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A COMPARISON OF ADAPTIVE COARSE SPACES FOR ITERATIVE
SUBSTRUCTURING IN TWO DIMENSIONS∗

AXEL KLAWONN†, PATRICK RADTKE†, AND OLIVER RHEINBACH‡

Abstract. The convergence rate of iterative substructuring methods generally deteriorates when large discon-
tinuities occur in the coefficients of the partial differential equations to be solved. In dual-primal Finite Element
Tearing and Interconnecting (FETI-DP) and Balancing Domain Decomposition by Constraints (BDDC) methods,
sophisticated scalings, e.g., deluxe scaling, can improve the convergence rate when large coefficient jumps occur
along or across the interface. For more general cases, additional information has to be added to the coarse space.
One possibility is to enhance the coarse space by local eigenvectors associated with subsets of the interface, e.g.,
edges. At the center of the condition number estimates for FETI-DP and BDDC methods is an estimate related to the
PD-operator which is defined by the product of the transpose of the scaled jump operator BTD and the jump operator
B of the FETI-DP algorithm. Some enhanced algorithms immediately bring the PD-operator into focus using related
local eigenvalue problems, and some replace a local extension theorem and local Poincaré inequalities by appropriate
local eigenvalue problems. Three different strategies, suggested by different authors, are discussed for adapting the
coarse space together with suitable scalings. Proofs and numerical results comparing the methods are provided.
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1. Introduction. Iterative substructuring methods are known to be efficient precondi-
tioners for the large linear systems resulting from the discretization of second-order elliptic
partial differential equations, e.g., those of modeling diffusion and linear elasticity. However,
it is also known that the convergence rate of domain decomposition methods can deteriorate
severely when large coefficient jumps occur. Except for certain special coefficient distributions,
e.g., constant coefficients in each subdomain and jumps only across the interface, which can
be treated with special scalings, the coarse space has to be enhanced appropriately. One
possible approach consists of, given a user-defined tolerance, adaptively solving certain local
eigenvalue problems and enhancing the coarse space appropriately using some of the computed
eigenvectors; see, e.g., [3, 4, 7, 10, 11, 14, 15, 18, 23, 30, 36, 37].

We compare different adaptive coarse spaces that have been proposed by different authors
for the FETI-DP and BDDC domain decomposition methods, in particular, our approach
in [23], the classic method in [30], a recent method in [7], and a variant thereof in [21].
Additionally, a proof of the condition number bound for the method in [30] for the two-
dimensional case is given. We also introduce cost-efficient variants of the methods in [7, 23]
that are based on the ideas of an economic variant of the deluxe scaling given in [9]; deluxe
scaling was introduced in [8]; see also [2, 5, 6, 20, 29, 33].

At the center of the condition number estimates for FETI-DP and BDDC methods is an
estimate related to the PD-operator which is defined as the product of the transpose of the
scaled jump operator BTD and the jump operator B of the FETI-DP algorithm. The algorithms
suggested in [30] and [7] involve local eigenvalue problems directly related to the PD-operator,
and the approach in [23] replaces a local extension theorem and local Poincaré inequalities by
appropriate local eigenvalue problems. All the adaptive methods have in common that they
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start from an initial coarse space guaranteeing a nonsingular system matrix followed by adding
additional constraints that are computed by solving local generalized eigenvalue problems. In
this paper, we implement the additional constraints with a method based on projections known
as projector preconditioning [17, 26].

The remainder of the paper is organized as follows: in Section 2, we introduce the model
problems, their finite element discretization, and the domain decomposition. In Section 3, a
short introduction is given to the FETI-DP algorithm and to projector preconditioning and
deflation. The latter techniques are used to add the additional local eigenvectors to the coarse
problem. A new, more general and direct proof for the condition number estimate of FETI-DP
using deflation is given. In Section 4, the first approach considered here, see [7], to adaptively
construct a coarse problem is considered. A proof for the condition number estimate is
provided, different scalings are considered, and a new economic variant is introduced and
analyzed. In Remark 4.9, it is shown that the use of a certain scaling (deluxe scaling) allows
us to weaken the requirements on the domain from Jones to John domains in the analysis of
the FETI-DP and BDDC methods. In Section 5, as a second approach considered in this paper,
the adaptive coarse space construction suggested in [30] is described, and a new condition
number estimate for two dimensions is proven. In Section 6, our approach from [23], which
concerns the third coarse space analyzed here, is briefly described, and a new variant with a
modified deluxe scaling is introduced and analyzed. In Section 7, a brief comparison of the
computational cost of the three coarse spaces with different scalings is provided. In Section 8,
results of numerical experiments are presented with the three different coarse spaces using
different scalings applied to diffusion and almost incompressible linear elasticity. Finally, in
Section 9, a conclusion is given.

2. Elliptic model problems, finite elements, and domain decomposition. In this sec-
tion, we introduce the elliptic model problems and their discretization by finite elements.
We consider a scalar diffusion equation discretized by linear finite elements. Additionally,
we consider a displacement formulation for almost incompressible linear elasticity which is
obtained from a mixed finite element formulation with discontinuous pressure variables by
static condensation of the pressure.

Let Ω ⊂ R2 be a bounded polygonal domain, let ∂ΩD ⊂ ∂Ω be a subset of positive
surface measure, and let ∂ΩN := ∂Ω \ ∂ΩD. We consider the following diffusion problem:
find u ∈ H1

0 (Ω, ∂ΩD) such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂ΩD),

where a(u, v) :=

∫
Ω

ρ(x)∇u · ∇v dx, f(v) :=

∫
Ω

fv dx+

∫
∂ΩN

gNv ds.

Here gN are the boundary data defined on ∂ΩN . We assume ρ(x) > 0 for x ∈ Ω and ρ
piecewise constant on Ω; the coefficient ρ(x) is not necessarily constant on the subdomains.
This problem is discretized using piecewise linear finite elements. As a second model problem,
we consider the mixed displacement-pressure saddle-point system of almost incompressible
linear elasticity. With the Lamé parameters λ and µ and the bilinear forms

a(u, v) =

∫
Ω

2µ ε(u) : ε(v) dx, b(v, p) =

∫
Ω

div(v)p dx, and c(p, q) =

∫
Ω

1

λ
pq dx ,

the saddle-point variational formulation is of the form: find (u, p) ∈ H1
0 (Ω, ∂ΩD)d × L2(Ω)

such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ H1
0 (Ω, ∂ΩD)d,

b(u, q)− c(p, q) = 0 ∀ q ∈ L2(Ω).
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For almost incompressible materials, we use a discretization by mixed finite elements with
discontinuous pressures, e.g., P2-P0 elements. In our computations, the pressure variables
are statically condensed element-by-element, which again yields a variational formulation in
the displacement variables only. In the following, with a slight abuse of notation, we make no
distinction between a finite element function and its coordinate vector.

We decompose the domain Ω into N nonoverlapping subdomains Ωi, i = 1, . . . , N ,
where each Ωi is the union of shape-regular triangular elements of diameter O(h). We
assume that the decomposition is such that the finite element nodes on the boundaries of
neighboring subdomains match across the interface Γ := (∪Ni=1∂Ωi) \ ∂Ω. The interface Γ is
the union of edges and vertices where edges are defined as open sets that are shared by two
neighboring subdomains and vertices are endpoints of edges. For a more general definition
in three dimensions, see [24, 28]. We denote the edge belonging to the subdomains Ωi and
Ωj by Eij . By Wh(Ωi), we denote the standard piecewise linear or quadratic finite element
space on Ωi. We assume that these finite element functions vanish on ∂ΩD and that the finite
element triangulation is quasi-uniform on each subdomain. By Hi, or generically H , we
denote the subdomain diameter of Ωi. The local stiffness matrices on each subdomain are
denoted by K(i), i = 1, . . . , N .

Let al(u, v) be the bilinear form corresponding to the local stiffness matrix on a subdo-
main Ωl obtained by a finite element discretization of an elliptic problem. The respective
coefficients are denoted by ρl in the case of diffusion and by λl and µl in the case of linear
elasticity. For almost incompressible linear elasticity, the subdomain stiffness matrices are
defined as K(l) := A(l) +B(l)TC(l)−1B(l), where the matrices

uTA(l)v =

∫
Ωl

2µl ε(u) : ε(v) dx, pTB(l)u =

∫
Ωl

div (u) p dx,

and pTC(l)q =

∫
Ωl

1

λl
pq dx

result from a discretization with inf-sup stable P2-P0 finite elements. Other inf-sup stable
elements with discontinuous pressures are possible as well. After the elimination of the
pressure, we define al(u, v) = uTK(l)v.

3. The FETI-DP algorithm and deflation/projector preconditioning. In this section,
we briefly describe the FETI-DP algorithm and a recently introduced method with a second
coarse level incorporated by deflation. For more details on the FETI-DP algorithm, see,
e.g., [12, 13, 27, 28, 38], and for FETI-DP with deflation and projector preconditioning,
see [17, 26].

We start with the local stiffness matrices K(i) associated with the subdomains Ωi. Let the
variables further be partitioned into those in the interior of the subdomain, u(i)

I , dual variables
on the interface, u(i)

∆ , and primal degrees of freedom on the interface, u(i)
Π . As primal variables,

unknowns associated with subdomain corners can be chosen, but other choices are possible.
For the local stiffness matrices, unknowns, and right-hand sides, this yields

K(i) =

K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ

 , u(i) =

u
(i)
I

u
(i)
∆

u
(i
Π

 , and f (i) =

f
(i)
I

f
(i)
∆

f
(i)
Π

 .
We obtain the block-diagonal matrices KII = diagNi=1K

(i)
II , K∆∆ = diagNi=1K

(i)
∆∆, and

KΠΠ = diagNi=1K
(i)
ΠΠ from the local blocks. Interior and dual degrees of freedom can be
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combined as the remaining degrees of freedom denoted by the index B. The associated
matrices and vectors are then of the form

K
(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, K

(i)
ΠB =

[
K

(i)
ΠI K

(i)
Π∆

]
, and f

(i)
B =

[
f

(i)T
I f

(i)T
∆

]T
.

We define a block matrix, a block vector, and a block right-hand side vector

KBB=diagNi=1K
(i)
BB , uB =[u

(1)T
B , . . . , u

(N)T
B ]T , fB =

[
f

(1)T
B , . . . , f

(N)T
B

]T
.

We introduce assembly operators R(i)T
Π for the primal variables; these matrices consist of

zeros and ones only. After assembly, to enforce continuity in the primal variables, we obtain
the matrices

K̃ΠΠ =

N∑
i=1

R
(i)T
Π K

(i)
ΠΠR

(i)
Π , K̃ΠB =

[
R

(1)T
Π K

(1)
ΠB , . . . , R

(N)T
Π K

(N)
ΠB

]

and the right-hand side f̃ =

[
fTB ,

(∑N
i=1R

(i)T
Π f

(i)
Π

)T]T
. After elimination of all but the

primal degrees of freedom, we obtain the Schur complement S̃ΠΠ = K̃ΠΠ − K̃ΠBK
−1
BBK̃

T
ΠB .

We define a jump matrix BB = [B
(1)
B . . . B

(N)
B ] that connects the dual degrees of freedom on

the interface such that BBuB = 0 if uB is continuous. The FETI-DP system is then given by
Fλ = d with

F = BBK
−1
BBB

T
B +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B ,

d = BBK
−1
BBfB +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠ

((
N∑
i=1

R
(i)T
Π f

(i)
Π

)
− K̃ΠBK

−1
BBfB

)
.

