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A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC*

CLEMENS PECHSTEINT AND CLARK R. DOHRMANN?

Abstract. In this theoretical study, we explore how to automate the selection of weights and primal constraints
in BDDC methods for general SPD problems. In particular, we address the three-dimensional case and non-diagonal
weight matrices such as the deluxe scaling. We provide an overview of existing approaches, show connections between
them, and present new theoretical results: A localization of the global BDDC estimate leads to a reliable condition
number bound and to a local generalized eigenproblem on each glob, i.e., each subdomain face, edge, and possibly
vertex. We discuss how the eigenvectors corresponding to the smallest eigenvalues can be turned into generalized
primal constraints. These can be either treated as they are or (which is much simpler to implement) be enforced
by (possibly stronger) classical primal constraints. We show that the second option is the better one. Furthermore,
we discuss equivalent versions of the face and edge eigenproblem which match with previous works and show an
optimality property of the deluxe scaling. Lastly, we give a localized algorithm which guarantees the definiteness of
the matrix S underlying the BDDC preconditioner under mild assumptions on the subdomain matrices.
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straints, adaptive coarse space, deluxe scaling, generalized eigenvalue problems, parallel sum
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1. Introduction. The method of balancing domain decomposition by constraints
(BDDC) [20] (see [19, 34] for closely related methods) is, together with the dual-primal
finite element tearing and interconnecting (FETI-DP) method [33], among the most-advanced
non-overlapping domain decomposition methods for partial differential equations. The two
methods can be considered as dual to each other, and for symmetric positive definite (SPD)
problems, the corresponding preconditioned operators have identical spectrum (up to values
of 1 and 0) [12, 72, 75, 77].

For a variety of PDEs discretized by the finite element method, the condition number
of the preconditioned system can be bounded by C(1 + log(H/h))?, where H/h is the
maximal ratio of the subdomain diameter and the element size. Covered cases are scalar
diffusion problems [59, 63, 74, 81], linear elasticity [62] as well as positive definite problems
in H(curl) [14, 18, 24, 125] and H (div) [88, 89]. Beyond the SPD case, algorithms and theory
have been extended to certain saddle point problems such as Stokes flow [48, 71], almost
incompressible elasticity [36, 60, 91], Reissner-Mindlin plates [69], and porous media flow
[104, 107, 114, 117]. The same kind of bound has been obtained for spectral elements [90],
boundary elements [92, 93], mortar methods [43, 44], discontinuous Galerkin [16, 18, 28, 29,
103], and isogeometric analysis [7, 8, 9, 40, 64]. Without giving a list of further references, we
note that BDDC and FETI-DP were successfully applied to many more problems, mostly of
a mechanical type. Preconditioners based on a Schur complement approximation similar to
BDDC were recently proposed by Kraus et al. [65] and Schoberl [102].

The constant C' in the bound is usually independent of the subdomain diameters and
mesh sizes and thus also of the number of subdomains, which is necessary for scalability.
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Ideally, C' is also independent of problem parameters, typically coefficient jumps [36, 63, 96],
coefficient ratios [24], or geometry details [14, 59]. As shown in [63, 75, 77], at least for SPD
problems, part of the analysis is problem-independent, and the condition number estimate
reduces to a single norm estimate of a projection operator (Pp). For a given decomposition
into subdomains, this estimate is influenced by two sources: (i) the weights/scalings and
(ii) the primal constraints.

(i) Several scalings have been used in the literature. The multiplicity scaling is not robust
for coefficient jumps. A coefficient-dependent scaling, sometimes called p-scaling, based
on constant values per vertex/edge/face leads to robustness for coefficient jumps between
subdomains. The stiffness scaling takes more information into account and may look promising
but can lead to very high condition numbers in the case of irregular meshes [59] or mildly
varying coefficients [93, 98]. A trade off “between” the latter two for jumps along interfaces
has been proposed in [93, 98]; see also [94]. All the scalings above involve diagonal weight
matrices. The deluxe scaling introduced in [23] (for early experiments see also [22]) breaks
with this rule as the weights are dense matrices per subdomain face/edge/vertex. For subdomain
faces, it was observed several times that the deluxe scaling can lead to very good results
[8, 18, 24, 54, 69, 88]. Computationally economic versions are discussed in [24, 53].

(i) The selection of good primal constraints is not an easy task either. On the one
hand, choosing too few constraints leads to poor performance of the preconditioner [113,
Algorithm A]. On the other hand, choosing too many constraints results in a large coarse
problem, which leads to a computationally inefficient method. Although large coarse problems
can be alleviated using multiple levels [78, 108, 115, 116], it is better to keep the coarse problem
size at a necessary minimum. For scalar diffusion and linear elasticity with coefficients that are
constant in each subdomain, good selection algorithms are available; see [113] as well as [105]
and the references therein. For hard problems with varying coefficients or coefficient jumps
along subdomain interfaces, these recipes may happen to work but can also easily lead to poor
performance [30, 57, 67, 96] (see [94, 97, 98] for the classical FETIT method). This has led to
problem-adapted algorithms for choosing primal constraints, called adaptive BDDC/FETI-DP,
which we discuss in the following. Although the adaptive choice means more computational
work, this can pay off in highly parallel regimes, where local operations are expected to be
comparably cheap [51, 123, 124].

Mandel and Sousedik [76] were the first to investigate, for general diagonal scalings, the
influence of primal constraints under quite general assumptions on SPD problems and in an
algebraic framework. They came up with a condition number indicator which is based on a
local estimate per closed face I, reading

Here, N is the set of subdomains shared by face F', = 4 extracts the degrees of freedom
on F, the projection Pp will be defined below, | - |s, is the subdomain (semi)norm, and
the estimate must hold for all functions w in the broken space W vanishing on all but the
subdomains in Nz and satisfying all primal constraints between these subdomains. The best
constant w is the maximal eigenvalue of an associated generalized eigenproblem and as
such computable. The maximum of all indicators w turned out to be quite reliable for some
practical applications. The eigenvectors corresponding to the largest eigenvalues can also be
used to create new, adaptive constraints in order to enhance the condition number. Together
with Sistek, this approach was extended to three-dimensional problems [79, 108].

The idea of replacing difficult local estimates by local generalized eigenproblems has
been used before, e.g., in smoothed aggregation multigrid [13], balancing Neumann-Neumann
methods [11], or spectral AMGe [17]. More recently, this technique has been used in over-
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lapping Schwarz methods [26, 31, 32, 35, 85, 109, 120]; see also the recent monograph [25].
Spillane and Rixen [110] have employed it for the classical FETI method; see also [38].
Kraus, Lymbery, and Margenov [65] use a similar idea in the context of the additive Schur
complement approximation. Other works on BDDC and FETI-DP will be mentioned below.

There are four limitations of the method in [76, 79, 108]:

(a) The theory considers only diagonal scaling matrices.

(b) In the original works, the local bounds are only indicators and were not (yet) proven
to be reliable.

(c) Primal constraints in BDDC and FETI-DP are usually linear conditions between
functions on two different subdomains involving the degrees of freedom of a glob, i.e.,
a vertex, an open edge, or an open face. The eigenvectors corresponding to the largest
eigenvalues of the generalized eigenproblem associated with F' above, however,
typically involve the degrees of freedom on the closed face F. One possibility is to
split the eigenvectors and create new, adaptive constraints on the corresponding open
face I’ and the edges forming its boundary. This can possibly lead to unnecessary
constraints. Another possibility (actually the one suggested in [79]) is to disregard
the conditions on the face boundary, but this is not supported theoretically.

(d) Itis assumed that the initial set of primal constraints already controls the kernel of the
underlying PDE such as the rigid body modes of elasticity; this is needed to realize
the (formal) matrix inverse S~! in the BDDC preconditioner. It would be good if the
local eigenproblems could even detect these kernels and guarantee that S is definite.

Issue (b) has only been resolved quite recently. In [54], Klawonn, Radtke, and Rheinbach
show that for two-dimensional problems, where all vertices are chosen primal, the maximum
of all indicators w4 serves as a reliable condition number bound up to a benign factor. In that
work, more general scaling matrices are also considered. In their recent article [49], Klawonn,
Kiihn, and Rheinbach show a reliable condition number bound for general three-dimensional
problems, where all vertices are chosen primal, using a diagonal scaling matrix. Up to a
benign factor, the bound is the maximum over all the indicators w and some additional
indicators associated with those subdomain edges that share four or more subdomains. To
guarantee the reliability, the obtained face constraints are split into face and edge constraints
as described above. The authors also provide some recipes on how the additional work for the
edge indicators can be minimized.

A suggestion to resolve issue (d) for the Poisson equation and linear elasticity was
recently presented in [6] involving perturbed operators in the BDDC preconditioner which are
guaranteed to be invertible while not degrading the condition number too much.

In our article, we briefly review the new approach in [49] and show that it can be equally
obtained from a pair-based localization of the Pp estimate. In the main part of our work,
however, we take a different path and provide a similar framework as in [79] but using a
glob-based localization. Here, a glob is an open subdomain face, edge, or possibly vertex. On
each glob G, we define an indicator wg associated with the local estimate

(1.1) Diien, |Bic(Pow)ils, <ws Do fwil}, -

Here, N¢ is the set of subdomains shared by G, Z¢ extracts the degrees of freedom on G,
and the estimate must hold for all functions w in the broken space W vanishing on all but
the subdomains N and with all primal constraints enforced between w;, w;, for i, j € Ng.
The best local indicator wg can again be obtained by a generalized eigenproblem, and the
corresponding eigenvectors associated with the smallest eigenvalues can be used to create
adaptive constraints. Solutions are given to all of the above issues:
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(a) We allow general scaling matrices that only need to be block-diagonal with respect
to the partitioning into globs.

(b) Up to a benign factor, the maximum over all indicators wq serves as a reliable
computable condition number bound.

(c) The constraints on open faces need not be split and can be used as they are. The
eigenvectors obtained on subdomain edges, however, are not in the usual form of
primal constraints. We show that we can use them as they are (thereby generalizing
the notion of primal constraints), or convert them to classical primal constraints,
which is more efficient and fully supported by theory.

(d) The local eigenproblems stay well-defined even if the set of initial primal constraints
is empty. Under mild assumptions on the subdomain matrices, we can show that using
essentially the eigenvectors corresponding to zero eigenvalues as primal constraints
guarantees that the inverse S~! appearing in the BDDC preconditioner exists. Our
approach is different from [6] and more general.

In the following, we would like to comment on other approaches to this problem. A first
group of papers considers two-dimensional problems, where all vertices are a priori chosen
as primal. On subdomain faces (there called edges), generalized eigenvalue problems (and
sometimes analytic estimates) are used to adaptively choose additional primal constraints. To
review and compare, we need a little more notation: let F' be the subdomain face shared by
the subdomains 7 and j, let S}, denote the “Neumann face” matrices (ggc} in the notation
of [15, 119]), i.e., the Schur complement of the subdomain matrix eliminating all degrees of
freedom (dofs) except those on F', and let S denote the ”Dirichlet face” matrices (S}k} in
the notation of [15, 119]), i.e., starting with the subdomain matrix, eliminating all interior dofs,
and then selecting the block corresponding to the dofs on face F'.

e Klawonn, Radtke, and Rheinbach [50, 53] consider scalar diffusion and compressible
elasticity with discontinuous coefficients discretized by P! finite elements. They
propose to use three generalized eigenproblems per face,

(1.2) o0 = AM;po, Sipv = AM;pv, TRV = )\% TR,

J
where py, is the maximal coefficient on the subdomain k and M ¢ is a scaled mass
matrix. The discrete Sobolev inequality [v[3, = < C1|U|§2F + Cs|v]3;, completes
the theory and leads to a reliable method for scalar diffusion and linear elasticity with
varying coefficients. The authors use a coefficient-dependent scaling based on the
values py, similar to the p-scaling.

e Chung and Kim [45] have worked out a fully algebraic approach (though limited to
two-dimensional problems). They propose to use two eigenproblems per face,

(1.3) (Sir + Sjr)v = M(Sir + Sir)v, TPV = ASTpv.

General scalings are allowed, but the condition number bound depends on the norm
of the scaling matrices. For the multiplicity and the deluxe scaling, this norm is
bounded by 1.
In both approaches, in contrast to [76, 79], several (simpler) eigenproblems/estimates are
combined. Moreover, the influence of the primal constraints on the neighboring vertices
(on OF) are not included in the local eigenproblems. These two issues raise the question
whether the obtained primal constraints are really necessary, or in other words, whether the
local bound is efficient; see also [53, 119].
In our approach, we follow Mandel and Sousedik [76] and use a natural eigenproblem
that directly follows from the localization (1.1) of the global Pp estimate. This eigenproblem
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involves unknowns on all subdomains shared by the glob, i.e., for a face about twice as many
as for the eigenproblems (1.2)—(1.3). Here, the (good) influence of a priori chosen primal
dofs on neighboring globs can (but need not) be included. Disregarding them leads to a much
simpler implementation, but including them can reduce the number of primal constraints
needed for a desired condition number bound. Besides that, we have collected a number of
abstract tools for modifying/simplifying generalized eigenproblems.

Intermediate steps of our work are documented in the form of slides [22, 95]. In [95], we
show that for the deluxe scaling, on each subdomain face ' shared by the subdomains ¢ and j,
one can alternatively use the generalized eigenproblem

(1.4) (Sir 2 Sip)v = A(Sir : Sjr)v

where the colon : denotes the parallel sum of matrices introduced by Anderson and Duffin [3].
This idea has recently been discussed in a publication by Klawonn, Radtke, and Rheinbach [54]
comparing three different methods for the two-dimensional case: the method by Mandel and
Sousedik [76], their own approach [53], and our intermediate approach [95] involving the
parallel sum, for which they propose a variant for general scalings,

(1.5) (Stp : Sip)v = MD/pSirDjr + D/pS;rDir)v,

where Dy, are the face scaling matrices. A sound theory for all three cases is given but limited
to the two-dimensional case. Moreover, economic variants are proposed, where S;r, S’z,
etc. are replaced by matrices where not all subdomain degrees of freedom are eliminated but
only those at a certain distance from the face F'. Kim, Chung, and Wang [46, 47] have also
compared the method by Chung and Kim [45] with (1.5). Zampini [122, 123, 124] as well as
Calvo and Widlund [15, 119] have experimented with (1.4) too and give suggestions for the
three-dimensional case.

In our current paper, we show a new theoretical link: if one disregards the influence of
neighboring globs, then the natural generalized eigenproblem corresponding to (1.1) on face
G = F shared by the subdomains 7 and j is equivalent to (1.5). In case of the deluxe scaling,
(1.5) is identical to (1.4). Moreover, we show that the deluxe scaling minimizes the matrix
trace of the left-hand side matrix in (1.5), which is in favor of making the eigenvalues larger.
Whereas in [95], we have used the parallel sum as an auxiliary tool, our new minimizing result
shows that it is really encoded into BDDC.

The three-dimensional case including subdomain edges has turned out to be a particularly
hard problem. For simplicity, consider an edge E shared by three subdomains ¢, j, k. Calvo
and Widlund [15, 119] suggest to use

(1.6) (S:E : S;E : S,:E)U = )\(TZE + TjE + TkE)’U

in the context of deluxe scaling, where T;r = S;g : (Sjr + Skr). Kim, Chung, and Wang
[46, 47] give a choice for general scalings:

(1.7) ( :E : ]*E ZS]:E)U:A(AiE—FAjE—FAkE)U,

where A;p = D}—ESi eD;g + D,;FES,; rDig. We provide two alternatives. Firstly, one can
use the natural edge eigenproblem, optionally simplified by discarding the primal constraints
on neighboring globs. We then show how to use the eigenvectors obtained as constraints
in the BDDC algorithm. Secondly, we show that with further simplifications, the natural
eigenproblem can be decoupled into n—1 independent eigenproblems where n is the number of
subdomains shared by the edge. When recombining the decoupled problems, one obtains (1.7)
in general and (1.6) in case of the deluxe scaling.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

278 C. PECHSTEIN AND C. R. DOHRMANN

Let us note that Stefano Zampini has experimented with
(Sig = Sip : Skp)v = MSie : SjE : Ske)v,

which behaves robustly for some H (curl) problems [125], but a theoretical validation is yet
missing (and we do not show any).

Apparently, the eigenproblems (1.6) and (1.7) are simpler than the natural one correspond-
ing to (1.1), but the primal constraints resulting from (1.6), (1.7) may be unnecessary. Vice
versa, the natural eigenproblem corresponding to (1.1) will lead to efficient constraints but is
more complicated to compute. Our decoupled choice is in between.

Note that for all the eigenproblems considered, we show how initially chosen primal
constraints on the respective glob (G, F, or E) can be built in. Essentially, the eigenproblems
have to be projected onto the space where the initial constraints hold.

‘We hope that our theoretical study will contribute to a better understanding of the proposed
methods and the links between them and to help identify a good trade-off between (a) the more
efficient but also more complicated “natural” eigenproblems and (b) simpler eigenproblems
that potentially lead to unnecessary constraints but are easier to compute.

The remainder of this paper is organized as follows: In Section 2 we discuss the problem
setting, the BDDC preconditioner, an abstract theory for the condition number, and primal
constraints on globs. Section 3 provides a localization of the global Pp estimate under mild
assumptions on the weight/scaling matrices. Moreover, we localize the condition for .S to
be definite. The local estimate is turned into an eigenproblem, which is discussed in detail
in Section 4. Section 5 is devoted to the choice of the adaptive constraints for both the face
and edge eigenproblems. Section 6 discusses the deluxe scaling and its optimality property.
In Section 7 we combine the local definiteness condition from Section 3 and some abstract
results from Section 4 to show how in practice and under mild assumptions on the subdomain
matrices, the global definiteness of S can be guaranteed. An appendix contains auxiliary,
technical results.

