
+
σNγN−1 − γNσN−1

γNσN−1

)
(5.6)

+
ŵ

(k−1)
N−2

σN−1

(
γN−2

σN−2
− σN
γN

)
−

ŵ
(k−1)
N−3

σN−1σN−2

)
.

In the above formulas, we used the notation σi = sinh(hi
√
s), γi = cosh(hi

√
s).

Proof. We start by applying the Laplace transform to the homogeneous Dirichlet subprob-
lems in (3.3), and obtain

sûi − ûi,xx = 0, ûi(xi−1, s) = ŵi−1(s), ûi(xi, s) = ŵi(s),

for i = 2, . . . , N − 1. These subdomain problems have the solutions

ûi(x, s) =
1

sinh(hi
√
s)

(
ŵi(s) sinh

(
(x− xi−1)

√
s
)

+ ŵi−1(s) sinh
(
(xi − x)

√
s
))
.

Next we apply the Laplace transform to the Neumann subproblems (3.1) for subdomains not
touching the physical boundary, and obtain

ψ̂i(x, s) = Ci(s) cosh
(
(x− xi−1)

√
s
)

+Di(s) cosh
(
(xi − x)

√
s
)
,

where the notation σi := sinh (hi
√
s) and γi := cosh (hi

√
s) gives

Ci =
1

σi

(
ŵi

(
γi
σi

+
γi+1

σi+1

)
− ŵi−1

σi
− ŵi+1

σi+1

)
,

Di =
1

σi

(
ŵi−1

(
γi
σi

+
γi−1

σi−1

)
− ŵi−2

σi−1
− ŵi
σi

)
.

We therefore obtain for i = 2, . . . , N − 2, at iteration k

ŵ
(k)
i (s) = ŵ

(k−1)
i (s)− θ

(
ψ̂

(k)
i (xi, s) + ψ̂

(k)
i+1(xi, s)

)
= ŵ

(k−1)
i (s)− θ (Ciγi +Di + Ci+1 +Di+1γi+1) .

Using the identity γ2
i − 1 = σ2

i and simplifying, we get

ŵ
(k)
i = ŵ

(k−1)
i − θ

(
ŵ

(k−1)
i

(
2 +

2γiγi+1

σiσi+1

)
+
ŵ

(k−1)
i+1

σi+1

(
γi+2

σi+2
− γi
σi

)
+
ŵ

(k−1)
i−1

σi

(
γi−1

σi−1
− γi+1

σi+1

)
−

ŵ
(k−1)
i+2

σi+1σi+2
−
ŵ

(k−1)
i−2

σiσi−1

)
.

Substituting θ = 1/4 yields the formula (5.5). For i = 1 and i = N , the Neumann conditions
on the physical boundary are replaced by homogeneous Dirichlet conditions ψ1(0, t) = 0
and ψN (L, t) = 0, t > 0. For these two subdomains, we obtain as solution after a Laplace
transform

ψ̂1(x, s) =
1

γ1

(
ŵ1

(
γ1

σ1
+
γ2

σ2

)
− ŵ2

σ2

)
sinh

(
(x− x0)

√
s
)
,

ψ̂N (x, s) =
1

γN

(
ŵN−1

(
γN−1

σN−1
+
γN
σN

)
− ŵN−2

σN−1

)
sinh

(
(xN − x)

√
s
)
,
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and thus the recurrence relation on the first interface is
(5.7)

ŵ
(k)
1 = ŵ

(k−1)
1 − θ

(
ŵ

(k−1)
1

(
2 +

γ1γ2

σ1σ2
+
σ1γ2

γ1σ2

)
+
ŵ

(k−1)
2

σ2

(
γ3

σ3
− σ1

γ1

)
− ŵ

(k−1)
3

σ2σ3

)
.

On the last interface, we obtain

(5.8)

ŵ
(k)
N−1 = ŵ

(k−1)
N−1 − θ

(
ŵ

(k−1)
N−1

(
2 +

γN−1γN
σN−1σN

+
σNγN−1

γNσN−1

)
+
ŵ

(k−1)
N−2

σN−1

(
γN−2

σN−2
− σN
γN

)
−

ŵ
(k−1)
N−3

σN−1σN−2

)
.

Substituting θ = 1/4 into (5.7) and (5.8) leads to the required formulas (5.4) and (5.6),
respectively.

Lemma 5.1 shows that the interface traces at the kth iteration satisfy ŵ(k) = Ak(s)ŵ(0).
To prove superlinear convergence, we use a trick that is similar to the one in Theorem 2.3; that
is, we write the recurrence as

ŵ(k) = Mk(s)
ŵ(0)

sinh2k(hmin
√
s)
,

where hmin = mini hi andM(s) = sinh2(hmin
√
s)A(s). We see that the term 1

sinh2k(hmin
√
s)

provides the necessary superlinear convergence, provided the L1 norm of L−1(Mk(s)) grows
only geometrically. This last fact is proved in the following lemma.

LEMMA 5.2. Let {ν(k)
i (t)}N−1

i=1 be functions whose Laplace transforms ν̂(k) satisfy

ν̂(k) = M(s)ν̂(k−1),

with M(s) = sinh2(hmin
√
s)A(s) and A(s) as defined in Lemma 5.1. Then there are

constants cij ≥ 0, such that
∑N−1
j=1 cij ≤ 3

2 and

(5.9) ‖ν(k)
i ‖L∞(0,T ) ≤

N−1∑
j=1

cij‖ν(k−1)
j ‖L∞(0,T ), k = 1, 2, 3, . . . .