We have the alternative representation F = BS̃−1BT where S̃ is obtained by eliminating

the interior degrees of freedom from

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
and B is the restriction of BB to the

interface Γ where the primal part is set to zero. The FETI-DP algorithm is the preconditioned
conjugate gradients algorithm applied to Fλ = d with the Dirichlet preconditioner

M−1 = BB,D [0 I∆]
T (
K∆∆ −K∆IK

−1
II K

T
∆I

)
[0 I∆]BTB,D = BDS̃B

T
D.

Here, BB,D and BD are scaled variants of BB and B, respectively; in the simplest case they
are scaled by the inverse multiplicity of the nodes, e.g., 1/2 in two dimensions. Alternatively,
we use the approach in, e.g., [25, 34], and introduce scaling weights by

δj(x) :=

(∑
i∈Nx

ρ̂i(x)

)
/ρ̂j(x), where ρ̂j(x) = max

x∈ω(x)∩Ωj,h
ρj(x)

and Nx denotes for each interface node x the set of indices of the subdomains which have x
on their boundary. Here, ω(x) is the support of the finite element basis function associated
with the node x ∈ ∂Ωj,h ∩ Γh, j = 1, . . . , N . The pseudoinverses are defined by

δj(x)† := ρ̂j(x)/
∑
i∈Nx

ρ̂i(x)
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for x ∈ ∂Ωj,h ∩ Γh. Each row of B(i) with a nonzero entry connects a point of Γ
(i)
h with

the corresponding point of a neighboring subdomain x ∈ Γ
(i)
h ∩ Γ

(j)
h . Multiplying each such

row with δj(x)† for each B(i), i = 1, . . . , N, results in the scaled operator BD. We will
refer to this scaling as ρ-scaling. For coefficients that are constant on each subdomain but
possibly discontinuous across the interface, this approach reduces to the classical ρ-scaling;
see, e.g., [38].

Another set of primal constraints can be aggregated as columns of a matrix U ; see,
e.g., [17, 26]. To enforce UTBu = 0, i.e., averages of the jump with weights defined by the
columns of U vanish, we introduce the F -orthogonal projection P = U(UTFU)−1UTF .
Instead of solving Fλ = d, the deflated and singular but consistent system (I − P )TFλ =
(I − P )T d can be solved. Denoting by λ∗ the exact solution of Fλ = d, we define

λ = U(UTFU)−1UT d = PF−1d = Pλ∗.

Let λ be the solution of M−1(I − P )TFλ = M−1(I − P )T d by PCG, where M−1 is the
classical Dirichlet preconditioner. Then, we can compute

λ∗ = λ+ (I − P )λ ∈ ker (I − P )⊕ range(I − P ).

The matrices PTF (= FP ) and (I − P )TF (= F (I − P )) are symmetric. The spectrum
is thus not changed by projecting the correction onto range(I − P ) in every iteration [26].
Therefore, we obtain the symmetric projector preconditioner

M−1
PP = (I − P )M−1(I − P )T .

Adding the correction, we compute λ∗ = λ+ λ, where λ is the PCG solution of the system
M−1
PPFλ = M−1

PP d. Alternatively, we can include the computation of λ into the preconditioner.
This results in the balancing preconditioner

M−1
BP = (I − P )M−1(I − P )T + PF−1.(3.1)

Since PF−1 = U(UTFU)−1UT , this preconditioner is symmetric and can be efficiently
computed. Here, UTFU is usually of much smaller dimension than F .

For each subdomain, we introduce local finite element trace spaces Wi := Wh(∂Ωi ∩ Γ),
i = 1, . . . , N . We define the product space W := ΠN

i=1Wi and denote the subspace of
functions w ∈W that are continuous in the primal variables by W̃ .

DEFINITION 3.1. For a symmetric positive semidefinite matrix A and a vector v of
appropriate dimension, we denote the induced seminorm by |v|2A = vTAv. If A is positive
definite and w is a vector of appropriate dimension, we denote the induced scalar product by
〈v, w〉A = vTAw.

The following lemma is an alternative to the proof provided in [26] for projector pre-
conditioning or deflation applied to FETI-DP methods. It directly applies to a larger class of
scalings.

LEMMA 3.2. Let PD = BTDB. Assuming that ||PDw||2S̃ ≤ C||w||2
S̃

holds for all

w ∈ {w ∈ W̃ |UTBw = 0} with a constant C > 0, we have

κ (M−1
PPF ) ≤ C.

Here, the constant C can depend on H/h or η/h (cf. Definition 4.11) and possibly on a
prescribed tolerance from local generalized eigenvalue problems.
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Proof. Similar to [28, p. 1553], we use (I − P )TF = F (I − P ) with the standard
Dirichlet preconditioner M−1. Observing that w = S̃−1BT (I − P )λ ∈ W̃ and

(I − P )U = 0⇒ UTB(S̃−1BT (I − P )λ) = UT (I − P )TBS̃−1BTλ = 0,

we obtain for the upper bound

〈M−1
PPFλ, λ〉F = 〈(I − P )M−1(I − P )TFλ, Fλ〉 = 〈M−1F (I − P )λ, F (I − P )λ〉

=〈BTDBS̃−1BT (I − P )λ,BTDBS̃
−1BT (I − P )λ〉S̃ = |PD(S̃−1BT (I − P )λ)|2

S̃

=|PDw|2S̃ ≤ C|w|
2
S̃

= C|S̃−1BT (I − P )λ|2
S̃

=C〈S̃−1BT (I − P )λ, S̃−1BT (I − P )λ〉S̃ = C〈(I − P )λ, (I − P )λ〉F = C〈λ, λ〉F .

Since λ ∈ range (I − P ), we have (I − P )λ = λ. Hence, we have λmax(M−1
PPF ) ≤ C. We

now derive an estimate for the lower bound. WithEDw(x) :=
∑
j∈Nx D

(j)wj(x), we see that
PDw = BTDBw = (I − ED)w. Since EDw is continuous across the interface, PD preserves
the jump of any function w ∈ W̃ in the sense that Bw = Bw − 0 = B(I −ED)w = BPDw.
Analogously to [28, p. 1552], we obtain for the lower bound

〈λ, λ〉2F = 〈λ,BS̃−1BTλ〉2 = 〈λ,BS̃−1PTDB
Tλ〉2 = 〈λ,BS̃−1BTBDB

Tλ〉2

= 〈λ,BDBTλ〉2F = 〈Fλ,BDS̃1/2S̃−1/2BTλ〉2

≤ 〈S̃1/2BTDFλ, S̃
1/2BTDFλ〉〈S̃−1/2BTλ, S̃−1/2BTλ〉

= 〈M−1Fλ, Fλ〉〈Fλ, λ〉 = 〈M−1F (I − P )λ, F (I − P )λ〉〈Fλ, λ〉
= 〈M−1

PPFλ, λ〉F 〈Fλ, λ〉 .

The identity in the penultimate step holds since λ ∈ range (I − P ). Hence, we have
λmin(M−1

PPF ) ≥ 1.

4. First coarse space. In this approach, the general eigenvalue problems are based on
a localization of the PD-estimate in contrast to [23], where an edge lemma and a Poincaré-
Friedrichs inequality are used; see also Section 6. This section is organized as follows. In
Section 4.1, we introduce the relevant notation, and in Section 4.2 we show how the energy of
the PD-operator can be bounded by local estimates. In Section 4.3, we collect some known
information on the parallel sum of matrices and show some related spectral estimates. In
Sections 4.4 and 4.5, we introduce two approaches to enhance the coarse space with adaptively
computed constraints. In both approaches the constraints are computed by solving local
generalized eigenvalue problems. This first approach has been proposed in [7] and relies on
deluxe scaling. In the second approach, first proposed in [21], any kind of scaling is possible
as long it satisfies the partition of unity property (4.2). For the special case of deluxe scaling,
the second approach is the same as the first. In Section 4.6, we consider an economic variant
solving eigenvalue problems on slabs. Finally, in Section 4.7, we prove a condition number
bound for the FETI-DP algorithm with adaptive constraints as described in Sections 4.4.2,
4.5.2, or 4.6.2.

4.1. Notation. We define the energy-minimal extension of v from the local interface to
the interior of the subdomain Ωl as

H(l)v := argminu∈V h(Ωl)

{
al(u, u) : u|∂Ωl = v

}
for l = i, j.
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Let θEij be the standard finite element cut-off function, which equals 1 at the nodes on the
edge Eij and is zero on ∂Ωi \ Eij . With Ih we denote the standard finite element interpolation
operator. We make use of the seminorm

|v|2El := al(v, v).(4.1)

We also make use of an energy-minimal extension from an edge Eij to the interfaces Γ(l),
l = i, j.

DEFINITION 4.1. Let E ⊂ Γ(i) := ∂Ωi \∂Ω be an edge and Ec ⊂ Γ(i) be the complement
of E with respect to Γ(i), and let S(i) be partitioned as

S(i) =

[
S

(i)
EE S

(i)T
EcE

S
(i)
EcE S

(i)
EcEc

]
.

Define the extension operator

H(i)
E v|E :=

[
v|E

−S−1
EcEcSEcEv|E

]
and the matrices S(l)

Eij ,0
:= S

(l)
EijEij and S(l)

Eij
:= S

(l)
EijEij − S

(l)T
EcijEij

S
(l)−1
EcijEcij

S
(l)
EcijEij

.
The proof of the next lemma follows from a standard variational argument.
LEMMA 4.2. Using the same notation as in Definition 4.1, for all wi ∈ V h(Γ(i)), we

have |H(i)
E wi|E |2S(i) ≤ |wi|2S(i) .

With Definition 4.1, we have the following correspondence between (semi)norms and the
matrices defined in Definition 4.1:

|H(l)Ih(θEijv)|2El=v
T
|EijS

(l)
Eij ,0

v|Eij l = i, j

|H(l)H(l)
Eijv|

2
El

=vT|EijS
(l)
Eij
v|Eij l = i, j.

Let D(l)
Eij
, l = i, j, be scaling matrices such that

D
(i)
Eij

+D
(j)
Eij

= I,(4.2)

where I is the identity matrix. This is a partition of unity.

4.2. Bounding the energy of the jump operator by local contributions. As a classical
result in the analysis of iterative substructuring, see, e.g., [28, 38], we have

|PDw|2S̃ = |RPDw|2S =

N∑
i=1

|R(i)PDw|2S(i) .

Here, R(i)T , i = 1, . . . , N , are the local assembly operators that partially assemble in the
primal variables, and RT = [R(1)T , . . . , R(N)T ]; see, e.g., [28]. Let NE denote the maximum
number of edges of a subdomain. For w ∈ W̃ , we define wi = R(i)w and wj = R(j)w. In the
following, in order to avoid the introduction of additional extension and restriction operators,
whenever the difference wi − wj is used, we assume that wi and wj are first restricted to the
edge Eij and that the difference is then extended by zero to the rest of the interface Γ. Under
the assumption that all vertices are primal, we obtain

|R(i)PDw|2S(i) ≤ NE
∑
j∈Ni

|H(i)Ih(θEijD
(i)(wi − wj))|2Ei ,
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where Ni denotes the set of indices of the subdomains that share an edge with Ωi. Hence, we
are interested in obtaining bounds for the local contributions on the edges Eij of the form:

|H(i)Ih(θEijD
(i)(wi − wj))|2Ei + |H(j)Ih(θEijD

(j)(wj − wi))|2Ej
≤ C

(
|H(i)H(i)

Eijwi|Eij |
2
Ei + |H(j)H(j)

Eijwj|Eij |
2
Ej

)
≤ C

(
|wi|2Ei + |wj |2Ej

)
.