Our paper is meant to be comprehensive and self contained. To get an overview, we
recommend to skip the sections marked with an asterisk (x) for the first time. Experienced
BDDC readers may initially skip Section 2 as well.

Some Notation: X * denotes the algebraic dual of the finite-dimensional (real) vector space
X. We always identify the bi-dual X ** with X. For an Euclidean space X = R", we even
identify X * with X. For a linear operator A: X — Y, the transpose AT : Y* — X* is given
by (AT, 2) = (i, Az) for x € X, 1) € Y*, where (-, -) are the dual pairings. A linear oper-
ator A: X — X* (with X finite-dimensional) is said to be symmetric if (Az,y) = (Ay, x)
for all 2, y € X, positive semi-definite if (Az, x) > 0 for all x € X, and positive definite if
(Az,xz) > 0 for all z € X\{0}. Symmetric and positive semi-definite (SPSD) operators A,
B: X — X* have the following properties, which we will use frequently:

() (Az,x) =0 < x € ker(4),

(ii) ker(A + B) = ker(A) n ker(B),

(iii) range(A + B) = range(A) + range(B),

(iv) |z|a := (Az,2)'/? is a semi-norm on X.

If P: X — X is aprojection (P%2 = P), then X = ker(P) @ range(P), where @® denotes the
direct sum. Moreover, (I — P) is a projection too, and the identities ker(I — P) = range(P)
and range(I — P) = ker(P) hold. Product spaces are denoted by V; X - - - x Vi or ®f\il Vi.

2. BDDC in an algebraic setting. In this section, we summarize the main components
of the BDDC method and fix the relevant notation. For the related FETI-DP method, see
Appendix B. We give abstract definitions of globs (equivalence classes of degrees of freedom),
classical primal constraints, and generalized primal constraints.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC 279

2.1. Problem setting. We essentially follow the approach and notation in [75] and
require quite minimal assumptions. The problem to be solved is the system of linear equations

2.1) findieU: R'SRu = R'g,
S~—— ——
=8 =:g
where
S1 0 g1 Ry
S = ) g= y R= )
0 SN gnN Ry

with SPSD matrices S;. The assembled system matrix S is assumed to be definite such
that (2.1) has a unique solution. Let IW; be the (real) Euclidean space of subdomain (interface)
degrees of freedom (dofs) and U the Euclidean space of global (interface) dofs such that

R;: U —-W;, R:U—->W:=W; x...x Wy,

For an illustration see also Figure 2.3 (left). We simply call the indices ¢+ = 1,..., N
subdomains. Each matrix R; corresponds to a local-to-global mapping

g {1,....dim(W;)} — {1,...,dim(U)}

and (R;)¢, = 1if and only if k = g;(¢) (the local dof ¢ on the subdomain ¢ corresponds to the
global dof k), and 0 otherwise. We assume that each mapping g; is injective. Therefore, R;
has full row rank, and we conclude that'

2.2) RiR] =1,  RIR;=diag(u"){™®) with u” € {0,1}.

Moreover, RT R = diag(,uk)ii:gm with pg = Zf\il ugj) being the multiplicity of the dof k.
We assume throughout that 1, > 2 for all k, which implies in particular that R has full column
rank and the subspace

—~

(2.3) W := range(R)

is isomorphic to U.

REMARK 2.1. Let us note that the assumptions we made so far are fulfilled not only for
the standard discretizations of the Poisson equation or compressible linear elasticity. Merely,
all our definitions, assumptions (with the exception of Section 7), and the derived theoretical
results hold for a series of SPD problems in H (curl) [14, 24, 125] and H (div) [88, 89], spectral
elements [90], boundary elements [92, 93], mortar discretizations [43, 44], discontinuous
Galerkin discretizations [16, 18, 28, 29, 40, 103], or isogeometric analysis [7, 8, 9, 40, 64].

REMARK 2.2. Typically, the matrices .S; are constructed from (larger) subdomain finite
element stiffness matrices A; based on a non-overlapping domain decomposition (e.g., using a
graph partitioner) by the (formal) static condensation of non-shared dofs. For the corresponding
BDDC preconditioner for the non-condensed system, see, e.g., [79]. We stress that the

'Note that RT in (2.1) actually maps W* to U* and assembles local contributions to the global residual (i.e., a
functional), whereas RZT in (2.2) plays a different role as it extends a function in W; to U by putting all dofs to O that
are not shared by subdomain .
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matrices A; themselves need not be SPSD but only their Schur complements 5;, e.g., as in
[71, 91]. Otherwise, the theory in this paper (and most of the available, relevant literature) is
based heavily on energy arguments, and in this sense, the SPSD condition on S; can (so far)
not be relaxed.

REMARK 2.3. The assumption that each dof is at least shared by two subdomains is
purely to simplify our presentation. All our results can be generalized to the case u; > 1,
which is, e.g., convenient for BETI [68]. Moreover, we could allow that R; is rank-deficient
and assume that RiRZT is diagonal with ones and zeros. Then, however, some formulas would
require adaptations. Such “phantom dofs” appear in the TFETI method [27]. See also [93] for
both cases.

2.2. The BDDC preconditioner. There are two main ingredients for the BDDC precon-
ditioner. The first one is the averaging operator

N
Ep: W - U, Epw SZZR;—D;‘U}@"
i=1
where D;: W; — W, are weight matrices that need not be SPSD but fulfill the following
condition.
CONDITION 2.4 (partition of unity).

N
Z RIDiRi =1 (or equivalently Ep R = I).
i=1
PROPOSITION 2.5. Under Condition 2.4, range(Ep) = U, and REp: W — Wisa

projection onto w.
Proof. We have

U o range(Ep) D range(EpR) = U, and (REp)> = REpREp = REp.

Finally, range(REp) = R(range(Ep)) = range(R) = w. d

The simplest weights are given by the multiplicity scaling, D; = diag(l/ugi(@)?f{(wi),
where g; (/) is the global dof corresponding to the local dof ¢ on the subdomain 4. In some
papers ([75, p. 1801, [72, 79]), the weight matrices D; are assumed to be diagonal with positive
entries. In the current paper, we allow more general weights (see Condition 3.4 below). A
special choice, the deluxe scaling, is discussed in Section 6.

The second ingredient is an intermediate subspace W that fulfills the following conditions.
CONDITION 2.6.

WCWCW.

CONDITION 2.7. S is definite on W (ker(S) n W = {0}).

The construction of W is further described in Section 2.5.2 below. Condition 2.7 is needed
for both the practical application of the BDDC preconditioner and its analysis, and it will be
further discussed in Section 3.1 as well as in Section 7. Let

I W-oWw
denote the natural embedding operator and define the restricted operator

§:=fTSf:WHI/I~/*.
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Due to Condition 2.7, S is definite and thus has a well-defined inverse. The BDDC precondi-
tioner for problem (2.1) is defined by

Mgtpe == Ep (IS INEL: U - U.

If we explicitly choose a basis for If/[v/' then I and S have matrix representations and S-1
can be constructed via a block Cholesky factorization (see e.g. [62, 72]). Depending on the
structure of the space W, this can cause a loss of sparsity, which leads to inefficient local
solvers when using, e.g., nested dissection. The original BDDC method [20] is based on
primal dofs (explained in Section 2.5), and it provides an efficient algorithm (Appendix C)
to realize I S—1 T using a change of basis only implicitly and preserving sparsity. A more
general construction of the space W (cf. [79]) has certain importance for our work as well and
will be investigated in Section 2.6, Section 5.4, and Appendix C.3.

2.3. Abstract analysis. Theorem 2.9 below has been shown several times in the literature
(see, e.g., [75, 77]). For its statement we need the projection operator

Pp:=I-REp: W —->W.

The following properties can be derived from Proposition 2.5.

PROPOSITION 2.8. Under Condition 2.4 and Condition 2.6,

(i) P = Pp,

(ii) Pow = 0 <= w € range(R) = W,

(iii) Pow € W <= w € W, in particular Pp(W) < W, range(Pp) n W = Pp(W).

THEOREM 2.9 ([75, Theorem 5]). Let the assumpnons Jfrom Section 2.1 hold, and let
Condition 2.4 (partition of unity), Condition 2.6 (W cWc W), and Condition 2.7 (S is
definite on W ) be fulfilled. Then

Amin (MlgéDC §) =1

Moreover, the three estimates

(2.4) |REpw|? < wlwl|% Vwe W,
2.5) |Ppw|? < wlw}  Ywe W,
)‘maX(Mlgl%ch) S w

are equivalent. Summarizing, (2.5) implies f@'(MgSDC§) < w.

A proof based on the fictitious space lemma is provided in Appendix A; see also [65].

REMARK 2.10. In general, the definiteness of S does not follow from (2.4) or (2.5). Con-
sider one global dof (U = R) shared by two subdomains with S; = Dy =1, S5 = Dy =0,
and W = W = R2. Then S is singular, but | Ppw|% = 0 and |REpw|? = |wl|?.

REMARK 2.11. For a fixed problem matrix S and weight matrices D;, consider two
BDDC preconditioners based on some spaces WO« Ww® (typically meaning that WO has
more primal constraints than VNV(Q)), and let Afﬁgx, Aggx denote the corresponding maximal
eigenvalues. Then AS&QX < Aﬁ?;x. Since in practice, Ay, is close or even equal to 1 [12, 72,
76, 77], we can expect the smaller space (with the larger set of primal constraints) to lead to a
smaller condition number.
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FIG. 2.1. Two examples of subdomain decompositions and globs. Top: 2D example, bottom: 3D example, left:
subdomain decomposition, middle: visualization of globs with N displayed, right: parent graph. Arrow points from
parent to “child”.

2.4. Globs. In BDDC and FETI-DP the intermediate space W is described using primal
dofs or coarse dofs. In this particular paper, we restrict ourselves to primal dofs that are
associated with globs”.

DEFINITION 2.12 (globs). For each global dof k € {1, ...,dim(U)}, we define the set

Nii={i=1,...,N: ) =1}

of sharing subdomains. The set {1, ...,dim(U)} of global dofs is partitioned into equivalence
classes, called globs, with respect to the equivalence relation k ~ k' <= Ny, = Np.. We
denote by G the set of all globs and by Ng the set of subdomains shared by glob G. Finally,
we define the set

G ={GeG:ieNg}

of globs for the subdomain i. If [Ng| = 2, we call G a face, and we denote the set of all faces
(of the subdomain i) by F (F;, respectively).

DEFINITION 2.13 (glob relationships). A glob G is called an ancestor of Go if
Ng, 2 Ng,, and G4 is called a parent of Gy if Gy is an ancestor of Gy and there is no
other glob G3 with Ng, 2 Ng, 2 Ng,. Certainly, a glob can have several parents. If
a glob has no parents, we call it a base glob. Two globs G, # G4 are called neighbors if
Na, " Na,| = 2, i.e., if they share at least two common subdomains.

Figure 2.1 illustrates these definitions (assuming a relatively fine mesh and a finite element
space with node-based dofs such that sets of nodes appear as geometrical sets).

REMARK 2.14. For general partitions of 3D finite element meshes, e.g., obtained from a
graph partitioner, it can be hard to classify globs geometrically, in particular, to distinguish
between vertices and edges. For some rules/heuristics, see [55, Section 2], [62, Section 3],
[24, Section 5]. For our purposes, such a classification is not needed. The above definition also

2Note that many different definitions of globs are used in the literature: sometimes globs are geometrical sets
[82, 93] and sometimes the set of globs excludes vertices [76].
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FIG. 2.2. Illustration of dofs and globs for left: conforming standard P finite element discretization, middle:
C?2-continuous B-spline discretization (grid lines displayed), right: standard P discontinuous Galerkin discretization.
White rectangles belong to the subdomain vertex, solid dots belong to subdomain edges; a dashed line marks the dofs
of a subdomain.

resembles the far faces/edges/vertices of isogeometric analysis (cf. Figure 2.2 (middle) and [7]),
and it is also applicable to discontinuous Galerkin discretizations (cf. Figure 2.2 (right) and
[29]). Moreover, the setting is not only limited to two- and three-dimensional problems. Lastly,
note that our theory holds for any alternative definition of globs that refines Definition 2.12 in
the sense that each glob of Definition 2.12 is a union of the refined globs. For instance, one
may want to split a glob if it is not connected geometrically; see also [62, 93, 123, 124].

DEFINITION 2.15. Let Ug denote the Euclidean space of dofs on G (with a fixed
numbering). For any i € Ng, let R;q: W; — Ug be the (zero-one) restriction matrix (of full
rank) extracting these dofs such that R;gR] = I.

Since Ug has a fixed dof numbering, we conclude that there exists a matrix f%g :U - Ug
such that

(2.6) RigRi = Rg VieNg, RgRL=1 VYGeg;
see also Figure 2.3 (right). Since the globs are disjoint to each other,

I if Gl = G2 € gl
2.7 Ric. Rl = J
2.7) G TiGs 0 otherwise.

We define the cut-off/filter matrices

2.8) Sic = RlgRic, Ee:=diagZe)Y,, Ec¢=R}Re,

which are diagonal matrices with entry 1 if the corresponding dof is on G and 0 otherwise.’
From the previous definitions and properties we conclude that

[

—_ = —_ = —2 —_ =9
(29) :igRi = Ri':G s ZgR = R.:G, Zg T 5@, Zg =
By construction, we have the following partitions of unity on W; and U,

(2.10) MNEig=I1 D Ec=1I,

Geg; Geg

as well as the following characterization of the “continuous” space (cf. [75])

@.11) W := range(R) = {we W:VYG e G Vi, jeNg: Rigw; — Rjgw; = 0}.

30ur expression Z;w; corresponds to I (Agw;) in the terminology of [113].
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FIG. 2.3. Left: lllustration of the operators R and R . Right: Illustration of relation (2.6).

2.5. Primal dofs and the space W. Various definitions of primal dofs have been used
for FETI-DP [33, 62, 63, 70, 93, 113] and BDDC [20, 75, 76] in the literature. Here, we
require that a primal dof must be associated with a glob and is nothing but a linear combination
of regular dofs within that glob. In Section 2.5.3 below, we discuss a more general definition

of primal dofs and the space W based on closed globs, which we, however, do not use in the
main part of our theory.

2.5.1. Classical primal dofs. The following definition is more common in BDDC meth-
ods, which is why we term it “classical”’; see Section 2.5.3 for a more general definition.
DEFINITION 2.16. Classical primal dofs on the open glob G are described by a matrix

QL Ug — Ung := R™€,

where niig = 0 is the number of primal dofs associated with a glob G. The subspace of Ug
where the primal dofs vanish is

Usa :={yeUg: ng = 0}.
We set

N
WHi = ® Ung, W]‘[ = ®i=1 WHi7 and UH = @ UHG ~ Rnn’
Geg; Geg

with nyp = Zaeg nq the total number of primal dofs. Analogously to Section 2.1, we can
find zero-one matrices

(2.12) Rp;:Un —» Wi, Rpn:Un—Wn, and Rpig: Wi — Une,
and a matrix }A%ng : Un — Ung such that R, R = }A%HG independent of i € Ng. Let

Cii WZ — Wni, CZ = 2 RgnggRZG
Geg;
be the matrix evaluating all primal dofs associated with the subdomain ¢, and define the dual
subspaces [75, 113]
T N
(2.13) Wia = ker(C;) = {w; € W;: VG € G;: Q5 Rigw; =0}, Wa = ®i=1 Win.

REMARK 2.17. The operators/spaces Ry, Urr, W correspond to R, U., X, respectively,
from [76, Section 2.3]. The operator () p from [75, 76] reads

Qb = Y RiigQbRa: U — Un
Geg
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TABLE 2.1
Notation concerning globs.

symbol explanation reference
F(F) set of faces (associated with subdomain 7) Definition 2.12
G (G) set of globs (associated with subdomain 7) Definition 2.12
G* (GH) subset of G (G;), not totally primal Definition 2.21
Ne set of subdomain indices associated with glob G Definition 2.12
G (¢ closure of GG (set of globs in the closure of G) Definition 2.27
D;a glob scaling matrix Ug — Ug Assumption 3.4
Rig restriction matrix W; — Ug Definition 2.15
ITZG restriction matrix U — Ug (2.6)

QL evaluation of primal dofs Definition 2.16
=a (Eiq) filtermatrix W — W (W, — W) 2.8)

ég filter matrix U — U 2.8)

in our notation. So Definition 2.16 is equivalent to saying that Q. is block-diagonal with
respect to the partitions of (primal) dofs into globs.

The next condition states that the primal dofs on G are linearly independent. This can
always be achieved by a (modified) Gram-Schmidt orthonormalization or, more generally, by
a QR factorization [37, Section 5.2].

CONDITION 2.18 (linearly independent primal dofs). For each glob G € G, the columns
of the matrix Q¢ are linearly independent.

The following condition is needed later on:

CONDITION 2.19 (C; surjective).

ker(C;') = {0}  foralli=1,...,N.

PROPOSITION 2.20. Let {Qf}geg be primal dofs in the sense of Definition 2.16. Then
Condition 2.18 is equivalent to Condition 2.19.