The analysis involves taking each entry of M(s) and bounding the norm of its inverse Laplace
transform. The calculations, which are somewhat cumbersome, are presented in Appendix A
for completeness. Applying (5.9) k times shows that there are coefficients c(k)

ij ≥ 0, such that

(5.10) ‖ν(k)
i ‖L∞(0,T ) ≤

N−1∑
j=1

c
(k)
ij ‖ν

(0)
j ‖L∞(0,T )

with
∑N−1
j=1 c

(k)
ij ≤

(
3
2

)k
. This allows us to deduce the following theorem.

THEOREM 5.3. Consider the NNWR algorithm (3.3)–(3.4) with initial guess {w(0)
i (t)}N−1

i=1

along the interfaces {xi}N−1
i=1 . Then the interface values at the kth iteration w(k)

i (t) satisfy

(5.11) w
(k)
i (t) =

N−1∑
j=1

∫ t

0

a
(k)
ij (τ)w

(0)
j (t− τ) dτ,
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where each a(k)
ij (t) is an infinitely differentiable function with dp

dtp a
(k)
ij (0) = 0 for all p ≥ 0.

Moreover, we have

(5.12)
∫ T

0

|a(k)
ij (τ)| dτ ≤ c(k)

ij B(hmin, 2k, T ),

where B(α, k, t) is defined in (4.4) and the constants c(k)
ij ≥ 0 satisfy

∑N−1
j=1 c

(k)
ij ≤ (3/2)k

for all i.
Proof. Equation (5.11) is just the inverse Laplace transform of the relation

ŵ(k) = Ak(s)ŵ(0),

where a(k)
ij (t) is the inverse Laplace transform of the (i, j)th entry of Ak(s). Another way of

writing ŵ(k) is

ŵ(k) = ν̂(k) = Mk(s)ν̂(0), where ν̂(0) =
ŵ(0)

sinh2k(hmin
√
s)
.

Inequality (5.10) then implies

‖w(k)
i ‖L∞(0,T ) ≤

N−1∑
j=1

c
(k)
ij ‖φ2k ∗ w(0)

j ‖L∞(0,T ) ≤
N−1∑
j=1

c
(k)
ij ‖w

(0)
j ‖L∞(0,T )

∫ T

0

|φ2k(τ)| dτ,

where φ2k(t) = L−1
(

1
sinh2k(hmin

√
s)

)
. Using the estimate in Lemma 4.5, we obtain the

bound

‖w(k)
i ‖L∞(0,T ) ≤

N−1∑
j=1

c
(k)
ij B(hmin, 2k, T )‖w(0)

j ‖L∞(0,T ),

which can only be true for all choices of w0
j if (5.12) holds. Finally, we note that â(k)

ij , the

(i, j)th entry of (A(s))k, is related to µ̂(k)
ij , the (i, j)th entry of (M(s))k, by

â
(k)
ij =

µ̂
(k)
ij

sinh2k(hmin
√
s)
.

Since we have shown in Lemma 5.2 that the entries of M(s) are either constants or Laplace
transforms of regular functions, we deduce that

lim
s→+∞

spâ
(k)
ij = lim

s→+∞

spµ̂
(k)
ij

sinh2k(hmin
√
s)

= 0.

Thus, derivatives of a(k)
ij (t) of all orders vanish at t = 0, as claimed.

Proof of Theorem 3.1: From (5.11), we see that for all 1 ≤ i ≤ N − 1, we have

‖w(k)
i ‖L∞(0,T ) ≤ max

1≤j≤N−1
‖w(0)

j ‖L∞(0,T )

N−1∑
j=1

∫ T

0

|a(k)
ij (τ)| dτ

≤ max
1≤j≤N−1

‖w(0)
j ‖L∞(0,T )

(
3

2

)k
B(hmin, 2k, T ).
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By Lemma 4.5, we can estimate the right-hand side by

‖w(k)
i ‖L∞(0,T ) ≤ max

1≤j≤N−1
‖w(0)

j ‖L∞(0,T )

(
3

2

)k (
2

1− e−(2k+1)h2
min/T

)2k

e−k
2h2

min/T .

The estimate (3.5) in Theorem 3.1 now follows readily.

6. Analysis of the NNWR in 2D. In this section we formulate and analyze the NNWR
algorithm, applied to the two-dimensional heat equation

∂tu−∆u = f(x, y, t), (x, y) ∈ Ω = (l, L)× (0, π), t ∈ (0, T ],

with initial condition u(x, y, 0) = u0(x, y) and Dirichlet boundary conditions. To define the
Neumann-Neumann algorithm, we decompose Ω into strips of the form Ωi = (xi−1, xi) ×
(0, π), l = x0 < x1 < · · · < xN = L. The Neumann-Neumann algorithm, considering
directly the error equations with f(x, y, t) = 0, u0(x, y) = 0 and homogeneous Dirichlet
boundary conditions, is then given by performing iteratively for k = 1, 2, . . . and for i =
1, . . . , N the Dirichlet and Neumann steps

(6.1)