Using Definition 4.1, this is equivalent to

(wi−wj)T|EijD
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

(wi−wj)|Eij+(wj − wi)T|EijD
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

(wj−wi)|Eij

≤ C
(
wTi S

(i)
Eij
wi + wTj S

(j)
Eij
wj

)
.

Note that C depends on the chosen primal space.

4.3. Parallel sum of matrices and spectral estimates. The next lemma introduces
the notion of parallel sum of matrices of two symmetric positive semidefinite matrices and
properties of that operation. The definition of a parallel sum of matrices was first given in [1]
and for the first time used in our context in [7]. The first two properties of the next lemma are
given and proven in [1]. The third property is given, without a proof, in [7].

REMARK 4.3. Using that Ker(A + B) ⊂ Ker(A) and Ker(A + B) ⊂ Ker(B) for
symmetric positive semidefinite A and B and that U ⊂ V implies V ⊥ ⊂ U⊥, we obtain
Range(A) ⊂ Range(A+B) and Range(B) ⊂ Range(A+B). With [32, Theorem 2.1], we
conclude that A : B := A(A + B)+B is invariant under the choice of the pseudoinverse
(A+B)+.

LEMMA 4.4 (Parallel sum of matrices). Let A,B be symmetric positive semidefinite, and
define A : B = A(A+B)+B as in Remark 4.3, where (A+B)+ denotes a pseudoinverse
with (A+B)(A+B)+(A+B) = (A+B) and (A+B)+(A+B)(A+B)+ = (A+B)+.
Then we have

1. A : B ≤ A and A : B ≤ B (spectral estimate).
2. A : B is symmetric positive semidefinite.
3. Defining DA := (A+B)+A and DB := (A+B)+B, we additionally have

DT
ABDA ≤ A : B and DT

BADB ≤ A : B .(4.3)

Proof. For the proof of 1. and 2., see [1]. Next, we provide a proof of 3. Since A and B
are s.p.s.d., DT

BADB and DT
ABDA are also s.p.s.d., and we obtain

DT
ABDA +DT

BADB = (A : B)DA + (A : B)DB = (A : B)(A+B)+(A+B).

Since A and B are s.p.s.d., xT (A + B)x = 0 implies xTAx = −xTBx = 0. Thus,
we have Ker(A + B) = Ker(A) ∩ Ker(B). For any x we can write x = xR + xK with
xR ∈ Range(A+B)+ and xK ∈ Ker(A + B) = Ker(A) ∩ Ker(B). Using the fact that
(A+B)+(A+B) is a projection onto Range(A+B)+, we obtain

xTDT
ABDAx+ xTDT

BADBx = xT (A : B)(A+B)+(A+B)x

= xT (A : B)xR = xT (A : B)x.

Furthermore, we need some properties of projections on eigenspaces of generalized
eigenvalue problems. The next lemma is a well-known result from linear algebra.
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LEMMA 4.5. Let A ∈ Rn×n be symmetric positive semidefinite and B ∈ Rn×n be
symmetric positive definite. Consider the generalized eigenvalue problem

Axk = λkBxk for k = 1, . . . , n.

Then the eigenvectors can be chosen to be B-orthogonal and such that xTkBxk = 1. All
eigenvalues are positive or zero.

The proof of the next lemma is based on arguments from classical spectral theory, thus it
is omitted here. A related abstract lemma, also based on classical spectral theory, can be found
in [36, Lemma 2.11].

LEMMA 4.6. Let A,B be as in Lemma 4.5 and define ΠB
m :=

∑m
i=1 xix

T
i B. Let the

eigenvalues be sorted in an increasing order 0 = λ1 ≤ . . . ≤ λm < λm+1 ≤ . . . ≤ λn. Then
x = ΠB

n x and

|x−ΠB
mx|2B = (x−ΠB

mx)TB(x−ΠB
mx) ≤ λ−1

m+1x
TAx = λ−1

m+1|x|2A.

Additionally, we have the stability of ΠB
m in the B-norm

|x−ΠB
mx|2B ≤ |x|2B .

4.4. First approach [7]. The first approach that we discuss was proposed in [7].

4.4.1. Notation. In the following, we define a scaling for the FETI-DP and BDDC
method denoted as deluxe scaling, which was first introduced in [8]; for further applications,
see [2, 5, 6, 20, 29, 33]. Note that this is not a scaling in the common sense since more than
just a multiplication with a diagonal matrix is involved.

DEFINITION 4.7 (Deluxe scaling). Let Eij ⊂ Γ(i) be an edge, and let the Schur comple-
ments S(i)

Eij ,0
, S(j)

Eij ,0
be as in Definition 4.1. We define the following scaling matrices

D
(l)
Eij

=
(
S

(i)
Eij ,0

+ S
(j)
Eij ,0

)−1

S
(l)
Eij ,0

, l = i, j.

Let R(l)
Eij

be the restriction operator restricting the degrees of freedom of Lagrange multipliers
on Γ to the degrees of freedom of Lagrange multipliers on the open edge Eij . Then, we define
the subdomain (deluxe) scaling matrices by

D(i) =
∑

Eij⊂Γ(i)

R
(i)T
Eij

D
(j)
Eij
R

(i)
Eij
.

Each pair of the scaling matrices D(i)
Eij

, D(j)
Eij

satisfies property (4.2). The scaled jump
operatorBD in the FETI-DP algorithm is then given byBD := [D(1)TB(1), . . . , D(N)TB(N)],
where the transpose is necessary since the D(i) are not symmetric. Using Lemma 4.4, we
obtain

D
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij
≤ S(i)

Eij ,0
: S

(j)
Eij ,0

and D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij
≤ S(i)

Eij ,0
: S

(j)
Eij ,0

.

4.4.2. Generalized eigenvalue problem (first approach). We solve the eigenvalue
problem

S
(i)
Eij

: S
(j)
Eij
xm =µmS

(i)
Eij ,0

: S
(j)
Eij ,0

xm,(4.4)
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where µm ≤ TOL, m = 1, . . . , k, and enforce the constraints

xTm(S
(i)
Eij ,0

: S
(j)
Eij ,0

)(wi − wj)|Eij = 0,

e.g., as described in Section 3.
LEMMA 4.8. We define Πk :=

∑k
m=1 xmx

T
mS

(i)
Eij ,0

: S
(j)
Eij ,0

using the eigenvectors xm
of the generalized eigenvalue problem (4.4). Then we have Πk(wi − wj)|Eij = 0, and the
following inequality holds:

(wi − wj)T|Eij
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)|Eij

≤ 2(µk+1)−1(wTi|EijS
(i)
Eij
wi|Eij + wTj|EijS

(j)
Eij
wj|Eij ).

Proof. The property Πk(wi − wj)|Eij = 0 follows directly. We have

(wi−wj)T|EijD
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

(wi−wj)|Eij+(wi−wj)T|EijD
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

(wi−wj)|Eij
= (wi − wj)T|EijS

(j)
Eij ,0

(S
(i)
Eij ,0

+ S
(j)
Eij ,0

)−1S
(i)
Eij ,0

D
(j)
Eij

(wi − wj)|Eij
+ (wi − wj)T|EijS

(i)
Eij ,0

(S
(i)
Eij ,0

+ S
(j)
Eij ,0

)−1S
(j)
Eij ,0

D
(i)
Eij

(wi − wj)|Eij
= (wi − wj)T|Eij ((S

(i)
Eij ,0

: S
(j)
Eij ,0

)D
(j)
Eij

+ (S
(i)
Eij ,0

: S
(j)
Eij ,0

)D
(i)
Eij

)(wi − wj)|Eij
= (wi − wj)T|Eij (S

(i)
Eij ,0

: S
(j)
Eij ,0

)(wi − wj)|Eij(4.5)

≤ 2(µk+1)−1
(
wTi|EijS

(i)
Eij

: S
(j)
Eij
wi|Eij + wTj|EijS

(i)
Eij

: S
(j)
Eij
wj|Eij

)
≤ 2(µk+1)−1

(
wTi|EijS

(i)
Eij
wi|Eij + wTj|EijS

(j)
Eij
wj|Eij

)
.

For the last two estimates notice that wi|Eij−wj|Eij =wi|Eij−Πkwi|Eij−(wj|Eij−Πkwj|Eij ),

and apply Lemma 4.6 with A = S
(i)
Eij

: S
(j)
Eij

and B = S
(i)
Eij ,0

: S
(j)
Eij ,0

. Using the first property
of Lemma 4.4, we obtain the desired bound.

REMARK 4.9. Up to equation (4.5), no generalized eigenvalue problem is used but only
deluxe scaling. Since the term in (4.5) is bounded by

2
(
wTi|EijS

(i)
Eij ,0

wi|Eij + wTj|EijS
(j)
Eij ,0

wj|Eij

)
,

it replaces a classical extension theorem. In [27], the analysis of FETI-DP methods in two
dimensions has been extended to uniform domains, which are a subset of John domains. Since
all tools were provided for John domains with the exception of the extension theorem, which
requires uniform domains, by using deluxe scaling, the analysis carries over to the broader
class of John domains.

4.5. Second approach [21]. In this section, we describe a variant of the first approach
that allows different kinds of scalings. In the case of standard deluxe scaling, this algorithm is
the same as the algorithm in [7]; cf. Section 4.4. A short description of this variant has already
been presented in the proceedings article [21].

4.5.1. Notation. We use the notation from Section 4.1.

4.5.2. Generalized eigenvalue problem (second approach). We solve the eigenvalue
problem

S
(i)
Eij

: S
(j)
Eij
xm =µm

(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
xm.(4.6)
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We select the xm, m = 1, . . . , k, for which µm ≤ TOL and enforce the constraints

xTm

(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)|Eij = 0,

e.g., as described in Section 3. Note that (4.4) and (4.6) are the same in the case of deluxe
scaling. Analogously to Lemma 4.8, we obtain the following bound.

LEMMA 4.10. Let Πk :=
∑k
m=1 xmx

T
m(D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+ D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

) using
the eigenvectors xm of the generalized eigenvalue problem (4.6). Then we have
Πk(wi − wj)|Eij = 0, and the following inequality holds:

(wi − wj)T|Eij
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)|Eij

≤ 2(µk+1)−1(wTi|EijS
(i)
Eij
wi|Eij + wTj|EijS

(j)
Eij
wj|Eij ),

where D(l)
Eij

, l = i, j, are arbitrary scaling matrices that provide a partition of unity, i.e.,
satisfy (4.2).

Proof. Notice that wi|Eij −wj|Eij = wi|Eij −Πkwi|Eij − (wj|Eij −Πkwj|Eij ), and apply

Lemma 4.6 withA = S
(i)
Eij

: S
(j)
Eij

andB = D
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

. With (4.3),
we obtain the desired bound.

4.6. Economic variant of the algorithm. In this section, we introduce a new, more
economic variant, solving eigenvalue problems on slabs. Using such a variant for deluxe
scaling but without choosing the coarse space adaptively was first introduced and numerically
tested in [9]; see Remark 4.14. Let us note that with respect to the eigenvalue problems on slabs,
this variant is new. Let us first give the definition of an η-patch; see, e.g., also [38, Lemma 3.10],
[23, Definition 6.1], and [34, Definition 2.5 and 2.6].