Proof. Recall that Cif = ¥ R/¢QcRmc. i.e., C is block-diagonal with respect
to the partition of W; into globs and to the partition of Wry; into {Ung }geg,. Hence CiT is
injective if and only if all the matrices {Q¢ }geg, are injective. o

Some special primal dofs control all dofs on a glob (in applications, these are typically
subdomain vertices):

DEFINITION 2.21 (totally primal glob). We call a glob G totally primal if Q/, is injective
(typically the identity). The set of globs (for the subdomain i) which are not totally primal is
denoted by G* (G respectively).

2.5.2. The space w. Following [20, 72, 75, 76], we define the “partially continuous

space” W based on primal dofs.
DEFINITION 2.22. For given primal dofs {QE}GGQ in the sense of Definition 2.16, we set

(2.14) W = {weW:VYG e GVi,jeNa: Q4(Ricw; — Rjcw;) = 0}.

Obviously, the space above fulfills Condition 2.6, i.e., W c W < W. The following
characterization can be shown using the properties of the restriction matrices Ryy._. ; cf. [75],
[76, Section 2.3].

PROPOSITION 2.23. If the primal dofs are linearly independent (Condition 2.18), then

(2.15) W = {weW:JuneUnVi=1,...,N: Ciw; = Ryur}.
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The side conditions in (2.14) are called primal constraints, and they fulfill two purposes:
First, we need enough constraints such that Condition 2.7 holds (§ is invertible). Second,
additional constraints may be needed to get a good constant in the bound (2.5) (recall Re-
mark 2.11: the smaller the space W, the (potentially) smaller the constant w). In particular
this is important for 3D problems or parameter-dependent problems. The first purpose is
treated in Section 3.1 and in Section 7. The rest of the paper is mainly devoted to the second
purpose. Here, one has to take into account that, although a smaller space leads to a better
condition number, the amount of coupling within W should be kept at a minimum, otherwise
the algorithm is not efficient. For example, if W = I//I\/, then S (which should actually be
cheaper to invert) is the same as the original problem matrix.

Before proceeding, we provide two basic results on the space W . The first one clarifies
its dimension.

PROPOSITION 2.24. If the primal dofs are linearly independent (Condition 2.18), then
dim(W) = npg + SN dim(Wia).

The second result allows us to write T as a direct sum of a continuous and a discontinuous
space; see also [75, Section 5], [113, Section 6.4].

PROPOSITION 2.25. If the primal dofs are linearly independent (Condition 2.18), then

W = WH @ WA )
where I//I\/n = range(&)) cWis given by the full-rank matrix

‘/I\):UHHW, ‘/I;:IRQP=RZ§£~QG§HG.
Geg
Moreover, ‘/I\% =C/ Ry = (ZGegi RiTGQgRHig)Rm, so the basis has local support.
AREMARK 2.26. If the primal dofs are orthogonal, i.e., for all G € G: QEQG = ], then
C;®; = I. Otherwise, one can redefine  to fulfill the latter property; cf. [75, Lemma 9].

2.5.3. Primal dofs on closed globs*. In some references and implementations, primal
dofs are defined on the closure of globs; cf. [52, 79, 113].
DEFINITION 2.27. The closure G of a glob G is given by G and all its ancestors, i.e.,

G = U G', where Gg:={G €G: Nov 2 Ng}.
G'eGs

Let Ug denote the space of dofs on G (with a fixed numbering). Analogously to the above,
we can find zero-one matrices R;z: W; — Ug and }Algz U — Ug extracting these dofs such
that R,z R; = I%E independent of i € Ng.

DEFINITION 2.28. Primal dofs on the closed glob G are described by a matrix

Q%Z Ué g UHG = R"'LHG.
The analogous definitions of C;: W; — Wry; and QIT_,: U — Uy are

C; = Z Rl—fIiGQng@’ QITD = Z RHGQ%E@
Geg; Geg

and the space W can now be defined as in (2.15).
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Recall that for the classical primal dofs (on “open” globs), the proof of Proposition 2.20
is very simple. For the closed case, an analogue is not presently known. Yet, the following is
easily verified: R

PROPOSITION 2.29. Let Rz = Rc;Rg denote the restriction matrix from the dofs on

G to the (fewer) dofs on the open glob G. If for each G € G, the matrix R=Qz has full
column rank, then also Qg has full column rank (analogous to Condition 2.18).

If R, Q¢ has linearly dependent columns, then we can split each primal dof on the
closed glob G into primal dofs on all the open globs G’ € G, orthonormalize them together
with the existing ones, and finally obtain linearly independent primal dofs on open globs
(Condition 2.18). However, to our best knowledge, no algorithm exists to date which gets
Condition 2.18 to hold by modifying Q0 without increasing the overall number of primal dofs.
See also [79, p. 1819]. This is one of the reasons why we use Definition 2.16.

2.6. Generalized primal constraints*. Mandel, Sousedik, and Sistek [79] use a more
general definition of the space I, which is of central importance to our own work:

(2.16) W = {weW: Lw = 0},

where L: W — X := RM is a matrix with M linearly independent rows. One easily shows
that W < W < W (Condition 2.6) holds if and only if LR = 0, or equivalently,

(2.17) Lw =0 VNweW.

Apparently, Definition 2.22 (based on the classical primal dofs) is a special case of (2.16)
but not vice versa. For the general form (2.16), the application y = I.S~*1 T4 for 1) € W is
equivalent to solving the global saddle point problem

S LT [w] _ [

@ P IHEH]
For the special case of L discussed below, a more viable option is given in Appendix C.

REMARK 2.30. Actually, for any space WwithWWeWcWw (Condition 2.6), there
is a matrix L such that (2.16)—(2.17) holds. In a FETI-DP framework (see Appendix B),
the property (2.17) implies that L = LB for some L, and thus, such constraints can be
implemented by deflation [41, 46, 47, 53, 58]. The balancing Neumann-Neumann method [73]
can be interpreted as a BDDC method with (2.16), however, the constraints L are global; cf.
[93, p. 110].

In [79], Mandel et al. require that each constraint (each row of L) is local to a glob, i.e.,
for each glob G € G, there exist matrices Ljg: Ug — X, j € Ng, such that

(2.19) Lw= Y Rig Y. LicRjcw;,
Geg jeNa

where X is isomorphic to ®Geg Xg and Rxg: X — X is the zero-one matrix extracting
the “G” component. If L is of form (2.19) then
(i) L has linearly independent rows if and only if the block row matrix [- - | L] - - | jene
has linearly independent rows for all G € G.
(i) Lw = 0 holds if and only if

(2.20) > LigRjgw; =0  VGeg,
jeNea
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(iii) Lw = 0 for all w € w (Condition (2.17)) if and only if

2.21) Y Lic=0 VYGeg.
jeNa

The above form of constraints is important to our study because our localized bounds (implying
the central bound (2.5) of the Pp operator) hold (and are sharp) if constraints of the form (2.19),
(2.21) are imposed (in addition to previously fixed primal constraints). In particular, they
pop out of local generalized eigenproblems associated with globs that share more than two
subdomains and that involve more than just a few dofs such as subdomain edges.

Mandel, Sousedik, and Sistek provide an algorithm for the efficient solution of the global
saddle point problem (2.18) based on the multifrontal massively parallel sparse direct solver
MUMPS [1]. In Appendix C.3, we give an extension of the algorithm proposed in [20] which
realizes I S—117 by solving local saddle point problems and one global (coarse) SPD problem.
Under the perspective of the extended algorithm, BDDC with generalized (but still glob-based)
primal constraints becomes amenable for multiple levels [56, 78, 108, 116]. This is because
the coarse problem is again an SPD problem that can be subassembled from SPSD subdomain
contributions. Thus, the subdomains of the second level can be defined as agglomerates of the
first level subdomains. Multiple levels can be a rather attractive option for problems with high
contrast coefficients [18, 53, 96, 97, 98] and/or a detailed underlying geometry [21, 24, 76].
Nevertheless, as we will show in Section 5.4 below, rather than using the generalized primal
constraints, it is much more favorable to use potentially stronger classical primal constraints
and the conventional algorithm from Appendix C.1-C.2 (which is naturally amenable to
multiple levels). Although our result holds for the general case, we will describe it later in
Section 5, when needed.

3. Localization. In this section, we provide a local condition implying the global def-
initeness of S (Section 3.1, Condition 2.7). After introducing our mild assumptions on the
weight/scaling matrices D; and showing some technical results in Section 3.2, we provide
local estimates implying the global estimate (2.5) of the Pp-operator in Section 3.3. We also
review a similar approach by Klawonn, Kiihn, and Rheinbach [49] (Section 3.4). Through-
out this section, we assume a space W based on classical primal dofs (Definition 2.16 and
Definition 2.22).

3.1. A local, glob-based condition for the definiteness of S. The problem of how to
guarantee definiteness of S already arose in the original FETI-DP method [33]. Suitable
choices of primal constraints are known for scalar diffusion and linear elasticity problems
([70, 113]). For the general SPD case, however, an all-purpose recipe is yet missing (to our
best knowledge). As one can see easily, the definiteness of .S on % (Condition 2.7) implies
the necessary local condition

3.1 S; is definite on WA Vi=1,...,N,

which is, however, not sufficient (see Figure 3.1 for a counterexample).

Condition 3.1 below is local and sufficient (Lemma 3.2) although not necessary. In
Section 7, we provide an algorithm that computes a set of primal constraints such that
Condition 3.1 can be guaranteed under mild assumptions on the problem. For each glob G € G,
we define the (Euclidean) space

(3.2) Wig = {w = [w;]iens : wi € Wi},
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BN
L

]
]

FI1G. 3.1. Example where (3.1) is not sufficient to guarantee that S is definite; 2D Laplace problem with
Dirichlet boundary conditions on the dashed line. A bullet indicates primal constraint on a subdomain vertex.

I

FI1G. 3.2. Sketch of a vertex G (marked with o) and the neighboring globs where constraints enforced in the
associated space W s, (marked with thick lines and black dots).

where [w;];enr, simply designates a block vector. We denote by wyr,, € W, the restriction
of w € W to the subdomains in Vg and define the subspace

Wi, 1= {we Wy, :3ze W:w; = 2 Vie Ng}

(3.3)
= {w € Wiy, : Vi #jeNg VG {i,j} € Ngr: QL (Ricrw; — Rjcrw;) = O} ,

i.e., the space of functions living “around” G, where (previously fixed) primal constraints
are enforced on all the neighboring globs of G; cf. Definition 2.13. See Figure 3.2 for a
two-dimensional example where G is a vertex. If G is a typical edge in a three-dimensional
problem, then in addition to the previously fixed constraints on the edge G, also previously
fixed constraints on the neighboring vertices, edges, and faces are enforced.

CONDITION 3.1 (local kernel condition). For each glob G € G* (i.e., not totally primal),
assume that

Yw € WNG: (Vi € Ngt Si w; = 0) —— (Vi,j ENgl Rig’wi = Rjgwj).

LEMMA 3.2. Condition 3.1 implies Condition 2.7 (S is definite on W).
Proof. Let Condition 3.1 hold and let w € ker(S) n W be arbitrary but fixed. Then
S;w; = 0foralli=1,...,N. Due to Condition 3.1 for all not totally primal globs G,

Vi,j € Ngi Ricw; = Rjgwj .

On the remaining totally primal globs, we get the same condition from Definition 2.22 and
Definition 2.21. So, all dofs are continuous across all globs, and with (2.11), w € W Since
ker(S) n W= {0} (cf. Section 2.1), w = 0. Summarizing, ker(S) n W= {0}. a

REMARK 3.3. Condition 3.1 is similar to but substantially different from [76, Assump-
tion 8]. The latter reads as follows. For all faces F' € F,

(34) Yw € WN’FZ (Slw, =0, SjU}j = 0) - (szwl = ijwj),
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where {i, j} = N and F is the closed face (Definition 2.27). Under the additional assumption
that for each glob G € G\F, one can connect each pair {i, j} = N via a path through faces
(which is fulfilled for usual domain decompositions), one can show that Condition 2.7 holds.
Neither Condition 3.1 nor (3.4) are necessary for Condition 2.7 to hold.

3.2. Assumption on the weight matrices. In our subsequent theory, we need the fol-
lowing, mild assumption on the scaling matrices D;:

ASSUMPTION 3.4 (D; block diagonal). Each scaling matrix D; is block diagonal with
respect to the glob partition, i.e., there exist matrices D;c: Ug — Ug, G € G; such that

D; = ) RigDigRic .
Geg;

The condition below is a glob-wise partition of unity, and the proposition thereafter is
easily verified.
CONDITION 3.5 (glob-wise partition of unity). For each glob G € G, there holds

Z Djq = 1.

jeNa
PROPOSITION 3.6. Let Assumption 3.4 hold. Then for all G € G and i € Ng,
(3.5) ZaD; = D;Eiq, EqD = D=g
(where D = diag(D;)N,), and

(3.6) Epw = Y R, Y DicRigw;.
Geg ieNg

Moreover, Condition 2.4 (partition of unity) is equivalent to Condition 3.5.
Proof. Firstly, we show (3.5) and (3.6):

—_ Ass. 3.4 —_ T Ass. 3.4 —_
ZicD; = Z EicR,g Dic Ric =" DiEic
Geg; R =
=R}, =RicEic
N N
T Ass. 3.4 ToT ST
Epw = ZRi Diw; = Z R; R, DicRicw; = Z Rg Z Di;cRiqw; .
i=1 i=1Geg; ﬁ' T Geg ieNg

G

Secondly, (3.6) implies EpR = Y. Rl Y DieRer.
G'eG ieNgr
If Condition 2.4 holds, then tlle left-hand side evaluates to I, and we obtain Condition 3.5
by multiplying from the left by R and from the right by Rg (for an arbitrary G € G and
using (2.6)). Conversely, if Condition 3.5 holds, then the right-hand side evaluates to I due
to (2.10), thus Condition 2.4 is fulfilled. a
The following two results will be helpful for Section 3.3.
LEMMA 3.7. Let Assumption 3.4 (D; block diagonal) and Condition 3.5 (glob-wise
partition of unity) hold. Then
(i)

E¢Ep = EpEq, (REpZ¢)* = REpEq,

E¢Pp = PpEg, (PpEc)? = PpZ¢ .
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(ii) .
Eig(PDw)i = RiG Z ng(RiGwi — RjG’LUj).
JjeNG\{i}
In particular,

Z¢Ppw=0 <— (VZ,] € NG : Riqw; = Rjij).
(iii) If G is totally primal (G ¢ G*, cf. Section 2.5.1), then
E¢Ppw =0 VYweW.

Proof. (i) By definition, Ep = RT D with D = diag(D;)}Y.,. From (2.9), (3.5) we get

(1

cEp =E¢R'D =R"Z¢D = RTDE¢ = EpZc .

The other assertions follow immediately from (2.9), the fact that (REp)? = REp (Proposi-
tion 3.6 and Proposition 2.5), and the definition of Pp.
(ii) From the definitions of F'p and Pp we get

(3.7) Ric(Ppw); = Rigw; — ReEpw  Vie Ng.

Applying EG to formula (3.6), we find that

A~ (3.6) 5 ST 2.7
RgEpw "= Y| RaRL Y. DjaRjow; = ) DjaRjcw;.
G'eg JENGr JjENG

Substituting the latter result into (3.7) yields

R;FGRig(PDw)i = R;FG(RiGwi— Z Dj(;Rjij).
jeNa

The definition of =, and Condition 3.5 yield the desired formula.

(iii) If G ¢ G* and w € W, then QL(Riqw; — Rjqw;) = 0 for all i, j € Ng; cf.
Definition 2.22. Since Qg is non-singular, R;qw; = R;gw;, and Lemma 3.7(ii) implies that
EGPDU/ = 0. 0

3.3. A glob-based localization of the Pp estimate (2.5). Recall the formula stated in
Lemma 3.7(ii) and the space Wy, from (3.2). We define

(38) Ppa:Wa, — Wae: (Ppgw)i o Y. Dja(Ricwi — Rjgw;).
JGNG\{ }

LEMMA 3.8. Let Assumption 3.4 (D; block diagonal) and Condition 3.5 (glob-wise

partition of unity) hold. Then
(i) Zic(Ppw); = (Pp.cwar,)i Ywe WVieNg, wherewy, = [wj]jene,

(ii) P} o = Pp.a,

(iii) ker(PD G) {we Wy, :Vi,jeNg: Rigw; = R]Gw]}

(iv) Ppcwe WNG — wEe WNG, with the space WNG fmm (3.3),

in particular, PD,G(WNG) c WNG and range(Pp.q) N WNG = PD’G(WN/NG),

(v) there exists a projection operator 13D7G : WNG — WNG such that
Pp.gIng = Ing Pp.g, where Iy, : Wiy, — Wi, is the natural embedding.
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Proof. Part (i) follows from Lemma 3.7(ii) and the definition of Pp ¢, Part (ii) from
Lemma 3.7(i). Part (iii) can be derived using Lemma 3.7(ii). Part (iv): for y € Wy, and
w = Pp gy one easily shows that

QGRicwi = QGRic(Zicy: — Riglg), where  Jg = ), DigRjcuy,
jENG

Q&(Ricw; — Rjgw;) = Q&(Ricy: — Rijcy;)-

Finally, Part (v) follows from Parts (ii) and (iii). a

REMARK 3.9. If W does not originate from primal dofs on open globs (Definition 2.16),
then Parts (iii) and (v) do not necessarily hold.