∂tu
(k)
i −∆u

(k)
i = 0, in Ωi,

u
(k)
i (x, y, 0) = 0,

u
(k)
i (xi−1, y, t) = w

(k−1)
i−1 (y, t),

u
(k)
i (xi, y, t) = w

(k−1)
i (y, t),

u
(k)
i (x, 0, t) = u

(k)
i (x, π, t) = 0,

∂tψ
(k)
i −∆ψ

(k)
i = 0, in Ωi,

ψ
(k)
i (x, y, 0) = 0,

∂niψ
(k)
i (xi−1, y, t) = (∂ni−1

u
(k)
i−1 + ∂niu

(k)
i )(xi−1, y, t),

∂niψ
(k)
i (xi, y, t) = (∂ni−1

u
(k)
i−1 + ∂niu

(k)
i )(xi, y, t),

ψ
(k)
i (x, 0, t) = ψ

(k)
i (x, π, t) = 0,

except for the first and last subdomain, where in the Neumann step the Neumann conditions
are replaced by homogeneous Dirichlet conditions along the physical boundaries, as in the one
dimensional case. The new interface values for the next step are then defined as

w
(k)
i (y, t) = w

(k−1)
i (y, t)− θ

(
ψ

(k)
i (xi, y, t) + ψ

(k)
i+1(xi, y, t)

)
,

with θ ∈ (0, 1]. Before stating the convergence result, we need two technical lemmas.
LEMMA 6.1. Let a(k)

ij : [0,∞)→ R be defined as in Theorem 5.3. Then for each fixed

T > 0, the functions Kij(t) :=
∑∞
n=1 a

(k)
ij (t)e−n

2t are uniformly bounded on the interval
[0, T ].

Proof. Since a(k)
ij (t) are continuous and thus bounded on the interval [0, T ], the super-

linearly decaying term e−n
2t ensures convergence of the infinite sum for t bounded away

from zero. Therefore, it suffices to show that Kij(t) remains bounded for t close to zero.
Indeed, since the derivatives of all orders of a(k)

ij vanish at t = 0, Taylor’s theorem ensures the
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existence of a constant C, such that |a(k)
ij (t)| ≤ Ct2 for t small enough, so we have

(6.2)

∣∣∣∣∣
M∑
n=1

a
(k)
ij (t)e−n

2t

∣∣∣∣∣ ≤ Ct2

1− e−t
.

In particular, for 0 < t < 1, we have 1 − e−t ≥ t − t2

2 ≥
t
2 , so the sum (6.2) is bounded

above by 2Ct, which is independent of M . Therefore, Kij(t) is bounded uniformly for all
t ∈ [0, T ], as required.

LEMMA 6.2. Let g ∈ L∞(0, π), and τ > 0. Then for any y ∈ R,

2

π

∣∣∣∣∣∣
∫ π

0

g(η)
∑
n≥1

e−n
2τ sin(nη) sin(ny) dη

∣∣∣∣∣∣ ≤ ‖g‖L∞(0,π).

Proof. Our first step is to rewrite the infinite sum using the Poisson summation formula,
which we briefly recall here. Let f ∈ L2(R) and

f̂(w) = F(f(x))(w) :=

∫ ∞
−∞

f(t)e−iwtdt

be its Fourier transform. Then
1. If both f and f̂ are continuous and decay sufficiently rapidly, then∑

n∈Z f(n) =
∑
k∈Z f̂(2kπ) (Poisson summation formula),

2. F
(
f(x)eiw0x

)
= f̂(w − w0),

3. F
(
e−x

2τ
)

=
√

π
τ e
−w2/4τ .

Since we can rewrite the infinite sum as
2

π

∑
n≥1

e−n
2τ sin(nη) sin(ny) =

1

π

∑
n≥1

e−n
2τ (cos(n(η − y))− cos(n(η + y)))

=
1

2π

∑
n∈Z

e−n
2τ (ein(η−y) − ein(η+y)),

an application of the above properties and the Poisson summation formula gives

(6.3)
2

π

∑
n≥1

e−n
2τ sin(nη) sin(ny) =

1√
4πτ

∑
k∈Z

(
e−(2kπ−η+y)2/4τ − e−(2kπ−η−y)2/4τ

)
.

Next, let

I =
2

π

∫ π

0

g(η)
∑
n≥1

e−n
2τ sin(nη) sin(ny) dη.

Noting that the sum on the right of (6.3) converges uniformly in η for η ∈ [0, π], we can
substitute it into the definition of I and exchange the integral and sum to get

I =
1√
4πτ

[∑
k∈Z

∫ π

0

g(η)e−
(2kπ−η+y)2

4τ dη −
∑
k∈Z

∫ π

0

g(η)e−
(2kπ−η−y)2

4τ dη

]

=
1√
4πτ

[∑
k∈Z

∫ π

0

g(η)e−
(y−2kπ−η)2

4τ dη −
∑
k∈Z

∫ π

0

g(η)e−
(y−2kπ+η)2

4τ dη

]
.
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We now perform the change of variables ζ = η + 2kπ in the first integral and ζ = 2kπ − η in
the second integral to obtain

I=
1√
4πτ

[∑
k∈Z

∫ (2k+1)π

2kπ

g(ζ − 2kπ)e−
(y−ζ)2

4τ dζ −
∑
k∈Z

∫ 2kπ

(2k−1)π

g(2kπ − ζ)e−
(y−ζ)2

4τ dζ

]
.

