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CONVERGENCE OF THE CYCLIC AND QUASI-CYCLIC
BLOCK JACOBI METHODS∗

VJERAN HARI† AND ERNA BEGOVIĆ KOVAČ‡

Abstract. This paper studies the global convergence of the block Jacobi method for symmetric matrices. Given
a symmetric matrix A of order n, the method generates a sequence of matrices by the rule A(k+1) = UT

k A(k)Uk ,
k ≥ 0, where Uk are orthogonal elementary block matrices. A class of generalized serial pivot strategies is introduced,
significantly enlarging the known class of weak wavefront strategies, and appropriate global convergence proofs are
obtained. The results are phrased in the stronger form: S(A′) ≤ cS(A), where A′ is the matrix obtained from A
after one full cycle, c < 1 is a constant, and S(A) is the off-norm of A. Hence, using the theory of block Jacobi
operators, one can apply the obtained results to prove convergence of block Jacobi methods for other eigenvalue
problems such as the generalized eigenvalue problem. As an example, the results are applied to the block J-Jacobi
method. Finally, all results are extended to the corresponding quasi-cyclic strategies.
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1. Introduction. The main incentive for writing this paper was a need to expand the
class of “convergent strategies” for the block Jacobi method for symmetric matrices. With
a large choice of classes at our disposal we can prove global convergence of other block-
wise or element-wise Jacobi-type methods and even apply it to related problems, e.g., to the
generalized eigenvalue or singular value problem; see [29]. The techniques we are about to
employ use the theory of block Jacobi operators, which was described in [18].

Over the last two decades the Jacobi method has emerged as a method of choice for
the eigenvalue computation for dense symmetric matrices. This is mostly due to its inherent
parallelism and high relative accuracy on well-behaved matrices. Although the original method
is very old [23] and it had been one of the first methods to be implemented on computers, it was
forgotten in the 1970s after appearance of the QR and Divide and Conquer method. Already in
1971, Sameh [31] showed how to adapt the serial Jacobi method to parallel processing. Later,
in 1992, Demmel and Veselić [4] proved high relative accuracy of the method on well-behaved
symmetric positive definite matrices. Following their breakthrough, the method came back to
the focus of the current researchers. Drmač and Veselić [7, 8] showed that, even on standard
one-processor computers, the method can be modified to become faster than the QR method
while still retaining its distinguished property: high relative accuracy. Nowadays, the Jacobi
method is well understood. On the one hand, its asymptotic convergence was considered
in [15, 30, 35], and its global convergence was studied in [9, 10, 11, 16, 21, 22, 24, 25, 28, 32].
On the other hand, its high relative accuracy was considered in [4, 26, 27, 34], while its
efficiency was investigated in [7, 8]. The method has also been implemented as a standard
LAPACK routine.

With the development of CPU and GPU parallel computing platforms, it has been found
that a sensible way of increasing numerical efficiency of the method involves using a one-
sided algorithm, together with BLAS 3 subroutines, which can nicely exploit cache memory
hierarchy. The matrix description of such a method is called the block Jacobi method. This
block method is always implemented as a one-sided block (Jacobi or J-Jacobi) algorithm
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because high efficiency and high relative accuracy are warranted then. However, in the global
and asymptotic convergence considerations, the results are cast in terms of a two-sided block
Jacobi method. The first global convergence results for the block Jacobi methods were given
in [3, 5, 18, 19, 20]. These papers considered the most common serial pivot strategies and
strategies equivalent to them.

The aim of this paper is to further develop the global convergence theory for the block
Jacobi method and to provide a large class of usable pivot strategies for which convergence
can be established rigorously. In general, our class consists of more than 4 · 2! · 3! · · ·m!
cyclic strategies, where m is the number of block-columns in the block-matrix partition of a
symmetric matrix of order n. These strategies include the weak wavefront ones from [32] and
many others. As a byproduct of this research, we can now prove that every cyclic (element-
wise or block) Jacobi method for symmetric matrices of order 4 is globally convergent;
see [1, 2]. In addition, we consider a similar class of quasi-cyclic strategies and derive the
corresponding convergence results. The block analogue of the strategy that is used in the
LAPACK implementation of the Jacobi method lies in that class.

The convergence results are given in the “stronger form”,

S(A′) ≤ cS(A), 0 ≤ c < 1.

Here, A is the initial symmetric matrix of order n, A′ is obtained from A after applying one
sweep of some cyclic or quasi-cyclic block Jacobi method, S( ) is the departure from diagonal
form, and c is a constant depending on n and the block-matrix partition but not on A. Such a
result allows for the use of the theory of block Jacobi operators. Hence, it can be utilized to
prove the global convergence of other Jacobi-type methods, designed for different eigenvalue
problems. As an application, we will apply it to the block J-Jacobi method from [20]. Some of
the results presented here can be found in the unpublished thesis [1].

The paper is divided into six sections of the main text and an appendix. In Section 2 we
present the basic concepts linked to a block Jacobi method for symmetric matrices. Special
attention is paid to cyclic and quasi-cyclic pivot strategies and to the ways of enlarging
significantly the number of “convergent strategies”. The concepts of equivalent, weakly
equivalent, and permutation equivalent strategies are used. Another useful tool is introduced,
the so-called block Jacobi annihilators and operators for symmetric matrices, and some basic
results related to them are proved. In Section 3 we introduce a class of generalized serial
strategies and prove the corresponding global convergence results. In Section 4 we briefly
introduce a similar class of quasi-cyclic pivot strategies and prove the appropriate convergence
results. As an application, in Section 5 we prove the global convergence of the block J-Jacobi
method under the strategies from the newly introduced classes. Section 6 announces future
work. Finally, to make the paper easier to read, we move all lengthy and technical proofs to
Appendix A.

2. Basic concepts and notation. We introduce the basic definitions linked to the block
Jacobi method for symmetric matrices. Special attention is paid to the cyclic and quasi-cyclic
pivot strategies. Later we deal with more advanced concepts like the block Jacobi annihilators
and operators.

2.1. Block Jacobi method. Let A be a square matrix of order n and let π be an integer
partition of n,

(2.1) π = (n1, n2, . . . , nm), ni ≥ 1, 1 ≤ i ≤ m, n1 + n2 + · · ·+ nm = n.
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Then π determines the block-matrix partition of A,

(2.2) A =


A11 A12 . . . A1m

A21 A22 A2m

...
. . .

...
Am1 Am2 . . . Amm


n1
n2
...
nm

,

where the diagonal blocks A11, . . . , Amm are square matrices of order n1, . . . , nm, respec-
tively. Relation (2.2) will be schematically denoted by A = (Ars).

Since we consider the global convergence of the block Jacobi method for symmetric
matrices, we assume thatA is symmetric. A block Jacobi method is determined by the partition
π, some pivot strategy, and the algorithm. The partition is chosen in accordance with the
capacity of the hierarchical cache memory of the computer. Typically, the code presumes
n1 = n2 = · · · = nm−1, nm = n− (m− 1)n1 ≤ n1. In our analysis we consider it arbitrary
but unchanged over the iterations. Actually, there are situations when it makes sense to change
π during the process, but these are linked to the asymptotic convergence of the method.

The block Jacobi method uses orthogonal elementary block matrices as transformation
matrices. An orthogonal elementary block matrix Uij has the form (see [18])

Uij =


I

Uii Uij
I

Uji Ujj
I


ni

nj

if i < j, or

Uij =

 I Uii
I

 ni if i = j,

(2.3)

where it is presumed that the block-matrix partition is determined by π from the relation (2.1).
Since i and j address the blocks, they can be called block pivot indices, but for brevity we
simply call them pivot indices. Similarly, (i, j) is the pivot pair and

(2.4) Ûij =

[
Uii Uij
Uji Ujj

]
if i < j, or Ûij = Uii if i = j,

is the pivot submatrix of Uij . When the indices (i, j) are clear from the context, we will
also write Û instead of Ûij . We can build an orthogonal elementary block matrix using the
function E which imbeds any orthogonal matrix Ũ of order ni + nj (or ni if i = j) into the
identity matrix In, so that Uij = E(i, j, Ũ) implies Ûij = Ũ . The mapping E depends on the
partition π.

Each block Jacobi method is an iterative processes of the form

(2.5) A(k+1) = UTk A
(k)Uk, k ≥ 0, A(0) = A,

where Uk, k ≥ 0, are orthogonal elementary block matrices. Let A(k) = (A
(k)
rs ). We

say that A(k+1) is obtained or generated from A(k) at step k via the recursion (2.5). Let
Uk = E(i(k), j(k), Ûk). Then i(k), j(k) are the pivot indices and (i(k), j(k)) is the pivot
pair at step k. For brevity, we will often omit k and denote the pivot indices simply by i, j
and the pivot pair by (i, j). The way of selecting the pivot pair at each step is called a pivot
strategy.
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At step k the block Jacobi method diagonalizes the pivot submatrix of A(k). Thus, if
i < j, the pivot blocks A(k)

ij and A(k)
ji are annihilated and the affected diagonal blocks A(k)

ii

and A(k)
jj are diagonalized. If Â(k) denotes the pivot submatrix of order ni + nj at step k, it is

transformed as follows:

(2.6)

[
Λ
(k+1)
ii 0

0 Λ
(k+1)
jj

]
=

[
U

(k)
ii U

(k)
ij

U
(k)
ji U

(k)
jj

]T [
A

(k)
ii A

(k)
ij

(A
(k)
ij )T A

(k)
jj

][
U

(k)
ii U

(k)
ij

U
(k)
ji U

(k)
jj

]
,

where Λ
(k+1)
ii and Λ

(k+1)
jj are diagonal. If i = j, then just A(k)

ii is diagonalized. For the
diagonalization of the pivot submatrix, one can choose any method for solving the symmetric
eigenvalue problem. Typically, one applies a standard (element-wise) Jacobi method for its
high relative accuracy [26] and efficiency on nearly diagonal matrices.

As has been explained in [18], it is preferable to preprocess the initial matrix by m block
Jacobi steps with pivot pairs (1, 1), . . . , (m,m) so that in the starting matrix the diagonal
blocks are actually diagonal submatrices. This preprocessing is depicted below for the case
π = (3, 2, 1, 2):

A =



x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x


7−→ A(0) =



x 0 0 x x x x x
0 x 0 x x x x x
0 0 x x x x x x
x x x x 0 x x x
x x x 0 x x x x
x x x x x x x x
x x x x x x x 0
x x x x x x 0 x


.

Once the diagonal blocks are diagonalized, all later steps will preserve that property. It means
that at each step the pivot indices will satisfy i < j, which unifies and simplifies the algorithm.
In this regard the blocks Aii and Ajj on the right side of the relation (2.6) can be replaced by
Λii and Λjj , respectively. Therefore, in the sequel it is presumed that the diagonal blocks of
each A(k) are diagonal and for the pivot indices i < j holds.

2.2. Pivot strategies. Each pivot strategy can be identified with a function I : N0 → Pm,
where N0 = {0, 1, 2, 3, . . .} and Pm = {(r, s)|1 ≤ r < s ≤ m}. If I is a periodic function
with period T , then we say that I is a periodic pivot strategy. In this paper we consider two
types of periodic strategies: cyclic and quasi-cyclic ones.

If T = M ≡ m(m−1)
2 and {(i(0), j(0)), (i(1), j(1)), . . . , (i(T − 1), j(T − 1))} = Pm,

then we say that the pivot strategy is cyclic. It immediately follows that, during any M
successive steps of the method, all off-diagonal blocks are annihilated exactly once. Such
block Jacobi method is also said to be cyclic and the transition from A((r−1)M) to A(rM) is
called the rth cycle or sweep of the method.

If T ≥ M and {(i(0), j(0)), (i(1), j(1)), . . . , (i(T − 1), j(T − 1))} = Pm, then the
strategy is called quasi-cyclic. Thus, during any T successive steps of the method, each
off-diagonal block is annihilated at least once. The corresponding block Jacobi method is
called quasi-cyclic and the transition from A((r−1)T ) to A(rT ) is called the rth quasi-cycle or
sweep of the method.

Let us examine cyclic and quasi-cyclic strategies more closely. For S ⊆ Pm we denote
byO(S) the set of all finite sequences containing the elements of S, assuming that each
pair from S appears at least once in each sequence. If I is a cyclic or quasi-cyclic strat-
egy with period T , then OI stands for the sequence I(0), I(1), . . . , I(T − 1) ∈ O(Pm),
generated by the first T steps (i.e., by the first sweep) of the method. Conversely, if
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O ∈ O(Pm), O = (i0, j0), (i1, j1), . . . , (iT−1, jT−1), then the periodic strategy IO is de-
fined by IO(k) = (iτ(k), jτ(k)), where τ(k) is the unique integer satisfying 0 ≤ τ(k) ≤ T − 1
and k ≡ τ(k)( mod T ), k ≥ 0.

These two functions, O 7→ IO and I 7→ OI , enable us to investigate the cyclic and
quasi-cyclic strategies by studying the sequences fromO(Pm). Note that, if I is cyclic, then
OI is simply an ordering of Pm. We will also use the term pivot ordering in this case, while if
I is quasi-cyclic, we will use the term pivot sequence.

An admissible transposition ofO ∈O(S), S ⊆ Pm, is any transposition of two adjacent
terms in O,

(ir, jr), (ir+1, jr+1)→ (ir+1, jr+1), (ir, jr),

provided that the sets {ir, jr} and {ir+1, jr+1} are disjoint. We also say that such pairs (ir, jr)
and (ir+1, jr+1) commute. The number of pairs in O is denoted by |O| and it is called the
length of O.

DEFINITION 2.1. Two sequences O,O′ ∈O(S), S ⊆ Pm, are said to be
(i) equivalent (we write O ∼ O′) if one can be obtained from the other by a finite set of

admissible transpositions;
(ii) shift-equivalent (O s∼ O′) if O = [O1,O2] and O′ = [O2,O1], where [ , ] stands

for concatenation and the length of O1 is called shift length;
(iii) weakly equivalent (O w∼ O′) if there exist Oi ∈O(S), 0 ≤ i ≤ r, such that every

two adjacent terms in the sequence O = O0,O1, . . . ,Or = O′ are equivalent or
shift-equivalent.

One can verify that ∼, s∼, and w∼ are equivalence relations on O(S). If three or
more sequences are connected by ∼ or s∼ one can omit the mid terms because of the
transitivity property of equivalence relation. Hence, if O w∼ O′, then there is a sequence
O = O0,O1, . . . ,Or = O′ such that

(2.7) either O0 ∼ O1
s∼ O2 ∼ O3

s∼ O4 . . . or O0
s∼ O1 ∼ O2

s∼ O3 ∼ O4 . . . .

Two pivot strategies IO and IO′ are equivalent (resp. shift-equivalent, weakly equivalent) if the
corresponding sequences O and O′ are equivalent (resp. shift-equivalent, weakly equivalent).

The most common cyclic pivot strategies are the row-cyclic one, Irow = IOrow , and the
column-cyclic one, Icol = IOcol , which are defined by the “row-wise” and “column-wise”
orderings of Pm:

Orow = (1, 2), (1, 3), . . . , (1,m), (2, 3), . . . , (2,m), . . . , (m− 1,m) and
Ocol = (1, 2), (1, 3), (2, 3), . . . , (1,m), (2,m), . . . , . . . , (m− 1,m).

The common name for them is serial strategies. The cyclic pivot strategies which are equivalent
(resp. weakly equivalent) to the serial ones are also called wavefront (resp. weakly wavefront)
strategies; see [32].

DEFINITION 2.2. Let O ∈O(S), S ⊆ Pm, O = (i0, j0), (i1, j1), . . . , (ir, jr). Then

O← = (ir, jr), . . . , (i1, j1), (i0, j0) ∈O(S)

is the reverse (or inverse) sequence toO. If S = Pm, we say that the pivot strategy I←O = IO←

is reverse (inverse) to IO.
Obviously, we have O←← = O and hence IO←← = IO for O ∈O(Pm).
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LEMMA 2.3. Let O,O′ ∈O(S), S ⊆ Pm. Then O′ w∼ O if and only if O′← w∼ O←.
Proof. From formula (2.7), we see that it is sufficient to prove the assertion for the relations

∼ and s∼. Let O and O← be as in Definition 2.2. Suppose O′ is obtained from O by applying
one admissible transposition. Then for some 0 ≤ t < r we have {it, jt} ∩ {it+1, jt+1} = ∅.
If t ≥ 1, then

O′ = (i0, j0), . . . , (it−1, jt−1), (it+1, jt+1), (it, jt), . . . , (ir, jr),

O′← = (ir, jr), . . . , (it, jt), (it+1, jt+1), (it−1, jt−1), . . . , (i0, j0),

and obviously O′← ∼ O←. If t = 0, O′ = (i1, j1), (i0, j0), . . . , (ir, jr) and
O′← = (ir, jr), . . . , (i0, j0), (i1, j1), so we also have O′← ∼ O←. If O′ is the result of
applying more than one admissible transposition to O, then the proof proceeds by applying
the above argument several times.