As the next theorem shows, the global bound (2.5) can be established from local bounds
associated with individual globs (with WNG, Pp ¢ defined as in (3.3), (3.8), respectively):

Local glob estimate:

(3.9) M l(Ppow)ild, < we Y, lwil?,  Ywe Wy,
iENG iENG

THEOREM 3.10. Let Assumption 3.4 (D; block diagonal) and Condition 3.5 (glob-wise
partition of unity) be fulfilled, and let W be defined by classical primal dofs (Definition 2.22).
For each glob G € G* (that is not totally primal), assume that the local estimate (3.9) holds
with some constant wg < 0. Then the global Pp-estimate (2.5) holds with

w=< max |GF| )(maxwg)

i=1,...,N Geg*

where |G¥| denotes the cardinality of the set G¥. In particular, if, in addition, S is definite
(Condition 2.7), then Theorem 2.9 implies kpppc < w.
Proof. Firstly, we use (2.10), Lemma 3.7(iii), and Lemma 3.8(i) to obtain

(Ppw)i = Y Sig(Ppw); = Y, Eic(Ppw)i = Y. (Pp.awng)i-

Geg; GegG¥ GegG¥

Secondly, the Cauchy-Bunyakovsky-Schwarz inequality and the local bounds (3.9) imply

N N
> (Pow); 2 IGH Y 1(Pocwne)il3,

<
i=1 i=1 Geg*

< (ﬁ{lax GE) Y. D) (Poow);l3,
Geg* jeNa

< ( max 1G¥]) Z Z we w3,
GEQ*]GNG

< (_max 1G¥)) Z Z wa |wilZ, -
1= 1G€Q*

Finally, Zceg;k we < (max;—1,.n |GF|)(maxgegs wa). 0

The arguments in the proof above are not new and are used in all the known theoretical
condition number bounds of FETI, FETI-DP, and BDDC for specific PDEs and discretizations;
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see, e.g., [8, 23, 61, 63, 80, 81, 113]. The more recent works [18, 53] make implicitly use
of Theorem 3.10, and a similar result for the two-dimensional case can be found in [54,
Theorem 5.1].

REMARK 3.11. If Assumption 3.4 did not hold, i.e, if the matrices D; were not block-
diagonal with respect to the globs, then we would need an estimate of the form

Z Zic(Pow)ilz, < wg Z |w; 3, Yw e W,
iENG jE./\fg

where N are the subdomains of NV and all their next neighbors.

REMARK 3.12. Certainly, if the local glob estimate (3.9) holds on a larger space than
WNG , then we get a similar result (possibly with a pessimistic bound w¢). A possible choice
for such a space is

W/@G’ = {w = [’wi]ie/\/’G ) # ] ENG : QER:GUJZ = QgR;—rij},

i.e., the space of functions living “around” G, where only the primal constraints associated
with G are enforced. We shall make use of this later in Section 4.2, Strategy 4.

REMARK 3.13. Whereas the local estimate (3.9) is glob-based, other localizations used
in the literature are subdomain-based. For example, translating the suggestion of Kraus et
al. [65, Section 5] to our framework leads to the estimate

(Pow)il3, < wi D) lwily,  Ywe W,
jENi
where N; are the neighboring subdomains of 7 and f/IV/M is the restriction of W to these.
Another option, related to the work by Spillane and Rixen [110], is

> 1(Pow),l3, < wilwild,
JEN;

for all w € W that vanish in all but the i-th subdomain.

3.4. A review of a pair-based localization®. The local estimate (3.9) was first proposed
in [76] (see also [79, 106, 108]), however, there in slightly different form on every closed
face F,

(3.10) (12, 7(Pow)il%, + |2, 7(Ppw);l3,) < wi(lwilz, + lw;l3,),

where N = {i,j}, Z; 7 := YgF Zic is the filter matrix corresponding to F, and (3.10)
must hold for all w € W with wy, = 0 for k ¢ {7, j} and with all primal constraints enforced
between w; and w;. Under Assumption 3.4 (D; block diagonal) and Condition 3.5 (glob-wise

partition of unity), the estimate can be expressed using a space W4 and an operator Pp,

defined analogously to VIN/'NG and Pp g, respectively. In [76, 79], the local bounds are used to
define the condition number indicator
A1 0= = -

G &= ypaer
If every glob G is either totally primal or |NV¢| = 2 (typical for two-dimensional problems),
then it does not matter whether one uses the open or closed face, and (2.5) holds with w = @.
Thus, @ is indeed a reliable bound for the condition number; see also [54, Theorem 5.1].

For the three-dimensional case, the reliability of (3.11) was open for quite a long time.
In their recent preprint [49], Klawonn, Kiihn, and Rheinbach show that in general, (3.11) is


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

294 C. PECHSTEIN AND C. R. DOHRMANN

reliable if (i) all vertices are totally primal and (ii) one includes some estimates associated with
those subdomain edges that share more than three subdomains. In the following, we present
this latest theory under a slightly different perspective.

If Assumption 3.4 (glob-wise partition of unity) holds then

(3.12) (Ppw); = >, Y, RlgDjc(Ricw; — Rjcw;),
JeNi  qeg*
{i,j}cNg

where N; := (Jgeg, Ne is the set of neighboring subdomains of the subdomain 7. This
formula motivates a neighbor-based viewpoint and the following definition.

DEFINITION 3.14 (generalized facet). For each pair {i, j}, i # j, we define the general-
ized facet

Fij = U G,
GeG*: {i,j}cNg

i.e., the set of dofs shared by the subdomains i and j, excluding totally primal dofs. Note that
I';; = I's;. The set of non-trivial generalized facets is given by

*:{szlﬁjzlaaN’ 7’7&]7 F”;ég}

REMARK 3.15. Most of these generalized facets are closed faces. Assume that every
vertex is chosen totally primal, then in two dimensions, all generalized facets are actually
closed faces. In three dimensions, if we have a regular subdomain edge E shared by four or
more subdomains, then for each pair i # j with {¢,j} € Ng where no face F exists such
that {7, j} € Np, we get a generalized facet I';;. According to [49, 99], for decompositions
generated from a graph partitioner, most of the subdomain edges share only three subdomains.

We fix an ordering of the dofs for each set I';; and denote by Rz‘r,,ji W, — Upij
the corresponding zero-one restriction matrix. For each sub-glob G < I';;, we denote by
Rgr,; : Ur,; — Ug the zero-one restriction matrix such that R;q = Rar,; Rir,; -

Moreover, for each pair (i, j) with I';; € T*, we denote by W;;, T/IN/'Z-]- the restriction of
w, W, respectively, to the two components ¢, j. The restriction of a vector w € W or W is
denoted by w;;. With this notation, we deduce from (3.12) that

.
> eru( > RGFijjGRGFij)(RiF'ijwi_Rjrijwj)
j: Ty eT* Gclyj

N

(Ppw);

= Djri,j

T
2 RiFij DjFij (Ririj Wy — R]Tij wj) ;
J: FijGT*

=t (Pp,r,;wij)i

where PDI” : Wij — W;;. The following result was first shown in [49, Lemma 6.1] with
essentially the same constant.

LEMMA 3.16. Let Assumption 3.4 (glob-wise partition of unity) be fulfilled. If for every
I';; € T*, the inequality

|(Pp,r,,wi;)il%

holds, then

AP r w3 < wig(lwild, +wsld) Yy e Wy

|Ppw|3 < wlw|? Vwe W,

with w = (maXi:L___7N TL?) (maxrijey* wij), where n; := |{] Fij € T*H
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Proof. The Cauchy-Bunyakovsky-Schwarz inequality implies

N N
Z |(Ppw)i|3, < an Z |(Pp,r,,wij)il

Si
i1 i=1  j:Der#

< (maanl) Z (|(PD,F,;_7wij)i

F,;jEY*

§ + |(PD=Fi.7wij)j|?9_f>-
Employing the local estimate and using Cauchy-Bunyakovsky-Schwarz another time yields

2 I(Pow)ils,

i=1

N

N
‘ ( ) maxN nl) Z Wij <|wl

i=1,...,
F,;jeT*

N
(e 2 2 wyhwlk,

i=1 j:T;;er*

2+ wyld,)

N

< (,max, nf)( mex, wy) ; Jwil?, - 0

Unlike the glob-based operator Pp ¢, the pair-based operator Pp r,. fails to be a pro-
jection. For this reason and the fact that adaptive constraints on the generalized facets I';;
would have to be specially treated (e.g., split) in order to ensure that the constraints associated
with each subdomain are linearly independent, we do not pursue the pair-based localization
further. Note, however, that parts (not all) of our theory could be transferred to the pair-based
localization.

4. The glob eigenproblem for general scalings. The local glob estimate (3.9) is directly
related to a generalized eigenproblem A = AB, where A, B correspond to the right- and
left-hand side of the estimate, respectively, and the best constant is the inverse of the minimal
eigenvalue. We show this relation in detail (Section 4.1), allowing both A, B to be singular
(in this, our presentation differs from [77, 79]). Next, we show how to reduce generalized
eigenproblems by using Schur complements and how to modify them, obtaining the same or
related estimates. In Section 4.2, we discuss the eigenproblem associated with estimate (3.9)
and provide some strategies on how it could be computed in practice.

4.1. Technical tools for generalized eigenproblems*. The following definition and
lemma are common knowledge but stated and proved for the sake of completeness; see also
[37, Section 7.7.1], [79, Lemma 2], [109, Definition 2.10, Lemma 2.11], and [31, 53] for
similar results.

DEFINITION 4.1. Let V' be a finite-dimensional (real) Hilbert space and A, B: V. — V'*
linear operators. We call (X, y) a (real) generalized eigenpair of (A, B) if either

(a) X € Randy e V\{0} fulfill Ay = \By, or

(b) A = o0 andy € ker(B)\{0}.

We will not need complex eigenvalues in the sequel. In this text, we say that )\ is a genuine
eigenvalue of (A, B) if there is an associated eigenvector in V\(ker(A) n ker(B)).

Apparently, A is a generalized eigenvalue of (A, B) if and only if 1/) is a generalized
eigenvalue of (B, A), where 1/0 := o0 and 1/c0 := 0. The eigenspaces corresponding to
A = 0and A = o are ker(A) and ker(B), respectively. If ker(A) n ker(B) is non-trivial,
then every (A, y) with A € R u {0} and y € ker(A) n ker(B) is a generalized eigenpair.
If an eigenvalue A has only eigenvectors in ker(A) n ker(B), then we call it ambiguous in
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the sequel. If B is non-singular, then the generalized eigenvalues of (A, B) are the same
as the regular eigenvalues of B~'A, and if B is SPD, then they are the same as those of
B~Y2AB~1/2, where B'/? is the SPD matrix square root. The next lemma treats the general
SPSD case, and its proof is given on page 297.

LEMMA 4.2. Let V be a finite-dimensional (real) Hilbert space and A, B: V — V*
linear operators that are SPSD. Then there exist at least n = dim(V') — dim(ker(B)) genuine
generalized eigenvalues

O<AM<Xh<<...€\, <o

dim(V)

and a basis {yk}ii:ml(v) of V such that (A, yx)j—y and (90, yx);—p 1

pairs of (A, B) and

(BYk,ye) = ke, Ay, Ye) = Ml Ve L=1,...,n,

are generalized eigen-

dim(V)

and ker(B) = span{yi},_, -

Furthermore, for any k € {0, ...,n — 1} with Ap41 > 0,
1
(Bz,z)y < ——(Az,2) VzeV,{(Byy,z)=0, (=1,...,k.
Ak+1

The constant in this bound cannot be improved.

The next result is interesting in itself; cf. [109, Lemma 2.11].

COROLLARY 4.3. Let k € {0, ...,n — 1} with A1 > 0 as in the previous lemma and
let TIy.: V' — V be the projection defined by v := Zif:l(Bv, ye)ye. Then

Mxv|a < |vla, [(I =Tlx)vla < |v[a, [Hpvlp <|vlp, (I —Tk)v|s < |v|B.
Moreover,

(I —TIx)v|% < vZ  YweV.

1 1
I—1 )% <
)\k-‘rl ‘( k) |A /\k+1

Proof. All the estimates can be easily verified by expanding v € V' with respect to the
eigenvectors, i.e., v = 21;11(‘/) Beye, and by using the results of Lemma 4.2. O

For the proof of Lemma 4.2, we need an auxiliary result.

PRINCIPLE 4.4 (“Schur principle”: reduction of infinite eigenvalues by Schur comple-
ment). Let V be a finite-dimensional (real) Hilbert space and A, B: V. — V* two linear and
self-adjoint operators. Let Vo < ker(B) be a subspace and V, some complementary space
such that' V.= Vi @ V5 (direct sum, not necessarily orthogonal). In that situation, we may

identify V with V1 x V5 and write

A A _|Bnn 0
A_[A21 AZQ]’ B_[o o]'

Assume that ker(Asg) < ker(A12) (¢f: Lemma D.3), and let S1 := Aqq — A12A;2A21 be a
generalized Schur complement (cf. Appendix D). Then the following holds:
(i) (N, y) is a generalized eigenpair of (A, B) if and only if
either A\ = oo and y € ker(B), or

Y1 K
= or some v, € ker(Ass),
Y [—AézAzlyl + Uf] 4 ? (4z2)

and (X, y1) is a generalized eigenpair of (S1, B11).
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(ii) Assume that A, B are positive semi-definite, and let y1, . . .,y € V1 be fixed. Then
(Bz,z) < v(Az, z) VzEV:<B[%£],z>—O, L=1,...,m,
if and only if

<B1121, 21> < ’y<51217 21> VZl € V11 <B11y4, Zl> = 0, ! = ]., oo,

Proof of the “Schur” Principle 4.4. Part (i): Let (\,y) be a generalized eigenpair of
(A, B) and assume that y ¢ ker(B). Consequently A oo and

Aniyr + A2y = ABuyi,
Ag1y1 + Ays = 0.

The second line holds if and only if yo = —A£2A21y1 + v& for some vE € ker(Ass).
Substituting y» into the first line yields

Anyr — A (Al Agiyn — o) = ABiyr .

Due to our assumption v € ker(A;5), and so S1y; = ABi;. Conversely, assume that (A, 1)
is a generalized eigenpair of (S1, B11). If A = oo, then y; € ker(Bj) and y defined as in (i)
fulfills y € ker(B), so (00, y) is a generalized eigenpair of (A, B). If A # oo, one can easily
verify that Ay = ABy for y defined as in (i).

Part (ii) follows from the definition of B and from the minimizing property of S:

<BZ, Z> = <Bllzla Z1> < ’Y<51121, Z1> < ’}/<AZ, Z> a

Proof of Lemma 4.2. We apply the “Schur” Principle 4.4 with V5 := ker(B) and some
complementary space V7 such that n = dim(V}). Since A is SPSD, Lemma D.3 ensures that
indeed ker(Agq) < ker(Ajz). Now By is positive definite, has a well-defined inverse, and
defines an inner product (v, w)p,, := (Bi1v,w) on V. Apparently, B;llsu Vi - Vs
self-adjoint with respect to (-, -) 5,, . The classical spectral theorem (see e.g., [37, Section 8.1])
yields the existence of eigenpairs (Xk, Uk)p_y such that 0 < Xl < Xg <...< Xn < oo with
(U )7, forming a basis of V; and

(B11Jk,Ye) = Oke, (1T, Te) = Mebre Yk O=1,... . n.

Next, we show an auxiliary estimate. Let £ < n be such that Xk+1 > 0. Let z; € V] be of the
form z; = Z?‘jc(_:/ll) Be¥e, which is equivalent to {B11%¢,21) = 0,£ = 1,..., k. Then

S I Oy 1
(Buzi,21) = Z B < ~— Z Aefi = X (8121, 21)-

l=k+1 k+1 p=k+1 k+1

The constant cannot be improved due to the Courant-Fisher minimax principle [37, Theo-

rem 8.1.2]. Let (yk)zinn(xl) be a basis of ker(B) and set

N Yk
Ak = Ak, = - fork=1,...,n.
k k Yk [—A£2A21yk]

Now all the statements follow from Principle 4.4. a
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The “Schur” Principle 4.4 is not only valuable for the proof of Lemma 4.2 but will be quite
useful in our subsequent theory and method as it provides a way to reduce an eigenproblem
by keeping all the finite eigenvalues. Conversely, Principle 4.4 can be used to unroll a Schur
complement popping up in a generalized eigenproblem.

Sometimes, we want to compute with matrices but on a subspace of R™ for which we do
not have a basis at hand. The following principle is a slight generalization of [76, Lemma 5].

PRINCIPLE 4.5 (projected eigenproblem). Let A, B € R™*", let II: R™ — R" be some
projection onto a subspace range(Il)  R", and let Q € R™*"™ be SPD on range(I —1II), e.g.,
Q=tIwithteR > 0.

(i) For X € [0, 0),

(a) TIT Ally = \II" Blly and y € range(II)
if and only if
(b) (IITAIL + (I — IT)Q(I — I1))y = I Blly.

(ii) If A is SPD on range(Il), then 11T ATl + (I — IIT)Q(I — ) is SPD.

Proof. Part (i): If (a) holds, then y € range(IT) = ker(I—TII), and so (b) holds. If (b) holds,
then (I—-TIT)Q(I—M)y € range(I1T) = ker(I—1I1"), and so (I—-I17)Q(I—I)y = 0. Since
@ is SPD on range(I — II), we obtain that (I — II)y = 0, i.e., y € ker(I — II) = range(II),
and so (a) holds.

Part (ii): Assume that A is SPD on range(II) and that

(I ATL+ (1 = TT)Q(T — T1))y, y) = 0.