Note that the integrals above are all taken over disjoint intervals. This motivates us to define
the 2π-periodic odd extension of g in R,

ḡ(y) =

{
g(y − 2kπ), 2kπ ≤ y < (2k + 1)π,

−g(2kπ − y), (2k − 1)π ≤ y < 2kπ, (k ∈ Z),

which allows us to write I = 1√
4πτ

∫∞
−∞ ḡ(ζ)e−(y−ζ)2/4τ dτ . Finally, noting that ḡ(y) has the

same maxima and minima as g(y), we deduce that

|I| ≤ 1√
4πτ

∫ ∞
−∞
|ḡ(ζ)|e−

(y−ζ)2
4τ dζ ≤ ‖g‖L∞(0,π)

1√
4πτ

∫ ∞
−∞

e−
(y−ζ)2

4τ dζ︸ ︷︷ ︸
=1

= ‖g‖L∞(0,π),

as required.
We are now ready to prove the main result of this section, which states that we have the

same convergence estimate as in the one-dimensional case.
THEOREM 6.3 (Convergence of NNWR in 2D). Let θ = 1/4. For T > 0 fixed, the

NNWR algorithm (6.1) converges superlinearly with the estimate

(6.4) max
1≤i≤N−1

‖w(k)
i ‖ ≤

( √
6

1− e−
(2k+1)h2

min
T

)2k

e−k
2h2

min/T max
1≤i≤N−1

‖w(0)
i ‖,

where hmin is the minimum subdomain width and the norm ‖ · ‖ is ‖ · ‖L∞(0,T ;L∞(0,π)).
Proof. We reduce the 2D problem to a collection of one-dimensional problems by

performing a Fourier sine transform along the y direction. Let U (k)
i (x, n, t) be the Fourier

sine coefficients of u(k)
i (x, y, t), i.e.,

U
(k)
i (x, n, t) =

2

π

∫ π

0

u
(k)
i (x, η, t) sin(nη)dη.

Similarly, we define W (k)
i (n, t) to be the Fourier sine coefficients of the interface values

w
(k)
i (y, t). A direct calculation shows that U (k)

i (x, n, t) satisfy

(6.5)
∂U

(k)
i

∂t
(x, n, t)− ∂2U

(k)
i

∂x2
(x, n, t) + n2U

(k)
i (x, n, t) = 0,

with the same boundary conditions as the one-dimensional case for each n. Taking Laplace
transforms in t of (6.5) yields

(s+ n2)Û
(k)
i − d2Û

(k)
i

dx2
= 0,

which is the same equation as the one analyzed in the proof of Theorem 3.1, except that s is
replaced by s+n2. By mimicking the proof of Theorem 3.1, we see that the Laplace transform
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Ŵ
(k)
i (n, s) of W (k)

i (n, t) satisfies

(6.6) Ŵ
(k)
i (n, s) =

N−1∑
j=1

â
(k)
ij (s+ n2)Ŵ

(0)
j (n, s),

where â(k)
ij (s) is the Laplace transform of a(k)

ij (t) defined in Theorem 5.3. Taking the inverse
Laplace transform of (6.6) and using Lemma 4.3, we obtain the time-domain equality

W
(k)
i (n, t) =

N−1∑
j=1

∫ t

0

a
(k)
ij (τ)e−n

2τW
(0)
j (n, t− τ)dτ.

So the interface functions w(k)
i (y, t) can be written as

w
(k)
i (y, t) =

∑
n≥1

W
(k)
i (n, t) sin(ny)

=
∑
n≥1

N−1∑
j=1

∫ t

0

a
(k)
ij (τ)e−n

2τ

(
2

π

∫ π

0

w
(0)
j (η, t− τ) sin(nη)dη

)
sin(ny)dτ.

Since |
∑
n≥1 a

(k)
ij (τ)e−n

2τ | is uniformly bounded by Lemma 6.1, Fubini’s theorem allows us
to exchange the infinite sum and integral, so we get

w
(k)
i (y, t) =

N−1∑
j=1

∫ t

0

a
(k)
ij (τ)

 2

π

∫ π

0

w
(0)
j (η, t− τ)

∑
n≥1

e−n
2τ sin(nη) sin(ny)dη

 dτ.

Lemma 6.2 now implies

|w(k)
i (y, t)| ≤

N−1∑
j=1

∫ t

0

|a(k)
ij (τ)| ‖w(0)

j (·, t− τ)‖L∞(0,π) dτ

≤ max
1≤j≤N−1

‖w(0)
j ‖L∞(0,t;L∞(0,π))

N−1∑
j=1

∫ t

0

|a(k)
ij (τ)| dτ

≤ max
1≤j≤N−1

‖w(0)
j ‖L∞(0,t;L∞(0,π))

(
3

2

)k
B(hmin, 2k, t) (by Theorem 5.3).

Substituting the definition of B(hmin, 2k, t) and maximizing over t ∈ [0, T ] yields the
bound (6.4), as required.

7. Numerical experiments. We perform experiments to measure the actual convergence
rate of the discretized DNWR and NNWR algorithms for the problem

(7.1)
∂tu− ∂

∂x (κ(x)∂xu) = 0, x ∈ Ω,
u(x, 0) = x(x+ 1)(x+ 3)(x− 2)e−x, x ∈ Ω,

u(−3, t) = t, u(2, t) = te−t, t > 0.