DEFINITION 4.11. An η-patch ω ⊂ Ω denotes an open set which can be represented as a
union of shape-regular finite elements of diameter O(h) and which has diam(ω) = O(η) and
a measure of O(η2).

The next definition was introduced in 3D in [16]; see also [19, 23].
DEFINITION 4.12. Let Eij ⊂ ∂Ωi be an edge. Then a slab Ω̃iη is a subset of Ωi of width η

with Eij ⊂ ∂Ω̃iη which can be represented as the union of η-patches ωik, k = 1, . . . , n, such
that (∂ωik ∩ Eij)◦ 6= ∅, k = 1, . . . , n.

4.6.1. Notation. In addition to |v|El , cf. (4.1), we define |v|2El,η := al,η(v, v), where

al,η(v, v) is the same bilinear form as al(v, v) but with an integral over the slab Ω̃lη . LetKE,(l)η

be the locally assembled stiffness matrix of the slab of width η corresponding to an edge E in
the subdomain Ωl. Here, we use homogeneous Neumann boundary conditions on the part of
the boundary of the slab which intersects the interior of Ωl.

DEFINITION 4.13. Let E ⊂ Γ(l) ∩ ∂Ω̃l,η be an edge and Ec ⊂ Γ(l) ∩ ∂Ω̃l,η be the
complement of E with respect to Γ(l) ∩ ∂Ω̃l,η. Let KE,(l)η be partitioned as follows:

KE,(l)η =

[
K
E,(l)
η,II K

E,(l)T
η,ΓI

K
E,(l)
η,ΓI K

E,(l)
η,ΓΓ

]
,

where the index Γ corresponds to the degrees of freedom on Γ(l) ∩ ∂Ω̃l,η and the index I

corresponds to the remaining degrees of freedom in Ω̃l,η. Define the extension operator

H(l)
η v =

[
v|Γ(l)∩∂Ω̃l,η

−KE,(l)−1
η,II K

E,(l)T
η,ΓI v|Γ(l)∩∂Ω̃l,η

]
.
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Let

S
(l)
E,η = S

E,(l)
EE,η − S

E,(l)T
EcE,η S

E,(l)−1
EcEc,η S

E,(l)
EcE,η

be the Schur complement of KE,(l)η after elimination of all degrees of freedom except those
on the edge. With the discrete energy-minimal extension operator H(l)

η from Γ(l) ∩ ∂Ω̃lη

to the interior, we have |H(l)
η H(l)

E v|2El,η≥ v
T
ES

(l)
E,ηvE . Let the local finite element space be

partitioned into variables on the edge E and the remaining variables denoted by E∗. Then the
local stiffness matrices K(l) can be partitioned accordingly, and we obtain

K(l) =

[
K

(l)
EE K

(l)T
E∗E

K
(l)
E∗E K

(l)
E∗E∗

]
.

Thus, by removing all columns and rows related to the degrees of freedom outside the closure
of the slab and those on (∂Ω̃lη ∩ Γ(l)) \ E , we obtain a matrix of the form[

K
(l)
EE K

(l)T
IηE

K
(l)
IηE K

(l)
IηIη

]
.

Here, the index Iη relates to the degrees of freedom on the closure of the slab except those on
∂Ω̃lη ∩ Γ(l). We define another Schur complement by

S
(l)
E,0,η = K

(l)
EE −K

(l)T
IηE K

(l)−1
IηIη

K
(l)
IηE .

We define an extension operatorH(l)
η,0 from the local interface ∂Ω̃lη ∩ Γ(l) of a subdomain Ωl

to the interior by

H(l)
η,0 v =


v, on ∂Ωl ∩ ∂Ω̃lη,

minimal energy extension, in Ω̃l,η ∩ Ωl,

0, elsewhere.

Then we have vTS(l)
E,0,ηv=|H(l)

η,0I
h(θEv)|2El .

REMARK 4.14 (economic deluxe scaling). In [9], the authors proposed an economic
variant of deluxe scaling by replacing the Schur complements S(l)

E,0, l = i, j, by S(l)
E,0,η with

η = h. As in [9], we will denote this variant by e-deluxe scaling.

4.6.2. Generalized eigenvalue problem (economic version). We solve the eigenvalue
problem

S
(i)
Eij ,η

: S
(j)
Eij ,η

xm =µm

(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)
xm,(4.7)

where µm ≤ TOL, m = 1, . . . , k, and where D(l)
Eij

=
(
S

(i)
Eij ,0,η

+ S
(j)
Eij ,0,η

)−1

S
(l)
Eij ,0,η

for
l = i, j. We then enforce the constraints

xTm

(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)
(wi − wj)|Eij = 0,

as in Section 3.
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LEMMA 4.15. We define

Πk :=

k∑
m=1

xkx
T
k

(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)
using the eigenvectors xm of the generalized eigenvalue problem (4.7). Then we have that
Πk(wi − wj)|Eij = 0, and the following inequality holds:

(wi − wj)T|Eij
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)|Eij

≤ 2(µk+1)−1
(
wTi|EijS

(i)
Eij
wi|Eij + wTj|EijS

(j)
Eij
wj|Eij

)
.

Proof. Since the discrete harmonic extension |H(l)Ih(θEijv)|2El = vTS
(l)
Eij ,0

v has the
smallest energy, we obtain

(wi − wj)T|Eij
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)|Eij

≤ (wi − wj)T|Eij
(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)
(wi − wj)|Eij

≤ (µk+1)−1(wi − wj)T|EijS
(i)
Eij ,η

: S
(j)
Eij ,η

(wi − wj)|Eij

≤ 2(µk+1)−1

(
|wi|Eij |

2

S
(i)
Eij,η

+ |wj|Eij |
2

S
(j)
Eij,η

)
≤ 2 (µk+1)−1

(
|H(i)

η H
(i)
Eijwi|Eij |

2
Ei,η + |H(j)

η H
(j)
Eijwj|Eij |

2
Ej,η

)
≤ 2 (µk+1)−1

(
|H(i)H(i)

Eijwi|Eij |
2
Ei,η + |H(j)H(j)

Eijwj|Eij |
2
Ej,η

)
≤ 2 (µk+1)−1

(
|H(i)H(i)

Eijwi|Eij |
2
Ei + |H(j)H(j)

Eijwj|Eij |
2
Ej

)
= 2 (µk+1)−1

(
wTi|EijS

(i)
Eij
wi|Eij + wTj|EijS

(j)
Eij
wj|Eij

)
.

4.7. Condition number estimate for the first coarse space. Based on the estimates for
PD for the first coarse space given in the previous sections, we now present our condition
number estimate.

THEOREM 4.16. Let NE be the maximum number of edges of a subdomain. The
condition number κ(M̂−1F ) of the FETI-DP algorithm with adaptive constraints defined as
in Sections 4.4.2, 4.5.2, or 4.6.2 either enforced by the projector preconditioner M̂−1 = M−1

PP

or the balancing preconditioner M̂−1 = M−1
BP satisfies

κ(M̂−1F ) ≤ 2N2
E TOL−1.

Proof. For w ∈ W̃ , we have the estimate

|PDw|2S̃ =

N∑
i=1

|R(i)PDw|2S(i) ≤ NE
N∑
i=1

∑
j∈Ni

|Ih(θEijD
(i)(wi − wj))|2S(i)

≤ NE
∑
Eij⊂Γ

(wi − wj)T|Eij
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)|Eij .
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Using Lemma 4.8 for the coarse space in Section 4.4.2, Lemma 4.10 for the coarse space
in Section 4.5.2, and Lemma 4.15 for the coarse space in Section 4.6.2, and using that
µk+1 ≥ TOL, we obtain the estimate

|PDw|2S̃ ≤ 2NE
∑
Eij⊂Γ

TOL−1
(
wTi|EijS

(i)
Eij
wi|Eij + wTj|EijS

(j)
Eij
wj|Eij

)
≤ 2NE

∑
Eij⊂Γ

TOL−1
(
wTi S

(i)wi + wTj S
(j)wj

)

≤ 2N2
E TOL−1

N∑
i=1

|R(i)w|2S(i) ≤ 2N2
E TOL−1 |w|2

S̃
.

5. Second coarse space. We now discuss an approach which has been successfully used
in FETI-DP and BDDC for some time [22, 30, 31, 35]. Let us note that this approach is
also based on eigenvalue estimates related to the PD-operator. In the following, we give a
brief description of the algorithm in [30] for the convenience of the reader. In Section 5.1,
we introduce the relevant notation and in Section 5.2 the specific eigenvalue problem. In
Section 5.3, we also give an estimate of the condition number in the case of a two-dimensional
problem where all the vertex variables are primal in the initial coarse space.

5.1. Notation. Let Eij denote the edge between the subdomains Ωi and Ωj , and let
BEij = [B

(i)
Eij
B

(j)
Eij

] be the submatrix of [B(i)B(j)] with rows consisting of exactly one 1

and one −1 and zeros otherwise. Let BD,Eij = [B
(i)
D,Eij

B
(j)
D,Eij

] be obtained by taking

the same rows of [B
(i)
D B

(j)
D ] :=

[
D(i)TB(i) D(j)TB(j)

]
. Let Sij =

[
S(i)

S(j)

]
and

PDij = BTD,EijBEij .
The null space ker (ε) is the space of rigid body motions. In the case of two-dimensional

linear elasticity, the rigid body modes are given by

r(1) =

[
1
0

]
, r(2) =

[
0
1

]
, and r(3) =

[
x2

−x1

]
for x =

[
x1

x2

]
∈ Ω.

Here, r(1) and r(2) are translations, and r(3) is a rotation.
By W̃ij , we denote the space of functions in Wi ×Wj that are continuous in the primal

variables that the subdomains Ωi and Ωj have in common and by Πij the `2-orthogonal
projection from Wi × Wj onto W̃ij . Another orthogonal projection from Wi × Wj to
Range(ΠijSijΠij + σ(I −Πij)) is denoted by Πij , where σ is a positive constant, e.g., the
maximum of the entries of the diagonal of Sij . Let v ∈ Ker(ΠijSijΠij + σ(I −Πij)) with
v = w + z and w ∈ Range Πij as well as z ∈ Ker Πij . Then, we obtain

0 = vT (ΠijSijΠij + σ(I −Πij))v = wTSijw + σzT z.

Thus, z = 0, and we find v ∈ Range(Πij) since Sij is positive semidefinite and σ > 0. For
v ∈ Ker(Sij) ∩ Range(Πij), we get v ∈ Ker(ΠijSijΠij + σ(I −Πij)). Thus, we have

Range(Πij) ∩ Ker(Sij) = Ker(ΠijSijΠij + σ(I −Πij)).

Therefore, (I −Πij) is an orthogonal projection onto Ker(Sij) ∩ Range(Πij), e.g., in case of
linear elasticity, the space of rigid body modes as functions in Wi×Wj that are continuous; cf.
also [30]. This implies Πij(I −Πij)wij = (I −Πij)wij . Hence, PDijΠij(I −Πij)wij = 0
and thus

PDijΠijΠijwij = PDijΠijwij .(5.1)
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5.2. Generalized eigenvalue problem. We solve the eigenvalue problem

ΠijΠijP
T
DijSijPDijΠijΠijwij,m

= µij,m(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))wij,m,
(5.2)

where µij,m≥TOL, m = k, . . . , n. We then enforce the constraints

wTij,mP
T
DijSijPDijwij = 0.