Suppose that O′← ∼ O← holds. By the implication proved in the preceding paragraph
we have O′←← ∼ O←←, and this is the same as O′ ∼ O.

Now, let O′ s∼ O. Suppose O′ = (it+1, jt+1), . . . , (ir, jr), (i0, j0), . . . , (it, jt). Then
O′← = (it, jt), . . . , (i0, j0), (ir, jr), . . . , (it+1, jt+1), which is shift-equivalent to
O← = (ir, jr), . . . , (i1, j1), (i0, j0) with shift equal to r− t. Now we know that O′← s∼ O←
implies O′←← s∼ O←←, and this is the same as O′ s∼ O.

To visually depict an orderingO ofPm we make use of the symmetric matrix MO = (mrt)
of order m, defined by the rule

mi(k)j(k) = mj(k)i(k) = k, k = 0, 1, . . . ,M − 1, M = m(m− 1)/2.

We set mrr = −1, 1 ≤ r ≤ m, but since the pairs (r, r) do not appear in O, we will rather
use ∗ to represent −1.

EXAMPLE 2.4. As an illustration, we depict the matrices MO←row
and MO←col

for m = 5.

MO←r =


∗ 9 8 7 6
9 ∗ 5 4 3
8 5 ∗ 2 1
7 4 2 ∗ 0
6 3 1 0 ∗

 , MO←c =


∗ 9 8 6 3
9 ∗ 7 5 2
8 7 ∗ 4 1
6 5 4 ∗ 0
3 2 1 0 ∗

 .
These two matrices give us information on the order in which the off-diagonal blocks in the
block-matrix from (2.2) are annihilated during each cycle.

2.2.1. Permutation equivalent strategies. Let us introduce yet another equivalence
relation onO(Pm) and on the set on cyclic and quasi-cyclic pivot strategies.

Two pivot orderings O,O′ ∈ O(Pm) are permutation equivalent if MO′ = PMOP
T

holds for some permutation matrix P. In that case we write O′ p∼ O and IO′
p∼ IO. Recall

that each permutation matrix P of order m is defined by some permutation p of the set
Sm = {1, 2, . . . ,m} via the relation

(2.8) Per = ep(r), 1 ≤ r ≤ m.

Here Im = [e1, . . . , em]. The mapping p 7→ P is an isomorphism between the symmetric
group on the set Sm and the group of permutation matrices of order m. If X = (xrt) is
any square matrix of order m, then PXPT = (xp−1(r),p−1(t)). Hence, if Õ is permutation
equivalent to O and MO = (mrt), MÕ = (m̃rt), then m̃p(r)p(t) = mrt holds for all r, t.
This relation shows that the (r, t)-element of MO becomes the (p(r), p(t))-element of MÕ.
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Therefore, if Õ p∼ O and O = (i0, j0), . . . , (iM−1, jM−1), then Õ = (p(i0), p(j0)), . . . ,
(p(iM−1), p(jM−1)). Here it is presumed that in the case p(i) > p(j), the pair (p(i), p(j)) in
the ordering Õ is replaced by (p(j), p(i)).

EXAMPLE 2.5. Let m = 4, Sm = {1, 2, 3, 4}, O = (1, 2), (2, 3), (2, 4), (3, 4), (1, 3),

(1, 4) and P = [e2, e4, e3, e1] so that p =

(
1 2 3 4
2 4 3 1

)
, p−1 =

(
1 2 3 4
4 1 3 2

)
,

PT = [e4, e1, e3, e2]. Let Õ be such that MÕ = PMOP
T . Since

MÕ =


eT4
eT1
eT3
eT2



∗ 0 4 5
0 ∗ 1 2
4 1 ∗ 3
5 2 3 ∗

 [e4, e1, e3, e2] =


∗ 5 3 2
5 ∗ 4 0
3 4 ∗ 1
2 0 1 ∗

 ,
we have Õ = (2, 4), (3, 4), (1, 4), (1, 3), (2, 3), (1, 2). On the other hand, we have

O(p) ≡ (p(1), p(2)), (p(2), p(3)), (p(2), p(4)),(p(3), p(4)), (p(1), p(3)),(p(1), p(4))

= (2, 4), (3, 4), (1, 4), (1, 3), (2, 3), (1, 2) = Õ.

Now it is easy to extend the notion of permutation equivalence from pivot orderings to
pivot sequences fromO(Pm).

DEFINITION 2.6. Let O = (i0, j0), (i1, j1), . . . , (iT−1, jT−1) ∈O(Pm), T ≥M . The
sequenceO′ ∈O(Pm) is permutation equivalent toO, and we writeO′ p∼ O, if there is a per-
mutation q of the set Sm such thatO′=(q(i0), q(j0)), (q(i1), q(j1)), . . . , (q(iT−1), q(jT−1)).
Then O′ is denoted by O(q).

SinceO = O(e), where e is the identity permutation, we haveO p∼ O. IfO′ = O(q) then
O = O′(q−1). Also if O′ = O(q) and O′′ = O′(q′), then O′′ = O(q′ ◦ q), where ◦ denotes
the binary operation in the permutation group, which is simply the composition of functions.
We conclude that

p∼ is an equivalence relation on the setO(Pm). Note that Or = Or−1(qr),
1 ≤ r ≤ t, implies Ot = O0(q) with q = qt ◦ qt−1 ◦ · · · ◦ q1.

LEMMA 2.7. Let O,O1,O2,O3,O4 ∈O(Pm).
(i) If O w∼ O1

p∼ O2, then there is O′ ∈O(Pm) such that O p∼ O′ w∼ O2.
(ii) If O p∼ O3

w∼ O4, then there is Õ ∈O(Pm) such that O w∼ Õ p∼ O4.
Proof. (i) It is sufficient to prove this assertion for the two cases: (a) w∼ is reduced to ∼

and (b) w∼ is reduced to s∼.
(a) It is sufficient to assume that the sequence O1 is obtained from O by applying one

admissible transposition. Let O = (i0, j0), . . . , (ir, jr), (ir+1, jr+1), . . . , (iT−1, jT−1) with
{ir, jr}∩{ir+1, jr+1} = ∅ so thatO1 =(i0, j0), . . . , (ir+1, jr+1), (ir, jr), . . . , (iT−1, jT−1).
If O2 = O1(q), then

O2 = (q(i0), q(j0)), . . . , (q(ir+1), q(jr+1)), (q(ir), q(jr)), . . . , (q(iT−1), q(jT−1)).

Since q is a bijection from Sm onto itself, we have {q(ir), q(jr)} ∩ {q(ir+1), q(jr+1)} = ∅.
Therefore, we can set O′ = O(q), i.e.,

O′ = (q(i0), q(j0)), . . . , (q(ir), q(jr)), (q(ir+1), q(jr+1)), . . . , (q(iT−1), q(jT−1)).

(b) Let O be as in case (a) and assume that the cut has been made after the term
(ir, jr), so that O1 = (ir+1, jr+1), . . . , (iT−1, jT−1), (i0, j0), . . . , (ir, jr). Let O2 = O1(q)
= (q(ir+1), q(jr+1)), . . . , (q(iT−1), q(jT−1)), (q(i0), q(j0)), . . . , (q(ir), q(jr)). Obviously,
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we can define O′ to be the same as in case (a). To obtain O2 from O′, one has to make the cut
just after the term (q(ir), q(jr)), i.e., to use the shift r + 1.

(ii) The proof is quite similar to the proof of (i). First, consider the case when w∼ is
reduced to ∼, and ∼ is given by one admissible transposition that interchanges the terms at
positions r and r + 1 as in case (a) above. Let O be as in case (i) and denote O3 = O(q̃).
Then O4 is the same as O2, provided that q is replaced by q̃ and Õ is like O1. Next, consider
the case when w∼ is reduced to s∼ and O3 = O(q̃). Assume that the cut has been made as in
case (b) behind the term (q̃(ir), q̃(jr)). Then O4 is the same as O2 (from case (b)) provided
that q is replaced by q̃ and Õ is like O1.

PROPOSITION 2.8. Let O,O′,O1,O2,O3, . . . ,O2t ∈O(Pm), t ≥ 1. If

(2.9) O w∼ O1
p∼ O2

w∼ O3
p∼ O4

w∼ · · · w∼ O2t−1
p∼ O2t

w∼ O′,

then there exist O′0, Õ0 ∈O(Pm) such that O p∼ O′0
w∼ O′ and O w∼ Õ0

p∼ O′.
If O2r = O2r−1(qr), for 1 ≤ r ≤ t, then O′0 = O(q) and O′ = Õ0(q) with

q = qt ◦ qt−1 ◦ · · · ◦ q1.
Proof. Using assertion (i) (resp. assertion (ii)) of the previous lemma, one can gradually

move all appearances of
p∼ to the left (resp. right) end of the chain (2.9). First, the leftmost

(resp. rightmost)
p∼ is moved. The leftmost (resp. rightmost) part of the chain takes the form

O p∼ O′1
w∼ O2

w∼ O3
p∼ O4 · · · (resp. · · · O2t−3

p∼ O2t−2
w∼ O2t−1

w∼ Õ2t
p∼ O′).

Note that two consecutive w∼ can be replaced by one, so we can removeO2 (resp.O2t−1) from
the obtained chain. Next,

p∼ that links O3 and O4 (resp. O2t−3 and O2t−2) is moved. The
leftmost (resp. rightmost) part of the chain takes the form

O p∼ O′1
p∼ O′3

w∼ O4
w∼ O5 · · · (resp. · · · O2t−4

w∼ O2t−3
w∼ Õ2t−2

p∼ Õ2t
p∼ O′).

Continuing this way one ultimately obtains

O p∼ O′1
p∼ O′3

p∼ · · · p∼ O′2t−1
w∼ O2t

w∼ O′(2.10)

(resp. O w∼ O1
w∼ Õ2

p∼ · · · p∼ Õ2t−2
p∼ Õ2t

p∼ O′).

Here O2t (resp. O1) can be removed. Note that
p∼ is an equivalence relation. Hence by the

transitivity property, the leftmost part of the chain O p∼ O′1
p∼ O′3

p∼ · · · p∼ O′2t−1 can be
replaced by O p∼ O′2t−1 (and similarly for the rightmost part of the chain). To complete the
proof of the first assertion one has to rename O′2t−1 as O′0 (resp. Õ2 as Õ0).

The proof of the second assertion is the same, but one can use more information.
Now, from the proof of the preceding lemma we know that in the final chain (2.10) we
have O′1 = O(q1) and O′2r−1 = O′2r−3(qr), for 2 ≤ r ≤ t, (resp. O′ = Õ(qt) and
Õ2r = Õ2r−2(qr−1), 2 ≤ r ≤ t). Hence O′0 = O′2t−1 = O(q) (resp. O′ = Õ2(q) = Õ0(q))
with q = qt ◦ qt−1 ◦ · · · ◦ q1.

Obviously, the first or the last (or both) appearance of w∼ in the chain (2.9) can be omitted
provided that O = O1 and O′ = O2t (resp. O = O1 and O′ = O2t).

Two sequences O,O′ ∈O(Pm) can be linked via a long chain like (2.9), which may
include all equivalence relations ∼, s∼, w∼, and

p∼ introduced so far. Proposition 2.8 shows that
each such chain can be reduced to a short chain that uses just one

p∼ and one w∼. Furthermore,
weak equivalence can be written in the most compact form (2.7).
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DEFINITION 2.9. Two sequences O,O′ ∈O(Pm) are connected by a chain of equiv-
alence relations if there exist O1, . . . ,Or ∈ O(Pm), r ≥ 0, such that in the sequence O,
O1, . . . ,Or,O′ each two neighboring terms are linked to ∼, s∼, w∼, or

p∼. The chain is in
canonical form if it looks like (2.7) with one

p∼ placed in front of it or after it.
We conclude that every chain of equivalence relations can be reduced to the canonical form.

Let us return to the block matrix A from relation (2.2). To a partition π = (n1, . . . , nm)
we associate the n-tuple (s1, . . . , sm),

si = si−1 + ni, 2 ≤ i ≤ m, s1 = n1.

Note that the sequence of the first n natural numbers, 1, 2, . . . , n, can be written as 1, . . . , s1,
s1 + 1, . . . , s2, . . . , sm−1 + 1, . . . , sm, which is the same as

s1 − n1 + 1, . . . , s1, s2 − n2 + 1, . . . , s2, . . . , sm − nm + 1, . . . , sm.

Here, sr − nr + 1, . . . , sr are indices of the columns (resp. rows) which define the rth
block-column (resp. block-row) of A. Let O ∈ Pm and Õ = O(p) so that we have
Õ = (p(i0), p(j0)), (p(i1), p(j1)), . . . , (p(iT−1), p(jT−1)). The permutation p of the set
Sn = {1, 2, . . . , n} associated with p is defined by:

p =

(
s1−n1 + 1, . . . s1, s2−n2 + 1, . . . sm−nm + 1, . . . sm

sp(1)−np(1) + 1,. . . sp(1), sp(2)−np(2) + 1,. . . sp(m)−np(m) + 1,. . . sp(m)

)
.

Using the same rule (2.8), we obtain the permutation matrix P of order n, associated with
p. It satisfies Pet = ep(t), 1 ≤ t ≤ n. The matrix P has the form P = [Ep(1) · · ·Ep(m)],
where each Ep(k) is an n×np(k) matrix (i.e., a single block-column) that differs from the zero
matrix only in its p(k)th block-row,

Ep(k) =
[

0 · · · 0 Ip(k) 0 · · · 0
]T
, 1 ≤ k ≤ m.

n1 np(k) nm

Let A(T ) be the matrix obtained from A by applying one sweep of the quasi-cyclic block
Jacobi method defined by IO. The iterative process has the form (2.5). Hence using P and
PT , we can write

PA(T )PT = P (UTT−1U
T
T−2 · · ·UT0 PT )PAPT (PU0 · · ·UT−2UT−1)PT(2.11)

= (PUTT−1P
T ) · · · (PUT0 PT )PAPT (PU0P

T ) · · · (PUT−1PT )

= ŨTT−1 · · · ŨT0 (PAPT ) Ũ0 · · · ŨT−1,

where

(2.12) Ũk = PUkP
T , 0 ≤ k ≤ T − 1.

Each Ũk is an orthogonal elementary block matrix whose pivot pair is (p(ik), p(jk)). We can
interpret the process (2.11) as a quasi-cyclic block Jacobi method defined by IÕ. When it is
applied to Ã = PAPT , after one sweep it results in Ã(T ) = PA(T )PT . Indeed, at step k of
that process we have

(2.13) Ã(k+1) = ŨTk Ã
(k)Ũk, 0 ≤ k ≤ T − 1,

where Ã(k) = PA(k)PT for any k. For the matrix Ã(k+1) we know that its (p(ik), p(jk))-
pivot submatrix of order np(ik) + np(jk) is diagonal. Hence, it is a quasi-cyclic block Jacobi
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method. Moreover, if Uk is in the class UBCEπ(%) from Section 2.3, the same will be true
for Ũk.

The process (2.13) is a block Jacobi method for the matrix Ã which carries a block-
matrix partition defined by πp = (np(1), . . . , np(m)). Thus, if A is replaced by Ã and
the permutation π by πp, then the block method (2.13) is defined by the pivot sequence
Õ = O(p) ∈ O(Pm). We can formally write (π,O, A)

p7→ (πp,O(p), PAPT ). This is
equivalent to (πp−1 , O(p−1), PTAP )

p7→ (π,O, A).
We end this subsection with two remarks. First, the reverse ordering O← is not the same

as O(ẽ), where

(2.14) ẽ =

(
1 2 . . . m
m m− 1 . . . 1

)
.

Examples which confirm this claim are shown in Section 3.2.
Second, if in Lemma 2.3 the equivalence relation w∼ is replaced by

p∼, the assertion will
remain to hold. The proof is trivial. Indeed, if in the chain (2.7), which may now include

p∼,
only one sequence Ot is replaced by O←t , then all the sequences have to be replaced by their
inverses. Otherwise, the chain can be broken into two chains that are not mutually connected.