Then (ATly, Iy) = 0 and {Q(I — )y, (I — II)y) = 0. Due to the assumptions on A and @,
we obtain Iy = 0 and (I — )y = 0, and finally y = 0. 0

REMARK 4.6. It is yet questionable, whether it is easier to construct a basis for a subspace
of R™ or a projection onto it. If the matrices S; stem from sparse stiffness matrices, then
we would like the basis transformation matrix to be sparse too in the sense that all rows and
columns have O(1) non-zero entries except for O(1) rows/columns which may be dense.

REMARK 4.7 (“saddle point” eigenproblem). With similar arguments as in the proof of
the “Schur” Principle 4.4, one can show that the generalized eigenproblem

(Ay,z) = MBy, z) Vy,zeV :={veR": Cv =0},

with surjective C' € R™*™ m < n, is equivalent to

A CT[v] A\ B 0| |v

C 0 ||p|l 710 Of|p|’
up to some eigenvalues of infinity. The latter eigenproblem is posed on the simpler space
Rn-&-m'

In the following two principles, the eigenvalues might change.

_PRINCIPLE 4.8 (eigenproblem on larger space). Let V, A, B be as in Lemma 4.2, and
letV >V bea larger space with the natural embedding operator E: V' — V. Suppose that
there are SPSD operators A B:V — V* such that A = ETAE and B = ET BE, and let
(/\k, i) be the eigenpairs of (A, B) according to Lemma 4.2. If Nyt € (0, 00), then for all
2e Vwith{ETBjy,z)=0,¢=1,...,k

(Bz,2) = (BEz,Ez) < —(AEz,Ez) = 3 —(Az, 2).

k+1 k+1
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_ PRINCIPLE 4.9 (nearby eigenproblem). Let V, A, B be as in Lemma 4.2, and let A,
B:V — V* be two SPSD operators such that

A< 1A and B < 02§,

and let (A, i) be the eigenpairs of (A, B) according to Lemma 4.2. If Aj11 € (0, 0), then
1,.

f0rallz€Vwith<§ﬂg,z>=O, L=1,...k
(Bz,2) < ¢o{Bz,2) < 2 (Az,2) < ac (Az, z).
Akt1 Akr1

When A, B have block structure, a special application of Principle 4.9 allows us to
decouple the eigenproblem (at the price of an approximation).

PRINCIPLE 4.10 (decoupling). Let A, B: V™ — (V™)* be SPSD block operators for a
finite-dimensional Hilbert space V,

Ay oo A By -+ B
A= ol B=| i,

Anl o Ann Bnl e Bnn
and let m < n be the maximal number of non-zero block-entries per row of B. For each
1=1,...,n, let S; be the Schur complement of A that eliminates all but the i-th block. Then

S B
<nA, B<m .
STL B'!LTL

So U‘(Ag)7 y,(f)) are the eigenpairs of (S;, Bi;) and ifA;?H € (0, 00), then for all z € V™ with
<Bu‘yéi), ziy=0,forl=1,... k,;

(Az, 2).

1
(Bz,z) < nm max
i=1,...,n )‘ki+1
Of course, a different choice of the space splitting (leading to the block structure) can lead to
different spectra in the decoupled eigenproblem.

Proof. The first spectral inequality follows from the minimizing property of the Schur
complement (Lemma D.5), while the second one is simply a consequence of the Cauchy-
Bunyakovsky-Schwarz inequality. The rest follows from Principle 4.9 (nearby eigenproblem).
a

We also provide a simple result to recombine decoupled eigenproblems (A;, B;),
1=1,...,n.

PRINCIPLE 4.11 (recombination). Let V be a finite-dimensional Hilbert space, and let
Ay, Bi: V> V* i=1,...,n, be SPSD operators. We consider the single eigenproblem

((Ay: Az ... AN)y,2) = MN(B1+ B2+ ...+ Bn)y, 2y  fory,z€V,

=:A =B

with eigenpairs (., \i.). Then, for m < n with A1 > 0,

1
23, < ——
m+1

24, VzeR":(By,,2)=0 ¥Yi=1,...,n.

The same result holds for any Awith A < A; foralli =1,...,n.
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1 2
Aoy +1|Z‘A = Xm+1|z A O
Finally, we need a result for general eigenproblems of a special structure.

LEMMA 4.12. Let V be a finite-dimensional Hilbert space, A: V. — V* a linear SPSD

operator, and P: V. — V a projection (P?> = P). Then for

Proof. For i and z as above, | 2|3, < |25 <

B:=BPTAP, with 3 € (0,0),

the following statements hold:
(i) The eigenspace of infinite generalized eigenvalues of (A, B) is given by

ker(B) = ker(P)® (ker(A4) n range(P)),
and the ambiguous eigenspace by
ker(A) nker(B) = (ker(A) nker(P)) ® (ker(A) n range(P)).

(ii) Ifker(A) c ker(P), then (A, B) has no genuine zero eigenvalues.
(iii) Ifker(A) nrange(P) = {0} and if (A, B) has no genuine zero eigenvalues, then

ker(A) < ker(P).
Proof. (i) Since P is a projection, V' = ker(P) @ range(P). Assume that
v = vy + v € ker(B), with v € ker(P), w9 € range(P).
From the definition of B we see that Bv; = 0, and thus, if v € ker(B), then
0 = (Bv,vy = (Bvg,vay = S{APvs, Pva)y = {Ava, va),

and so Avy = 0. Conversely, if v; € ker(P) and vy € ker(A) n range(P), then
v1 + vg € ker(B). The formula for ker(A) n ker(B) is then straightforward.

(ii) If ker(A) < ker(P), then ker(A) nrange(P) = {0}, and so ker(B) = ker(P). Also,
ker(A) n ker(B) = ker(A) n ker(P) and ker(A)\ ker(B) = .

(iii) Let A7 < ... be the genuine eigenvalues of (A, B) according to Lemma 4.2. If there
are no genuine zero eigenvalues, then A; > 0. Suppose v € ker(A), then

(Bu,v) < %<Av,v> _ o,
1

and so v € ker(B) = ker(P) @ (ker(A) n range(P)), using Part (i). Due to our assumptions,
ker(A) n range(P) = {0}, and so v € ker(P). a

Let us apply the “Schur” Principle 4.4 to the generalized eigenproblem (A, 3PTAP)
and eliminate ker(P). If ker(A) n range(P) = {0}, then the reduced eigenproblem neither
has ambiguous nor infinite eigenvalues. Under the stronger condition ker(A) < ker(P) (see
Lemma 4.12(ii) and (iii)), the reduced eigenproblem has only eigenvalues in (0, o).

4.2. Generalized eigenproblems associated with the estimate (3.9). Let us fix a set of
linearly independent primal dofs in the sense of Definition 2.16 (possibly an empty set), and
let G € G*. Recall the space WNG from (3.3), and let I, Ne 't WNG — W, denote the natural
embedding. Moreover define

Sng = diag(S;)iens : Wae = Wag,

and consider the
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generalized eigenproblem associated with glob G
@.1) Snvey = MBay (v e W),
with
gNG = widetildelj—\rfc S INNG , Bg = IBEGS‘NG IBDG = E\r/G PB,GSNG PD,GfNG ,

where ]BD,G is the projection operator from Lemma 3.8(v). The next result immediately
follows from Lemma 4.2. N

COROLLARY 4.13. Let (A¢ i, ﬂg_yk):inl(WNc) be the generalized eigenpairs of(gNG, g@)
according to Lemma 4.2 with0 < A\g,1 < Ag2 < ... < 0.

(i) If there are no genuine zero eigenvalues (Ag,1 > 0), then the estimate (3.9) holds

with

(ii) Let us fix a number mg such that0 < Ag mg+1 < 00, and let DG aqa: R — Wiz,
be the matrix whose columns are the first mq eigenvectors,

m

DG aa = [ |fNG?7G,k| S g

Then
2 1 2
D (Pogw)ils, < SV D7 lwilg,
iENG Gma+1 iE./\/G

Vw € Wiigs & P aSnePo.w =0,

which is an improved estimate compared to (3.9).
LEMMA 4.14. If Assumption 3.4 (D; block diagonal) holds and Condition 3.1 (local
kernel condition) is fulfilled, then (4.1) has no genuine zero eigenvalues.
Proof. Condition 3.1 is equivalent to ker(Sy,) N I/IN/'NG < ker(Pp.¢), which, by using
Lemma 3.8(v), is further equivalent to

ker(Sny,) < ker(Pp.a).

Due to Assumption 3.4 and Lemma 3.8(v), ﬁD,G is a projection, and so the statement follows
from Lemma 4.12(ii). O

REMARK 4.15. The converse of Lemma 4.14 does not hold in general. In Section 7,
we will formulate additional assumptions under which one can conclude Condition 3.1 (local
kernel condition) from the positivity of the genuine eigenvalues.

One can now think of several strategies.

Strategy 1. We solve the generalized eigenproblem (4.1) right away.

Strategy 2. If each S, is the Schur complement of a sparse stiffness matrix A;, then we
can unroll the elimination and consider, by applying the “Schur” Principle 4.4, the associated
sparse generalized eigenproblem, which has the same spectrum up to ambiguous and infinite
eigenvalues. Applying additionally Principle 4.5 (projected eigenproblem) leads to the method
in [76, 79] except that the eigenproblem therein is posed on the closed faces and that the roles
of A and B are interchanged.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

302 C. PECHSTEIN AND C. R. DOHRMANN

Strategy 3. In Strategies 1 and 2, we expect a series of infinite eigenvalues. To get rid of
(some of) them, observe that

ker(Ppa) = Xg ®Ye,
Xo = {we WNG: Vie Ng: Rigw; = 0},
}/}G = {WEWNG: ViENgi RiGCwi = OandeeNg: RiGwi = Rjgwj}7

where R;ge- is the restriction matrix extracting all dofs not associated with glob G with the
property

Functions from the space X, a C WNG vanish on GG, whereas functions from )A’G are continuous
on (G and vanish on all other dofs. Using a change of basis, we can parametrize VT/NG and the
two subspaces above explicitly. Forming the Schur eigenproblem according to Principle 4.4,
eliminating ker(Pp ), we get rid of some ambiguous infinite eigenvalues, which may be
important in practice.

Strategy 4. We apply Principle 4.8 and embed the eigenproblem into the larger space
Wffc = {w € WNG: Vi,j ENgl Q(T;(Rigwi — Rjgwj) = 0}

from Remark 3.12. We warn the reader that by doing this, we discard any (good) influence
of the primal constraints on the neighboring globs of GG. Defining the projection operator
PEG analogously as Pp ¢ in Lemma 3.8(v), replacing Wy, by W/\G/G’ we find that the
eigenproblem has the form (S, ., (P§ 5)7SY. ]58 o). As an advantage,

ker(ﬁg’G) = XcdY,
where the first space

XG = {we W_/\/GZ V’iENGZ RiGwi = 0} = ® {U)Z € VVZ RiGwi = 0} ) XG
ieENG

is much simpler than X - Consequently, it is much simpler to implement the Schur comple-
ment operator of Sy, on Wﬁc eliminating X @ Y. Let us also note that if no primal con-

straints are enforced on the neighboring globs (G’ with [Ng n Ng/| = 2), then WNG = WJ\C}'G
i.e., the two eigenproblems are identical.

For all strategies, the underlying spaces are given implicitly, as subspaces of R™. One can
either explicitly parametrize them by R™, m < n (i.e., constructing a basis), or construct a
projection from R" to the subspace and apply Principle 4.5 (projected eigenproblem). As an
alternative, one can use the constraints defining the subspace in the eigenproblem (Remark 4.7).
Note also that for all the Strategies 14, the initially chosen primal constraints on the glob G
are preserved. Modifying them means changing the eigenproblem; see also Remark 4.16
below.

No matter which of the four strategies we use, we will always get the statement of
Corollary 4.13 (with some of the operators replaced):
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1. If the minimal eigenvalue A¢ 1 of the respective generalized eigenproblem is positive,
then the local glob estimate (3.9) holds with wg = /\; -
2. We can improve the estimate by enforcing additional constraints of the form

(4.3) D 100 PD SN Pp.cwne = 0.

These constraints are of the more general form in Section 2.6 and fulfill the condi-
tions (2.19)—(2.20) of locality and consistency.

REMARK 4.16 (orthogonality of constraints). For each of the strategies, we consider a
generalized eigenproblem of the form: find eigenpairs (y, A) € V' x R:

(Ay,z) = MBy,z) VzeV:={veV:Cv=0}

where C'v = 0 correspond to initially chosen constraints. An adaptively chosen constraint
reads

<qkaw> = <Bykaw> = 07

where yj, is an eigenvector. Assume that B is SPD. Then the functionals ¢ are pairwise
orthogonal in the B~!-inner product. Since C'y;, = 0, it follows that

CB_lCIk = 07

so the new constraints ¢y, are also pairwise orthogonal to the initial constraints in the B~!-inner
product. This pattern also applies to the simpler eigenproblems in the following section.

5. Adaptive choice of the primal dofs. In this section, we
(1) study in more detail the structure of the glob eigenproblem (4.1) for subdomain faces
(Section 5.2) and general globs (Section 5.3),

(i) show how to turn the constraints (4.3) originating from the local generalized eigen-
problems into primal dofs (Section 5.4),

(iii) provide a way to rewrite the glob eigenproblem using a transformation of variables
and to decouple it into n — 1 independent eigenproblems where n is the number of
subdomains shared by the glob (Section 5.5),

(iv) show that recombining the n — 1 problems into a single one leads to the eigenproblem
proposed by Kim, Chung, and Wang (Section 5.6),

(v) comment on how the eigenproblems could be organized in an algorithm (Section 5.7).
To this end, we need further notation (given below) and the parallel sum of matrices (Sec-
tion 5.1).

DEFINITION 5.1. For G € G; let

(5.1 Sic == RicSiR};
denote the restriction of S; to the dofs on G, and let
Sicge := RigSiRige, Sigec = Rig-SiRic, Sige := RigeSiRig-

denote the other subblocks of S;, where R;qe is the restriction matrix from (4.2). Finally, we
define the (generalized) Schur complement

(5.2) Sic = Sic — SicaeSlgeSicea -
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FIG. 5.1. Left: Laplace/linear elasticity: Sy e empty, Sy . singular. Right: Linear elasticity, straight edge E:
Skge = Skr singular, Sype = Sy non-singular, Sy ., Sy, singular.

REMARK 5.2. In practice, the matrix S is usually linked to a problem on the sub-
domain £ with fixed dofs on G and homogeneous ‘“Neumann” conditions on the remaining
boundary dofs. Figure 5.1 shows that it may happen that Sy, Skge, or S} are singular.

REMARK 5.3. As we use these matrices in the subsequent eigenproblems, we spend some
words on their handling in practice. Suppose that .S; is the Schur complement of a sparse
matrix A; eliminating interior dofs. Since S; is a principal minor of .S;, its application can be
realized by a subdomain solve. Some direct solvers, such as MUMPS [2] or PARDISO [66],
offer the possibility of computing the dense matrix S; directly. Since G¢ usually contains
many more dofs than GG, computing S;GGe, Sige in the same way would be inefficient. Instead,
following Stefano Zampini [121], one can compute SJ once and extract S’ as a principal

minor of SiT ; see also [84].

5.1. The parallel sum of matrices®. The following definition was originally introduced
by Anderson and Duffin [3] for Hermitian positive semi-definite matrices.

DEFINITION 5.4 (parallel sum of matrices [3]). For two SPSD matrices A, B € R™"*",
the parallel sum of A, B is given by

A:B = A(A+ B)'B,

where (A+ B)' is a generalized inverse, i.e., (A+B)(A+B)'f = f forall f € range(A+B);
cf. Definition D. 1. The definition is independent of the particular choice of the generalized
inverse (cf. [3, p. 579] and Proposition D.2), A : B = B : A[3, Lemma 1], and A : B is again
SPSD [3, Lemma 2, Lemma 4]. Moreover, due to [3, Lemma 6], (A: B): C = A: (B :C).

REMARK 5.5. If A and B are both SPD, then A : B = (A~! + B~1)~!. Therefore,
up to a factor of 2, the above matrix generalizes the harmonic mean value a—li-zrb—l of two
positive scalars a, b; cf. [5]. Moreover, it can be shown that for A, B SPD,

z'(A:B)x = inf+ (z] Azy + x4 Bxy) Vo e R",
r=T1T+I2
i.e., |z| .5 is the natural norm on the sum of the Hilbert spaces (R™, | - ||4), (R™, || - | 5); see

also [10], [4, Theorem 9], and Corollary 5.11 below, as well as [112, Eqn. (4)] for a related
result.
Let A, B be as in Definition 5.4. We easily see that

(5.3) A: A= %A, (cA): (cB)=c(A: B) Vee RS
(see also [3, Theorem 10]). Since A, B are SPSD, we have

ker(A + B) = ker(A) nker(B), range(A + B) = range(A) + range(B),
and we can conclude that

(54) ker(A: B) = ker(A) + ker(B), range(A : B) = range(A) n range(B);
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cf. [3, Lemma 3]. From Definition 5.4 and Proposition D.2, one easily shows
(5.5) A:B =A-A(A+B)'A = B-B(A+B)'B;
see also [4, Eq. (10)]. Next, let us consider the generalized eigenproblem
(5.6) Ap = MA+ B)p

in the sense of Section 4.1. With the above relations, it is straightforward to verify that, if
(p, ) is an eigenpair of (5.6) (and p ¢ ker(A) m ker(B)), then X € [0, 1] and

Bp = (1-A)(A+ B)p,
3.7 (A:B)p = M1—-XN)(A+ B)p.