From (5.2), we obtain by using (5.1)

ΠijP
T
DijSijPDijΠijwij,m

= µij,m(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))wij,m.
(5.3)

From (5.3) using [30, Theorem 9] and [30, Theorem 11], we obtain the estimate

wTijΠijP
T
DijSijPDijΠijwij ≤ µij,k−1w

T
ijΠijSijΠijwij(5.4)

for all wij in Wi ×Wj with wTij,mP
T
Dij

SijPDijwij = 0, µij,m ≥ TOL, m = k, . . . , n.

5.3. Condition number estimate of the coarse space in 2D.
THEOREM 5.1. Let NE be the maximum number of edges of a subdomain. The con-

dition number κ(M̂−1F ) of the FETI-DP algorithm with adaptive constraints defined in
Section 5.2 either enforced by the projector preconditioner M̂−1 = M−1

PP or by the balancing
preconditioner M̂−1 = M−1

BP satisfies

κ(M̂−1F ) ≤ N2
ETOL.

Proof. The local jump operator in the eigenvalue problems is

PDij =

[
B

(i)T
D,Eij

B
(i)
Eij

B
(i)T
D,Eij

B
(j)
Eij

B
(j)T
D,Eij

B
(i)
Eij

B
(j)T
D,Eij

B
(j)
Eij

]
.

Application to a vector yields

PDij

[
R(i)w
R(j)w

]
=

[
Ih(θEijD

(i)(wi − wj))
Ih(θEijD

(j)(wj − wi))

]
.

For w ∈ W̃ , we have
[
R(i)w
R(j)w

]
∈ W̃ij , and therefore Πij

[
R(i)w
R(j)w

]
=

[
R(i)w
R(j)w

]
. All vertices

are assumed to be primal. In the following, we use the notation wi = R(i)w and wj = R(j)w.
As before, we assume that wi and wj are first restricted to the edge Eij and that the difference
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is then extended by zero to the rest of the interface Γ. Thus, for w ∈ W̃ , we obtain

|PDw|2S̃ =

N∑
i=1

|R(i)PDw|2S(i)

≤ NE
N∑
i=1

∑
j∈Ni

|Ih(θEijD
(i)(wi − wj))|2S(i)

= NE
∑
Eij⊂Γ

|Ih(θEijD
(i)(wi − wj))|2S(i) + |Ih(θEijD

(j)(wj − wi))|2S(j)

= NE
∑
Eij⊂Γ

[
wi
wj

]T
ΠijP

T
Dij

[
S(i)

S(j)

]
PDijΠij

[
wi
wj

]
(5.4)

≤ NE
∑
Eij⊂Γ

µij,k−1

[
wi
wj

]T
Πij

[
S(i)

S(j)

]
Πij

[
wi
wj

]

≤NE TOL
∑
Eij⊂Γ

|wi|2S(i) + |wj |2S(j)≤ N2
E TOL

N∑
i=1

|R(i)w|2S(i)=N
2
E TOL |w|2

S̃
.

6. Third coarse space [23]. We now discuss our approach from [23], which is not
based on the localization of the PD-estimate, and also introduce some improvements. We
denote the weighted mass matrix on the closure of the edge Eij of Ωl, l = i, j, by

m
(l)
Eij

(u, v) :=

∫
Eij
ρl u · v ds, for l = i, j,

and the corresponding matrix by M (l)
Eij

. We introduce two generalized eigenvalue problems.
The first is related to a replacement of a generalized Poincaré inequality on the edge in cases
where the Poincaré inequality depends on the jumps in the diffusion coefficient, while the
second is related to an extension theorem. For a detailed description of the algorithm including
a proof of the condition number estimate, see [23].

We introduce the matrix S(l)
Eij ,c

which is obtained by eliminating from S(l) all degrees of

freedom of Γ(l) \ Eij where Eij is the closure of Eij . Thus, S(l)
Eij ,c

is a Schur complement of
the Schur complement S(l).

6.1. First generalized eigenvalue problem. We solve

S
(l)
Eij ,c

xij,lm = µij,lm M
(l)
Eij
xij,lm , for l = i, j,(6.1)

where µij,lm ≤ TOLµ, m = 1, . . . , k. We then build the vectors M (l)
Eij
x

(l)
m and discard the

entries not associated with dual variables by removing those entries associated with the primal
vertices at the endpoints. We denote the resulting vectors by u(l)

m and enforce the constraints
u

(l)T
m (wi − wj) = 0, e.g., as described in Section 3.

6.2. Second generalized eigenvalue problem. Following [23], we introduce a second
eigenvalue problem to ensure that we can extend a function from one subdomain to another
without significantly increasing the energy. Depending on the kernels of the local Schur
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complements S(l)
Eij ,c

, a generalized eigenvalue problem of the form

S
(i)
Eij ,c

xijk = νijk S
(j)
Eij ,c

xijk ,(6.2)

can have arbitrary eigenvalues, e.g., if xijk ∈ Ker(S(i)
Eij ,c

) ∩ Ker(S(j)
Eij ,c

). This means that

both matrices are singular and Ker(S(i)
Eij ,c

) ∩ Ker(S(j)
Eij ,c

) is not trivial. We make use of
the `2-orthogonal projection Π , where I − Π is the orthogonal projection from V h(Eij) to
Ker(S(i)

Eij ,c
) ∩ Ker(S(j)

Eij ,c
) and solve the generalized eigenvalue problem

ΠS
(i)
Eij ,c

Πxijm = νijm(ΠS
(j)
Eij ,c

Π + σ(I −Π ))xijm,

where νijm ≤ TOLν , m = 1, . . . , k, and σ > 0 is an arbitrary positive constant. In our
computations, we use σ = max(diag (S

(j)
Eij ,c

)). Analogously to the first eigenvalue problem,

we build (ΠS
(j)
Eij ,c

Π + σ(I − Π ))xijm and discard the entries not associated with the dual
variables. Denoting the resulting constraint vectors by rijm, we enforce rij Tm (wi − wj) = 0.

6.3. Economic variant. Analogously to Section 4.6, we present an economic version in
which the modified Schur complements, which are cheaper to compute, are used. This variant is
new and was not considered in [23]. All Schur complements are only computed on slabs related
to the edges they are associated with. We define S(l)

E,c,η = S
E,(l)
EE,c,η−S

E,(l)T
EcE,c,ηS

E,(l)−1

EcEc,c,ηS
E,(l)
EcE,c,η

as the Schur complement, which is obtained analogously to S(l)
E,η in Section 4.6.1 with the

exception that the matrix S(l)
E,c,η is built with respect to the degrees of freedom on the closed

edge E and its complement in Ω̃lη, respectively. The eigenvalue problems and constraints
in Sections 6.1 and 6.2 are then computed with S(l)

E,c,η instead of S(l)
E,c. The proof of the

condition number in [23] can be extended to the economic case with the same arguments as in
Lemma 4.15.

6.4. Extension with a modification of deluxe scaling. In the following, we construct
a scaling for the extension which can be used as an alternative to the second eigenvalue
problem (6.2). Thus, using this new scaling, we only need the eigenvalue problem (6.1).

DEFINITION 6.1 (Extension scaling). For a pair of subdomains Ωi and Ωj sharing an
edge Eij , let D(i)

Eij ,c
and D(j)

Eij ,c
be defined by

D
(i)
Eij ,c

= (S
(i)
Eij ,c

+ S
(j)
Eij ,c

)+S
(i)
Eij ,c

+Aij ,

D
(j)
Eij ,c

= (S
(i)
Eij ,c

+ S
(j)
Eij ,c

)+S
(j)
Eij ,c

+Aij ,

where Aij is defined by

Aij =
1

2

(
I − (S

(i)
Eij ,c

+ S
(j)
Eij ,c

)+(S
(i)
Eij ,c

+ S
(j)
Eij ,c

)
)
.

By removing those columns and rows associated with the primal vertices at the endpoints of Eij
from the matrices D(l)

Eij ,c
, l = i, j, we obtain the matrices D(l)

Eij
. We define the subdomain

scaling matrices by

D(i) =
∑

Eij⊂Γ(i)

R
(i)T
Eij

D
(j)
Eij
R

(i)
Eij
.
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As in Section 4.4, the scaled jump operator BD in the FETI-DP algorithm is then given by
BD := [D(1)TB(1), . . . , D(N)TB(N)], where the transpose is necessary since the matrices
D(i) are not symmetric.

When using the scaling in Definition 6.1, we build the vectors D(j)T
Eij ,c

M
(i)
Eij
x

(i)
k and

D
(i)T
Eij ,c

M
(j)
Eij
x

(j)
k instead of M (l)

Eij
x

(l)
k , l = i, j, where x(l)

k are the eigenvectors computed
from (6.1). We then discard the entries not associated with dual variables to obtain our
constraints u(l)

k .
LEMMA 6.2. For an edge Eij , let IEij ,(l)Ll

, for l = i, j, be defined by

I
Eij ,(l)
Ll

=

Ll∑
k=1

x
(l)
k x

(l)T
k M

(l)
Eij
,

where x(l)
k are the eigenvectors from (6.1). Let D(l)

Eij ,c
be the scaling matrices in Definition 6.1.

With the choice of the constraints u(l)T
k (wi−wj) = 0, l = i, j, where u(i)

k and u(j)
k are obtained

by discarding the entries not associated with dual variables in the vectors D(j)T
Eij ,c

M
(i)
Eij
x

(i)
k

and D(i)T
Eij ,c

M
(j)
Eij
x

(j)
k with µij,lk ≤ TOL for k = 1, . . . , Ll, we have

I
Eij ,(i)
Li

D
(j)
Eij ,c

(wi − wj)|Eij = 0 and I
Eij ,(j)
Lj

D
(i)
Eij ,c

(wj − wi)|Eij = 0.

Proof. The entries not associated with dual variables in wi|Eij − wj|Eij are zero since

wl = R(l)w with w ∈ W̃ . Therefore, we have

I
Eij ,(i)
Li

D
(j)
Eij ,c

(wi − wj)|Eij =

Li∑
k=1

x
(i)
k u

(i)T
k (w∆,i − w∆,j)|Eij = 0,

where w∆,l denotes the dual part of wl, l = i, j. By an analogous argument, we conclude that
I
Eij ,(j)
Lj

D
(i)
Eij ,c

(wj − wi)|Eij = 0.
The next two lemmas have been proven in [23]. We repeat them for the convenience of

the reader.
LEMMA 6.3. Let Ω̃iη ⊂ Ωi be a slab of width η such that Eij ⊂ ∂Ω̃iη. Let ωik ⊂ Ω̃iη,

k = 1, . . . , n, be a set of η-patches such that Ω̃iη =
⋃n
k=1 ωik and the coefficient function

ρi|ωik = ρik is constant on each ωik. Let ωik ∩ ωil = ∅, k 6= l, θEij be the standard finite

element cut-off function which equals 1 on the edge Eij and is zero on ∂Ω̃iη \ Eij , and letH(i)
ρi

be the ρi-harmonic extension. Then there exists a finite element function ϑEij which equals
θEij on ∂Ω̃iη such that for u ∈Wh(Ωi)

|H(i)
ρi I

h(θEiju)|2H1
ρi

(Ωi)
≤ |Ih(ϑEiju)|2

H1
ρi

(Ω̃iη)

≤ C
(

1 + log
(η
h

))2
(
|u|2

H1
ρi

(Ω̃iη)
+

1

η2
||u||2

L2
ρi

(Ω̃iη)

)
,

where C > 0 is a constant independent of H,h, η, and the value of ρi.
LEMMA 6.4 (weighted Friedrichs inequality). For u ∈ H1(Ω̃iη), we have

||u||2
L2
ρi

(Ω̃iη)
≤ C

(
η2|u|2

H1
ρi

(Ω̃iη)
+ η||u||2L2

ρi
(Eij)

)
.
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For simplicity, we prove the next theorem only for the diffusion problem. In Defini-
tion 4.12, for a given edge, we have introduced the notion of a slab and assumed that it can
be represented as a union of patches. In the proof of the next theorem, we have to make the
assumption that the diffusion coefficient is constant on each patch in such a decomposition.
This is due to the fact that we have to use an edge lemma (Lemma 6.3) on each patch; cf.
also [23, Lemma 6.3] and the proof of the next theorem.