2.3. Global convergence. A block Jacobi method is convergent for A if the obtained
sequence of matrices (A(k)) converges to some diagonal matrix Λ. The method is globally
convergent if it is convergent for every symmetric matrix A. This definition assumes that the
partition π is arbitrary. In particular, one can take π = (1, 1, . . . , 1), which means that it is
the proper generalization of the standard notion of global convergence. The words “global”
and “globally” are often omitted. For example, if one says that the block method converges
for some pivot strategy, this means that the method converges for every initial symmetric
matrix. For global convergence considerations, it is irrelevant whether the diagonal blocks
of the initial matrix are diagonal submatrices. Namely, after some iteration (within the first
sweep) this property will be fulfilled, and it will remain to hold until convergence. To measure
how much the method has converged, we use the quantity

S(A) =

√
2

2
‖A− diag(A)‖F =

[
n−1∑
s=1

n∑
t=s+1

|ast|2
] 1

2

,

where ‖X‖F =
√

trace(XTX) stands for the Frobenius norm of X . In the definition of S(A)
we could have used blocks instead of elements, but since the diagonal blocks are diagonal
submatrices, this reduces to the same quantity. Obviously, the convergence of a block Jacobi
method applied to A implies that S(A(k)) → 0 as k → ∞. The converse is true provided
that the diagonal elements of diag(Λ

(k+1)
ii ,Λ

(k+1)
jj ) from (2.6) are always ordered in some

prescribed order, typically nonincreasingly.
THEOREM 2.10. Let A be a symmetric matrix and A(k), k ≥ 0, be the sequence obtained

by applying the block Jacobi method to A. Let the pivot strategy be cyclic or quasi-cyclic, and
assume that limk→∞ S(A(k)) = 0.

(i) If the algorithm that diagonalizes the pivot submatrix always delivers
diag(Λ

(k+1)
ii , Λ

(k+1)
jj ) with nonincreasingly (resp. nondecreasingly) ordered diagonal

elements, then Λ = limk→∞A(k) and the diagonal elements of Λ are nonincreas-
ingly (resp. nondecreasingly) ordered.

(ii) If the algorithm that diagonalizes the pivot submatrix is any standard (i.e., element-
wise) globally convergent Jacobi method, then Λ = limk→∞A(k).
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Proof. The proof has been moved to Appendix A.
Theorem 2.10 implies that the global convergence problem of the block Jacobi method

reduces to the convergence of the sequence S(A(k)), k ≥ 0, to zero.
By inspecting the proofs of the results related to the global convergence of the standard

cyclic Jacobi method [11, 32], one finds that they hold for block methods, too. We summarize
those results as follows.

THEOREM 2.11. If a block Jacobi method converges for some cyclic strategy, then it
converges for all strategies that are weakly equivalent to it. The block methods defined by
equivalent cyclic strategies generate the same matrices after each full cycle, and within the
same cycle they produce the same sets of orthogonal elementary matrices.

Indeed, the proof for the standard Jacobi method essentially uses the fact that commuting
pivot pairs results in commuting the Jacobi rotations. Similarly, the proof for the block method
uses the fact that commuting pivot pairs (i, j) and (p, q) implies commuting orthogonal
elementary matrices Uij and Upq. For the convergence of the diagonal elements one should
presume conditions like those in Theorem 2.10 for the kernel algorithms. The second part
of the theorem holds because it presumes that the block Jacobi method uses the same kernel
algorithm. Theorem 2.11 also holds for the quasi-cyclic methods provided that care is taken
for the blocks that are annihilated more than once within a sweep.

A sufficient condition for global convergence of serial standard Jacobi methods is the
existence of a strictly positive uniform lower bound for the cosines of the rotation angles;
see [10]. For the serial block Jacobi methods, a sufficient condition for the global convergence
is that the transformation matrices Uk from relation (2.5) have a strictly positive uniform
lower bound for the singular values of the diagonal blocks [5]. This condition also appears
in the global convergence analysis of more general serial Jacobi-type methods [18]. Unitary
elementary block matrices which satisfy such a property are called UBC (uniformly bounded
cosine) transformation matrices in [5]. In the same paper it was shown that for every unitary
matrix of order n and every partition ς = (n1, n2) of n, there exists a permutation matrix J
such that for the leading n1 × n1 block of Ũ = UJ one has

σmin(Ũ11) ≥ γς > γ̃n > 0, γς =
3√

(4n1 + 6n2 − 1)(n2 + 1)
, γ̃n =

3
√

2√
4n + 26

.

The second inequality, which involves γ̃n, has been proved in [18]. Hence, every unitary
elementary block matrix can be made UBC by an appropriate permutation of its nontrivial
columns.

In this paper we will use UBC transformation matrices. Therefore, for each 0 < % ≤ 1,
we introduce the class UBCEπ(%) of elementary unitary UBC block matrices as follows. The
unitary elementary block matrix Uij from relation (2.3) belongs to the class UBCEπ(%) if

(2.15) σmin(Uii) = σmin(Ujj) ≥ %γij > %γ̃ni+nj ≥ %γ̃n

holds, where

(2.16) γij =
3√

(4ni + 6nj − 1)(nj + 1)
.

If π is understood, we will write UBCE(%), while if % = 1, the paramter % will also be omitted
from the notation. In definitions, statements and ordinary text, at every appearance of %, we
will automatically assume that 0 < % ≤ 1. We will use the same notation when Uij is real,
i.e., orthogonal.
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Note that Uk from relation (2.5) is an orthogonal elementary matrix defined by the pivot
pair (i, j), where i = i(k), j = j(k). To make Uk a UBCE transformation, one has to
find the permutation Jk and then compute UkJk. This can be accomplished (see [5]) by
performing the QR factorization with column pivoting of [U

(k)
ii U

(k)
ij ] from relation (2.6). The

QR factorization yields Ĵk, which then defines Jk as Jk = E(i, j, Ĵk). Then Ûk also belongs to
the class UBCEςij , where ςij = (ni, nj). If (ni, nj) is understood, ςij will be omitted. One ea-
sily verifies that UkJk diagonalizes the pivot submatrix Â(k), and the similarity transformation
with Jk does not change the Frobenius norm of the affected blocks of UTk A

(k)Uk. In addition,
one can show that once S(A(k)) is sufficiently small and the diagonal elements affiliated with
the same eigenvalue occupy successive positions along the diagonal, the permutations Jk
are no longer needed (see [5]), i.e., Jk can be taken to be the identity. If π = (1, 1, . . . , 1),
then one can replace γij by

√
2/2. The uniform bound

√
2/2% is the one from the known

Forsythe-Henrici condition [10].
REMARK 2.12. The parameter % has been introduced for several reasons. First, it

simplifies the convergence analysis of the more general iterative process described in Section 5.
Second, as will be shown in Sections 3 and 4, the convergence proofs for the symmetric block
Jacobi method hold for any 0 < % ≤ 1. Finally, for the case % = 1, the determination of
the permutation Jk requires the QR factorization with column pivoting of an ni × (ni + nj)
matrix. Possibly, for some smaller %, an appropriate permutation matrix could be obtained for
a smaller cost.

2.4. Block Jacobi annihilators and operators. Jacobi annihilators and operators have
been introduced in [22] as a tool for proving the global and quadratic convergence of the
column-cyclic Jacobi method. Later they have been used for proving the global convergence
of some norm-reducing Jacobi-type methods for general matrices [12, 14]. In [1, 17, 18] they
have been generalized to cope with the block Jacobi methods. Here we define a class of Jacobi
annihilators and operators designed precisely for the block Jacobi method for symmetric
matrices. They will be referred to as block Jacobi annihilators and operators. This will move
us to a more general point of view of the block Jacobi methods, which can be used in the
convergence considerations.

First let us introduce some notation. For an arbitrary p × q matrix X , we define the
column vector comprising the columns of X ,

col(X) = [x11, x21, . . . , xp1, . . . , x1q, . . . , xpq]
T
.

Let π = (n1, . . . , nm) be a partition of n. Let Sn denote the real vector space of symmetric
matrices of order n. Let A = (Ars) ∈ Sn be as in relation (2.2). Its block-matrix partition is
determined by π. We define the vector-valued function vecπ as follows (see [17, 18]),

(2.17) vecπ(A) =


c2
c3
...
cm

 , where cj =


col(A1j)
col(A2j)

...
col(Aj−1,j)

 , 2 ≤ j ≤ m.

Then

(2.18) vecπ : Sn → RK , K = N −
m∑
i=1

ni(ni − 1)

2
, N =

n(n− 1)

2
,

is a linear operator.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

CONVERGENCE OF THE CYCLIC AND QUASI-CYCLIC BLOCK JACOBI METHODS 119

Note that vecπ(A) contains all off-diagonal elements from the upper block triangular part
of A. They are arranged in vecπ(A) using double column-wise ordering, one with respect to
the blocks in A, the other with respect to the elements within each block. The function vecπ
is a surjection but not an injection. In order to make it a bijection, we restrict it to the vector
subspace S0,n of Sn, consisting of all matrices from Sn whose diagonal blocks (with respect
to the block-matrix partition defined by π) are zero. Let vecπ,0 = vecπ|S0,n

. Obviously, the

function vecπ,0 is an invertible linear operator from S0,n to RK . In the following text we will
often assume that the partition π is known and it will be omitted from the notation. However,
it will be denoted whenever an additional partition is also considered.

If a ∈ RK and A = vec−10 (a), then A is obtained from a using the block-matrix partition
defined by π and the double column-wise ordering as described in relation (2.17). The diagonal
blocks are set to zero, and the whole matrix is set to be symmetric. Obviously, A is uniquely
determined by a.

Beside the linear operators vec and vec0, we will make use of the linear operator
Nij : Rn×n → Rn×n, which also uses the block-matrix partition defined by π and sets the
pivot submatrix of the argument matrix to zero. When applied to A ∈ Sn, Nij(A) sets the
blocks Aij , Aji, Aii, and Ajj to zero.

DEFINITION 2.13. Let π = (n1, . . . , nm) be a partition of n, let

Û =

[
U11 U12

UT12 U22

]
ni
nj

,

be an orthogonal matrix of order ni + nj , and let U = E(i, j, Û) be the corresponding
elementary block matrix. The transformationRij(Û) determined by

Rij(Û)(vec(A)) = vec(Nij(UTAU)), A ∈ Sn,

is called the ij-block Jacobi annihilator. For each pair 1 ≤ i < j ≤ m,

Rij =
{
Rij(Û)

∣∣ Û is an orthogonal matrix of order ni + nj

}
is the ij-class of the block Jacobi annihilators. If all Û are restricted to the class UBCEςij (%),
then the resulting ij-class is denoted byRUBCEπ(%)

ij .
Given i, j, Û , the following algorithm computes the vector a′ = Rij(Û)a for a ∈ RK .

It is based on the formula Rij(Û)a = vec(Nij(UT vec−10 (a)U)), which can be taken as an
equivalent definition ofRij(Û).

ALGORITHM 2.14 (ComputingRij(Û)a).

a ∈ RK
A = vec−10 (a)
for r = 1, . . . ,m do

A′ri = AriUii +ArjUji
A′rj = AriUij +ArjUjj

end for
for r = 1, . . . ,m do

A′ir = UTiiAir + UTjiAjr
A′jr = UTijAir + UTjjAjr

end for
A′ij = 0, A′ji = 0, A′ii = 0, A′jj = 0
a′ = vec(A′)

% an arbitrary vector
% this invokes the module which computes
% the symmetric matrix A = vec−1

0 (a)

% this part of code computes
% A′ = UTAU , U = E(i, j, Û)

% Û is partitioned as in relation (2.4)

% this part updates A′, A′ ← Nij(A
′)

% the module which computes vec(A′)
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The matrix A′ from Algorithm 2.14 has the same partition as A. Note that the mapping
a 7→ a′ is a composition of linear transformations. Therefore, given a basis in RK , Rij(Û)
can be represented by some square matrix of order K. We will choose the canonic basis (e),
which consists of the columns of IK , and denote the obtained matrix by the bold symbol.
Hence,

(2.19) Rij(Û)(a) = Rij(Û)a, a ∈ RK .

We will call the matrix Rij(Û) by the same name, the ij-block Jacobi annihilator, and the
appropriate class of matrices will be denoted by

Rij =
{
Rij(Û)

∣∣ Û is an orthogonal matrix of order ni + nj

}
.

If all Û are restricted to UBCE(%), the obtained class of block Jacobi annihilators is denoted

byRUBCE(%)
ij . In the sequel, every mention of the block Jacobi annihilator will refer to the

matrix Rij(Û) from relation (2.19).
The following theorem reveals the structure of a block Jacobi annihilator. It is a simplifica-

tion of [17, Theorem 2.1], and its proof can be found in [1]. The theorem utilizes the function
τ(i, j) = (j − 1)(j − 2)/2 + i, 1 ≤ i < j ≤ m, and the Kronecker product of matrices. The
vectors of length K and the block Jacobi annihilators of order K carry the block-partition
determined by (n1n2, n1n3, n2n3, . . . , nm−1nm). The spectral norm is denoted by ‖ · ‖2.

THEOREM 2.15 ([1, 17]). Let π = (n1, . . . , nm) be the partition of n and let K, N be
integers defined in relation (2.18). Let (i, j) ∈ Pm, R ∈Rij , R = R(Û), where Û is an
orthogonal matrix of order ni + nj . Then R differs from the identity matrix IK in exactly
m− 1 principal submatrices, which are given by the following relations:

Rτ(i,j),τ(i,j) =0,[
Rτ(r,i),τ(r,i) Rτ(r,i),τ(r,j)
Rτ(r,j),τ(r,i) Rτ(r,j),τ(r,j)

]
=

[
UTii ⊗ Inr UTji ⊗ Inr
UTij ⊗ Inr UTjj ⊗ Inr

]
, 1 ≤ r ≤ i− 1,[

Rτ(i,r),τ(i,r) Rτ(i,r),τ(r,j)
Rτ(r,j),τ(i,r) Rτ(r,j),τ(r,j)

]
=

[
Inr ⊗ UTii S(UTji ⊗ Inr )

S̃(Inr ⊗ UTij ) UTjj ⊗ Inr

]
, i+1 ≤ r ≤ j–1,[

Rτ(i,r),τ(i,r) Rτ(i,r),τ(j,r)
Rτ(j,r),τ(i,r) Rτ(j,r),τ(j,r)

]
=

[
Inr ⊗ UTii Inr ⊗ UTji
Inr ⊗ UTij Inr ⊗ UTjj

]
, j + 1 ≤ r ≤ m,

where

S =

 Ini ⊗ e
T
1

...
Ini ⊗ eTnr

 =
[
Inr ⊗ ē1 . . . Inr ⊗ ēni

]
,

S̃ =

 Inr ⊗ ẽ
T
1

...
Inr ⊗ ẽTnj

 =
[
Inj ⊗ e1 . . . Inj ⊗ enr

]
.

Here, ei, ēi and ẽi denote the ith column of Inr , Ini and Inj , respectively.
The matrix R satisfies ‖R‖2 = 1, except in the casem = 2, (i, j) = (1, 2), when R = 0.
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EXAMPLE 2.16. Let A ∈ R8×8, π = (2, 2, 2, 2), i = 1, j = 2. Then K = 24 and

R = R12(Û) =



0
0

0
0

UT
11 UT

21

UT
11 UT

21

UT
12 UT

22

UT
12 UT

22

UT
11 UT

21

UT
11 UT

21

UT
12 UT

22

UT
12 UT

22

1
1

1
1



,

where U11, U12, U21, U22 are the blocks of order 2 of Û ∈ R4×4 and Û is orthogonal.
We see that R is, up to a similarity transformation with a permutation, a direct sum of

an orthogonal matrix and the zero matrix. Therefore, ‖R‖2 = 1, except in the case m = 2,
(i, j) = (1, 2), when it is the zero matrix.

COROLLARY 2.17. Let π, (i, j) ∈ Pm and R ∈ Rij be as in Theorem 2.15. Then

RT ∈Rij . Moreover, if R ∈RUBCE(%)
ij , then RT ∈RUBCE(%)

ij .
Proof. The proof has been moved to Appendix A.
The block Jacobi annihilators are used to define the block Jacobi operators, which make

up our tool for proving the global convergence of the block Jacobi methods.
DEFINITION 2.18. Let π = (n1, . . . , nm) be a partition of n, and let

O = (i0, j0), (i1, j1), . . . , (iT−1, jT−1) ∈O(Pm), T ≥M =
m(m− 1)

2
.

Then

JO = {J
∣∣ J = RiT−1jT−1

. . .Ri1j1Ri0j0 , Rikjk ∈Rikjk , 0 ≤ k ≤ T − 1}

is called the class of block Jacobi operators associated with the sequence O. The matrices J
of order K fromJO are block Jacobi operators. If eachRij inJO is replaced byRUBCE(%)

ij ,

then the notationJ UBCE(%)
O will be used.

An element J ∈ JO will sometimes be written as JO. The following lemma reveals
some properties of the block Jacobi operators. The spectral radius of a square matrix X is
denoted by spr(X).

LEMMA 2.19 ([1, 18]). Let π = (n1, . . . , nm) be a partition of n,O,O′ ∈O(Pm), and
O′ w∼ O. Take JO ∈JO, and let JO′ be comprised of the same block Jacobi annihilators as
JO. Then spr(JO) = spr(JO′). If O ∼ O′, then JO = JO′ .

Proof. The proof is the same as the proof of [18, Lemma 4.4].
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If the spectral norm is used instead of the spectral radius, then we have the following
result.