From (5.4) and (5.7), we easily conclude that
(5.8) A:B < A, A:B < B,

which is a special case of [3, Lemma 18] (as usual, A < B stands for y " Ay < y " By for all
y € R™). Anderson and Duffin also show an important transitivity property:

LEMMA 5.6 ([3, Corollary 21]). Let D, E, F' € R™"*™ be SPSD matrices. Then D < E
implies D : F < E : F.

As the next proposition shows, the parallel sum A : B is—up to a factor of two—a sharp
“lower bound matrix” of A and B.

PROPOSITION 5.7. Let A, B be as in Definition 5.4 and let the matrix C € R"*™ be
SPSD with C < A and C < B. Then

C < 2(A:B).

Proof. Due to Lemma 5.6, C' < A implies $C' = C': C' < A : C. With the same Lemma,
C < BimpliessA:C < A: B. d

The following result states that the parallel sum of two spectrally equivalent matrices is
spectrally equivalent to the parallel sum of the original matrices.

PROPOSITION 5.8. Let A, A, B, B € R"*"™ be SPSD, and assume that

oA < A < @A, BB < B < BB,

with strictly positive constants o, @, ﬁ, B Then

min(a, 8)(4: B) < A: B < max(a, B)(A: B).

Proof. Firstly, we set v := min(a, ), 7 := max(@, ) and observe that

B
vA < A <754, B < B <7B.
Secondly, from Lemma 5.6 and (5.3) we obtain

A:B < (A): B < (7A): (7B) = 7(A: B)

as well as the analogous lower bound A : B > v(A:B). O
PROPOSITION 5.9. For non-negative constants c¢1, ¢ and a SPSD matrix A,

(ClA) : (CQA) =C1 (Cl + CQ)TCQ A.
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The last lemma of this section appears to be new (for earlier versions see [52, 95]) and
generalizes the elementary identity and inequality

ab? N a?b _ab ab? < min(a, b)
(a+0)?2  (a+b)?2 a+d (a+b)2 ’

for non-negative scalars a, b with a + b > 0, cf. [113, (6.19), p. 141].
LEMMA 5.10. Let A, B € R"*"™ be SPSD. Then

B(A+B)'A(A+ B)'B+ A(A+ B)'B(A+B)'A = A:B.
In particular,

B(A+ B)A(A+ B)'B A,
< A:B <
A(A+ B)'B(A+ B)TA B.

Proof. Since A : B = B(A + B)TA = A(A + B)'B (see Definition 5.4),

§(A+B)TA(A+B)TB+A(A+B)TB(A+B)TA
=:H; 27;12

= (A:B)(A+B)'B+ (A:B)(A+ B)'A

= (A:B)(A+B)"(A+B) = A:B.

The last identity holds because for any v € R", (A + B)(A + B)v = v + v for some
vk € ker(A + B) = ker(A) nker(B) < ker(A) + ker(B) = ker(A : B); cf. (D.1),
Appendix D, and (5.4). So H; + Hy = A : B. Since H; and H; are both SPSD, we have that
Hy, Hy < A: B.Dueto (5.8), A: B < A, B, which concludes the proof. |

The following corollary appears to be a special case of [4, Theorem 9].

COROLLARY 5.11. For SPSD matrices A, B € R",

zhp = Lt lz1% + |22l Vo eR™

Proof. Minimization yields the first order condition z¥ = (A + B)' Bz + 1 for some
71 € ker(A + B) = ker(A) nker(B) and 2% = (A + B)' Az + x5k for a suitable vector
xox € ker(A) nker(B). The Hessian is given by A + B, so all these solutions are minimizers.
Due to Lemma 5.10, |z¥ |4 + |25|% = 2T (A : B)z = |z]4 5. O

REMARK 5.12. Unfortunately, Lemma 5.10 cannot be generalized to three matrices (see
also [15]), in the sense that already for SPD matrices A, B, C,

B(A+B+C) "A(A+B+C)'B £« A:B in general!

Our counterexample in Appendix E shows that B(A + B + C)'A(A+ B+ C)~'B « A.
Since A : B < A, the above inequality cannot hold.

5.2. Subdomain faces. Suppose that F' is a face shared by the subdomains N = {4, j}.
Firstly, we have a look at the right-hand side of eigenvalue problem (4.1).
LEMMA 5.13. Under Assumption 3.4, for a face F with N = {i, j}, we have

2Pl pSnePpry = (Rirzi — Rjpz) Mp(Ripy; — Rjpy;) Yy, 2 € Wiy,
with

(5.9) Mp := D/pSipDjr + D/pSirDjp.
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Proof. We obtain from (3.8) that

(Pp,rw)i = RlpDjp(Ripw; — Rjpw;),
(Ppypw)j = R}FDiF(Rijj — Ripwi) .
Hence, using that Ry xSy R} » = Skr for k € {i, j},
2" P} nSne Pp,ry

S 0 1[ Dy
= (Rirzi — Rjrz)" [Djp _DZTF]|: 0 S, H_éjF](RiFyi—Rijj) a

~"

= (DpSirDjr + D{pSjrDjr)

The lemma shows that the constraints 2" P}, Sy, Pp,rpw = 0 are classical primal
constraints (Definition 2.16), and so for each column z of ® 444 in (4.3), we can use

MF(RiFZi — RjFZj)

as an additional column in ) (after a modified Gram-Schmidt orthonormalization).
Secondly, we investigate the structure of the eigenproblem (4.1). The next lemma reduces
the eigenproblem on WAF,F (Strategy 4) to an eigenproblem on a subspace of Ug.
LEMMA 5.14. Let F be a face shared by subdomains Ng = {i, j}. Then the correspond-
ing generalized eigenproblem of Strategy 4, i.e., finding eigenpairs (y, \) € WAI?F x R,

(5.10) (Sneys 2y = MPp pSnwPp oy, 2y Vze Wi
is (up to infinite eigenvalues) equivalent to finding eigenpairs (§r, \) € Upa X R,
((Sir : Sip)ir,Zr) = MMFpyr,2r)  VZp €Upa,
where §r := Riry; — Rjryj, 2r = Rirzi — Rjrzj, Upa = {q € Up: QLq = 0}, and

M is the matrix from (5.9).
Proof. Let us first rewrite (5.10) using Lemma 5.13:

T
Zil [Si OW¥l|l _\ip o p AT R SR
[Zj:| |:O Sj:| [yj])\(Rzez RjFZj) MF(RZFyz Rijj)'
Due to Definition 5.1, we have

(5.11) Yk = Ripyer + Ripeyrpe fork e {i,j},

for some vectors yrr, Yrxpe. Since y € WAI;F (not VIN/NF), we do not get any constraints on
Yire, Yjre. Moreover, since Pp gy is independent of y;re, y;re, we can use the “Schur”
Principle 4.4. With (5.2), we obtain that the eigenproblem (5.10) is (up to infinite eigenvalues)
equivalent to

T
ZiF Sip 0 Yir | _ T s
(512) |:ZjF:| [ 0 S]*F:| |:ij:| = )\(ZzF ZjF) MF(yzF ij>7
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where the eigenvectors and test vectors fulfill QL (vir — yjr) = 0, QL (zir — zjr) = 0,
respectively. To get the last side condition explicitly, we use a simple transformation of
variables:

~ 1~ ~ 1y
Yir = YF t+ 3YF, ZiF = ZF T 3%F,
2 2
(5.13) R L ~ L
Yjr = Yr — 3YF, ZjF = ZF — 5ZF-
2 2
Since
Yir —YjFr = YF, ZiF — ZjF = ZF ,
the condition y, z € WAI;F is equivalent to
yr, zr € UF, yr, Zr € Upa .

A straightforward calculation shows that

T ~ 1T ~
oo [ 1% )]~ BT %% 12308
ZjF 0 Sip] lyiF ZF 7(SfF — SjF) 1(SF + SjF) Yya
Hence, we can use the “Schur” Principle 4.4 once again and eliminate 3z, Zr from the
eigenproblem (5.12). The corresponding Schur complement of the matrix in (5.14) is given by

%[( Tr+SiE) — (Sip — Sip)(Sir + ;F)T(S;“i = Sip)l

= 1[(Sfr + S;p)(Sir + Sp) (Shi + Sip) — (Sie — Sip)(Sir + S5r) (Ski — Sip)]
1
3l

251p(Sip + S7p) Sip + 2870 (Sir + S7p) " SiF]

* . Qx .
=57F: Sip;

cf. Definition 5.4 (Section 5.1). a

REMARK 5.15.

(i) The generalized eigenproblem (S} : S’;F)v = AM v has been used in [52, 54]
and in [15, 95, 123, 124] for the deluxe scaling, which we further investigate in
Section 6.1 below. N

(ii) If we consider the original glob eigenproblem (4.1) (on W), then we can still apply
the “Schur” Principle 4.4 to the splitting (5.11). But the primal constraints enforced
on the globs neighboring F' (i.e., globs G # F with [Ng n Np| > 2) result in an
equivalent eigenproblem of the form

zie | [Tur Turl [y
iF uF Tie | VYiF | o T Mol — s
[sz} [sz‘F Tij] [%F] i =z ) Mr(yir = yr),

in general with T;;7 # 0, Tj;7 # 0. In that case, the transformation (5.13) will lead

to a matrix different than (575 : S7r).

5.3. Globs shared by more than two subdomains.. Recall that

(Pp.cy)i = Rlg >, Djc(Ricyi — Ricy;).
JeNG\{i}

Therefore, any new constraint of the form

(Pp.cz)' SnePp.cy = 0
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that we wish to impose, rewrites as

(5.15) Z( > (RiczﬁRszj)TD]G)Sq;a( >, D; (Ricyercyj)) = 0.
ieNG jeNe\{i} JeNG\{i}

(The matrix on the left-hand side is related to but substantially different from the matrix Ag in
[46, 47].) It is not hard to show that (5.15) has the form

(5.16) > LigRjqy; =0
jeNG

(Condition (2.19) from Section 2.6). From Lemma 3.8(iii), we know that Pp ¢ vanishes
for functions that are continuous across G, from which we obtain Y NG L;g = 0, (Condi-
tion (2.21) from Section 2.6).

Appendix C shows that such generalized primal constraints (5.15) can be cast into an
algorithm very similar to the original BDDC method [20], leading to independent subdomain
problems and a sparse SPD coarse problem. Alternatively, in a FETI-DP framework, one can
enforce the generalized primal constraints by deflation [41, 53, 58]; see also [46, 47]. In the
next section, we suggest for BDDC to convert the constraints (5.16) into (stronger) classical
primal constraints and show that this is more favorable.

5.4. Enforcing generalized primal constraints by (stronger) classical primal con-
straints®. In this section, we assume that we are given generalized primal constraints of
the form (2.19) (or (5.16)). We show first how these can be enforced by classical primal
constraints (cf. Definition 2.16). Although this can increase the total number of constraints, we
are able to show in a second step that the coarse problem underlying the classical constraints is
smaller or equal in its dimension to the coarse problem underlying the generalized constraints
(while the condition number bound that we obtain for the generalized constraints also holds
for the classical constraints).

Let G be an arbitrary but fixed glob G and consider one of the rows of the equation
2jens LicRjgw; = 0, which we rewrite as

T
Z fngjij = 0,
jGNG

where ;¢ is the column vector with the same entries as the selected row of L. Since the
constraint above is non-trivial and because of (2.21), at least two of the vectors {£;:}jen
are non-zero. We select j* € N such that £« is non-zero. Without loss of generality, we
assume that

Ne ={1,...,n}, j¥ =1,
and introduce the simplified notation
wiq = Rjg’w, j S NG .
Next, we define a transformation of variables:

e = LY wi
5.17) < n =1 T .
wjqg = Wjqg — WG, Vi=2,...,n.

The inverse transformation is given by

~ 1 n ~
wiG = WG — 5 Zk:z WEG,
(5.18) _ n k=2 _ ‘
w;g = Wi1G — EZkZkaGerjG? Vji=2,...,n.
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Using (2.21) one can show that > .. £jcwjc = 3}_y £ioWjc, and so,

(5.19) lo(wic —wig) =0  Vi,jeNg VkeNo\{j*}
— é;«rciﬁjg=0 Vi=2,...,n
(5.20) — D fewig =0.
JEN;

The first line is in a suitable form for classical primal constraints only that we should orthonor-
malize the vectors {{xc }rens\(;*} and possibly drop some of them. Because of (2.21), the
space of vectors {w;¢ }ien. fulfilling (5.19) is independent of the choice of the distinguished
index j*. If [Ng| = 2, then (5.19) and (5.20) are equivalent.

From the development above, it becomes clear that in any case we end up with a matrix Q(T;
of full row rank such that for some matrix T of full column rank,

521 LS := | Ljc =TeQ¢, rank(LG) = rank(Q)
JjeNe

(Lg is a block column vector). A primal dof matrix Q/; fulfilling the above can be obtained
in various ways. Theoretically, we just have to remove linearly dependent rows from Lg. In
practice, one can use the (thin) QR factorization (either implemented via Householder, Givens,
or (modified) Gram-Schmidt; cf. [37, Section 5.2]):

LG = [Q1| Q) % =Q1R1, setTg:=Q1, QL= R

such that Q[ is even upper triangular. Note that the QR factorization is also used in the
algorithm proposed in [79, Section 5]. In any case, the number of classical primal dofs on the
glob G is given by

nng = dim(Ung) = rank(LS).

Following this construction for all globs results in classical prinﬂlfﬂ dofs {Q[}ceg and the

corresponding space from Definition 2.22, which we denote by W in order to distinguish it
from W defined by (2.16). From Proposition 2.24, we obtain:

COROLLARY 5.16. Let W be as in Definition 2.22 based on the classical primal dofs Qg
from (5.21), and let

~

~ N ~
WA = @WiA, WiA = {wi € Wi: VG e gii QgRiGwi = 0}

i=1

(cf. (2.13)). Then for any space WH Sfulfilling W = f/IV/H ® VT/A,
dim(Wp) = nyg = dim(Up) = Z nng = Z rank(LS).
Geg Geg

Before we can state il/le main theorem of this section, we need to discuss the dimension of
the more general space W of the form (2.16), (2.19). Let r1¢ denote the number of (linearly
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independent) constraints on G, i.e., the number of linearly independent rows of the equation
2jens LicRjgw; = 0. Since each R;¢ is surjective,

(5.22) rmg = rank(LE),  where LE := [+ 1Ljcl]iens,

(Lg is a block row vector, opposed to Lg). Moreover, it is easily seen that

N
(5.23) dim(W) = > dim(W;) — Y. e
i=1 Geg

We define the generalized dual spaces
N
(5.24) WiA = {wl € Wit VG e gi: LigRiGwi = O}, WA = ®WiA
i=1

as well as the numbers

(5.25) quic :=rank(Lig),  qmii= ), qmi-
Geg;

PROPOSITION 5.17. Let W be the space based on generalized primal constraints given
by (2.16), assume that (2.19), (2.21) hold, and let W be as in (5.24). Then
(i) Wa =W, N
(ii) the space Wa in (5.24) is the maximal subspace of W which has the form ®i\;1 Vi,
(iii) dim(W;a) = dim(W;) — qm; with qr1; from (5.25),
(iv) for any complementary space WH Sfulfilling W = V[N/H @ Wa,

N
dim(Wn) = 2 qmi — 2 TG
=1 Geg

with rrq from (5.22).
Proof. Parts (i)—(iii) can easily be verified. Since the sum in Part (iv) is direct, we obtain
from (5.23) and Part (iii) that

dim(Wy) = dim(W) — 2 dim(W;a)

(idim(Wi) - mie) -

D=

(dim(Wi) -, QHiG)

Geg i=1 Geg;
N
:—ZTHG+Z ZQHjG:—ZTHG-FZZQHiG- O
Geg Geg jeNa Geg i=1Geg;

We next state the main result of this section.
THEOREM 5.18. Let W be the space based on generalized glob constraints given

by (2.16), and let WA denote the corresponding dual space from (5.24). Then, for VT/, WA as
in Corollary 5.16,

W, dim(Wa) < dim(Wa),
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(a) (b)

FIG. 5.2. Two examples of generalized constraints on a vertex shared by four subdomains. White bullet: dual
(unconstrained) dof, black bullet: primal (constrained) dof, dashed line: constraint. In example (a), the coarse space
requires two basis functions, one having support on the two left subdomains and vanishing on the two right ones, the
other one supported on the right. Example (b) requires one coarse basis function. For both examples the stronger
constraint is simply the classical vertex constraint involving a single coarse dof.

and for any complementary spaces Wn, WH with W = WH &) WA and W = Wn (&) WA,

dim (W) < dim (W)

Let us first rephrase the statement of Theorem 5.18 based on the following observa-
tion. According to [20, 75] (or Appendix C), the action of I S 1~T can be performed by
independent subdomain problems and a sparse SPD coarse problem of dimension dlm(WH).
Correspondingly, the operatorj ST involving the more general space W leads to a coarse
problem of size at least dim(WH) Actually, we show in Appendix C that the coarse problem
is of size exactly equal to dlm(WH) So,

(1) although in W more constraints are enforced than in W working with the space W
leads to a coarse problem of lower dimension (thus more efficiently solvable) than

for W.
(ii) At the same time, we obtain from Remark 2.11 that at high probability, the smaller

space W leads to a smaller condition number as well.

Summarizing, the advantages of using the (stronger) classical primal dofs from (5.21) clearly
prevail.

The simple example in Figure 5.2 shows that this is (although counter-intuitive) indeed
possible.