We discretize (7.1) using standard centered finite differences in space and backward Euler in
time on a grid with ∆x = 2× 10−2 and ∆t = 4× 10−3. Note that in some of the experiments
below, the diffusion coefficient κ(x) will be spatially varying. This will allow us to study how
spatially varying coefficients affect the convergence of our algorithms, which have only been
analyzed in the constant coefficient case.
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FIG. 7.1. Convergence of DNWR for a > b using various relaxation parameters θ for T = 2, on the left for
κ(x) = 1 and on the right for κ(x) = 1 + ex.
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FIG. 7.2. Convergence of DNWR for a < b using various relaxation parameters θ for T = 2, on the left for
κ(x) = 1 and on the right for κ(x) = 1 + ex.

7.1. The DNWR method. Our first set of experiments will illustrate the DNWR method.
We consider the spatial domain Ω := (−3, 2) and split it into two non-overlapping subdomains
Ω1 = (−3, 0) and Ω2 = (0, 2). In the first case, we choose the larger domain to be the
Dirichlet subdomain, and the smaller one to be the Neumann subdomain; this corresponds
to the case of a = 3, b = 2, a > b in Theorem 2.2. We then run the DNWR algorithm for
the time window T = 2 with initial guess w(0)(t) = t2, t ∈ [0, T ]: Figure 7.1 shows the
convergence behavior for various values of θ and for two choices of diffusion coefficients,
κ(x) = 1 on the left and κ(x) = 1 + ex on the right. We see that for this reasonably small
time window, we get linear convergence for all relaxation parameters θ, except for θ = 1/2,
when we observe superlinear convergence. This is the case regardless of whether the diffusion
coefficient varies spatially or not.

In the second case, we repeat the experiment, except that we swap the roles of the
two subdomains, so that the Dirichlet domain is now smaller than the Neumann one. This
corresponds to a = 2 and b = 3, as in Theorem 2.3. The diffusion coefficients and initial
guess are the same as before, and the results are shown in Figure 7.2. We see once again that
θ = 1/2 is the choice that gives superlinear (and often the fastest) convergence, for both the
constant and spatially-varying diffusion coefficient.

7.2. The NNWR method. Next, we show an experiment for the NNWR algorithm in the
spatial domain Ω = (0, 6), with the same discretization parameters ∆x and ∆t as above, and
for the time window T = 2. From now on, we always consider κ(x) = 1, unless otherwise
specified. In Figure 7.3, we consider a decomposition into two to six unequal subdomains,
whose widths are shown in Table 7.1. On the left panel, we show the convergence in the
four-subdomain case as a function of the relaxation parameter θ, whereas on the right panel,
we show the convergence for θ = 1/4 as we vary the number of subdomains. We observe
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TABLE 7.1
Subdomain lengths used for the NNWR experiments in Figure 7.3.

No. of subdomains h1 h2 h3 h4 h5 h6

2 3.50 2.50
3 2.30 2.30 1.40
4 1.20 2.40 1.80 0.60
5 1.80 1.40 1.08 1.00 0.72
6 1.20 0.80 1.00 1.20 1.00 0.80
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FIG. 7.3. Convergence of NNWR with four subdomains and various relaxation parameters on the left, and
dependence of NNWR on the number of subdomains for θ = 1/4 on the right.

superlinear convergence for θ = 1/4, and only linear convergence for the other choices. We
also see that convergence slows down as the number of subdomains is increased, as expected.

We now compare the numerical behavior of DNWR and NNWR with our theoretical
estimates in Sections 2 and 3. In Figure 7.4, we show for the DNWR algorithm a comparison
between the numerically measured convergence for the discretized problem, the theoretical
convergence for the continuous model problem (calculated using inverse Laplace transforms),
and the linear and superlinear convergence estimates shown in Theorem 2.2, for a = 3, b = 2,
κ(x) = 1. We see that for a short time interval, T = 2, the algorithm converges superlinearly,
and the superlinear bound is quite accurate. For the long time interval T = 50, the algorithm
converges linearly, and the linear convergence estimate is now more accurate. Similarly, we
show in Figure 7.5 a comparison of the numerically measured convergence for the NNWR
algorithm for θ = 1/4 and κ(x) = 1, and the theoretical estimates from Theorem 3.1. On the
left, we show the results for the two subdomain case (subdomain lengths are as in the first line
of Table 7.1), where we also plotted the linear estimate from [28], and on the right, we show the
results for the case of many subdomains of equal length for Ω = (0, 6). We see that although
the superlinear bounds are sometimes not sharp, we do manage to capture the superlinear
nature of the convergence, which would be difficult with abstract Schwarz type techniques.
We now compare in Figure 7.6 the performance of the DNWR and NNWR algorithms for two
subdomains with the Schwarz Waveform Relaxation algorithms from [2, 16] with overlap. We
use an overlap of length 2∆x, where ∆x = 1/50. We observe that the DNWR and NNWR
algorithms converge faster than the overlapping Schwarz WR iteration. Only a higher order
optimized Schwarz waveform relaxation algorithm comes close to the performance of the
DNWR algorithm in this experiment.

7.3. An example with non-matching time steps. One of the advantages of WR is the
ability to use different time step sizes for different subdomains. Here, we show results for the
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FIG. 7.4. Comparison of the numerically measured convergence rates and the theoretical error estimates for
DNWR for κ(x) = 1 with T = 2 on the left, and T = 50 on the right.
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FIG. 7.5. Comparison of the numerically measured convergence rates and the theoretical error estimates for
NNWR for κ(x) = 1 with θ = 1/4 and T = 2, on the left for two subdomains, and on the right for many subdomains.