PROPOSITION 2.20. Let π = (n1, . . . , nm) be a partition of n, O,O′ ∈O(Pm), and
O′ w∼ O. Let O and O′ be linked by the chain O = O0,O1, . . . ,Or = O′ as in relation (2.7).
Suppose that in the chain there are exactly d pairs of neighboring terms that are shift equivalent.
If

‖J ‖2 ≤ µπ,% for all J ∈J UBCE(%)
O ,

then for any d+ 1 block Jacobi operators fromJ UBCE(%)
O′ one has

‖J ′1J ′2 · · · J ′d+1‖2 ≤ µπ,%, J ′1, . . . ,J ′d+1 ∈J
UBCE(%)
O′ .

The constant µπ,% may depend only on π and %.
Proof. The proof is the same as the proof of [18, Lemma 4.8(ii)]. The role of the set Ψπ

from [18, Lemma 4.8(ii)] is played by the set
⋃
i<jR

UBCE(%)
ij .

PROPOSITION 2.21. Let π = (n1, . . . , nm) be a partition of n, O ∈ O(Pm), and

suppose ‖J ‖2 ≤ µπ,% for all J ∈J UBCE(%)
O , where µ% depends on π and %. Then

‖J̃ ‖2 ≤ µπ,% for all J̃ ∈J UBCE(%)
O← .

The assertion holds provided that in both appearances the spectral norm is replaced by the
spectral radius.

Proof. Suppose that O = (i0, j0), (i1, j1), . . . , (iT−1, jT−1) ∈ O(Pm), and let

J̃ ∈J UBCE(%)
O← be arbitrary. Then

J̃ = Ri(0),j(0)(Û0)Ri(1),j(1)(Û1) · · ·Ri(T−1),j(T−1)(ÛT−1),

for some orthogonal UBCE(%) matrices Ûk, 0 ≤ k ≤ T − 1, of appropriate sizes.

If we show that J̃ T ∈J UBCE(%)
O , the first claim will follow from ‖J̃ ‖2 =‖J̃ T ‖2 ≤ µπ,%,

while the part about the spectral radius will be a consequence of spr(J̃ ) = spr(J̃ T ) ≤ µπ,%.
Note that

J̃ T =
[
Ri(0),j(0)(Û0)Ri(1),j(1)(Û1) · · ·Ri(T−1),j(T−1)(ÛT−1)

]T
= [Ri(T−1),j(T−1)(ÛT−1)]T · · · [Ri(1),j(1)(Û1)]T · [Ri(0),j(0)(Û0)]T .

By Corollary 2.17 we know that [Rij(Ûk)]T ∈RUBCE(%)
ij , hence J̃ T ∈J UBCE(%)

O .

2.4.1. Permutation equivalence and the block Jacobi operators. Here we derive a
similar result for the block Jacobi operators JO and JO(p).

THEOREM 2.22. Let π = (n1, . . . , nm) be a partition of n, and take O ∈O(Pm). Let
p be a permutation of Sm and set Õ = O(p).

(i) If ‖J ‖2 ≤ µπ,% for all J ∈J UBCEπ(%)
O , where µπ,% only depends on π and %, then

‖J̃ ‖2 ≤ µπ,% for any J̃ ∈J UBCEπp (%)

Õ .
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(ii) If ‖J1J2 · · · Jd+1‖2 ≤ µπ,%, for all J1, . . . ,Jd+1 ∈ J UBCEπ(%)
O , where µπ,% only

depends on π and %, then

‖J̃1J̃2 · · · J̃d+1‖2 ≤ µπ,% for any J̃1, . . . , J̃d+1 ∈J UBCEπp (%)

Õ .

The assertions also hold provided that every appearance of the spectral norm is replaced by
the spectral radius.

Proof. (i) Let O = (i0, j0), (i1, j1), . . . , (iT−1, jT−1) so that Õ = (p(i0), p(j0)),

(p(i1), p(j1)), . . . , (p(iT−1), p(jT−1)). Let J̃ ∈J UBCEπp (%)

Õ be arbitrary. Then

(2.20) J̃ = Rp(iT−1),p(jT−1)(ÛT−1) · · ·Rp(i1),p(j1)(Û1)Rp(i0),p(j0)(Û0),

where Ûk is an orthogonal UBCEπp(%) matrix of order np(ik) +np(jk) for each 0 ≤ k ≤ T −1.
Let a ∈ RK be an arbitrary nonzero vector, and consider the computation of a′ = J̃ a.

Using Algorithm 2.14, the vector a′ can be obtained by the following procedure:
• Compute the symmetric matrix A(0) ≡ A = vec−1πp,0

(a).
• Recursively compute: A(k+1) = Np(i)p(j)(U

T
k A

(k)Uk), k = 0, 1, . . . , T − 1.
• Compute the vector a′ = vecπp(A

(T )).
Here Uk = E(p(ik), p(jk), Ûk), 0 ≤ k ≤ T − 1, and the matrices A and A(k) carry the matrix
block-partition defined by πp. Let P be the matrix from relation (2.12), which is defined by
Pet = ep(t), 1 ≤ t ≤ n, where p is defined as in Section 2.2.1, and p is from the statement of
this lemma. Let X be a square matrix of order n, partitioned in accordance with πp. Then for
any 1 ≤ s, t ≤ m, the transformation X 7→ PTXP changes the partition from πp to π and
moves the block Xp(s)p(t) to the (s, t) position. Therefore, we have

PTA(k+1)P = PTNp(i)p(j)

(
UTk A

(k)Uk

)
P = Nij

(
PTUTk A

(k)UkP
)

(2.21)

= Nij
(

(PTUkP )T (PTA(k)P )(PTUkP )
)
, k = 0, 1, . . . , T − 1.

If we set Ā(k) = PTA(k)P , Ā = PTAP , and Ū (k) = PTU (k)P , then the recurrence (2.21)
takes the form

(2.22) Ā(k+1) = Nij
(

[Ū (k)]T Ā(k)Ū (k)
)
, k = 0, 1, . . . , T − 1, Ā(0) = Ā.

Obviously, we have vecπ(Ā) = vecπ(PTAP ) = Pa for some permutation matrix P of
order K. Applying the vec function to relation (2.22), one obtains

(2.23) ā(k+1) = Ri(k),j(k)(
̂̄Uk)ā(k), k = 0, 1, . . . , T − 1, ā(0) = Pa,

where Rij(
̂̄Uk) ∈RUBCEπ(%)

ij . This process is associated with the sequence O and results in
the final form

Pa′ = J̄OPa, J̄O ∈J UBCEπ(%)
O .

Because a is an arbitrary vector, we have J̃ = PT J̄OP. This implies ‖J̃ ‖2 = ‖J̄O‖2 ≤ µπ,%.
Since, J̃ and J̄O are similar, their spectral radius is the same.

(ii) The proof is similar to the proof of (i). We start our consideration with an arbitrary
nonzero vector a ∈ RK and consider the computation of a′ = J̃1J̃2 · · · J̃d+1a. Since we
have d+ 1 block Jacobi operators, we will use altogether (d+ 1)T block Jacobi annihilators.
All we have to change in the proof of (i) is the the range of the index k in the relations
(2.20)–(2.23): instead of T − 1, its largest value will be (d + 1)T − 1. At the end we have
J̃1J̃2 · · · J̃d+1 = PTJ1J2 · · · Jd+1P, and the conclusion follows.
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3. Generalized serial strategies. The aim of this section is to significantly enlarge the
class of the known “convergent” cyclic pivot strategies, namely the serial ones and those that
are weakly equivalent to them (the so-called weak wavefront strategies [32]). We study several
classes of cyclic pivot strategies, which are generalizations of the serial ones. The first (resp.
second) of those classes is defined by the set B(m)

c (resp. B(m)
r ) of pivot orderings which arise

from column-wise (resp. row-wise) orderings of Pm. The other two are defined by the first
two using reverse orderings. Once the global convergence of the block Jacobi method under
these strategies is proved, one can easily expand the obtained set of pivot strategies using the
theory of equivalent strategies.

3.1. The class B(m)
c . We start with the class of cyclic strategies that choose the (1, 2)-

block as the first pivot block, then choose all blocks from the second block-column in some
order, etc. At the last stage they choose all blocks from the last block-column in some
order. For the precise definition of that class, we denote the set of all permutations of the set
{l1, l1 + 1, . . . , l2} by Π(l1,l2). Let

B(m)
c =

{
O ∈O(Pm)

∣∣ O = (1, 2), (τ3(1), 3), (τ3(2), 3), . . . , (τm(1),m), . . . ,(3.1)

(τm(m− 1),m), τj ∈ Π(1,j−1), 3 ≤ j ≤ m
}
.

The set B(m)
c is a part of the class of column-wise orderings with permutations of the set Pm,

which will be described in Definition 3.4. A typical ordering O ∈ B(6)c is represented by MO
below. The second matrix MÕ is defined by some Õ w∼ O. Its purpose is to see how far from
the “serial structure” this equivalence can push O.

MO =


∗ 0 2 4 9 12
0 ∗ 1 5 8 10
2 1 ∗ 3 7 13
4 5 3 ∗ 6 11
9 8 7 6 ∗ 14
12 10 13 11 14 ∗

 , MÕ =


∗ 7 9 0 2 5
7 ∗ 10 13 14 6
9 10 ∗ 11 12 8
0 13 11 ∗ 1 4
2 14 12 1 ∗ 3
5 6 8 4 3 ∗

 .

From MO we can see that the permutation τj from (3.1) is linked to the jth block-column of
the matrix. The next theorem proves the global convergence of the block Jacobi method under
the cyclic strategies IO defined by the orderings O ∈ B(m)

c .
THEOREM 3.1. Let π = (n1, . . . , nm) be a partition of n, and letO ∈ B(m)

c . LetA ∈ Sn
be partitioned as in relation (2.2). Suppose that A′ is obtained from A by applying one sweep
of the cyclic block Jacobi method defined by the strategy IO. If all transformation matrices
are from the class UBCE(%), then there are constants ηπ,% (depending only on π and %) and
η̃n,% (depending only on n and %) such that

S2(A′) ≤ ηπ,%S2(A), 0 ≤ ηπ,% < η̃n,% < 1.

Proof. The proof is lengthy and has been moved to Appendix A.
We have to explain why we use the two bounds satisfying µπ,% < µ̃n,% < 1. Recall that

each block Jacobi method is defined by some partition π of n. Different partitions define
different block Jacobi methods even in the case when the pivot orderings are the same. The
second bound µ̃n,% can be used in the global convergence statements for the block Jacobi
method when the order n of the initial matrix is known, while about the pivot ordering it is only
known that it belongs to the set

⋃
3≤m≤n B

(m)
c . It means that, for a given m, the convergence

result holds for the block Jacobi method defined by any π such that n1 + · · ·+ nm = n.
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Combining Theorem 3.1 with Theorem 2.11, we see that we can enlarge the class of
“convergent orderings” from B(m)

c to the class of all orderings that are weakly equivalent to
orderings from B(m)

c . Thus, the ordering Õ linked to the above matrix MÕ is also convergent.
The next result is a slight generalization of Theorem 3.1, and it deals with the block Jacobi

operators. The role of the block Jacobi operators will be explained in Section 5, especially by
inspecting the proof of Theorem 5.1.

THEOREM 3.2. Let π = (n1, . . . , nm) be a partition of n. Take O ∈ B(m)
c , and let

J ∈J UBCE(%)
O be a block Jacobi operator. Then there are constants µπ,% and µ̃n,% depending

only on π, % and n, %, respectively, such that

‖J ‖2 ≤ µπ,%, 0 ≤ µπ,% < µ̃n,% < 1.

Proof. Let a ∈ RK be an arbitrary nonzero vector and let a′ = J a. To track
how a′ is obtained from a, we can assume J = RiM−1jM−1

RiM−2jM−2
. . .Ri0j0 , where

O = (i0, j0), . . . , (iM−1, jM−1). If we define

(3.2) a(k+1) = Rikjka
(k), 0 ≤ k ≤M − 1, a(0) = a,

then we obtain a′ = a(M). Recall that Algorithm 2.14 describes the kth step of the pro-
cess (3.2), i.e., how the vector a(k+1) is obtained from a(k). This algorithm computes the
matrix A(k+1) = vec−10 (a(k+1)) from the matrix A(k) = vec−10 (a(k)). Note that

S2(A) = ‖a‖22 and S2(A′) = ‖a′‖22 = ‖J a‖22.

If we prove

(3.3) S2(A′) ≤ ηπ,%S2(A), ηπ,% < η̃n,% < 1,

and take into account that a is an arbitrary nonzero vector, then we will straightforwardly
obtain

‖JO‖2 = max
a 6=0

‖JO a‖2
‖a‖2

≤ µπ,% < µ̃n,%, µπ,% =
√
ηπ,%, µ̃n,% =

√
η̃n,%.

To prove (3.3), we can rely on the proof of Theorem 3.1. Indeed, let us compare the computa-
tion of the matrixA(k+1) fromA(k) using Algorithm 2.14 with the kth step of the block Jacobi
method. If we neglect the diagonal blocks, then both amount to the same procedure except
for the fact that the block Jacobi method actually computes the orthogonal elementary matrix
which diagonalizes the pivot submatrix, while in process (3.2) that transformation is given
via the matrix Rikjk = Rikjk(Ûk). The two procedures will naturally generate different
iteration matrices, but all estimates and the whole proof will be the same. The quantity ζl
from relation (A.10) will be different for the two procedures, but all that is needed for the
proof is that ζl is uniformly bounded from below by some positive constant, which is certainly
satisfied.

In the special case when π = (1, 1, . . . , 1), all blocks are 1 × 1 matrices, i.e., single
elements, so the block method reduces to the standard Jacobi method. In this case we will
denote the class B(n)c by C(n)c . Theorem 3.1 then reduces to the following corollary.

COROLLARY 3.3. Let A ∈ Sn, O ∈ C(n)c , and let A′ be obtained from A by applying one
sweep of the cyclic Jacobi method defined by the strategy IO, with rotation angles from the
interval [−π4 ,

π
4 ]. Then there is a constant ηn depending only on n such that

S2(A′) ≤ ηnS2(A), 0 ≤ ηn < 1.
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Proof. The proof has been moved to Appendix A.
In this special case, the class C(n)c is a subset of the set of Nazareth’s orderings from [28].

However, note that the bounds obtained here are much better than those in [28]. To illustrate
that, observe that for n = 3 (resp. n = 4) the value of ηn is equal to max{ 34 ,

3
4} = 3

4 (resp.
max{ 78 ,

27
28} = 27

28 ). In [28] the corresponding bounds are 1−1/(3 ·2104) and 1−1/(6 ·2294).
This comparison has also been studied in [1, page 57].

3.2. The classes B(m)
cp , B(m)

rp , and B(m)
sp . The same results hold for the class of cyclic

pivot strategies which take the pivot blocks from the block-rows. Let

B(m)
r =

{
O ∈O(Pm)

∣∣ O = (m− 1,m), (m− 2, τ̃m−2(m− 1)), (m− 2, τ̃m−2(m)),

. . . , (1, τ̃1(2)), . . . , (1, τ̃1(m)), τ̃i ∈ Π(i+1,m), 1 ≤ i ≤ m− 2
}
.

The set B(m)
r is a part of the class of row-wise orderings with permutations of the set Pm (see

Definition 3.4 below). A typical ordering from O ∈ B(6)r is represented by MO below. The
second matrix MÕ is defined by Õ w∼ O.

MO =


∗ 11 13 12 10 14
10 ∗ 9 7 6 8
11 9 ∗ 5 3 4
12 6 5 ∗ 1 2
13 7 3 1 ∗ 0
14 8 4 2 0 ∗

 , MÕ =


∗ 14 1 0 11 2
14 ∗ 13 10 7 12
1 13 ∗ 9 6 8
0 10 9 ∗ 4 5
11 7 6 4 ∗ 3
2 12 8 5 3 ∗

 .

From the matrix MO we can see that the permutation τ̃i from (3.1) is linked to the ith block-row
of the matrix. It is immediately clear that

(3.4) B(m)
r =

{
O(ẽ) | O ∈ B(m)

c

}
,

where ẽ is defined by relation (2.14). Theorems 3.1 and 3.2 remain to hold for O ∈ B(m)
r . The

proofs are almost identical to those for the case O ∈ B(m)
c . The version of Theorem 3.2 for

O ∈ B(m)
r follows directly from the original Theorem 3.2 combined with Theorem 2.22(i)

(when the permutation p is specified to be ẽ). Another way how Theorem 3.1 can be established
for O ∈ B(m)

r is to follow the lines of the proof of Theorem 3.5 (below), but then a version
of Theorem 3.2 for O ∈ B(m)

r should be proved first. If π = (1, 1, . . . , 1), then the class of
orderings B(n)r is denoted by C(n)r . Corollary 3.3 holds with the same constant ηn provided
that C(n)c is replaced by C(n)r .