THEOREM 6.5. The condition number for our FETI-DP method with a scaling as defined
in Definition 6.1 with all vertices primal and the coarse space enhanced with solutions of the
eigenvalue problem (6.1) satisfies

κ(M̂−1F ) ≤ C
(

1 + log
(η
h

))2
(

1 +
1

ηµL+1

)
,

where M̂−1 = M−1
PP or M̂−1 = M−1

BP . Here, C > 0 is a constant independent of ρ, H , h,
and η and

1

µL+1
= max

k=1,...,N

Eij⊂Γ(k)

{
1

µij,kLk+1

}
.

Proof. The proof is modeled on the proof of Theorem 6.8 in [23] and uses the notation
from [23]. By an application of Lemma 6.2, we obtain for each edge Eij in |PDw|2S̃ the term

|Ih(θEijD
(i)(wi − wj))|2S(i) = |Ih(θEij ((I − I

Eij ,(i)
Li

)D(i)(wi − wj)))|2S(i)

Lemma 6.3
≤ C

(
1 + log

(η
h

))2
(
|H(i)
Eij ,c

(
(I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)|Eij
)
|2
H1
ρi

(Ω̃iη)

+
1

η2
||H(i)
Eij ,c

(
(I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)|Eij
)
||2
L2
ρi

(Ω̃iη)

)
Lemma 6.4
≤ C

(
1 + log

(η
h

))2
(
|H(i)
Eij ,c

(
(I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)|Eij
)
|2
H1
ρi

(Ω̃iη)

+
1

η
||
(

(I − IEij ,(i)Li
)D

(j)
Eij ,c

(wi − wj)|Eij
)
||2L2

ρi
(Eij)

)
≤ C

(
1 + log

(η
h

))2
(∣∣∣((I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)|Eij
)∣∣∣2
S

(i)
Eij,c

+
1

η

∣∣∣((I − IEij ,(i)Li
)D

(j)
Eij ,c

(wi − wj)|Eij
)∣∣∣2
MEij

)
≤ C

(
1 + log

(η
h

))2
(

1 +
1

ηµ
(i)
Li+1

)∣∣∣D(j)
Eij ,c

(wi − wj)|Eij
∣∣∣2
S

(i)
Eij,c

≤ C
(

1 + log
(η
h

))2
(

1 +
1

ηµ
(i)
Li+1

)(
|wi|Eij |

2

S
(i)
Eij,c

+ |wj|Eij |
2

S
(j)
Eij,c

)
.

Here, I denotes the identity operator. In the penultimate step, we have used Lemma 4.6 with
B = MEij , x = D

(j)
Eij ,c

(wi − wj)|Eij , m = Li, ΠB
M = I

Eij ,(i)
Li

, and A = S
(i)
Eij ,c

. For the last

step note that each column of Aij in Definition 6.1 is in Ker(S(i)
Eij ,c

+ S
(j)
Eij ,c

) and with the
same argument as in the proof of Lemma 4.4, we have

Ker(S(i)
Eij ,c

+ S
(j)
Eij ,c

) = Ker(S(i)
Eij ,c

) ∩ Ker(S(j)
Eij ,c

).
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Thus, we obtain S(i)
Eij ,c

Aij = 0 and S(i)
Eij ,c

D
(j)
Eij ,c

= S
(i)
Eij ,c

(S
(i)
Eij ,c

+S
(j)
Eij ,c

)+S
(j)
Eij ,c

. Applying

Lemma 4.4 with A = S
(i)
Eij ,c

, B = S
(j)
Eij ,c

, and DA = D
(j)
Eij ,c

, we obtain the estimate.
REMARK 6.6. The constant in the condition number estimate for the third coarse space (cf.

Theorem 6.5 and [23, Theorem 6.8]) depends on N2
E in the same way as that for the first coarse

space in Theorem 4.16 and that for the second coarse space in Theorem 5.1. Additionally, the
constant depends on the constants in a weighted edge lemma (Lemma 6.3) and in a weighted
Friedrichs inequality (Lemma 6.4). Therefore the constant C is not exactly determined.

REMARK 6.7. As in Section 6.3, we can replace the matrices S(l)
Eij ,c

, l = i, j, by the

economic version S(l)
E,c,η in the scaling in Definition 6.1 and in the generalized eigenvalue

problem 6.1.

7. A brief comparison of computational costs. In the following, we give a short com-
parison of the costs of the algorithms described in this paper. For the algorithm in Section 4.4
(first coarse space), the matrices S(l)

Eij
and S(l)

Eij ,0
, l = i, j, have to be computed. These

matrices are usually dense. For their computation, a Cholesky factorization of a sparse matrix
is required and usually needs O((H/h)3) floating point operations in two space dimensions
since the inverse involved in the Schur complement is of the order of (H/h)2 × (H/h)2.
If the Schur complements are computed explicitly, which might be necessary depending
on the eigensolver that is used, a matrix-matrix multiplication, a matrix-matrix addition,
and forward-backward substitutions for multiple right-hand sides with the Cholesky factor-
ization have to be performed. If LAPACK (or MATLAB, which itself uses LAPACK) is
used, the matrices S(i)

Eij
: S

(j)
Eij

and S(i)
Eij ,0

: S
(j)
Eij ,0

are needed in explicit form. Otherwise,
an application of the Schur complement needs a few matrix-vector multiplications and a
forward-backward substitution. For S(i)

Eij
: S

(j)
Eij

, depending on the kernel of S(i)
Eij

+ S
(j)
Eij

, a
pseudoinverse or a Cholesky factorization is needed. For the scaling matrices, a factorization
of S(i)

Eij ,0
+ S

(j)
Eij ,0

has to be performed. If no deluxe scaling but ρ-scaling is used, the matrix

D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

+D
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

has to be computed instead of S(i)
Eij ,0

: S
(j)
Eij ,0

, which

is much cheaper since no factorization of S(i)
Eij ,0

+ S
(j)
Eij ,0

is needed. The computations of

S
(l)
Eij ,0,η

and S(l)
Eij ,η

need a (η/H)3/2-fraction of floating point operations compared with the

computations of S(l)
Eij ,0

and S(l)
Eij

.
The eigenvalue problem in Section 5 (second coarse space) is larger but sparser. The

left-hand side is not dense because of the structure of the local jump operator PD, which
contains only two non-zero entries for each row. The right-hand side consists of two dense
blocks and two zero blocks in the dual part. The size of the eigenvalue problem is determined
by the number of degrees of freedom on Γ(i) × Γ(j) while the other algorithms are determined
by the number of degrees of freedom on an edge Eij , e.g., in two dimensions, it can be eight
times larger. The computation of the left-hand side of the generalized eigenvalue problem in
Section 5.2 also needs applications of the scaling matrices D(i) and D(j), which in case of
deluxe scaling, is more expensive than for multiplicity- or ρ-scaling.

The generalized eigenvalue problem in Section 6.1 is completely local and needs no inter-
subdomain communication but needs to be solved for two neighboring subdomains for each
edge. For a chosen edge, the generalized eigenvalue problem (6.2) presented in Section 6.2
has to be solved once for each subdomain sharing that edge, but it needs inter-subdomain
communication. While the algorithm in Section 4 needs to exchange the matrices S(l)

Eij ,0
and

S
(l)
Eij

, l = i, j, and the scaling matrices, the algorithm in Section 5 needs to exchange S(l),

the local jump matrices B(l)
E , l = i, j, and the scaling matrices. Nonetheless, if ρ-scaling
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or deluxe scaling is used, the scaling data need to be communicated for the construction of
BD in the FETI-DP algorithm anyways. The algorithm in Section 6 only needs to exchange
S

(l)
Eij

, l = i, j. However, locally, in two dimensions, a one-dimensional mass matrix has to
be assembled for each edge of a subdomain. Note that this matrix has tridiagonal form if
piecewise linear finite element functions are used. This makes a Cholesky factorization very
cheap.

A disadvantage of the algorithm in Section 6 (third coarse space) compared to the other
algorithms is that no ρ-scaling with varying scaling weights inside of a subdomain can be used.
In Section 8 for our numerical results, we see that using multiplicity scaling can lead to a large
number of constraints. However, if the extension constant is nicely bounded, e.g., for coefficient
distributions which are symmetric with respect to the subdomain interfaces (at least on slabs)
and have jumps only along but not across edges, only trivial local generalized eigenvalue
problems with a tridiagonal mass matrix on the right-hand side need to be solved, and the
number of constraints stays bounded independently ofH/h. If the scaling in Section 6.4 is used,
only the scaling matrices of neighboring subdomains have to be exchanged. The eigenvectors
in the first eigenvalue problem can be computed completely locally. The constraints need an
application of the mass matrix and the scaling matrix of a neighbor.

8. Numerical examples. In all our numerical computations, we have removed linearly
dependent constraints by using a singular value decomposition of U . Constraints related to
singular values less than a drop tolerance of 1e-6 were removed. In an efficient implementation
this may not be feasible.

As a stopping criterion in the preconditioned conjugate gradient algorithm, we used
||rk|| ≤ 10−10||r0|| + 10−16, where r0 is the preconditioned starting residual and rk the
preconditioned residual in the k-th iteration.

In our numerical experiments, whenever we need to compute a pseudoinverse of a

symmetric matrix A, we first introduce the partition A =

[
App ATrp
Arp Arr

]
, where App is an

invertible submatrix of A and Arr is a small submatrix of A with a size of at least the
dimension of the kernel of A. Then we compute

A+ =

[
I −A−1

pp A
T
rp

0 I

] [
A−1
pp 0
0 S†rr

] [
I 0

−ArpA−1
pp I

]
with the Schur complement Srr = Arr −ArpA−1

pp A
T
rp. Here, S†rr denotes the Moore-Penrose

pseudoinverse of Srr. In the singular value decomposition of Srr, we treat all singular values
less than (1e-3) ·min(diag(A)) as zero.

We have considered different coefficient distributions. In Test Problem I (Figure 8.1), we
consider the simple case of horizontal channels. In Test Problem II (Figure 8.2), we have a
coefficient configuration that is symmetric in a small neighborhood of the vertical edges. In
Test Problem III (Figure 8.3), the coefficient configuration is constructed with no symmetry
with respect to the vertical edges. In Test Problem IV (Figure 8.5), we then have a challenging,
randomly chosen coefficient distribution. Note that the coefficient distribution does not change
when the meshes are refined. For our adaptive method, we therefore expect the number of
constraints to stay bounded when H/h is increased.