NNWR method with three equal subdomains applied to the model problem

ut − uxx = 0 on Ω× (0, T ) = (0, 6)× (0, 1),

u(x, 0) = 0, u(0, t) = t2, u(6, t) = t3.

For the spatial discretization, we use finite differences on a uniform mesh of size ∆x = 0.01.
For the time discretization, we use a uniform time grid ∆ti on Ωi for i = 1, 2, 3, where the
values of ∆ti are given in Table 7.2. We plot the error of the method for different values of θ
as a function of the number of iterations. We see that θ = 0.25 is the parameter that leads to
the fastest convergence, just as predicted by the analysis at the continuous level.

7.4. Rothe’s method versus NNWR. To illustrate the advantages of waveform relax-
ation over the traditional Rothe’s method under the right circumstances, we consider solving
the problem (7.1) for T = 0.2 and 4000 time steps (∆t = 0.2/4000) using a fixed number of
processors N = 24. We compare three approaches:

A. NNWR, using N processors to compute in N subdomains,
B. Pipeline NNWR, using J processors per subdomain to compute in N/J subdomains,
C. Rothe’s method with classical NN for the elliptic subproblem at each time step; we

use N processors to compute in N subdomains.
The pipeline approach was proposed for Schwarz WR in [40] and can be extended to NNWR.
In essence, each subdomain is assigned multiple processors, and the first processor for each
subdomain starts integrating forward in time. After a fixed number of time steps, but before
the end of the time window, interface data is already transmitted to the neighbours, so that
the second iteration can already begin while the first iteration is still on-going. This can be
repeated as long as there are additional processors available, so that several iterations can
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FIG. 7.6. Comparison of DNWR and NNWR with Schwarz waveform relaxation.

TABLE 7.2
Time steps for different subdomains.

Ω1 Ω2 Ω3

time grids ∆ti 3.8× 10−3 2× 10−3 7.4× 10−3

operate simultaneously on different parts of the time window in a pipelined fashion. An
illustration of how the method works for two subdomains is shown in Figure 7.8. Note that
the pipelined version is mathematically identical to the original NNWR; the only difference
lies in the organization of the computation and communication. Tables 7.3 and 7.4 compare
the three approaches mentioned above for two different spatial grid sizes (∆x = 1/8000
and ∆x = 1/16000). The total wall-clock time was obtained on the Superior, the high-
performance computing cluster at Michigan Technological University. We see that without
pipelining, the original NNWR method requires too many iterations to be competitive with
Rothe’s method. However, when pipelining is used, the iteration count decreases so much
that communication becomes the dominant cost of the computation, and the total wall-clock
time is now lower for pipeline NNWR than for Rothe’s method. This is why it is important to
understand the behavior of the NNWR method in detail.

7.5. A two-dimensional case. We show an experiment for the NNWR algorithm in two
dimensions for the following model problem

∂tu− (∂xxu+ ∂yyu) = 0, u(x, y, 0) = sin(2πx) sin(3y).

We decompose our domain Ω := (0, 1) × (0, π) into three non-overlapping subdomains
Ω1 = (0, 2/5) × (0, π), Ω2 = (2/5, 3/4) × (0, π), Ω3 = (3/4, 1) × (0, π); see Figure 7.9
on the left. On the right, we plot the numerical errors of the NNWR algorithm for various θ
and the theoretical estimates from Theorem 6.3 for θ = 1/4 and again observe superlinear
convergence.

7.6. An example with a cross point. We conclude this section with a further numerical
experiment not covered by our analysis: we decompose the two dimensional domain Ω :=
(0, 1)×(0, 1) into four non-overlapping subdomains Ω1 = (0, 1/2)×(0, 1/2), Ω2 = (0, 1/2)×
(1/2, 1), Ω3 = (1/2, 1)×(1/2, 1), Ω4 = (1/2, 1)×(0, 1/2), such that a cross point is present;
see Figure 7.10 on the left. We take the initial condition as: u(x, y, 0) = sin(2πx) sin(3πy).
The right panel of that figure shows that the convergence of the NNWR algorithm remains
superlinear, despite the presence of the cross point.

8. Conclusions. We introduced two new classes of space-time parallel algorithms, the
Dirichlet-Neumann waveform relaxation (DNWR) and the Neumann-Neumann waveform
relaxation (NNWR) algorithms. For the one-dimensional heat equation, we proved superlinear



ETNA
Kent State University

http://etna.math.kent.edu

DN AND NN WAVEFORM RELAXATION ALGORITHMS 451

iteration

0 5 10 15 20 25 30 35

e
rr

o
r

10
-10

10
-5

10
0

θ=0.1

θ=0.2

θ=0.25

θ=0.3

θ=0.4

θ=0.5

θ=0.6

θ=0.7

θ=0.8

FIG. 7.7. Convergence plot of the NNWR with three heterogeneous subdomains for various values of the
relaxation parameter θ.