We are interested in two more classes of pivot strategies for the block methods. The first
(resp. second) one selects the pivot blocks by block-columns (resp. block-rows), but now from
the last one to the second one (resp. from the first one to the next-to-last one). They are defined
as
←−
B (m)
c =

{
O ∈O(Pm)

∣∣ O← ∈ B(m)
c

}
,

←−
B (m)
r =

{
O ∈O(Pm)

∣∣ O← ∈ B(m)
r

}
.

Typical orderings from
←−
B (6)
c and

←−
B (6)
r are represented by M←−Oc and M←−Or below.

M←−Oc =


∗ 14 12 10 5 2
14 ∗ 13 9 6 4
12 13 ∗ 11 7 1
10 9 11 ∗ 8 3
5 6 7 8 ∗ 0
2 4 1 3 0 ∗

 , M←−Or =


∗ 4 3 2 1 0
4 ∗ 5 8 7 6
3 5 ∗ 9 11 10
2 8 9 ∗ 13 12
1 7 11 13 ∗ 14
0 6 10 12 14 ∗

 .
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As it has already been noticed at the end of Section 2.2, Lemma 2.3 remains to hold if w∼ is
replaced with

p∼. Therefore, relation (3.4) implies
←−
B (m)
r =

{
O(ẽ) | O ∈

←−
B (m)
c

}
.

DEFINITION 3.4. Let B(m)
cp = B(m)

c ∪
←−
B (m)
c , B(m)

rp = B(m)
r ∪

←−
B (m)
r . The set B(m)

cp (resp.
B(m)
rp ) is the class of the column-wise (resp. row-wise) orderings with permutations of Pm, and
{IO | O ∈ B(m)

cp } (resp. {IO | O ∈ B(m)
rp }) is the class of the column-cyclic (resp. row-cyclic)

strategies with permutations.
The set B(m)

sp = B(m)
cp ∪B(m)

rp is the class of the serial orderings with permutations of Pm,

and {IO | O ∈ B(m)
sp } is the class of the serial strategies with permutations.

THEOREM 3.5. Let π = (n1, . . . , nm) be a partition of n, O ∈ B(m)
sp , and let

J ∈J UBCE(%)
O be a block Jacobi operator. Then there are constants µπ,% and µ̃n,% depending

only on π, % and n, %, respectively, such that

‖J ‖2 ≤ µπ,%, 0 ≤ µπ,% < µ̃n,% < 1.

Proof. If O ∈ B(m)
c (resp. O ∈ B(m)

r ), then the theorem reduces to Theorem 3.2 (resp.
Theorem 3.2 combined with Theorem 2.22(i)). If O ∈

←−
B (m)
c (resp. O ∈

←−
B (m)
r ), then

additionally Proposition 2.21 is used.
The following result is a corollary of Theorem 3.5, but because of its importance, it is

stated as a stand-alone result.
THEOREM 3.6. Let π = (n1, . . . , nm) be a partition of n, O ∈ B(m)

sp , and let A ∈ Sn be
partitioned as in relation (2.2). Let A′ be obtained from A by applying one sweep of the cyclic
block Jacobi method defined by the strategy IO. If all transformation matrices are from the
class UBCE(%), then there are constants ηπ,% (depending only on π, %) and η̃n,% (depending
only on n, %) such that

S2(A′) ≤ ηπ,%S2(A), 0 ≤ ηπ,% < η̃n,% < 1.

Proof. Let O = (i0, j0), (i1, j1), . . . , (iM−1, jM−1). The method in the statement of the
theorem generates the recurrence relation of the form (2.5). If we observe how the elements in
the block upper-triangle are being updated, we arrive at the recursion

a(k+1) = Rija
(k), k ≥ 0, a(0) = a = vec(A).

Here, for each k, a(k) = vec(A(k)) ∈ RK , and Rij = Rij(Ûk) is the block Jacobi anni-
hilator associated with step k of the method. We have (i, j) = (i(k), j(k)) = (ik, jk) for
0 ≤ k ≤M − 1. After the first sweep is completed, one obtains

(3.5) a(M) = JOa, JO = Ri(M−1)j(M−1) · · ·Ri(0)j(0).

Since all transformation matrices in the block Jacobi method are from the class UBCE(%), we

have Rij(Ûk) ∈RUBCE(%)
ij . Therefore, JO ∈J UBCE(%)

O , and by applying Theorem 3.5 one
obtains ‖J ‖2 ≤ µπ,%, µπ,% < µ̃n,% < 1. Hence, if one takes the Euclidean vector norm of
both sides of the left equation in (3.5), it follows that

S2(A(M)) = ‖a(M)‖22 ≤ µ2
π,%‖a‖22 = µ2

π,%S
2(A).

It remains to set ηπ,% = µ2
π,% and η̃n,% = µ̃2

n,%.
Obviously, since the assertion of Theorem 3.6 holds for any single sweep, we conclude

that S(A(tM)) → 0 as t → ∞. Since the sequence S(A(k)), k ≥ 0, is nonincreasing, one
obtains S(A(k))→ 0 as k →∞. Together with Theorem 2.10 this implies global convergence.
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In the case π = (1, 1, . . . , 1) we have m = n. We can write C(n)cp , C(n)rp , and C(n)sp in places
of B(m)

cp , B(m)
rp , and B(m)

sp , respectively. Once again, Corollary 3.3 holds with the same constant
ηn if C(n)c is replaced by C(n)sp . Theorem 3.5 also holds with µn,% replacing µπ,%.

3.3. Generalized serial strategies. To further enlarge the class of convergent strategies
one can start with elements from B(m)

sp and use all conceivable chains which comprise the
equivalence relations ∼, s∼, w∼, and

p∼. Fortunately, using Proposition 2.8 and Definition 2.9,
we know that the set obtained this way can actually be obtained by using just one w∼ and one

p∼.
DEFINITION 3.7. Let

B(m)
spg =

{
O ∈O(Pm)

∣∣ O p∼ O′ ∼ O′′ or O ∼ O′ p∼ O′′, O′′ ∈ B(m)
sp

}
,

B(m)
sg =

{
O ∈O(Pm)

∣∣ O p∼ O′ w∼ O′′ or O w∼ O′ p∼ O′′, O′′ ∈ B(m)
sp

}
,

where the chains are in canonical form and O′ ∈ O(Pm). The set B(m)
sg (resp.

{IO | O ∈ B(m)
sg }) is the class of generalized serial pivot orderings of Pm (resp. general-

ized serial pivot strategies). The set B(m)
spg is a subclass of B(m)

sg whose elements are linked by
chains that do not use shifts.

THEOREM 3.8. Let π = (n1, . . . , nm) be a partition of n, O ∈ B(m)
spg , and let

J ∈ J UBCEπ(%)
O be the block Jacobi operator. Suppose that either O p∼ O′ ∼ O′′ ∈ B(m)

sp

with O′ = O(q), or O ∼ O′ p∼ O′′ ∈ B(m)
sp with O′′ = O′(q), for some permutation q of

the set Sm. Then there exist constants µπq,% and µ̃n,%, depending only on πq, % and n, %,
respectively, such that

‖J ‖2 ≤ µπq , 0 ≤ µπq,% < µ̃n,% < 1.

Proof. Let us first consider the case O p∼ O′ ∼ O′′ ∈ B(m)
sp with O′ = O(q). Let

B̃(m)
sp =

{
O′ ∈O(Pm)

∣∣ O′ ∼ O′′,O′′ ∈ B(m)
sp

}
.

Theorem 3.5 and Lemma 2.19 imply

(3.6) ‖JO′‖2 ≤ µπq,%, 0 ≤ µπq,% < µ̃n,% < 1, JO′ ∈J UBCEπq (%)
O′ , O′ ∈ B̃(m)

sp .

Since O = O′(q−1) and πq−1◦q = π, formula (3.6) and Theorem 2.22(i) imply

(3.7) ‖JO‖2 ≤ µπq,%, 0 ≤ µπq,% < µ̃n,% < 1, for any JO ∈J UBCEπ(%)
O .

Hence, relation (3.7) holds for J , which in turn proves the theorem.
Now suppose that O ∼ O′ p∼ O′′ ∈ B(m)

sp with O′′ = O′(q). Let

B̂(m)
sp =

{
O′ ∈O(Pm) | O′ = O′′(q−1), O′′ ∈ B(m)

sp

}
.

By Theorem 3.5 and Theorem 2.22(i) we have

‖JO′‖2 ≤ µπq,%, 0 ≤ µπq,% < µ̃n,% < 1, JO′ ∈J UBCEπ(%)

O , O′ ∈ B̂(m)
sp .

Here we have used πq−1◦q = π. The last formula holds for any JO′ ∈ J UBCEπ(%)

O . Since

O ∼ O′, Lemma 2.19 implies that the same formula holds for any JO ∈ J UBCEπ(%)

O . This
completes the proof since J is just one of those JO.
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THEOREM 3.9. Let π = (n1, . . . , nm) be a partition of n and O ∈ B(m)
sg . Suppose that

the chain connecting O to O′′ ∈ B(m)
sp contains d shift equivalences. Moreover, suppose

that either O p∼ O′ w∼ O′′ ∈ B(m)
sp with O′ = O(q) holds, or O w∼ O′ p∼ O′′ ∈ B(m)

sp with
O′′ = O′(q) holds, for some permutation q of the set Sm. Then there exist constants µπ,%
and µ̃n,% depending only on π, % and n, %, respectively, such that for any d+ 1 block Jacobi

operators J1,J2, . . . ,Jd+1 ∈J UBCEπ(%)
O one has

‖J1J2 · · · Jd+1‖2 ≤ µπq,%, 0 ≤ µπq,% < µ̃n,% < 1.

Proof. Let us first consider the case O p∼ O′ w∼ O′′ ∈ B(m)
sp with O′ = O(q). Denote

B̃(m)
sp =

{
O′ ∈O(Pm)

∣∣ O′ w∼ O′′, O′′ ∈ B(m)
sp

}
.

Theorem 3.5 and Proposition 2.20 imply

(3.8) ‖J ′1J ′2 · · · J ′d+1‖2 ≤ µπq,%, J ′1,J ′2, . . . ,J ′d+1 ∈J
UBCEπq (%)
O′ , O′ ∈ B̃(m)

sp ,

where 0 ≤ µπq,% < µ̃n,% < 1. Since O = O′(q−1) and πq−1◦ q = π, relation (3.8) and
Theorem 2.22(ii) give

‖J1J2 · · · Jd+1‖2 ≤ µπq,% for any J1,J2, . . . ,Jd+1 ∈J UBCEπ(%)
O ,

which proves the theorem.
Now suppose that O w∼ O′ p∼ O′′ ∈ B(m)

sp with O′′ = O′(q). Let

B̂(m)
sp =

{
O′ ∈O(Pm)

∣∣ O′ = O′′(q−1), O′′ ∈ B(m)
sp

}
.

By Theorem 3.5 and Theorem 2.22(i) we have

‖JO′‖2 ≤ µπq,%, 0 ≤ µπq,% < µ̃n,% < 1, JO′ ∈J UBCEπ(%)

O , O′ ∈ B̂(m)
sp .

Here we used πq−1◦ q = π once again. Since O w∼ O′, Proposition 2.20 completes the proof.

We end this section by shifting our attention from block Jacobi operators to cyclic block
Jacobi methods, defined by the generalized serial strategies.

THEOREM 3.10. Let π = (n1, . . . , nm) be a partition of n, O ∈ B(m)
spg , and let A ∈ Sn

be partitioned as in relation (2.2). Let A′ be obtained from A by applying one sweep of the
cyclic block Jacobi method defined by the strategy IO. If all transformation matrices are from
the class UBCEπq(%) for an appropriate permutation q of the set Sm, then there are constants
ηπq,% and η̃n,% depending only on πq, % and n, %, respectively, such that

S2(A′) ≤ ηπq,%S
2(A), 0 ≤ ηπq,% < η̃n,% < 1.

Proof. The proof is almost identical to the proof of Theorem 3.6. The difference is that
O ∈ B(m)

spg and we use Theorem 3.8 instead of Theorem 3.5.
THEOREM 3.11. Let π = (n1, . . . , nm) be a partition of n, O ∈ B(m)

sg , and let A ∈ Sn
be partitioned as in relation (2.2). Suppose that the chain connecting O and O′′ ∈ B(m)

sp is in
the canonical form and contains d shift equivalences. Let A′ be obtained from A by applying
d+1 sweeps of the cyclic block Jacobi method defined by the strategy IO. If all transformation
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matrices are from the class UBCEπq(%) for an appropriate permutation q of the set Pm, then
there are constants ηπq,% and η̃n,% depending only on πq, % and n, %, respectively, such that

S2(A′) ≤ ηπq,%S
2(A), 0 ≤ ηπq,% < η̃n,% < 1.

Here q is an appropriate permutation of the set Pm.
Proof. The proof follows the lines of the proof of Theorem 3.6. Since we consider d+ 1

sweeps, instead of relation (3.5), we will obtain

a′ = a((d+1)M) = J [d+1]
O J [d]

O · · · J
[1]
O a, O ∈ B(m)

sg .

Here J [s]
O is the block Jacobi operator associated with cycle s of the block Jacobi method and

a = vec(A), a′ = vec(A′). From Theorem 3.9 we know that

‖J [d+1]
O J [d]

O · · · J
[1]
O ‖2 ≤ µπq,%, 0 ≤ µπq,% < µ̃n,% < 1,

so

S2(A′) = ‖a′‖22 ≤ µ2
πq,%‖a‖

2
2 ≤ µ2

π,%S
2(A).

It remains to set ηπq,% = µ2
πq,% and η̃n% = µ̃2

n,%.

In the case π = (1, 1, . . . , 1), we have m = n and we can use notation C(m)
spg and C(m)

sg

instead of B(m)
spg and B(m)

sg , respectively. Corollary 3.3 holds with the same constant ηn if C(n)c

is replaced by C(n)spg . Theorems 3.9–3.11 also hold with µn,% instead of µπq,%.
It is not easy to count how many pivot orderings are contained in B(m)

sg . In B(m)
c we

have 2! · 3! · · · (m− 1)! elements. The sets
←−
B (m)
c , B(m)

r , and
←−
B (m)
r have the same number of

elements. Hence, for large m we expect that B(m)
sp contains 4 ·2! ·3! · · · (m−1)! elements. For

each ordering O ∈ B(m)
sp there are m! orderings of the form O(p), so for large m we expect at

least 4 · 2! · 3! · · ·m! elements in B(m)
spg (where we have not taken the equivalences ∼ and s∼

into account). Obviously, for small m (like m = 3, 4, 5) this count is not realistic.
Nevertheless, the results obtained here have been used in [2] to prove that every cyclic

Jacobi method for symmetric matrices of order 4 is globally convergent. Note that there are
altogether 720 cyclic strategies when n = 4.

4. Quasi-cyclic pivot strategies. Our next step is to enlarge the scope of generalized
serial strategies by allowing repetition of some Jacobi steps within one sweep. This leads
us to special quasi-cyclic pivot sequences, which are closely related to the orderings from
Section 3. This change often leads to faster convergence of the Jacobi method [7, 8, 16]. To
keep our consideration within reasonable framework, we can assume that the length of each
quasi-cyclic pivot sequence is smaller than 2M , where M = m(m−1)

2 .
Our basic class of quasi-cyclic pivot sequences is derived from the class B(m)

c . More
precisely,

B̄(m)
c =

{
O ∈O(Pm)

∣∣ O = (1, 2), (π3(1), 3), (π3(2), 3),O3, . . . , (πm(1),m),

. . . , (πm(m− 1),m),Om, πj ∈ Π(1,j−1), Oj ∈O(Sj), Sj ⊆ Pj , 3 ≤ j ≤ m
}
.

Thus, the quasi-cyclic pivot strategy IO defined by some O ∈ B̄(m)
c selects pivot blocks by

block-columns. After the pivot blocks within the jth block-column have all been annihilated
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once, it is allowed to annihilate again any block that lies within the first j block-columns.
Here, 3 ≤ j ≤ m.

THEOREM 4.1. Let π = (n1, . . . , nm) be a partition of n, O ∈ B̄(m)
c , and let A ∈ Sn

be partitioned as in relation (2.2). Let A′ be obtained from A by applying one sweep of the
quasi-cyclic block Jacobi method defined by the strategy IO. If all transformation matrices
are from the class UBCE(%), then there are constants ηπ,% and η̃n,%, depending only on π, %
and n, %, respectively, such that

S2(A′) ≤ ηπ,%S2(A), 0 ≤ ηπ,% < η̃n,% < 1.

Proof. The proof has been moved to Appendix A.
Although the quasi-cyclic strategy from [7, 8, 16] belongs to the class of block-oriented

strategies, its “full block” analogue is IO for some special O ∈ B̄(m)
c . As has been shown

in [19, 20] for large matrices that full-block Jacobi-type methods are generally more efficient
than the block-oriented ones. This implies that the Jacobi method from LAPACK can be
upgraded to a full block version, and Theorem 4.1 ensures its convergence.