We attempt a fair comparison of the adaptive methods by using suitable tolerances
for the different eigenvalues, i.e., we attempt to choose tolerances such that all very large
eigenvalues are removed but no more. For an illustration, we present detailed spectra for the
Test Problem IV; see Figure 8.7.
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FIG. 8.1. Test Problem I with a coefficient distribution consisting of two channels per subdomain for a 3x3
decomposition. In case of diffusion, the diffusion coefficient is 106 (black) and 1 (white). In case of elasticity, the
Young modulus is 103 (black) and 1 (white).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 8.2. Test Problem II: symmetric in slabs
with respect to the edges for a 3x3 decomposition. Dif-
fusion coefficient 106 (black) and 1 (white). Domain
decomposition in 3× 3 subdomains, H/η = 14.

FIG. 8.3. Test Problem III has a coefficient distri-
bution which is unsymmetric with respect to the edges
for a 3x3 decomposition. Diffusion coefficient 106

(black) and 1 (white).

We give our numerical results for FETI-DP methods, but they are equally valid for BDDC
methods. The adaptive constraints are incorporated into the balancing preconditioner M−1

BP

(cf. equation (3.1)), but other methods can also be used.

In Section 8.1, we present numerical results for a scalar diffusion equation and Prob-
lems I-IV using different adaptive coarse spaces. In Section 8.2, we consider the problem of
almost incompressible elasticity.

8.1. Scalar diffusion. First, we perform a comparison for our scalar diffusion problem
with a variable coefficient for the first (Section 4 [7, 21]), second (Section 5 [30]), and third
(Section 6 [23]) coarse spaces. We use homogeneous Dirichlet boundary conditions on
ΓD = ∂Ω in all our experiments for scalar diffusion.

The first coefficient distribution is depicted in Figure 8.1 (Test Problem I; horizontal
channels). This coefficient distribution is symmetric with respect to vertical edges. Since there
are no jumps across the interface, the simple multiplicity scaling is sufficient, and ρ-scaling
reduces to multiplicity scaling. The numerical results are shown in Table 8.1. The estimated
condition numbers are identical for all cases and the number of constraints is similar.
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In Table 8.2, we consider the coefficient distribution depicted in Figure 8.2 (Test Prob-
lem II, horizontal channels on slabs). Here, the coefficient distribution is symmetric on slabs
with respect to vertical edges. Again, there are no coefficient jumps across subdomains, and
multiplicity scaling is equivalent to ρ-scaling. We note that in this test problem, e-deluxe
scaling withH/η = 14 is not equivalent to multiplicity scaling since in the Schur complements
S

(l)
E,0,η , l = i, j, the entries on ∂Ω̃iη \ (∂Ωl ∩ ∂Ω̃iη) are eliminated. The economic version of

extension scaling in this case is equivalent to multiplicity scaling because the Schur comple-
ments S(l)

E,η , l = i, j, are computed from local stiffness matrices on the slab. In Table 8.2, we
report on multiplicity scaling, deluxe scaling, and e-deluxe scaling for the three cases. Using
multiplicity scaling, the results are very similar, but not identical, for all three approaches to
adaptive coarse spaces. The use of deluxe scaling can improve the results for the first two
approaches. The use of extension scaling for the third approach has no significant impact.
Where economic variants exist, e.g., versions on slabs, we also report on results using these
methods. As should be expected, using the economic versions of the eigenvalue problems
yields worse results.

Next, we use the coefficient distribution depicted in Figure 8.3 (Test Problem III, unsym-
metric channel pattern). The results are collected in Table 8.3. In this problem, coefficient
jumps across the interface are present in addition to the jumps inside subdomains. Therefore,
multiplicity scaling is not sufficient, and none of the coarse space approaches are scalable with
respect to H/h, i.e., the number of constraints increase when H/h is increased; cf. Table 8.3
(left). Using ρ-scaling or deluxe/extension scaling then yields the expected scalability in H/h,
i.e., the number of constraints remains bounded when H/h is increased. Where deluxe scaling
is available, it significantly reduces the size of the coarse problem; cf. Table 8.3 (middle and
right). The smallest coarse problem is then obtained for the combination of the second coarse
space with deluxe scaling. Using extension scaling in the third coarse space approach yields
smaller condition numbers and iteration counts for ρ-, deluxe-, or extension scaling but at
the price of a much larger coarse space. In Table 8.4, we display results for ρ-scaling and
deluxe/extension scaling for Test Problem III and an increasing number of subdomains. As
expected, since this results in a growing number of edges and discontinuities, this leads to
a growing number of constraints for all three coarse spaces. Again, deluxe scaling yields
the lowest number of constraints. Let us note that in these experiments, for each value of H ,
we solve a different problem since the discontinuities are determined on the level of the
subdomains. This guarantees that the jumps within the subdomains and across and along
the edges are of the same type; see Figure 8.6. Alternatively, one could consider a problem
with a fixed number of discontinuities. Solving such a problem with a varying number of
subdomains would lead to a different set of discontinuities for each value of H . In Table 8.5,
we present results for Test Problem III using the slab variant of the first coarse space. Our
results show that saving computational work by using the slab variants can increase the number
of constraints significantly, i.e., the number of constraints grows with decreasing η/H . On
the other hand, the condition numbers and iteration counts decrease. This implies that slab
variants can be affordable if a good coarse space solver is available. The results may also
indicate that scalability of the coarse space size with respect to H/h may be lost.

The results for Test Problem IV are collected in Table 8.6. Also for this difficult problem
the number of constraints seems to remain bounded when H/h is increased although for
ρ-scaling, the number of constraints increases slightly with H/h. The smallest coarse problem
consisting of only four eigenvectors is obtained when the second coarse space approach is
combined with deluxe scaling although the difference between ρ-scaling and deluxe scaling is
not as large as in Test Problem III. The third coarse space using extension scaling is scalable
in H/h but, in this current version, yields the largest number of constraints.
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TABLE 8.1
Scalar diffusion. Test Problem I (see Figure 8.1).

First coarse space Second coarse space Third coarse space
with mult. scaling with mult. scaling with mult. scaling

TOL = 1/10 TOL = 10 TOLµ = 1,
TOLν = − inf

H/h cond its #EV cond its #EV cond its #EV #dual
10 1.0388 2 14 1.0388 2 12 1.0388 2 14 132
20 1.1509 3 14 1.1509 3 12 1.1509 3 14 252
30 1.2473 3 14 1.2473 3 12 1.2473 3 14 372
40 1.3274 3 14 1.3274 3 12 1.3274 3 14 492
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FIG. 8.4. Plot of the square root of the condition
number vs. H/h of the data given in Table 8.6 for
the third coarse space with extension scaling using a
logarithmic scale on the x-axis.

FIG. 8.5. Test Problem IV has a random coeffi-
cient distribution which is constant on squares of size
1/21× 1/21. Diffusion coefficient 106 (black) and 1
(white). Domain decomposition in 3× 3 subdomains.

For instance, the 50 largest eigenvalues appearing in the adaptive approaches for Test
Problem IV using deluxe or extension scaling are presented in Figure 8.7. We can see that the
tolerances chosen in Table 8.6 results in the removal of all large eigenvalues. We therefore
believe that our comparison is fair.

For the third coarse space, we have also tested the combination of multiplicity scaling
with both eigenvalue problems from [23], i.e., TOLµ = 1/10 and TOLν = 1/10. As in the
other cases where we use multiplicity scaling, see Table 8.3, this leads to a small condition
number but at the cost of a large number of constraints, and the approach thus is not scalable
with respect to H/h.

Results for the slab variant of the third coarse space are then presented in Table 8.1.
In Table 8.6, we consider the distribution from Figure 8.5 for the different coarse space
approaches. Note that we do not show the results for multiplicity scaling here since the coarse
space grows significantly with H/h, and this approach is therefore not recommended.

8.2. Almost incompressible elasticity. In this section, we compare the algorithms for
almost incompressible elasticity. First we consider a problem with a constant coefficient
distribution. Mixed displacement-pressure P2-P0-elements are used for the discretization.

In the first test, we solve a problem with a Young modulus of 1 and a Poisson ratio of
0.499999. Zero Dirichlet boundary conditions are imposed on

ΓD =
{

(x, y) ∈ [0, 1]2|y = 0
}
.
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TABLE 8.2
Scalar diffusion. For the slab variants of the algorithms, we only consider the first and the third coarse space;

see Sections 4 and 6. Test Problem II (see Figure 8.2), H/η = 14, 1/H = 3.

First coarse space Second coarse space Third coarse space
with mult. scaling with mult. scaling with mult. scaling

TOL = 1/10 TOL = 10 TOLµ = 1, TOLν = −∞
H/h cond its #EV cond its #EV cond its #EV #dual
14 1.0469 5 20 1.0498 5 18 1.0467 6 20 180
28 1.1680 5 20 1.1710 5 18 1.1678 6 20 348
42 1.2696 6 20 1.2728 5 18 1.2695 6 20 516
56 1.3531 6 20 1.3564 6 18 1.3529 6 20 684
70 1.4238 6 20 1.4272 6 18 1.4237 7 20 852

First coarse space Third coarse space
on slabs Second coarse space on slabs

with mult. scaling with mult. scaling
TOL = 1/10 TOLµ = 1, TOLν = −∞

H/h cond its #EV cond its #EV cond its #EV #dual
14 1.0466 5 26 1.0465 6 24 180
28 1.1678 6 26 no 1.1677 6 24 348
42 1.2695 6 26 slab 1.2694 6 24 516
56 1.3530 6 26 variant 1.3529 6 24 684
70 1.4237 6 26 1.4236 6 24 852

First coarse space Second coarse space Third coarse space
with deluxe scaling with deluxe scaling with extension scaling

TOL = 1/10 TOL = 10 TOLµ = 1, TOLν = −∞
H/h cond its # EV cond its # EV cond its # EV # dual
14 1.2319 5 8 1.2510 6 6 1.0798 5 20 180
28 1.2948 6 8 1.3222 6 6 1.2170 5 20 348
42 1.4024 6 8 1.4403 6 6 1.3285 5 20 516
56 1.4906 6 8 1.5372 6 6 1.4189 6 20 684
70 1.5652 7 8 1.6188 7 6 1.4950 6 20 852

First coarse space Third coarse space
on slabs Second coarse space on slabs

with e-deluxe scaling with extension scaling
on slabs

TOL = 1/10 TOLµ = 1, TOLν = −∞
H/h cond its # EV cond its # EV cond its # EV # dual
14 1.0256 5 22 1.0465 6 24 180
28 1.1218 6 26 no 1.1677 6 24 348
42 1.2143 6 26 slab 1.2694 6 24 516
56 1.2945 6 26 variant 1.3529 6 24 684
70 1.3645 6 26 1.4236 6 24 852

The results for the approach in Section 4.5.2 with a tolerance 1/10 and varying H/h are
presented in Table 8.8. For constant H/h = 20 and varying Poisson ratio ν, see Table 8.9.

In the third case, we consider a distribution of Young’s modulus as in Figure 8.1 and a
Poisson ratio of ν = 0.4999. The result for the approach in Section 4.5.2 can be found in
Table 8.10. For the related results of the algorithm in [30], see Tables 8.8, 8.9, and 8.10.

Note that the third coarse space algorithm is not suitable for this problem since its
eigenvalue problem is not based on a localization of the jump operator but designed to get
constants in Korn-like inequalities and in an extension theorem that are independent of jumps
in the coefficients. It therefore will not find the zero net flux condition which is necessary for a
stable algorithm.
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TABLE 8.3
Scalar diffusion. Comparison of the coarse spaces for Test Problem III (see Figure 8.3). The numerical results

for the first coarse space have already been published by the authors in [21, Section 3].