REMARK 5.19. If the constraints are imposed by deflation in a FETI-DP framework
[41, 46, 47, 53, 58], things turn around: Since there, the number of dofs in the second coarse
problem equals the number of constraints, it is better to use the original constraints (2.19) (or
(5.16)) in the deflation process.

Proof of Theorem 5.18. The first two statements follow from Definition 2.16, (2.16), and
(5.19)—(5.20). The remainder of the proof is devoted to the inequality relating the primal
space dimensions. Beforehand, recall the matrices Lg from (5.21). From Corollary 5.16 and
Proposition 5.17, we obtain

dim(VIN/H) = 2 rank(LS),

Geg
dim(WH) = Z (QHG - THG)> qang = Z an;a -
Geg JENG

We will show that each of the summands in the first line is less than or equal to the correspond-
ing one in the second line. Therefore, we can consider a single glob G € G at a time. For a
clearer presentation, we assume that N = {1,...,n} and omit the subscripts G and I1I.
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For each j € Ng we cons{der the matrix L;q, which may have incomplete row rank.
However, we can find matrices L ;g of full row rank such that

(526) LjG = Kjgf/j(;, qi;G = rank(ng) = rank(f/jg) < g,

for some matrix ;g € R™M¢*4mi¢ e g, via the thin QR factorization [37, Section 5.2]. It is
easy to see that

rank(LY) = rank(LY), where L :=

Therefore, we only have to show that

n
rank(LY) < ¢—r, whereq= Z qj -
|

Recall that LT := [L;]---|L,] and r = rank(L%); cf. (5.22). If m is the number of dofs on
the glob G, then

dim(ker(LT)) = nm — r.

A different characterization is related to the matrices { K };Lzl from (5.26). From L; = K Ej
we derive

Ly
LE = [Ki|--|K,]
—_— _
- K L,
N ———
=:LD
Since each L; is surjective, so is L, and we can conclude that

(5.27) dim(ker(L?)) = dim(ker(L”)) + dim(ker(K)).

From rank(L;) = g; it follows that dim(ker(L”)) = nm — >1i—1 ¢; = nm—q. Combining
with (5.27), we obtain

(5.28) dim(ker(K)) = g —r.

Finally, recall that Z?=1 L; = 0, which can be rewritten as

Ly
KLY = [Kq|...|[K,] | : | = 0.
Ly
In other words, the columns of L are in ker(K), and so there can only be as many linearly
independent columns as the dimension of ker(K). To summarize,

rank(LY) = rank(LY) < dim(ker(K)) = ¢ —r. a
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5.5. Alternative eigenproblem for subdomain edges. In this section, we show that us-
ing the transformation of variables (5.17)—(5.18) and Principle 4.9 (nearby eigenproblem), one
can decouple the glob eigenproblem of Strategy 4 into |[Ng| — 1 independent eigenproblems,
similar to Principle 4.10. The price to pay is a potentially larger set of constraints because
(1) we use Strategy 4 and neglect the neighboring globs (cf. Definition 2.13) and (ii) replace
the coupled eigenproblem by a decoupled one.

Let G be an arbitrary but fixed glob and assume without loss of generality that

Ng = {1,...,n}. Recall the shortcut w;q = R;gw; as well as the transformation (5.17):
{ g = = Z;;l wja,
Wig = Wie —Wig Vi=2...,n.

Notice for |Ng| = 2 that this transformation (up to a positive or negative sign) is not biased
towards either the first or second subdomain in G. In contrast, for |Ng| > 2, there is a clear
bias towards the first subdomain.

LEMMA 5.20. Under the assumptions above,

n
S [(Ppcw)ily, < (Nal - 1) Y #is Mgt

ieENG 1=2
where
M;q := D;rg( Z Sj(;)Dig-F( Z D;rg> Szg< Z ng),
JeNG\{i} JeNG\{i} JeNG\{i}
fori=2 ... n.
For a face, i.e., G = F € F, we have equality and Msp = Mp.
Proof. Firstly, observe that
(Ppow)i = Rig Y, Djclwic —w;q)
JeNG\{i}
>, —Djcujc i=1,
_ RiTG jENG\{i} . . |
(DleiG + Z ng(wig — wjg)) i # 1.
JjeNG\{1,i}
Using the above, we rewrite the expression
Z (Pp.c2)] Si(Pp,cw);
ieENg
in the new variables (W1, Waq, - - -, Wna), (216, 22G, - - -, 2nc). The whole expression is

independent of w1, Z1¢; in particular, the diagonal entry corresponding to @1 g, Z1¢ is simply
zero. The diagonal entry corresponding to Wgq, ZxG computes as

DjS1¢Dic + Z (D1G5ik+ Z Djc (i — 6jk))TSiG (D1G5ik+ Z Djg (i — 0, ))

=2

J#i J#i
[Shipe k=i
Dia k+#1

_ DIIG( i SiG)DkG + ( i DjG>TSkG( i DjG).

i%k itk j#k
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The second inequality in Principle 4.10 yields the desired inequality. 0

Applying the whole idea of Principle 4.10 (decoupling), we have to compute the Schur
complement of diag(S};)ienr, but in the transformed variables (W1, Wag, - . . , Wne) elim-
inating Wi for k = 2,...,n, which we call §,:G in the sequel. From Lemma D.6, we

know that §2G does not depend on the complementary space. Therefore, we may use the
simpler transformation (wig, ..., Wna) = (W1G, - - Wk-1)G> WkG> W(k+1)G» - - - » WnG )
where wye = wig + Wra. When we write the operator diag(S};)ien, in the new variables,
then (wig, Wre) are decoupled from the remaining variables. So, if we form the Schur

complement eliminating w;g, j = 1,...,n, j # k, it suffices to take the Schur complement
of [ 1G i_ e S’i’G], which is
Ska Sia

§Za = St — Sia(Sia + Sia) Sha = Sia : Sia

where in the last step, we have used (5.5). Principle 4.10 implies
2 Wi (Skg + Sig)re < (n—1) Z w;’rGS;ijG’

and we may alternatively study n — 1 decoupled eigenproblems of the form
(5.29) %ic(Sle  Sielic = MieMiclic  forfic, Zic € Usa.,

for ¢ = 2,...,n, and with the matrix M;s from Lemma 5.20. Apparently, there is a bias
towards the first subdomain.

REMARK 5.21. If we compute the decoupled eigenproblems independently to form primal
constraints, we have to orthonormalize eigenvectors originating from different eigenproblems.
This can, however, lead to many unnecessary constraints. A more attractive strategy could be
the following:

o Compute the eigenproblem for i = 2 and get adaptive constraints Q) go.
e Fori=3,...,n
— Project the eigenproblem i onto the space orthogonal to Qga, - . ., Qa(i-1)-
— Compute the constraints Q¢;.
e Use Qgo,--.,Qcn as set of adaptive constraints.
(This corresponds to updating Uga each time in the spirit of a Gauss-Seidel iteration.)

5.6. A recombined edge eigenproblem. A different recipe is to use Principle 4.11 and
recombine the decoupled eigenproblems (5.29) into a single one:

LSt 1 St Sha)ia = ML (Mag + ...+ Myg)ic for yg,Za € Uac,

where M is the matrix from Lemma 5.20. Due to the Cauchy-Bunyakovsky-Schwarz
inequality,

Mia< ), DigSicDic+(INal—=1) Y. D/sSicDjc.

JeNG\{i} Jch\{i}
=:Aia
Therefore,
> Mic Z > DjgSiaDic + (n—1) Z < Nel Y Aig
i=2 i=2 jeNG\{i} i=2 i=1

<Yjeng Zieng\y PiaSicDia
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Applying Principle 4.9 (nearby eigenproblem with constant c; = |[Ng| = n) yields the
eigenproblem

(5.30) '\Z/(T?(SIG : SEG oLt S:LG)Z//G = )\,\Z/gv(AlG + ...+ Ang) ya for g, yg,ZG eUaq,
which is the one proposed by Kim, Chung, and Wang [46, 47].

5.7. Comments on the adaptive algorithm. In general, adaptively chosen constraints
can be enforced in several ways. Firstly, one can just add them to the previously chosen ones
(if there are any) and recompute some components of BDDC. Secondly, for FETI-DP, the
newly chosen constraints can be enforced by deflation; see [41, 46, 47, 53, 58]. Suppose, we
want to add adaptively chosen constraints to the existing primal constraints, then we fall into
one of the two cases below.

(1) If the chosen glob eigenproblems discard the influence of their neighboring globs
(or if the neighboring globs are all totally primal), then they can be computed
independently from each other.

(ii) Otherwise, one has to make an additional choice where either after computing the
adaptive constraints on a single glob, one would update at once the global set of
primal constraints (in the spirit of a Gauss-Seidel iteration), or not (like a Jacobi
iteration). In the first case, of course the ordering of the globs matters.

In several publications [45, 53, 54, 76, 79], it is proposed to use a fixed tolerance as
bound for the eigenvalues and use all the corresponding eigenvectors simultaneously for
constraints. A different option is to impose one constraint at a time and update the neighboring
eigenproblems at once; see also Remark 5.21.

6. The deluxe scaling. The deluxe scaling was originally introduced in [23] for 3D
H(curl) problems and further used in, e.g., [8, 9, 14, 18, 23, 24, 54, 69, 88]. Recall the
definition of S;5 from (5.1), and set

gG = Z SjG .
jeNa
The deluxe scaling is the following choice of the scaling matrices D, from Assumption 3.4:
(6.1) Dic = S5'Sic .

It is easily seen that Sg is a principal minor of the original problem matrix S and as such
non- smgular The application of the inverse SG can be realized in several ways. Firstly,
applying SG is equivalent to solving an SPD matrix problem on the subdomains N sharing
the glob G [8]. Secondly, some sparse direct solvers such as MUMPS [2] or PARDISO
[66] offer a Schur complement option to compute the dense matrices S;g in a complexity
comparable to a direct subdomain solve (see also Remark 5.3). The latter option might be
quite interesting for computations on a large number of cores [123, 124].

By construction, choice (6.1) fulfills the glob-wise partition of unity property (Condi-
tion 3.5). Note that it is not guaranteed that each single matrix S;g is non-singular. For
example, for the standard FEM-discretization of Poisson’s problem or linear elasticity, the
matrix Sy corresponding to Figure 5.1(left), is singular.

6.1. Deluxe scaling on faces. Recall that for a face F' with Nz = {1, j},
2" P} pSN Pory = (Rirzi — Rijrz;) " Mp(Ripy: — Rjpy;)
with
Mp = DpSjrDip + D/pSipDip = SipSp'S;jpSy'Sir + SjpSy'SirSy'Sir

for the deluxe scaling.
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Whereas it has been shown in many references [8, 18, 24] that D;rS;r D;jr < S;r and
DiFSiFDjF < S;r. The inequality in Lemma 5.10 implies D.;»FFS,'FDJ‘F < Sip: S]‘F; see
also [53], and so

The core of Lemma 5.10, however, implies the surprising result:
COROLLARY 6.1. If F is a face with Ny = {i, j} and if D;p, D;jp are chosen according
to the deluxe scaling (6.1), then the following identity holds for M (defined in (5.9)):

MF = SZFS]F

Using Corollary 6.1, the eigenproblem in Lemma 5.14 (under the stated assumptions!)
rewrites as

Z;(S:F : SJ*F)Z\//F = /\Z;(SLF : SJF):l\jF for :’\J/Fa\Z/F € UFA-

We warn the reader that possible constraints enforced on globs neighboring G are ignored in
the above eigenproblem, whereas they are present in the original eigenproblem (4.1).

REMARK 6.2. Assume that Sy is spectrally equivalent to oy, Sp, k € {i, 7}, and Sy to
aS%, k € {i, 7}, with constant coefficients «;, > 0 and with benign equivalence constants.
Due to Proposition 5.9,

Qg

Q; Oy S*

(@iSF) : (a;SF) = SF, (iSE) : (ajSF) = P

o + oy a; + oy
Together with Proposition 5.8 we can instead study the eigenproblem
~Tax> ~T ~ ~ ~
ZpSpyr = AZpSryr  foryp, Zp € Upa.

For the case of scalar diffusion, S}, corresponds to the F/'/2(F')-norm and S to the Hééz(F)—
norm; see [113]. The coefficient-dependent scaling Dyr = ai‘faj I (sometimes called
p-scaling, cf. [100, 113]) leads to the same eigenproblem.

REMARK 6.3. As noted by Stefano Zampini [123, 124], if we compute the eigenproblem
on the space Uy instead of Upa and if S;r, Sjr, Sip, ;F are all definite, then one can apply

the formula from Remark 5.5 and rewrite the eigenproblem as

(S + S5 )v = A8t + Sip v

6.2. Optimality of the deluxe scaling for subdomain faces®. The following lemma
can be seen as a matrix version of Corollary 5.11.
LEMMA 6.4. Let A, B € R™"*™ be SPSD matrices with A + B definite and define

Map(X):=X"AX + (I - X)"B(I - X).
Then for any (fixed) symmetric positive definite matrix C' € R™*", the functional
Ja,B,c(X) =tr(CMa g(X)C)
attains its global minimum at
X.=(A+B)'B,

where tr(M) := Y.\ | M;; denotes the trace of the matrix M € R"*".
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Proof. Let us first assume that C' = I. From the properties of the trace, we see that for
any X,Y e R"*",

Jap1(X+Y)=Jap(X)+2tr(YTAX + Y B(X - I)) + tr(Y (A + B)Y).

Since (My, My)p := tr(M; M) is an inner product on R"*", we find that the gradient of
Ja,p,rat X is given by AX + B(X — I). The gradient vanishes if and only if

(A+ B)X = B.

Since the expression tr(Y " (A + B)Y') is positive unless Y = 0, we have the global minimum.
For a general SPD matrix C, one easily sees that

CMap(X)C = M 5(X),

where A = CAC, B =~C’BC’, and X = C’*lXNC. liromihe earlier case, the minimum of
Ja,p,c(X) = J; 5 ;(X)is attained at X, = (A + B)~!B. Transforming back reveals the
formula for X. 0

COROLLARY 6.5. Let F be a subdomain face, and let 0 < A\ (X) < --- < A\ (X) < o0

denote the generalized eigenvalues of
(Sir 1 Sjr)y = AMs,p.5,-(X)y  foryeUr,
so for X = Djp and I — X = D;p, the matrix on the right-hand side equals Mp from

Lemma 5.14. Assume further that S;p : S;r is non-singular such that \1(X) > 0. Then the
choice X = Dp = (SiF + SjF)_lst according to the deluxe scaling minimizes

J@p:ZMurﬁ

Proof. We set C' = (Sir : Sjr)~ Y2, where (S;r : S;r)"/? is the SPD matrix square
root. Then 0 < A, (X)™! < -+ < A\ (X)~! < oo are the regular eigenvalues of the matrix

CMs, . s, (X)C (recall that we have set 0! := 0) and,
j(X) = tr(CMSiFvst (X)C)
The rest follows from Lemma 6.4. O

In a practical algorithm, one would actually like to minimize the number m of out-
liers where A\1(X) < -+ < A (X) < Apg1(X), but this would lead to a non-quadratic
optimization problem. But under the outlier assumption,

ZMurMeZ&urlzjay

The term on the left-hand side is the sum over factors that we could potentially obtain in the
condition number bound, so minimizing the quadratic functional 7 (X) appears to be a good
alternative.

REMARK 6.6. The case of singular (S;r : S;r) is harder and left for future research.
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6.3. Economic deluxe scaling on faces*. Economic versions of the deluxe scaling have
been proposed in [24, 54]. Recall that in the typical application, the matrix .S; and the derived
matrices S;r, S5 stem from the elimination of interior subdomain dofs. Replacing the
original stiffness matrix K; by the one just assembled over the elements at a distance < 7
from the face F, one arrives at matrices .S; ), S;Fn with the properties

6.2) Sir < Sirn,  Sipy < Sip;

for details see [54]. The economic deluxe scaling (on face the F' shared by the subdomains ¢
and 7) is given by

D;r = (SiFn + S]-F,,)_lSZ-F,,.

For sufficiently small 7, the computation of this matrix or its application to a vector is much
cheaper than for the original deluxe scaling. In [24], only one layer of elements is used (n = h).
From (6.2) and Lemma 5.10, we obtain

(63) MF = DiTFSjFDiF + D;-FFSZ'FD]‘F < D;FFSanDiF + D;FFSZ'FUDJ‘F = SiFn : Sjpn.
From (6.2) and Proposition 5.8, we obtain
(6.4) (Sipy + Sipy) < (Sip : Sir)-
In [54], it is proposed to consider the face eigenproblem
( ;Fn : S_;Fn)v = )‘(S’iFﬂ : SjFVI)U'
In view of (6.2)—(6.4), this is an implicit application of Principle 4.9 (nearby eigenproblem).
6.4. Deluxe scaling on edges. For arbitrary globs, we consider the eigenproblem
Sng = AP} oSnePpc  in Wiy,

here discarding any influence of the primal constraints and letting the weight matrices
{Djc}jene vary subject to the condition > ;.\, Djc = I. One can show that the trace
of the matrix on the right-hand side attains a minimum if the weight matrices are chosen
according to the deluxe scaling.