Now, it is easy to prove Theorem 3.2 for O ∈ B̄(m)
c . The proof remains the same except

that the word “cyclic” should be replaced by “quasi-cyclic” and the notation B(m)
c should be

replaced with B̄(m)
c . The case m = n is treated in the same way.

Following ideas from Section 3, we define B̄(m)
r =

{
O(ẽ) | O ∈ B̄(m)

c

}
,

←−̄
B (m)
c =

{
O ∈O(Pm) | O← ∈ B̄(m)

c

}
,

←−̄
B (m)
r =

{
O ∈O(Pm) | O← ∈ B̄(m)

r

}
and

B̄(m)
cp = B̄(m)

c ∪
←−̄
B (m)
c , B̄(m)

rp = B̄(m)
r ∪

←−̄
B (m)
r , B̄(m)

sp = B̄(m)
cp ∪ B̄(m)

rp .

It is easy to verify that both Theorem 3.5 and Theorem 3.6 hold with B̄(m)
sp in the place of

B(m)
sp . Finally, we can define

B̄(m)
spg =

{
O ∈O(Pm)

∣∣ O p∼ O′′ ∼ O′′ or O ∼ O′ p∼ O′′, O′′ ∈ B̄(m)
sp

}
,

B̄(m)
sg =

{
O ∈O(Pm)

∣∣ O p∼ O′ w∼ O′′ or O w∼ O′ p∼ O′′, O′′ ∈ B̄(m)
sp

}
.

It is easy to verify that all four theorems, Theorems 3.8–3.11, hold with B̄(m)
spg and B̄(m)

sg .
In the case m = n, one can reestablish the corresponding results for the standard Jacobi

method and the associated Jacobi operators.

5. Convergence of more general block Jacobi-type methods. The obtained results for
the block Jacobi operators and annihilators can be used to prove convergence of more general
block Jacobi-type methods. This section is similar to [18, Section 5], and we will refer to
some results from there. First, we prove the main result, and then we apply it to the block
J-Jacobi method from [20].

Consider the block Jacobi-type process

(5.1) A(k+1) = FTk A
(k)Fk, k ≥ 0, A(0) = A,

where A is a symmetric matrix of order n, partitioned as in relation (2.2), and Fk, k ≥ 0,
are elementary block matrices. Their pivot submatrices are only required to be nonsingular.
Since all Fk are nonsingular, A 6= 0 implies A(k) 6= 0 for all k. The process is said to be of
Jacobi-type since it is generally not required that the pivot submatrices are diagonalized. We
assume that for the process (5.1) the following assumptions hold:
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A1 O ∈ B(m)
sg , i.e., the pivot strategy IO of the process is a generalized serial one.

A2 There is a sequence of orthogonal elementary block matrices Uk, k ≥ 0, such that

lim
k→∞

(Fk − Uk) = 0.

A3 For the diagonal block F (k)
ii of Fk one has

σ = lim inf
k→∞

σ(k) > 0, where σ(k) = σmin

(
F

(k)
ii

)
, k ≥ 0.

The first assumption A1 deserves a comment. By Definition 3.7, the set B(m)
sg is defined using

a single permutation equivalence. In order to make use of Theorems 3.9 and 3.11, we can
presume that in Definition 3.7 eitherO′ = O(q) orO′′ = O′(q) holds for some permutation q.

Because of the condition A2, in the assumption A3 one can replace F (k)
ii by U

(k)
ii .

From the CS decomposition of the orthogonal (ni + nj) × (ni + nj) matrix Ûij , we have
σmin

(
U

(k)
ii

)
= σmin

(
U

(k)
jj

)
. Therefore, in the definition of σ(k), instead of F (k)

ii , one can use

F
(k)
jj , U (k)

ii , or U (k)
jj . Recall that F (k)

ii , F (k)
jj , stands for F (k)

i(k)i(k), F
(k)
j(k)j(k), respectively.

Since for each Uk, there is a permutation matrix Pk that makes UkPk a UBCE matrix,
condition A2 shows that for large enough k, each FkPk will be arbitrarily close to some
UBCE matrix. However, Uk, and therefore also Pk, is generally not known, while Fk is
available. Thus, one can perform the QR factorization with column pivoting of [F

(k)
ii F

(k)
ij ]

to obtain Pk and then replace Fk by FkPk. The corresponding matrix Ũk = UkPk may not
be from UBCE(1), but it is certainly from UBCE(%) for some 0 < % < 1 when k is large
enough.

THEOREM 5.1. Let π = (n1, . . . , nm) be a partition of n, O ∈ B(m)
sg , and let A ∈ Sn,

A 6= 0, be partitioned as in relation (2.2). Let the sequence of matrices (A(k); k ≥ 0) be
generated by the block Jacobi-type process (5.1). If the assumptions A1–A3 are met, then the
following two assertions are equivalent:

(i) lim
k→∞

S
(
Â

(k+1)
ij

)
‖A(k)‖F

= 0, where Â
(k+1)
ij = F̂Tk Â

(k)
ij F̂k,

(ii) lim
k→∞

S(A(k))

‖A(k)‖F
= 0.

Proof. The proof has been moved to Appendix A.
Thus, condition (i) is sufficient for the convergence of S(A(k)) to zero. In the case of block-

wise or element-wise Jacobi methods (i.e., those that diagonalize the pivot submatrix at each
step) condition (i) is trivially fulfilled. Note that S

(
Â

(k+1)
ij

)
and S(A(k)) are being divided by

‖A(k)‖F , which is appropriate since the theorem deals with nonorthogonal transformations.
In some applications the following corollaries can be used.
COROLLARY 5.2. Theorem 5.1 holds provided that the recurrence relation (5.1) is

replaced by

(5.2) A(k+1) = FTk A
(k)Fk + E(k), k ≥ 0,

where limk→∞ S(E(k))/‖A(k)‖F = 0 and E(k) 6= −FTk A(k)Fk, k ≥ 0. The last condition
on E(k) can be replaced by the requirement that E(k) = 0 whenever A(k) = 0 for some k.

Proof. Comparing with the proof of Theorem 5.1, the only difference appears in the
definition of each vector g(k), now including the vector e(k), which in turn results from the
matrix E(k).
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COROLLARY 5.3. Let A 6= O be a matrix of order n, and let the sequence A(0) = A,
A(1), . . . be generated by a block Jacobi-type process defined by relation (5.2). Assume that
the assumptions A1–A3 hold. Suppose that the sequence (A(k); k ≥ 0) is bounded and

(5.3) lim
t→∞

S(E(k)) = 0.

Then the following two conditions are equivalent:
(iii) lim

k→∞
S(Â

(k+1)
ij ) = 0,

(iv) lim
k→∞

S(A(k)) = 0.

Proof. The implication (iv)⇒ (iii) is obvious. For the converse implication, we use the
expressions Fk = Uk + (Fk − Uk), k ≥ 0, to transform the recursion (5.2) into the form
A(k+1) = UTk A

(k)Uk + T (k) + E(k) with

T (k) = (Fk − Uk)TA(k)Uk + UTk A
(k)(Fk − Uk) + (Fk − Uk)TA(k)(Fk − Uk).

By the boundedness of the sequence (A(k); k ≥ 0) combined with assumption A2, we have

‖T (k)‖ ≤ sup
{
‖A(k)‖2; k ≥ 0

}
·
(
2‖Fk − Uk‖+ ‖Fk − Uk‖2

)
→ 0 as k →∞.

This confirms relations (A.16), (A.17), with g(k) which additionally includes the vectors
associated with the matrices T (k) and E(k). The conditions (iii), (5.3), and the latest relation
together imply limk→∞ g(k) = 0. Following the same lines of the proof of Theorem 5.1, one
obtains lims→∞ g[s] = 0 and limk→∞ a(k) = 0 if and only if lims→∞ a[s] = 0. Therefore,
under the conditions of this corollary, the sequence (a[s]; s ≥ 1) has all the properties of the
sequence (A.24) from the proof of Theorem 5.1. The rest of the proof closely follows the
proof of Theorem 5.1.

Let us note that the results in this section hold if the set of pivot orderings B(m)
sg in the

assumption A1 is replaced with B̄(m)
sg . Also, as has already been explained in [18], it makes

sense to rewrite the assumption A3 in the equivalent form:
A3 For the diagonal block F (k)

ii of Fk, one has

σ = lim inf
t→∞

σ[t] > 0, σ[t] = min
(t−1)T≤k≤tT−1

σmin(F
(k)
ii ),

where the quantities σ[t] are labeled by sweeps (i.e., cycles or quasi-cycles).

5.1. An application to the block J -Jacobi methods. The main purpose of Theorem 5.1
is its use in the global convergence considerations of the block Jacobi methods for the
generalized eigenvalue problem, say for the HZ method from [29]. However, further research
is needed to achieve this goal. Hence, we will choose yet another block method, which is
well-understood, important in practice, and for which the newly obtained results can be applied
straightforwardly. It is the full block J-Jacobi method from [20], for the pair (A, J), where A
is symmetric positive definite and J = diag(Iν ,−In−ν). The main application of this method
is to solve the simple eigenvalue problem Hx = λx, where H is indefinite symmetric matrix,
with high relative accuracy. The partition π = (n1, . . . , nm) has to comply with the partition
(ν, n− ν), i.e., the first has to be a subpartition of the latter. After preliminary transformations,
the problem Hx = λx is reduced to the generalized eigenvalue problem Ax = λJx. All
details can be found in [20, 33]. The method uses J-orthogonal elementary block matrices Fk,
which leave J intact under congruence transformations FTk JFk = J , k ≥ 0. The iteration
process has the form (5.1) with a positive definite matrix A = A(0).
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In [20] the global convergence of this method was proved under the weak wavefront
strategies, and here we prove it for the much larger class of generalized serial strategies.

THEOREM 5.4. Let π = (n1, . . . , nm) be a partition of n so that π refines (ν, n − ν).
The full block J-Jacobi method defined by the cyclic pivot strategy IO, O ∈ B(m)

sg , which uses
UBCE J-orthogonal transformation matrices, is globally convergent.

Proof. Since the iterates generated by the full block J-Jacobi method are bounded
[20, (3.18)], we can apply Corollary 5.3 with the matrices E(k), k ≥ 0, set to zero. The
method is called the full block J-Jacobi method because at each step it diagonalizes the pivot
submatrix. This implies that condition (iii) of Corollary 5.3 is fulfilled.

All we have to do is follow the same lines of the proof of [20, Proposition 3.3], which in
turn reduces to checking the validity of the assumptions A1–A3 from Theorem 5.1.

The first assumption is presumed. The second one follows from [20, Proposition 3.2].
Assumption A3 holds for two reasons. First, for each hyperbolic elementary block transforma-
tion Fk, one has σ(k) ≥ 1, and we only have to check A3 for the orthogonal elementary block
transformations. However, they are exactly the same as those in the block Jacobi method for
symmetric matrices from Sections 3 and 4 of this paper. Relations (2.15) and (2.16) hold for
them, even with % = 1. Since condition (iii) of Corollary 5.3 is fulfilled, we have S(A(k))→ 0
as k → ∞. The rest of the proof requires an analogue of Theorem 2.10 for the J-Jacobi
method. However, all that is needed in the proof is an estimate similar to (A.1) for the diagonal
elements of A(k). Such an estimate is established in [6, Lemma 1.1].

By using results from Section 4 one can easily show that Theorem 5.4 holds for any
quasi-cyclic strategy IO, O ∈ B̄(m)

sg .

6. Conclusion and future work. So far, a satisfactory research goal has been the global
convergence of the block Jacobi method for symmetric matrices established for the serial pivot
strategies or those that are equivalent or weakly equivalent to them, so-called wavefront or
weak wavefront strategies. All those strategies were obtained from a single cyclic strategy, say
the column-cyclic one. Here we have shown how to further enlarge the class of convergent
strategies by using the notion of the reverse strategy and that of permutation equivalent
strategies. Hence, with each convergent pivot strategy we have associated the whole large class
of convergent strategies obtained from it by using four equivalence relations, ∼, s∼, w∼,

p∼, and
by using reverse strategies. The next step was to increase the number of classes of convergent
strategies obtained this way. For large m, we have obtained at least 2!3! · · · (m − 1)! such
classes of convergent strategies, and we have named their union the class of generalized serial
strategies. Furthermore, convergence results for that class are stated and proved in the stronger
form, which enables us to formulate and prove similar results for the block Jacobi operators.
This makes the block Jacobi operators a tool for proving the global convergence of the block
Jacobi methods for other eigenvalue problems, in particular for the generalized eigenvalue
problem. As an immediate result, we have proved the global convergence of the full block
J-Jacobi method under any generalized serial pivot strategy.

Future work will include proving global convergence of the (block-wise and element-wise)
HZ method [13, 29] for the generalized eigenvalue and singular value problem under the class
of generalized serial strategies. We also intend to prove the global convergence of the block
Paardekooper method for skew-symmetric matrices. An immediate consequence of the results
from this paper is the proof that in the case n = 4, all 720 cyclic strategies for the symmetric
Jacobi method are convergent [2]. Future research will also be concentrated on the complex
block Jacobi methods, first for a single Hermitian matrix and then for a positive definite pair
of Hermitian matrices (the complex block J-Jacobi and the complex HZ methods).
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Appendix A. Proofs omitted in the main text.

A.1. Proof of Theorem 2.10. Suppose that A is not a multiple of In and assume that for
the eigenvalues of A we have

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsω−1+1 = · · · = λsω , sω = n,

sr = ν1 + · · ·+ νr, 1 ≤ r ≤ ω, where ν1,. . . ,νω are the multiplicities of the eigenvalues. Let

3δ = min
1≤r≤ω−1

(λsr − λsr+1).

Obviously, there is an integer k0 such that

S(A(k)) < δ, k ≥ k0.

From [15, Lemma 2.1] we conclude that for k ≥ k0 all diagonal elements of A(k) lie in the
union of shrinking segments

D(k)
r ≡

{
t
∣∣ |t− λsr | ≤ 0.22S(A(k))

}
⊂
{
t
∣∣ |t− λsr | ≤ 0.22δ} ≡ Dr, 1 ≤ r ≤ ω.

Furthermore, by the same lemma, each D(k)
r contains at least νr diagonal elements of A(k),

and then it straightforwardly follows that D(k)
r contains exactly νr diagonal elements of A(k).

In particular, this implies that for any two diagonal elements of A(k) we have

(A.1) either |a(k)ll − a
(k)
mm| ≤ 0.44δ, or |a(k)ll − a

(k)
mm| > 2.56δ, k ≥ k0.

Since the sequence S(A(k)), k ≥ 0, converges to zero, the proof will be completed if we
show that for k ≥ k0 the diagonal elements cannot change their affiliation to eigenvalues.
Afterwards, we will also show how the diagonal elements of Λ are ordered along the diagonal.

To establish assertion (i) it is sufficient to prove the first claim only since the second one
can be proved in a similar way. Even if the blocks A(k)

ii , 1 ≤ i ≤ m, were not diagonalized at
the beginning, we can increase k0, if needed, so that the assumption of the first claim reads:
each A(k)

ii , 1 ≤ i ≤ m, k ≥ k0, is diagonal with diagonal elements ordered nonincreasingly.
To this end we denote A(k)

ii by Λ
(k)
ii , 1 ≤ i ≤ m. We can also assume that k0 = t0T , where

T ≥M = m(m− 1)/2 is the period of the strategy. The proof will be completed if we can
find k′0 ≥ k0 such that

(A.2) {a(k)11 , a
(k)
22 , . . . , a

(k)
sr,sr} ⊂

r⋃
p=1

Dp, 1 ≤ r ≤ ω, k ≥ k′0.

Let us consider step k of the block method with k ≥ k0. Let i = i(k), j = j(k), and let̂̂
A

(k)

ij = diag(Λ
(k+1)
ii ,Λ

(k+1)
jj ) be the transformed pivot submatrix Â(k)

ij . From relation (2.6)
and the perturbation theorem for the symmetric matrices, we conclude that

‖diag(Λ
(k+1)
ii ,Λ

(k+1)
jj )− PTk diag(Λ

(k)
ii ,Λ

(k)
jj )Pk‖2 ≤ ‖A(k)

ij ‖2(A.3)

≤
√

2

2
S(A(k)) <

√
2

2
δ
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holds for k ≥ k0, where Pk are some permutation matrices. From relations (A.3) and (A.1),
we obtain the following geometric interpretation of the movement of the diagonal elements
during one step of the method. The diagonal elements of A(k) are points on the real axis
situated within small segments around the eigenvalues. After the completion of step k, they
have moved (as points) within the same segment, but (as diagonal elements) their subscripts
may have changed.