Iteration 1

Iteration 2

Iteration 3

Iteration 1

Iteration 2

Iteration 3

Wall clock time

FIG. 7.8. Pipeline waveform relaxation method using six processors for two subdomains. Each bar represents
a processor, with the darker color indicating time spent on numerical integration, and the lighter color indicating
time spent on communication with neighboring subdomains. The Ti above the bars show which portion of the time
window is being worked on at a particular instant in wall-clock time. The arrows indicate the transfer of interface
data between subdomains.

convergence for both algorithms for a particular choice of the relaxation parameter. For the
NNWR, our convergence estimate holds for a decomposition into many subdomains, and
we also gave an extension to two spatial dimensions for a specific decomposition into strips.
We are currently working on the generalization of our analysis for the DNWR algorithm to
the case of many subdomains and higher spatial dimensions, and we are also studying the
convergence for θ 6= 1/2 in more detail.

Appendix A. Proof of Lemma 5.2. Define σ := sinh(hmin
√
s). By Lemma 5.1, the

matrix M(s) = (µ̂ij(s))
N−1
i,j=1 is pentadiagonal with entries

µ̂i,i = −σ
2(γiγi+1 − σiσi+1)

2σiσi+1
, µ̂i,i+1 = −σ

2(σiγi+2 − γiσi+2)

4σiσi+1σi+2
,

µ̂i,i−1 = −σ
2(σi+1γi−1 − γi+1σi−1)

4σiσi−1σi+1
, µ̂i,i+2 = − σ2

4σi+1σi+2
, µ̂i,i−2 = − σ2

4σiσi−1

for i = 2, . . . , N−2, and similar expressions for i = 1, N−1 (to be shown below). To deduce
the inequality in (5.9), we show that each µ̂ij is either a constant or the Laplace transform of
a regular function. In the latter case, we denote the inverse Laplace transform of µ̂ij(s) by
µij(t) (without the hat).

We first consider µ̂i,i+2. If hi+1 = hi+2 = hmin, then the terms in µ̂i,i+2 cancel and we
simply get µ̂i,i+2 = −1/4. If hmin ≤ hi+1 and hmin ≤ hi+2, then the kernel µi,i+2, being a
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TABLE 7.3
Comparison for ∆x = 1/8000, ∆t = 0.2/4000.

Method No. subdomains Iterations Total wall time (sec.)
A 24 10 7.59
B 12 4 3.82
C 24 2 per time step 5.76

TABLE 7.4
Comparison for ∆x = 1/16000, ∆t = 0.2/4000.

Method No. subdomains Iterations Total wall time (sec.)
A 24 10 11.39
B 12 4 5.05
B 6 3 3.43
C 24 2 per time step 7.11
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FIG. 7.9. Decomposition of 2D domain into strips on the left, and convergence of NNWR using various
relaxation parameters θ for T = 0.2 on the right.

convolution of two non-negative functions, is non-negative by part 1 of Lemma 4.1, and using
Lemma 4.2 its integral is bounded by∫ ∞

0

|µi,i+2(t)|dt ≤ lim
s→0+

sinh2(hmin
√
s)

4 sinh(hi+1
√
s) sinh(hi+2

√
s)
≤ h2

min

4hi+1hi+2
≤ 1

4
.

So in either case, we have∥∥∥L−1
(
µ̂i,i+2 ν̂

(k−1)
i+2 (s)

)∥∥∥
L∞(0,T )

≤ 1

4
‖ν(k−1)
i+2 ‖L∞(0,T ).

The same argument also holds for the term involving ν̂(k−1)
i−2 . Now for ν̂(k−1)

i+1 , we rewrite
µ̂i,i+1 as

µ̂i,i+1 = − sinh ((hi − hi+2)
√
s) sinh2(hmin

√
s)

4 sinh(hi
√
s) sinh(hi+1

√
s) sinh(hi+2

√
s)
.

We will again “pair” the factors in the numerator and denominator to prove that µi,i+1 is a
convolution of functions that do not change signs. If hi ≥ hi+2, then |hi − hi+2| < hi, so we
use the pairing

µ̂i,i+1 = − sinh((hi − hi+2)
√
s)

4 sinh(hi
√
s)

· sinh(hmin
√
s)

sinh(hi+1
√
s)
· sinh(hmin

√
s)

sinh(hi+2
√
s)
.
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FIG. 7.10. Decomposition of a 2D domain with a cross point on the left, and convergence of NNWR using
various relaxation parameters θ for T = 0.2 on the right.

On the other hand, if hi < hi+2, then |hi − hi+2| < hi+2, so we use the pairing

µ̂i,i+1 =
sinh((hi+2 − hi)

√
s)

4 sinh(hi+2
√
s)

· sinh(hmin
√
s)

sinh(hi+1
√
s)
· sinh(hmin

√
s)

sinh(hi
√
s)

.

In both cases, each factor is either a constant or the inverse Laplace transform of a non-negative
function by Lemma 4.4, so the L1 norm of µi,i+1 can be estimated by taking the limit as
s→ 0+: ∫ ∞

0

|µi,i+1(t)|dt ≤ |hi − hi+2|h2
min

4hihi+1hi+2
<

1

4
.

This, in turn, implies ‖L−1(µ̂i,i+1ν̂
(k−1)
i+1 (s))‖L∞(0,T ) ≤ 1

4‖ν
(k−1)
i+1 ‖L∞(0,T ). A similar bound

holds for the term involving ν̂(k−1)
i−1 .