First coarse space, TOL = 1/10

scal. multiplicity ρ deluxe
H/h cond its #EV cond its #EV cond its #EV #dual
14 1.2911 8 44 1.3874 9 15 4.8937 11 5 180
28 1.4148 9 74 1.5782 11 15 4.8672 12 5 348
42 1.5167 10 104 1.7405 11 15 4.8891 12 5 516

Second coarse space, TOL = 10

scal. multiplicity ρ deluxe
H/h cond its #EV cond its #EV cond its #EV #dual
14 1.5013 9 42 1.5979 9 13 5.8330 11 3 180
28 1.6407 10 72 1.7351 11 13 5.8758 12 3 348
42 1.7413 10 102 1.8474 12 13 5.9296 13 3 516

Third coarse space, TOLµ = 1

scal. multiplicity, TOLν = 1/10 ρ extension, TOLν = −∞
H/h cond its #EV cond its #EV cond its #EV #dual
14 1.2870 8 55 no 1.2498 8 20 180
28 1.4154 9 88 rho 1.4238 9 20 348
42 1.5186 9 118 variant 1.5525 10 20 516
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FIG. 8.6. Variations of the coefficient distribution in Test Problem III for different numbers of subdomains.
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TABLE 8.4
Scalar diffusion. Comparison of the coarse spaces for Test Problem III (see Figure 8.3) and an increasing

number of subdomains, H/h = 42.

First coarse space, TOL = 1/10

scal. ρ deluxe
1/H cond its #EV cond its #EV #dual

3 1.7405 11 15 4.8891 12 5 516
4 1.8848 12 40 5.0022 14 14 1038
5 2.4267 13 58 6.7398 16 26 1736
6 2.5414 13 100 6.7185 17 43 2610
7 2.7905 14 129 6.7763 18 63 3660
8 2.8467 14 188 6.7437 19 88 4886
9 2.9341 15 228 6.7827 18 116 6288

10 2.9757 15 304 6.7539 20 149 7866
15 3.0681 16 693 6.7949 21 371 18396
20 3.1243 17 1304 6.7675 23 694 33326
25 3.1125 17 2028 6.7989 23 1116 52656

Second coarse space, TOL = 10

scal. ρ deluxe
1/H cond its #EV cond its #EV #dual

3 1.8474 12 13 5.9296 13 3 516
4 1.9186 12 34 10.0410 16 7 1038
5 3.4434 15 46 7.9252 18 14 1736
6 3.5331 16 80 10.0690 21 22 2610
7 3.9461 19 99 7.9624 22 33 3660
8 3.9765 19 146 10.0700 24 45 4886
9 4.4980 21 172 7.9768 25 60 6288

10 4.6656 21 232 10.0700 26 76 7866
15 5.7855 25 511 8.0252 28 189 18396
20 6.1949 26 962 10.0699 30 351 33326
25 6.4144 27 1476 8.1597 29 564 52656

Third coarse space, TOLµ = 1

scal. ρ extension, TOLν = −∞
1/H cond its #EV cond its #EV #dual

3 1.5525 10 20 516
4 1.5425 10 56 1038
5 no 1.5499 10 88 1736
6 rho 1.5465 10 152 2610
7 variant 1.5496 10 204 3660
8 1.5415 10 296 4886
9 1.5490 10 368 6288

10 1.5398 10 488 7866
15 1.5459 10 1148 18396
20 1.5366 10 2168 33326
25 1.5337 10 3408 52656

9. Conclusion. For the first and second coarse space, a condition number estimate is
available for symmetric positive definite problems in two dimensions; see Sections 4.4.2
and 4.5.2 for the first coarse space and Section 5.3 for the second coarse space, respectively.
A condition number estimate for the third coarse space applied to scalar diffusion problems
can be found in [23] for constant ρ-scaling and in Section 6 for extension scaling. For this,
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TABLE 8.5
Test Problem III (see Figure 8.3). Results for the slab variant of the first coarse space; also cf. Table 8.3.

First coarse space First coarse space

on slabs, e-deluxe scaling, on slabs, mult. scaling,
TOL = 1/10 TOL = 1/10

η/h H/h cond its #EV cond its #EV #dual
1 14 1.1355 7 24 1.0776 6 52 180
1 28 1.1118 6 35 1.1831 7 89 348
1 42 1.1069 6 47 1.0881 7 133 516
2 14 1.1729 7 21 1.1552 7 48 180
2 28 1.2096 7 25 1.1867 7 82 348
2 42 1.1770 7 33 1.2897 8 116 516
3 14 1.3978 9 11 1.2912 8 44 180
3 28 1.2145 7 24 1.1865 7 82 348
3 42 1.3029 8 25 1.2941 8 112 516
5 14 1.4086 9 10 1.2911 8 44 180
5 28 1.3447 8 19 1.3021 8 78 348
5 42 1.2852 8 24 1.2927 8 112 516

10 14 2.6060 10 6 1.2911 8 44 180
10 28 1.4441 10 10 1.4148 9 74 348
10 42 1.5216 10 12 1.5171 9 105 516
14 14 4.8937 11 5 1.2911 8 44 180
28 28 4.8672 12 5 1.4148 9 74 348
42 42 4.8891 12 5 1.5167 10 104 516

a condition number estimate can be proven for linear elasticity using similar arguments and
replacing the H1-seminorms by the elasticity seminorms. For all three coarse spaces, to the
best of our knowledge, no published theory exists yet for the three-dimensional case but the
second coarse space has been successfully applied to three-dimensional problems in [31].

An advantage of the first and third coarse spaces is that the size of the eigenvalue problems
depends only on the number of degrees of freedom on an edge. This has to be seen in
comparison to the size of two local interfaces of two substructures in the second adaptive
coarse space. In the eigenvalue problem for the first coarse space, the matrices involved are
dense while in the second coarse space, the eigenvalue problem involves a sparse matrix on
the left-hand side and a 2×2 block matrix with dense blocks on the right-hand side. However,
the first coarse space needs the factorization of a matrix on the left-hand side and possibly
matrix-matrix multiplications with Schur complements if a direct eigensolver is used. The
third coarse space needs the solution of two eigenvalue problems for each of two substructures
sharing an edge with a dense matrix on the left-hand side and a tridiagonal matrix in case of
piecewise linear elements on the right-hand side. It may be advantageous that these eigenvalue
problems can be computed locally on one substructure and that for building the constraints,
only in case of extension scaling information of the neighboring substructure has to be used.
Possibly another eigenvalue problem with two dense matrices needs to be solved for the
extension if the extension constant is not small, e.g., if no extension scaling is used or if the
coefficient is not symmetric with respect to an edge. A multilevel BDDC variant for the second
coarse space can be found in [35].

All coarse spaces require an additional factorization with matrix-matrix multiplications
or multiple forward-backward substitutions if deluxe scaling is used. In case of multiplicity
scaling and a nonsymmetric coefficient, the size of all coarse spaces can depend on the size of
the substructures H/h as can be seen in Section 8.
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TABLE 8.6
Scalar diffusion. Test Problem IV.

First coarse space, TOL = 1/10

scal. ρ deluxe
H/h cond its #EV cond its #EV #dual
14 7.3286 19 10 2.2748 11 7 180
28 8.8536 20 11 2.4667 10 9 348
42 6.4776 21 12 2.5994 10 9 516
56 7.0378 21 12 2.6947 11 9 684
84 7.8168 23 12 2.8302 11 9 1020

112 8.3651 24 13 2.9267 12 9 1356

Second coarse space, TOL = 10

scal. ρ deluxe
H/h cond its #EV cond its #EV #dual
14 7.4306 20 6 2.6263 12 4 180
28 9.0907 22 7 3.0782 13 4 348
42 8.3068 23 8 3.3914 13 4 516
56 9.0122 24 8 3.6362 14 4 684
84 7.8520 24 9 4.0141 15 4 1020

112 8.3651 24 10 4.3065 15 4 1356

Third coarse space, TOLµ = 1/10, TOLν = −∞
scal. ρ extension
H/h cond its #EV cond its #EV #dual
14 3.2109 12 19 180
28 no 4.3890 13 19 348
42 rho 5.1775 14 19 516
56 variant 5.7748 14 19 684
84 6.6648 15 19 1020

112 7.3288 16 19 1356

TABLE 8.7
Scalar diffusion. Test Problem IV (see Figure 8.5). Third coarse space uses extension scaling with different η/h

(see Definition 6.1 and Remark 6.7) only eigenvalue problem 6.1 with TOLµ = 1/10; cf. also the third coarse space
in Table 8.6 for H/h = 28. On squares of four elements in each direction, the coefficient is constant. Consequently,
the number of constraints is reduced if the slab size η/h is increased such that a multiple of four is exceeded.

Third coarse space on slabs
Economic version of extension scaling

H/h η/h cond its #EV #dual
28 1 2.2478 11 50 348
28 2 1.9102 9 50 348
28 3 1.7047 9 50 348
28 4 1.5663 9 50 348
28 5 8.7645 13 33 348
28 6 7.4083 13 33 348
28 7 6.8836 13 33 348
28 8 6.6282 13 33 348
28 9 5.3208 13 29 348
28 10 5.2299 13 29 348
28 28 4.3890 13 19 348
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FIG. 8.7. The 50 largest (inverse) eigenvalues of the generalized eigenvalue problems for Test Problem IV for
H/h = 28 (see Figure 8.5). First coarse problem using deluxe scaling, second coarse problem using deluxe scaling,
and third coarse space using extension scaling (from left to right); cf. Table 8.6.

TABLE 8.8
Almost incompressible elasticity using a P2-P0-finite elements discretization for 3× 3 subdomains. Homoge-

neous coefficients with E = 1 and ν = 0.499999.

First coarse space Second coarse space
mult. scal., TOL = 1/10 mult. scal., TOL = 10

H/h cond its #EV cond its #EV #dual var.
10 2.2563 12 32 6.3215 22 10 516
20 2.1821 14 34 5.4016 20 16 996
30 2.4743 15 34 5.1404 20 20 1476
40 2.6969 15 34 5.4856 20 22 1956

TABLE 8.9
Almost incompressible elasticity using P2-P0-finite elements and 3× 3 subdomains. Homogeneous coefficients

with E = 1. We vary ν, H/h = 20.

First coarse space Second coarse space
mult. scal., TOL = 1/10 mult. scal., TOL = 10

ν cond its #EV cond its #EV #dual var.
0.3 1.9078 12 34 7.7232 24 4 996
0.49 2.6715 14 34 5.1983 20 16 996
0.499 2.2745 14 34 5.3790 20 16 996
0.4999 2.1915 14 34 5.3993 20 16 996
0.49999 2.1830 14 34 5.4014 20 16 996
0.499999 2.1821 14 34 5.4016 20 16 996

TABLE 8.10
Almost incompressible elasticity using a P2-P0-finite elements discretization and 3× 3 subdomains. Channel

distribution with E1 = 1e3 (black), E2 = 1 (white) and ν = 0.4999; cf. Figure 8.1.

First coarse space Second coarse space
mult. scal., TOL = 1/10 mult. scal., TOL = 10

H/h cond its #EV cond its #EV #dual var.
10 11.5279 25 50 11.3414 25 50 516
20 11.9831 23 54 11.8391 26 50 996
30 12.0786 23 54 11.9445 26 50 1476
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