What happens with a diagonal element a(k0)qq , which lies in the segment D1?
First, suppose that ν1 ≤ np for all 1 ≤ p ≤ m. Then each time a(k0)qq is affected, it will be

a diagonal element of Λ
(k+1)
ii . Let a(k0)qq lie in A(k0)

ll . Then, for k ≥ k0, a(k)qq is affected when
i(k) = l or j(k) = l.

If i(k) = l, then a(k)qq will remain in the same diagonal block, which is Λ
(k+1)
ii = A

(k+1)
ll .

If Λ
(k)
jj contains some diagonal elements from D1, then they will move to Λ

(k+1)
ii , and thus the

number of diagonal elements from D1 in A(k+1)
ll will be larger than in A(k)

ll .
If j(k) = l, then a(k)qq will move to the new diagonal block Λ

(k+1)
ii , i < l, hence its

subscripts will become smaller than or equal to sl−1. Since the pivot strategy is cyclic or
quasi-cyclic, the case j(k) = l must occur within the current sweep, unless l = 1. Hence,
during the next sweep a(k0)qq will move to some diagonal block which lies closer to A(k0)

11

unless l = 1.
Since a(k0)qq is an arbitrary diagonal element of D1, we conclude that within one sweep

all diagonal elements from D1 not belonging to A(k)
11 will decrease their subscripts to such an

extent that they become the diagonal elements of other diagonal blocks. This analysis shows
that within the first m− 1 sweeps all diagonal elements belonging to D1 will be the elements
of the first diagonal block.

Now, let ν1 be such that 1 ≤ ν1 < n holds. Then the same analysis shows that during
m− 1 sweeps, the diagonal elements affiliated with λ1 will be filling in the first ν1 diagonal
positions of the matrix. Hence, there is a number k1 ≥ (m− 1)T + k0 such that the first ν1
diagonal elements in A(k1) are affiliated with λ1.

Almost the same analysis shows that within the first m− 1 sweeps the diagonal elements
affiliated with λn will be filling in the last νω diagonal positions of the matrix. By increasing
k1 if necessary, we can assume that the last νω diagonal elements of A(k1) are affiliated with
λn.

The rest of the proof considers the matrix A(k1). In A(k1) the first ν1 and the last νω
diagonal positions are occupied by the diagonal elements from D1 and Dω , respectively. The
situation is described by the following block-matrix partition

A(k1) =


A

(k1)
s% B(k1) C(k1)

B(k1)
T

A
(k1)
n−s%−s̃ρ G(k1)

C(k1)
T

G(k1)
T

A
(k1)
s̃ρ

 , s% = n1 + · · ·+ n%,

s̃ρ = nm + · · ·+ nm−ρ+1,

where s% ≤ ν1 < s%+1 and s̃ρ ≤ νω < s̃ρ+1. In this situation, if the pivot blocks are within
A

(k)
s% , B(k), C(k), G(k), A(k)

s̃ρ
, k ≥ k1, the corresponding steps will make no subscript change

in the diagonal elements, or the change will only mean repositions within the same diagonal
block. Therefore, our analysis will only consider the central block A(k1)

n−s%−s̃ρ . The diagonal

elements of A(k1)
n−s%−s̃ρ from D1 (resp. Dω), if there are any, have already settled within the

first (resp. last) positions of A(k1)
%+1,%+1 (resp. A(k1)

m−ρ,m−ρ). They will not leave these positions
during the next steps.
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Then after the following m − % − ρ − 1 or more sweeps, the diagonal elements from
D2 and Dω−1 will settle in. Continuing this consideration we finally obtain the matrix A(k′),
k′ > k0, for which relation (A.2) holds. We note that k′ depends on the pivot strategy. For the
serial ones, say for the row-cyclic one, the above analysis shows that we can take k′ = k0 +M .

In order to prove (ii), we consider the diagonalization of the pivot submatrix, which is
generally described by relation (2.6). Since we use a globally convergent element-wise Jacobi
method, we know that the off-norm sequence of this submatrix tends to zero. In [25] it was
proved that the diagonal elements always converge. Thus, the limit diag(Λ

(k+1)
ii ,Λ

(k+1)
jj )

exists. Finally, it is known that the diagonal elements are updated by ± tanφka
(k)
lm , where

(l,m) is the pivot pair. Therefore, the change is smaller than 1 · |a(k)lm | ≤ ‖A
(k)
ij ‖2 <

√
2/2 δ.

Hence, the diagonal elements cannot change their affiliation to the eigenvalues. This means
that the permutation Pk from relation (A.3) can be taken to be identity.

A.2. Proof of Corollary 2.17. Set R = R(Û), where Û is as in (2.4). It is sufficient to
verify that the transpose of each of the three types of submatrices appearing in Theorem 2.15
is of the same type and possesses the same properties. For the first and the third type, the proof
is straightforward:[

UTii ⊗ Inr UTji ⊗ Inr
UTij ⊗ Inr UTjj ⊗ Inr

]T
=

[
Uii ⊗ Inr Uij ⊗ Inr
Uji ⊗ Inr Ujj ⊗ Inr

]
=

[
V Tii ⊗ Inr V Tji ⊗ Inr
V Tij ⊗ Inr V Tjj ⊗ Inr

]
,[

Inr ⊗ UTii Inr ⊗ UTji
Inr ⊗ UTij Inr ⊗ UTjj

]T
=

[
Inr ⊗ Uii Inr ⊗ Uij
Inr ⊗ Uji Inr ⊗ Ujj

]
=

[
Inr ⊗ V Tii Inr ⊗ V Tji
Inr ⊗ V Tij Inr ⊗ V Tjj

]
,

with

V =

[
Vii Vij
Vji Vjj

]
= UT .

Note that V has the same essential properties as U : dimension and orthogonality (belonging
to UBCE(%)). For the second type of submatrices we have[

Inr ⊗ UTii S(UTji ⊗ Inr )
S̃(Inr ⊗ UTij ) UTjj ⊗ Inr

]T
=

[
Inr ⊗ Uii (Inr ⊗ Uij)S̃T

(Uji ⊗ Inr )ST Ujj ⊗ Inr

]
=

[
Inr ⊗ V Tii S(V Tji ⊗ Inr )

S̃(Inr ⊗ V Tij ) V Tjj ⊗ Inr

]
.

To prove the second equality we need some extra work. It is obvious that this equality holds
for the corresponding diagonal blocks. To prove that the corresponding (1, 2) blocks are equal,
let Uij = (ust), and note that it is an ni × nj matrix. If eTk denotes the kth row of Inr , then
Uij(Inj ⊗ eTk ) is an ni × njnr matrix, and we have

Uij(Inj ⊗ eTk ) =

 e
T
k

. . .
eTk


 u11Inr · · · u1njInr

. . .
uni1Inr · · · uninjInr


= (Ini ⊗ eTk ) (Uij ⊗ Inr ) = (Ini ⊗ eTk ) (V Tji ⊗ Inr ), 1 ≤ k ≤ nr.

Hence,

(Inr ⊗ Uij)S̃T =

 Uij(Inj ⊗ e
T
1 )

...
Uij(Inj ⊗ eTnr )

 =

 (Ini ⊗ eT1 ) (V Tji ⊗ Inr )
...

(Ini ⊗ eTnr ) (V Tji ⊗ Inr )

 = S(V Tji ⊗ Inr ).
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Next, let us prove that the corresponding (2, 1) blocks are equal. Note that Uji = V Tij is an
nj × ni matrix. If ek denotes the kth column of Inr , then for each 1 ≤ k ≤ nr we have

(Uji⊗Inr )(Ini⊗ek) = UjiIni⊗Inrek = Uji⊗ek = (Inj⊗ek)(Uji⊗I1) = (Inj⊗ek)Uji,

and all (Uji ⊗ Inr )(Ini ⊗ ek) are njnr × ni matrices. Now we have

(Uji ⊗ Inr )ST = (Uji ⊗ Inr )[Ini ⊗ e1 · · · Ini ⊗ enr ]
= [(Uji ⊗ Inr )(Ini ⊗ e1) · · · (Uji ⊗ Inr )(Ini ⊗ enr )]
= [(Inj ⊗ e1)Uji · · · (Inj ⊗ enr )Uji]

= [Inj ⊗ e1 · · · Inj ⊗ enr ]

Uji . . .
Uji


= S̃(Inr ⊗ Uji) = S̃(Inr ⊗ V Tij ).

A.3. Proof of Theorem 3.1. First we list some inequalities that will be used. Let
σmin(X) and σmax(X) (= ‖X‖2) denote the smallest and largest singular value of X . Recall
that ‖X‖F denotes the Frobenius norm. Let ‖X‖ denote any matrix norm. We have∣∣‖X‖ − ‖Y ‖∣∣ ≤ ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖,(A.4)

‖X1 + · · ·+Xt‖ ≤ ‖X1‖+ · · ·+ ‖Xt‖, t ≥ 1,

max{σmin(F )‖G‖F , σmin(G)‖F‖F } ≤ ‖FG‖F ≤ min{σmax(F )‖G‖F , σmax(G)‖F‖F },
σmin(X1 . . . Xt) ≥ σmin(X1) · · ·σmin(Xt), t ≥ 1,

σmax(X1 . . . Xt) ≤ σmax(X1) · · ·σmax(Xt), t ≥ 1.(A.5)

Besides, if X = (Xrs) is a block matrix as in relation (2.2), then both for the operator matrix
norm and also for the Frobenius norm we have

(A.6) ‖Xrs‖ ≤ ‖X‖, 1 ≤ r, s ≤ m.

To prove Theorem 3.2, we start with the partition π = (n1, . . . , nm) and denote by
πl = (n1, . . . , nl) the partition of sl = n1 + · · · + nl. Obviously, for l = m we have
πm = π and sm = n. The set associated with πl is B(l)c from (3.1) where m is replaced by l.

We will prove the following statement. Let l ∈ {2, . . . ,m}, and let A be any symmetric
matrix of order sl, carrying the block-matrix partition defined by πl. Apply to A the cyclic
block Jacobi method defined by the pivot strategy IO, O ∈ B(l)c , thus obtaining the symmetric
matrices A(0) = A, A(1), . . . defined by the recursion (2.5). If the transformation matrices are
from the class UBCEπl(%), then

(A.7) S2(A(L)) ≤ ηπl,%S2(A), 0 ≤ ηπl,% < η̃sl,% < 1, L =
l(l − 1)

2
,

where the constants ηπl,% and η̃sl,% in (A.7) depend only on πl, % and sl, %, respectively.
Obviously, for l = m we obtain the assertion of Theorem 3.2. The proof of (A.7) uses

induction on l, 2 ≤ l ≤ m.
For l = 2, A is of order s2 = n1 + n2. Its only pivot block is A12, so that Â = A.

One step of the block Jacobi method is needed to diagonalize A. We have S2(A(1)) = 0, so
ηπ2,% = η̃s2,% = 0.
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Assume that assertion (A.7) holds for l − 1, l ∈ {3, . . . ,m}, and for the partition πl−1
with constants 0 ≤ ηπl−1,% ≤ η̃sl−1,% < 1. In the induction step, we will prove that (A.7)
holds for l.

Let A = (Ars) be a symmetric matrix of order sl, partitioned according to πl. For an
arbitrary ordering O from B(l)c apply the cyclic block Jacobi method defined by IO. Let
the transformation matrices be from the class UBCEπl(%), and let the obtained sequence of
matrices be denoted by A(0) = A,A(1), . . .

Let L̃ = (l − 1)(l − 2)/2. Let Ã (Al−1) be the leading submatrix of A(L̃) (A) of order
sl−1. In other words, Ã is obtained from Al−1 after completing one full sweep of L̃ Jacobi
steps. During these steps, the last, lth, block-column of A has been affected only by the left
transformations. Therefore, we have

l−1∑
i=1

‖Ãil‖2F =

l−1∑
i=1

‖Ail‖2F ,

where A(L̃) = (Ãrs). Let 0 ≤ ε ≤ 1 be such that

(A.8) (1− ε2)S2(A) =

l−1∑
i=1

‖Ail‖2F .

Thus, S(Al−1) = εS(A). The submatrix Al−1 is of order sl−1 and carries the block-matrix
partition defined by πl−1. Therefore, the induction hypothesis can be applied. It follows that

S2(A(L̃)) = S2(Ã) +

l−1∑
i=1

‖Ãil‖2F ≤ ηπl−1,%S
2(Al−1) +

l−1∑
i=1

‖Ãil‖2F(A.9)

= ηπl−1,%ε
2S2(A) + (1− ε2)S2(A)

=
(
1− ε2(1− ηπl−1,%)

)
S2(A).

Even though we have S2(A(L)) ≤ S2(A(L̃)), we cannot set ηπl,% = 1 − ε2(1 − ηπl−1
, %)

because ε can be arbitrarily small or zero. We still need to estimate the contribution to the
off-norm reduction coming from the last l − 1 steps.

According to relation (3.1), the blocks in the lth block-column are annihilated in the order:
(τl(1), l), . . . , (τl(l − 1), l). Let us consider how the block τl(i) changes until it is annihilated
in the ith step. To simplify notation in this analysis, we write τ instead of τl (the permutation
of the set {1, . . . , l − 1}) until relation (A.12). We have

Ã
(1)
τ(i)l = Ãτ(i)lU

(L̃)
ll + Ãτ(i)τ(1)U

(L̃)
τ(1)l,

Ã
(2)
τ(i)l = Ã

(1)
τ(i)lU

(L̃+1)
ll + Ãτ(i)τ(2)U

(L̃+1)
τ(2)l ,

...

Ã
(i−1)
τ(i)l = Ã

(i−2)
τ(i)l U

(L̃+i−2)
ll + Ãτ(i)τ(i−1)U

(L̃+i−2)
τ(i−1)l ,

Ã
(i)
τ(i)l = 0.

The contribution to the off-norm reduction comes from ‖Ã(i−1)
τ(i)l ‖F , so we have to esti-

mate it from below. To express Ã(i−1)
τ(i)l in terms of the blocks from Ã, we multiply the
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equation for Ã(i−2)
τ(i)l from the right by U (L̃+i−2)

ll , then multiply the equation for Ã(i−3)
τ(i)l by

U
(L̃+i−3)
ll U

(L̃+i−2)
ll , etc. Finally, we multiply the first equation by U (L̃+1)

ll · · ·U (L̃+i−2)
ll from

the right. Then we take the sum of the obtained equations. It follows that

Ã
(i−1)
τ(i)l = Ãτ(i)lU

(L̃)
ll U

(L̃+1)
ll · · ·U (L̃+i−2)

ll +

i−1∑
k=1

Ãτ(i)τ(k)U
(L̃+k−1)
τ(k)l U

(L̃+k)
ll · · ·U (L̃+i−2)

ll .

Denote

(A.10) ζl = min
0≤k≤l−3

{
σmin(U

(L̃+k)
ll )

}
.

Using the inequalities (A.4)–(A.5), for 1 ≤ i ≤ l − 1, we obtain

‖Ã(i−1)
τ(i)l ‖F ≥

∣∣∣∣∣‖Ãτ(i)lU (L̃)
ll · · ·U

(L̃+i−2)
ll ‖F − ‖

i−1∑
k=1

Ãτ(i)τ(k)U
(L̃+k−1)
τ(k)l · · ·U (L̃+i−2)

ll ‖F

∣∣∣∣∣
≥ σmin

(
U

(L̃)
ll · · ·U

(L̃+i−2)
ll

)
‖Ãτ(i)l‖F −

i−1∑
k=1

σmax

(
U

(L̃+k−1)
τ(k)l · · ·U (L̃+i−2)

ll

)
‖Ãτ(i)τ(k)‖F

≥ σmin

(
U

(L̃)
ll

)
σmin

(
U

(L̃+1)
ll

)
· · ·σmin

(
U

(L̃+i−2)
ll

)
‖Ãτ(i)l‖F −

−
i−1∑
k=1

σmax

(
U

(L̃+k−1)
τ(k),l

)
σmax

(
U

(L̃+k)
ll

)
· · ·σmax

(
U

(L̃+i−2)
ll

)
‖Ãτ(i)τ(k)‖F

≥ ζi−1l ‖Ãτ(i),l‖F −
i−1∑
k=1

‖Ãτ(i)τ(k)‖F .

Here, we have used (A.6) for the transformation matrices, which are orthogonal. Squaring the
obtained inequality and then using (a− b)2 ≥ 1

2a
2 − b2, a, b ∈ R, and the Cauchy–Schwarz

inequality, we obtain

(A.11) ‖Ã(i−1)
τ(i)l ‖

2
F ≥

1

2
ζ
2(i−1)
l ‖Ãτ(i)l‖2F − (i− 1)

i−1∑
k=1

‖Ãτ(i)τ(k)‖2F .