Finally, for µ̂i,i, we first note that

µ̂i,i = − sinh2(hmin
√
s) cosh((hi+1 − hi)

√
s)

2 sinh(hi
√
s) sinh(hi+1

√
s)

.

Using the identity sinh(u) cosh(v) = 1
2 (sinh(u− v) + sinh(u+ v)), we obtain

µ̂i,i = − sinh(hmin
√
s) sinh ((hmin + hi − hi+1)

√
s)

4 sinh(hi
√
s) sinh(hi+1

√
s)

− sinh(hmin
√
s) sinh ((hmin + hi+1 − hi)

√
s)

4 sinh(hi
√
s) sinh(hi+1

√
s)

.

Each term is again a ratio of hyperbolic sines, so we only need to pair the factors so that
the coefficient in the numerator is always smaller than the one in the denominator. Now
−hi+1 ≤ hmin + hi − hi+1 = hi + hmin − hi+1 ≤ hi, so for the first term, we choose the
pairing

− sinh(hmin
√
s)

sinh(hi+1
√
s)
· sinh ((hmin + hi − hi+1)

√
s)

4 sinh(hi
√
s)

, if hi+1 ≤ hi,

and

− sinh(hmin
√
s)

sinh(hi
√
s)
· sinh ((hmin + hi − hi+1)

√
s)

4 sinh(hi+1
√
s)

, if hi+1 ≥ hi.
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A similar argument holds also for the second term. Now using Lemma 4.2, we again conclude
that the integral of each kernel is bounded by 1/4. In summary, we get for 2 ≤ i ≤ N − 2

‖ν(k)
i ‖L∞(0,T ) ≤

1

2
‖ν(k−1)
i ‖L∞(0,T ) +

1

4

(
‖ν(k−1)
i−2 ‖L∞(0,T ) + ‖ν(k−1)

i−1 ‖L∞(0,T )

+ ‖ν(k−1)
i+1 ‖L∞(0,T ) + ‖ν(k−1)

i+2 ‖L∞(0,T )

)
,

and the estimate (5.9) is established for interior subdomains. To complete the proof, we need
to perform a similar analysis on

µ̂1,1 = −σ
2

4

(
γ1γ2 − σ1σ2

σ1σ2
+
σ1γ2 − γ1σ2

γ1σ2

)
, µ̂1,2 = − σ2

4σ2

(
γ3

σ3
− σ1

γ1

)
, µ̂1,3 =

1

4σ2σ3

and on the corresponding kernels for i = N − 1; see (5.6). We only present the calculations
for the first interface, the last one being similar. First, the kernel µ1,3 can be estimated like the
interior kernels µi,i+2. For µ̂1,2, we have

µ̂1,2 = − cosh ((h1 − h3)
√
s) sinh2(hmin

√
s)

4 cosh(h1
√
s) sinh(h2

√
s) sinh(h3

√
s)
.

If h1 ≥ h3, the decomposition

µ̂1,2 = −cosh ((h1 − h3)
√
s)

4 cosh(h1
√
s)

· sinh(hmin
√
s)

sinh(h2
√
s)
· sinh(hmin

√
s)

sinh(h3
√
s)

shows that one can bound the L1 norm of µ1,2 by∫ ∞
0

|µ1,2(t)|dt ≤ h2
min

4h2h3
<

1

4
.

If h3 > h1, then we rewrite

µ̂1,2 = − 1

4 cosh(h1
√
s)
· sinh(hmin

√
s)

sinh(h2
√
s)

(
sinh ((hmin + h1 − h3)

√
s)

2 sinh(h3
√
s)

+
sinh ((hmin + h3 − h1)

√
s)

2 sinh(h3
√
s)

)
,

which again shows, thanks to Lemma 4.2, that the integral is bounded by 1/4. Finally we
consider µ̂1,1, whose expression can be manipulated to give

µ̂1,1 = −σ
2((γ2

1 + σ2
1)γ2 − 2σ1γ1σ2)

4σ1γ1σ2

= − sinh2(hmin
√
s)(cosh(2h1

√
s) cosh(h2

√
s)− sinh(2h1

√
s) sinh(h2

√
s))

2 sinh(2h1
√
s) sinh(h2

√
s)

= −cosh ((2h1 − h2)
√
s) sinh2(hmin

√
s)

2 sinh(2h1
√
s) sinh(h2

√
s)

= − sinh(hmin
√
s) sinh ((hmin + 2h1 − h2)

√
s)

4 sinh(2h1
√
s) sinh(h2

√
s)

− sinh(hmin
√
s) sinh ((hmin − 2h1 + h2)

√
s)

4 sinh(2h1
√
s) sinh(h2

√
s)

.
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Using the inequalities −h2 ≤ hmin + 2h1 − h2 ≤ 2h1 and −2h1 ≤ hmin − 2h1 + h2 ≤ h2

we can again, with an appropriate pairing of factors, bound the integral of each term by 1/4.
Thus, we have shown that for the subdomain touching the left physical boundary, we have the
inequality

‖ν(k)
1 ‖L∞(0,T ) ≤

1

2
‖ν(k−1)

1 ‖L∞(0,T ) +
1

4

(
‖ν(k−1)

2 ‖L∞(0,T ) + ‖ν(k−1)
3 ‖L∞(0,T )

)
.

A similar result holds for ν̂(k)
N−1(s), and hence the inequality (5.9) holds for all 1 ≤ i ≤ N − 1.
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