Now we have the lower bound for the reduction of S2(A(L̃)) coming from just one annihilated
block in the last block-column. The lower bound coming from all blocks in the last block-
column is obtained by summing up these. Using the relations (A.8), (A.9), and (A.11), we
have

l−1∑
i=1

‖Ã(i−1)
τ(i)l ‖

2
F ≥

1

2

l−1∑
i=1

ζ
2(i−1)
l ‖Ãτ(i)l‖2F − (l − 2)

l−1∑
i=1

i−1∑
k=1

‖Ãτ(i)τ(k)‖2F(A.12)

≥ 1

2
ζ

2(l−2)
l

l−1∑
i=1

‖Ãτ(i)l‖2F − (l − 2)S2(Ã)

≥ 1

2
ζ

2(l−2)
l (1− ε2)S2(A)− (l − 2)ηπl−1,%S

2(Al−1)

=
1

2
ζ

2(l−2)
l (1− ε2)S2(A)− (l − 2)ηπl−1,%ε

2S2(A)

= f(ε)S2(A),
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where the function f : [0, 1]→ R is defined by

f(ε) =
1

2
ζ
2(l−2)
l −

(
1

2
ζ
2(l−2)
l + lηπl−1,% − 2ηπl−1,%

)
ε2.

The first derivative of f is not positive since l ≥ 2. Recall that the transformation matrices are
UBCEπl(%) and satisfy the relations (2.15) and (2.16). Therefore, we have

(A.13) 1 ≥ ζl = min
0≤k≤l−3

{
σmin(U

(L̃+k)
ll )

}
≥ % min

1≤i<j≤l
γij >

3
√

2%√
4sl + 26

> 0.

This implies that the first derivative is negative, i.e., f is decreasing. Its maximum is at ε = 0,
and its zero is

εl =

√√√√ ζ
2(l−1)
l

ζ
2(l−1)
l + 2lηπl−1,% − 4ηπl−1,%

.

In relation (A.12) the left-hand side is nonnegative. Therefore, it is better to replace f by a
nonnegative function f+, such that

f+(ε) =

{
f(ε), ε ∈ [0, εl〉,
0, ε ∈ [εl, 1].

Then f ′+(ε) ≤ 0 for ε 6= εl and f+(ε) ≥ f(ε) for 0 ≤ ε ≤ 1. From the relations (A.9) and
(A.12), we have

S2(A(L)) = S2(A(L̃))−
l−1∑
i=1

‖Ã(i)
τ(i),l‖

2
F ≤ S2(A(L̃))− f+(ε)S2(A)

≤
(
1− ε2(1− ηπl−1,%)− f+(ε)

)
S2(A) = g(ε)S(A),

where

g(ε) =

{
1− 1

2ζ
2(l−1)
l + ε2(lηπl−1,% − ηπl−1,% + 1

2ζ
2(l−1)
l − 1), ε ∈ [0, εl〉,

1− ε2(1− ηπl−1,%), ε ∈ [εl, 1].

The function g is differentiable on 〈0, 1〉 \ {εl} and one has

g′(ε) =

{
ε(2lηπl−1,% − 2ηπl−1,% + ζ

2(l−1)
l − 2), ε ∈ 〈0, εl〉,

2ε(ηπl−1,% − 1), ε ∈ 〈εl, 1〉.

For ε ∈ 〈εl, 1〉 we have g′(ε) < 0 since ηπl−1,% − 1 < 0. For ε ∈ 〈0, εl〉, g′(ε) is either
positive or negative on the whole interval 〈0, 1〉, depending on l. We conclude that g is either
decreasing on whole segment [0, 1], or increasing on [0, εl〉 and decreasing on 〈εl, 1]. Thus, g
attains its maximum either at ε = 0 or at ε = εl. Therefore, we have

ηπl,% = max
{
g(0), g(εl)

}
= max

{
1− 1

2
ζ

2(l−1)
l , 1−

(1− ηπl−1,%)ζ
2(l−1)
l

ζ
2(l−1)
l + 2(l − 2)ηπl−1,%

}
.

From relation (A.13) we see that ζl is bounded from below by a positive constant that depends
on πl and %. Therefore, the constant ηπl,% depends on πl and % and 0 ≤ ηπl,% < 1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

142 V. HARI AND E. BEGOVIĆ KOVAČ

It remains to show that there is a bound η̃sl,% for S2(A(L))/S2(A) depending only on sl
and % such that ηπl,% ≤ η̃sl,% < 1. It will be derived from ηπl,%.

If ηπl,% = g(0), then relation (A.13) implies

ηπl,% < 1− 1

2

(
3
√

2%√
4sl + 26

)2(l−1)

< 1− 1

2

(
3
√

2%√
4sl + 26

)2(sl−1)

≡ η′sl,%.

If ηπl,% = g(εl), then

ηπl,% =
2(l − 2) + ζ

2(l−1)
l

ζ
2(l−1)
l + 2(l − 2)ηπl−1,%

ηπl−1,%,

which implies ηπl−1,% ≤ ηπl,%. Therefore

ηπl,% = 1−
(1− ηπl−1,%) ζ

2(l−1)
l

ζ
2(l−1)
l + 2(l − 2)ηπl−1,%

≤ 1−
(1− ηπl,%)ζ

2(l−1)
l

ζ
2(l−1)
l + 2(l − 2)

=
2(l − 2) + ηπl,%ζ

2(l−1)
l

2(l − 2) + ζ
2(l−1)
l

,

which is equivalent to ηπl,% ≤ (l − 2)/(ζ
2(l−1)
l + l − 2). By (A.13) we have

ηπl,% ≤
l − 2

ζ
2(l−1)
l + l − 2

<
l − 2(

3
√
2%√

4sl+26

)2(l−1)
+ l − 2

<
sl − 2(

3
√
2%√

4sl+26

)2(l−1)
+ sl − 2

≡ η′′sl,%.

Finally, set

η̃n,% = max
{
η′sl,%, η

′′
sl,%

}
.

This completes the induction step and the proof of assertion (A.7).

A.4. Proof of Corollary 3.3. We follow the proof of Theorem 3.1 and use the notation
from there. Now the blocks become the elements and we can use sharper estimates for the
rotation angles. In particular, we can replace the lower bound %γij from relation (2.16) by√

2/2. We have m = n, 2 ≤ l ≤ n, and

ζl = min
0≤k≤l−1

{σmin(U
(L̃+k)
ll )} = min

0≤k≤l−1
cosφL̃+k ≥

√
2

2
.

Hence, applying that lower bound for ζl, using the notation ηl for ηπl , we obtain

ηl = max {g(0), g(εl)} ,

where

g(0) = 1− 2−l, g(εl) = 1− (1− ηl−1)2−l

2−l + (l − 2)ηl−1
.

This yields the constant ηn by replacing l by n.
If the whole analysis is performed on the elements, a somewhat larger constant ηn can be

obtained. In [1] it has been shown that

ηn = max
{

1− 21−n, 1− 22−n(1− ηn−1)

22−n + (n− 2)ηn−1

}
.
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A.5. Proof of Theorem 4.1. The proof is similar to the proof of Theorem 3.1, so let us
follow the same lines. The notation π, πl, and sl has the same meaning as before. The proof
uses induction on l, 2 ≤ l ≤ m. Relation (A.7) remains the same, except for L, which has to
take the actual number of steps into account. The same is true for L̃. Since O ∈ B̄(m)

c , we
have

L =
l(l − 1)

2
+ |O3|+ · · ·+ |Ol|, L̃ =

(l − 1)(l − 2)

2
+ |O3|+ · · ·+ |Ol−1|.

As earlier, the matrix Ã (Al−1) is the leading submatrix of A(L̃) (A) of order sl−1. Until
the end, the proof uses the same lines as the proof of Theorem 3.1. We only note that the
final estimate is first obtained for the matrix A(L−|Ol|), but since S(A(L)) ≤ S(A(L−|Ol|)), it
automatically holds for S(A(L)).

A.6. Proof of Theorem 5.1. The proof is similar to the proof of [18, Theorem 5.1]. The
only difference is that here the considered matrices are real and therefore the block Jacobi
annihilators and operators are of order K (where K is from relation (2.18)) and not 2K as
they are in [18]. Also, the iterative process (5.1) uses the congruence transformation, while
in [18] it uses the equivalence transformation. Finally, here we show how the parameter %
is used to avoid the assumption that the matrices Uk from A2 have to be UBCE. Hence, for
the completeness of the paper, we will present a somewhat shorter version of the proof, often
referring to the proof of [18, Theorem 5.1]. The complete proof can be found in the thesis [1].

Using the relation Fk = Uk+(Fk−Uk), k ≥ 0, and assumption A2 it is easy to transform
the process (5.1) into the form

(A.14) A(k+1) = UTk A
(k)Uk + E(k), k ≥ 0,

where the “perturbation” matrices E(k) satisfy

(A.15) lim
k→∞

E(k)

‖A(k)‖F
= 0.

The matrices A, A(k), Uk, E(k), k ≥ 0, carry matrix block-partition defined by π. Applying
the function vecπ to both sides of equation (A.14) and using (A.15) together with condition (i),
one obtains (cf. [18, Lemma 5.2])

(A.16) a(k+1) = R(k)a(k) + g(k), k ≥ 0,

and

(A.17) lim
k→∞

g(k)

‖A(k)‖F
= 0.

Here, R(k) is the block Jacobi annihilator determined by the pivot submatrix Ûk of Uk and
the pivot pair (i(k), j(k)), while g(k) = vec(H(k)) + vec(E(k)). The matrix H(k) of order
n carries the same partition as A(k), which differs from the zero-matrix only in the pivot
submatrix of order ni + nj where it equals ÛTk Â

(k)
ij Ûk.

Recall that one cycle consists of M steps. After the first cycle has been completed,
relation (A.16) implies that we can write a[1] = J [1]a(0) + g[1], where a[1] = a(M),
J [1] = R(M−1) · · ·R(0), and

g[1] = g(M−1) +

M−2∑
k=0

R(M−1) · · ·R(k+1)g(k).
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By Theorem 2.15 we have ‖R(k)‖2 ≤ 1 for all k. Hence, ‖g[1]‖ ≤ ‖g(0)‖+ · · ·+ ‖g(M−1)‖.
Similarly, after s cycles we have

(A.18) a[s] = J [s]a[s−1] + g[s], s ≥ 1,

with a[s] = a(sM), J [s] = R(sM−1) · · ·R((s−1)M) and

(A.19) ‖g[s]‖ ≤ ‖g((s−1)M)‖+ · · ·+ ‖g(sM−1)‖.

We will also write A[s] = A(sM), so that a[s] = vec(A[s]), s ≥ 0.
Using assumption A2 and condition (i), it is easy to prove that (see [18, Lemma 5.3])

lim
k→∞

‖A(k+i)‖F
‖A(k)‖F

= 1 for each i ≥ 0,(A.20)

lim
s→∞

g[s]

‖A[s]‖F
= 0,(A.21)

lim
k→∞

a(k)

‖A(k)‖F
= 0 iff lim

s→∞

a[s]

‖A[s]‖F
= 0.(A.22)

Relation (A.20) is implied by relations (A.14) and (A.15), while relation (A.21) follows
directly from (A.19), (A.20), and (A.17). Relation (A.22) is implied by (A.17) and (A.20).
From (A.22) it follows that, to prove ‖a(k)‖/‖A(k)‖F → 0 as k →∞, it is sufficient to show
that lims→∞ b[s] = 0 for

(A.23) b[s] =
a[s]

‖A[s]‖F
, s ≥ 0.

We transform the iterative process (A.18) into

(A.24) b[s] = J [s]b[s−1] + c[s], s ≥ 1,

where

(A.25) c[s] =

(
‖A[s−1]‖F
‖A[s]‖F

− 1

)
J [s]b[s−1] +

g[s]

‖A[s]‖F
, s ≥ 0.

By taking the norm of both sides of equation (A.25), we obtain

‖c[s]‖ ≤
∣∣∣∣‖A[s−1]‖F
‖A[s]‖F

− 1

∣∣∣∣ ‖J [s]‖2‖b[s−1]‖+
‖g[s]‖
‖A[s]‖F

, s ≥ 0.

Relation (A.23) and Theorem 2.15 imply ‖b[s−1]‖ ≤ 1 and ‖J [s]‖2 ≤ 1 for all s ≥ 0. Hence,
from (A.20) and (A.21) we have

(A.26) lim
s→∞

c[s] = 0.

The proofs of the preceding relations also hold for any quasi-cyclic Jacobi-type process
satisfying assumption A2 and condition (i) of the theorem. To prove

lim
s→∞

b[s] = 0,

we will additionally use assumptions A3 and A1.
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Since A3 holds, it implies σ > 0. From the definition of σ, we know that there exists
s0 ≥ 1 such that

‖Fk − Uk‖2 ≤
1

4
σ and σmin

(
F

(k)
ii

)
≥ 3

4
σ, s ≥ s0M.

By the perturbation theorem for the singular values, we have

σmin

(
U

(k)
ii

)
= σmin

(
F

(k)
ii − (F

(k)
ii − U

(k)
ii )

)
≥ 3

4
σ − ‖F (k)

ii − U
(k)
ii ‖2

≥ 3

4
σ − ‖Fk − Uk‖2 ≥

3

4
σ − 1

4
σ =

1

2
σ, k ≥ s0M.

Set % = 1
2σ. We have proved that Ûk belongs to the class UBCE(%) provided that k ≥ s0M .

Then, by Definition 2.18, the block Jacobi operators J [s], s ≥ s0, from (A.24) are in

J UBCE(%)
O .

Next, we have to use assumption A1. Since O ∈ B(m)
sg , we can presume that the

chain connecting O to O′′ ∈ B(m)
sp (see Definition 3.7) is in canonical form and contains

d shift equivalences. Without loss of generality, we may assume (as in Theorem 3.9) that
O p∼ O′ w∼ O′′ ∈ B(m)

sp with O′ = O(q), or O w∼ O′ p∼ O′′ ∈ B(m)
sp with O′′ = O′(q), for

some permutation q of the set Sm.
Applying Theorem 3.9, one concludes that there are constants µπq,% and µ̃n,% depending

only on πq, % and n, %, respectively, such that

(A.27) ‖J [s+d] · · · J [s+1]J [s]‖2 ≤ µπq,%, 0 ≤ µπq,% < µ̃n,% < 1, s ≥ s0.

By unfolding the recursion (A.24) d times, similarly as in the proof of [18, Theorem 5.1], one
obtains

b[s+d] = J [s+d]J [s+d−1]b[s−1] · · · J [s]b[s−1] + h[s], s ≥ s0,

where h[s] → 0 as s → ∞. Here, we have used (A.26) and Theorem 2.15. Taking the
Euclidean norm, it follows that

‖b[s+d]‖ ≤ ‖J [s+d]J [s+d−1]b[s−1] · · · J [s]‖2‖b[s−1]‖+ ‖h[s]‖, s ≥ s0.

This inequality together with (A.27) implies

(A.28) βs+d ≤ µπq,%βs−1 + εs, s ≥ s0, with lim
s→∞

εs = 0,

where 0 ≤ µπq,% < 1 and βs = ‖b[s]‖, εs = ‖h[s]‖, s ≥ s0. Set αt = βs0−1+t(d+1) and
ηt = εs0+t(d+1), t ≥ 0. Then from relation (A.28) it follows that

αt+1 ≤ µπq,%αt + ηt, t ≥ 0, with lim
t→∞

ηt = 0.

This enables us to apply [12, Lemma 1] to obtain limt→∞ αt = 0, i.e.,

lim
t→∞

βs0−1+t(d+1) = 0.

Relations (A.24) and (A.26) imply

βs0−1+t(d+1)+r ≤ βs0−1+t(d+1) + ϑr,t, 0 ≤ r ≤ d, t ≥ 0,
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with limt→∞ ϑr,t = 0 for any 0 ≤ r ≤ d. This proves lims→∞ b[s] = 0 and, because
of (A.22), it also proves limk→∞ a(k)/‖A(k)‖F = 0.

Therefore, it suffices to show that lim
k→∞

∑m
l=1 S

2(A
(k)
ll )

‖A(k)‖2F
= 0. Let ε > 0. Then by

condition (i) of the theorem and by relation (A.20), there is an integer kε such that (cf.
[18, Theorem 5.1])

(A.29)
S(Â

(k+1)
ij )

‖A(k)‖F
≤ ε, ‖A(p)‖F

‖A(k)‖F
≤ 1 + ε, k −M ≤ p < k, k ≥ kε.

Here M is the number of steps within one cycle. For given k ≥ kε +M and l ∈ {1, . . . ,m},
let q < k denote the last step when A(q)

ll was a part of some pivot submatrix. Obviously,
kε ≤ q < k. Relation (A.29) implies

S(A
(k)
ll )

‖A(k)‖F
=
S(A

(q+1)
ll )

‖A(k)‖F
=
S(A

(q+1)
ll )

‖A(q)‖F
‖A(q)‖F
‖A(k)‖F

≤ ε(1 + ε),

for any 1 ≤ l ≤ m and any k ≥ kε +M . This proves the theorem.
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