Next, we investigate the decoupled eigenproblem from Section 5.5. Suppose again that
Ng ={1,...,n}, and set SfG = Zje/\/c\{i} Sic =S¢ — Sic. Then, due to Lemma 5.10,

Mg = Sig851 5% 55" Sic + 8t S5 Sia S5 Sk, = Sicr : Sty
Hence, the n — 1 decoupled eigenproblems from (5.29) rewrite as
%ia(Sia  Sie)ic = Mg(Sic S?G)giG for ¥iq, Zic € Uga, Vi=2,...,n.
Applying Principle 4.11 (recombination), we obtain the single eigenproblem
Zg}(SIG 1S3t She)ie = )\ZCT;(Tza ...+ The)jc  forgic, Zic € Uga ,

where T;¢ := Sig : SfG. Applying Principle 4.9 (nearby eigenproblem), replacing the matrix
on the right-hand side by Ty ¢ + ... + 1), results in the eigenproblem proposed by Calvo
and Widlund [15, 119].

REMARK 6.7. Recall the eigenproblem (5.30),

\Z/g(SIG : SgG Ll ;G)gG = )\,\Z/g(Alg + ...+ Anc)]\jg for \y/ig, ,\Z/Z‘G € UGA,
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proposed by Kim, Chung, and Wang [46, 47], where A;q = ZLL i DjTGSic;ng. For the
deluxe scaling,

65) > Aic=2, >, S;c85'Sic95"Sic = Y, 8;685"S4aSG" Sic < Y. T,

i=1 i=1j=1,j#i j=1 j=1
where in the last step, we have used Lemma 5.10. That means, for the deluxe scaling, one
can get from the Kim-Chung-Wang eigenproblem to the Calvo-Widlund eigenproblem by
Principle 4.9 (nearby eigenproblem) using the spectral inequality (6.5).

7. Achieving definiteness of S. In this sectiog, we show that under the following mild
assumptions, we can guarantee the definiteness of .S algorithmically.

ASSUMPTION 7.1. Each subdomain has at least one face.

ASSUMPTION 7.2. If F' is a face of the subdomain k then

(Skwk = O, Rkp’wk = 0) - WL = 0.

ASSUMPTION 7.3. Foreach k = 1,..., N either
1. ker(Sy) = {0}, or
2. the subdomain k has two faces, or
3. the subdomain k has only one face F, N = {k, £}, and the matrix

Mp = D[IFSZFD]CF + D;FSkFDEF

is definite on Upp := {u € Ur: QLu = 0}.
LEMMA 7.4. If Assumptions 7.1-7.3 hold, then for each G € G*,

ker(Sy ) mrange(Pp,c) N WNG = {0}.

Proof. Throughout the proof, let w € ker(Sy,,) N range(Pp,g) N I/IN/NG be arbitrary but
fixed. From w € range(Pp,q) N Wy, and Lemma 3.8, we obtain that

(7.1) w = Pp gy for some y € WNG .
We treat two cases. Firstly, assume that G is a face shared by the subdomains ¢ and j such that

w; = (PD,Gy)i = RZTGDjG(RiGyi - Rijj)7

(12) .
wj = (Ppcy)j = —RjcDic(Ricyi — Rjcy;)-

Assume now that S;w; = 0 and Sjw; = 0. For k € {7, j} we apply Assumption 7.3:
1. If ker(Sg) = {0}, then wy, = 0.
2. If the subdomain k has two faces, namely G and F’, then we see from (7.2) that
Ryiprwi, = 0, and Assumption 7.2 implies that wy, = 0.
3. Finally, if the subdomain & has only one face (namely ) and if M is definite on
Uana, then we have (using (7.2) and the fact that S;g = RigSiRiTG etc.)

0

& + w3,
= (Ricyi — Rjc;)" (D,aSicDic + DjcSjaDic)(Ricyi: — Ricy;)-

=Mcg

|w;

Since R;cy; — Rjcy; € Uga and since Mg is definite on that space, we can
conclude that R;qy; — R;qy; = 0. This is sufficient to conclude (from (7.2)) that
w; = U)j = O
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Secondly, assume that G € G*\F. Due to our assumptions, Sywy, = 0, for all k € Ng. For
any such k, since the subdomain & has a face F' (cf. Assumption 7.1), we see from (7.1) and
the formula for Pp g that R rwy, = 0. Assumption 7.2 implies that wy, = 0. 0

THEOREM 7.5. Let Assumptions 7.1-7.3 hold. Assume further that for each glob G € G*
the glob eigenproblem

has no zero eigenvalues. Then S is definite on w.
Proof. Let G € G* be arbitrary but fixed, and set A = Sy, P = Pp ¢, and B = Bg.
Thanks to Lemma 7.4,

ker(A) n range(P) = {0},

and due to our assumptions, (A, B) has no genuine zero eigenvalues. Lemma 4.12(iii) implies
that ker(A) < ker(P), which means

VweWN/NG: (VjeNg: Sjw; =0 = JBDVGw=O).
Due to Lemma 3.8(iii) the last identity implies
RiGwi — Rjij =0 Vi,j € NG .

Since G € G* was arbitrary, Condition 3.1 is fulfilled, and Lemma 3.2 concludes the proof.
a
REMARK 7.6.
(i) Assumption 7.1 usually holds in practice, otherwise we would have subdomains
joined to the rest only by an edge or a vertex, which is somewhat unphysical.
(ii)) Assumption 7.2 is fulfilled for the typical finite element discretizations and for the
typical differential operators, provided that
o the face F' is large enough and
e cach subdomain is connected.
Note that connectivity is a geometric concept that can, nevertheless, be made accessi-
ble via the matrix graph of the underlying sparse matrix; cf. [125].
(iii) Should neither Item 1 nor Item 2 of Assumption 7.3 hold, then Item 3 can be fulfilled
by computing the eigenproblem

Mp =X

first and then converting any zero modes into primal constraints.
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Appendix A. Proof of Theorem 2.9 based on the fictitious space lemma.

We first show that (2.4) and (2. 5) are equlvalent From the properties of Ep and Pp,
we find that there exists a projection E D: W — W onto W such that REpI =1 E p and
Ppl = I(I — Ep). So (2.4) is equivalent to HEDHQS < wand (2.5) to |I — EDH§
where | - || 5 is the norm on W induced by S. Since £, is a non-trivial projection in a Hilbert
space, | Ep| g=I1- Ep|| - This useful result is often ascribed to Kato (cf. [42, Appendix,
Lemma 4], [118, Lemma 3.6]) but has been proved several times in the literature; see Szyld’s
concise presentation [111] with further references.

For the condition number bound, we use Sergei Nepomnyashikh’s fictitious space lemma
[86], [87, Lemma 2.3]; see also [25, 39, 65]. Here, we have rewritten it in terms of duality
products rather than inner products.

LEMMA A.1 (Fictitwioug space_ lemma). Let H, H be finite-dimensional Hilbert spaces,
and let A: H — H*, A: H — H* be bounded, self-adjoint, and positive definite linear
operators. Moreover, let 11: H — H be a bounded linear operator. Then
(A1) Amax(ITA™ITA) = sup M =: 7.

veinfoy (AU, 0)

In addition, let'T': H — H be a linear operator such that

(A.2) 7Ty = v and v {(ATv, Tv) < (Av,v) Vv e H,

for some constant ~y; > 0. Then )\min(H/I_ll_[TA) = 1. Summarizing,
K(ITATTIT A) < vo/7: -

Proof. With |v|g := (Bwv,v)"/? for a positive definite B and basic functional analy-
sis, we obtain ¢ p-1 = sup,ey (o} % and (¢,v) < |¢|p-1|v|pB- Since the operator

MA-'IT A is self-adjoint with respect to the inner product { Av, v), its spectrum is real. We
show (A.1) using the Rayleigh quotient and simply omit “\{0}" in all suprema:

. T2
N (AT 4) = sup AT Av, Av) v=a-1y sup I 4%
max - -

veH <AU,U> YeH* WH,%H

oy o DTy

verr geqy VIR 01%  sem 1903

If (A.2) holds, then
=v

—N
2 _ <¢7 7w >2 _ <HT¢7TU>2
I3+ = sup =
verr  |vl%

verr vl

H o _ 1
Tt < Ty

< 795
R TR S

Using the Rayleigh quotient we obtain the lower bound for Ay, (HE*IHTA). a
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To get the BDDC condition number bound (see also [65]), we set H := U, H : W
A= S S and 11 := Epl. Then bound (2.4) is equivalent to Ay ax( BDDCS ) <w. To
get (A.2), we first define T': U — i% by Tv := Rv for v € U, which is well-defined since
range(R) ¢ W. From EpR = I we conclude that IIT = EpIT = I. Finally, since REp is
a projection,

(ATv,Tvy = (SRv,Rv) = (Sv,v) = (Auv,v) Yoe H =T,

so the inequality in (A.2) holds with v; = 1 and )\min(Ml;Dchg) > 1.

Appendix B. The related FETI-DP method. Let A be an Euclidean space (usually
called space of Lagrange multipliers) and B: W — A be a matrix (usually called the jump
operator) such that

W = ker(B).

REMARK B.1. Identity (2.3) already implies the existence of a matrix B with W= ker(B).
For standard choices of B, see, e.g., [34, 113]. Furthermore, W c W < W (Condition 2.6)

implies the existence of a matrix L of full rank such that W = ker(LB); see also [76,
Section 2. 3] and Remark 2.30.
With B:= BI: W — A, problem (2.1) can be rewritten as

ul _ |9
Al |0
where § := I g. Since the restriction of S to ker(é) is isomorphic to S, which was assumed

to be definite, problem (B.1) is uniquely solvable up to adding an element from ker(ET) to A.

If S is definite on W (Condition 2.7), then we can eliminate the variable % and obtain the dual
equation

5B

B.1 find (%, \) € W x A:
(B.1) nd (4, A) € X F

(B.2) FX=d,

where F := BIS™'ITBT andd := BIS—'ITg. We assume that there exists a matrix
Bp: W — A such that

BLB = Ppb = I-REp.

REMARK B.2. Under Assumption 3.4 and for fully redundant Lagrange multipliers, Bp
indeed exists. For the fully redundant setting, A = ®geg &); jep i>; Uc- We denote the
components of A € Aby Ag,;j, forGe G,i>je Ng, and define

(BU)G,ij = RiGui — RjGuj
(cf. (2.11)). The definition of Bp then reads
(BDw)G,ij = ch;RiGwi — DigRjij.

This generalizes the well-known formula for diagonal matrices D;; see [113, Section 6.3.3] or
[93, Section 2.2.4.2]. The transpose is given by

BDu Z 2 sign (4 RZGDJGNG i
Geg; jeNe\{i}
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from which one can infer that BEB = Pp. The FETI-DP preconditioner (for problem (B.2))
is defined as

(B.3) Mpgr_pp = BpSBL: A — A
In[12, 72,75, 77] it was shown that the bound (2.5) (or equally (2.4)) implies
rreTI-DP = K(Mpgrr_ppFa,, 5r,) < @
and that the spectra of BDDC and FETI-DP (with corresponding components) are identical

except for possible eigenvalues equal to 1.

Appendix C. Realization of IS—1IT. The method in Section C.1-C.2 treats the case of
classical primal dofs (Section 2.5) and was introduced in [20]. For similar approaches see,
e.g., [33], [113, Section 6.4], [72], [62, Section 4.2], and [93, Section 5.3]. In Section C.3, we
extend the method to the generalized primal constraints from Section 2.6.

C.1. The energy minimizing basis of MN/'H for classic?l primal dofs. Let the matrices
Ci: W; — Uy, fulfill ker(C,T) = {0} (Condition 2.19), let W be defined via (2.15), i.e.,
W = {weW:3JuneUnVi=1,...,N: Ciw; = Ruun},
and Win = {w; € Wy: Cyw; = 0}, Wa := @1, Wia. Let U;: Wi — W; fulfill
(C.1) cv, = 1.

Such matrices W; exist because C; is surjective, e.g., we could use ¥; = C (C;C)~1. A
distinguished choice is defined by the linear saddle point system

S, crllw;,]  [o

<2 & SR - )
with Lagrange parameters A;: Wiy; — Wiy;. Assume that S; is definite on ker(C;) = W;
(cf. Condition (3.1)). Due to ker(C;") = {0} (Condition 2.19)), problem (C.2) is guaranteed
to have a unique solution.

The columns of W; can be regarded as shape functions on the subdomain 7. Condition (C.1)
states that the primal dof k of the shape function j evaluates to Jj;.

ProOPOSITION C.1.

(i) U; has full column rank,
(ii) range(V;) A Wia = {0}
(iii) if (C.2) holds then even

(Sizi,w;y =0 Vz; € range(¥;), w; € Wia.

Proof. Part (i) follows directly from (C.1).
Part (ii). If w; = W,v € W;a, then 0 = Cyw; = C;¥,;,v = v,s0v = 0 and w; = 0.
Part (iii). From the first line of (C.2) we derive that for any w; € W;a,

w] S;¥; = —w] CA; = —A] Cyw; =0. 0
——

=0
Foreachi =1,..., N, choose ¥, : W,;;; — W, such that (C.1) holds. We set

U = diag(V) N : Wy - W
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and define, in a finite element spirit, the assembled basis
(C.3) U: Uy — W, U:=URy,

where Rpp: Ug = R™ — Wiy is the matrix from (2.12) and has full column rank.
LEMMA C.2. Let U be given as in (C.3). Then
(i) U has full column rank, in particular, dim(range(¥)) = nq,
(ii) range( )< W
(iii) W = range(V) @ Wa.
(iv) Ifforeachi =1,..., N (C.2) holds, then even

(Sw,z) =0 Ywe Wa, z € range(D).
Proof. Part (i). Due to Proposition C.1(i), ¥ is injective. Since Ry is injective, the

composition V¥ is injective too.
Part (ii). Due to (C.1), for any G € G and i € Ng:

QLRic(¥); = ) RincRiye Qb Ric¥iRn = Rine C;¥; Rni = Rue,
Gegi 5o 1 =TI
ierel

and so Q/, Zg( )i = QGR]C,v( ); forall i, j € Ng.

Part (iii). From Proposition C.1(ii) we obtain range(¥) n Wa = {0}, so the sum is direct.
Thanks to Part (i) and Proposition 2.24,

dim(range(¥)) + dim(Wa) = ny + dim(Wa) = dim(W),

so together with Part (ii), the direct sum must equal w.
Part (iv) follows directly from Proposition C.1(iii). 0

C.2. Realization of I S—1I". For this section, we only make two assumptions. Firstly,

~

W = range( ) ® Wa,

where W: Un — W is injective and Wa = ®l 1 WZA with W;a = {w; € W;: Cyw; = 0}.
Secondly, we assume that range(\Il) and W are S- -orthogonal (see Remark C.6 for the
non-orthogonal case). Since the sum is direct, we can identify W with the product space
17/ := U x WA and obtain

w1

I.wow: [
wa

~ ~ ~ T
]»—»lllwﬂ—l-wA, Iwr W e [‘I’ff] 4

The operator S can then be identified with S: W — w" given by

-
| g |\wo| _ T3T o T
[’UA:| S |:’LUA] = ’UH(\I/ S\If)wn +UAS’ZUA,

4To be strict, we actually add the embedded function wa € Wa < W, and correspondingly, in the second
component of TT f, we would have to write the embedding of f € W* < WX.
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which is a block-diagonal operator. Its inverse is given by

3t [rn] _ [(@TS@)‘1TH]7

T ZA

where za € W is such that (Sza,va) = (r,va) for all vo € Wa. The latter can be
obtained by solving the saddle point problem

S CT]l[za |
c 0 wl| o]’
whose system matrix is block-diagonal with blocks identical to (C.2).
To summarize, the application v = I.S “11Ty r e W, is now realized by

v = \wan + ZA,
where wy € R™? solves the (global) coarse problem
(C4) (UTSW)wy = U'r,

and the components z; of za solve the local (and independent) saddle point problems

Si CZT Z; o T
9 e

REMARK C.3. Certainly, the saddle point problems (C.2), (C.5) can either (i) be solved
as they are, (ii) be reformulated by penalty techniques, or (iii) by using a transformation of
basis [55, 72] one can enforce the constraints explicitly, eliminate some dofs, and reduce the
saddle point problem to an SPD problem.

REMARK C.4. For the energy minimizing construction (C.2), the coarse matrix in (C.4)
can be assembled from the subdomain contributions \I/ZTSl\Ili = f\I/iTC’iT A, = —Ay; cf.
[93, Section 5.3.4.2].

REMARK C.5. If S; is a Schur complement of a matrix K; eliminating interior dofs, then
the saddle point problems (C.2) and (C.5) can easily be rewritten in terms of K; and are thus
amenable to sparse direct solvers. In that context, however, it is recommended to suitably
scale the second line and to check for the right parameters such that the solver can cope with
the zero block on the lower right (e.g., weighted matching [101] in case of PARDISO).

REMARK C.6. Based on the block Cholesky factorization, a similar algorithm can also be
given for the case that range(W) is not S-orthogonal to Wa. Then, however, the coarse and
the local problems are not anymore independent, and two local problems have to be solved;
see [72] and [93, Section 5.3].

C.3. A basis of ﬁfn for generalized primal constraints. Let Whbea space generated
from generalized primal constraints, i.e., (2.16), (2.19). We give an algorithm by computing a
basis of WH that has local support such that W = WH @ W, with Wa defined in (5.24). We
only require that .S is definite on W (Condition 2.7).

Step 1. For each subdomain i and glob G € G; we construct a matrix L;g € R™1¢ x4
of full row rank such that

(C6) LiG = Kigfzig s qiic = rank(Lig) = rank(Lig).
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This can, e.g., be achieved by the QR factorization [37, Section 5.2] (see also the proof of
Theorem 5.18). We collect them into a subdomain constraint matrix

(C.7) L = | LicRic ,
. Geg;
which again has full row rank qry; := ZGegi qmic- The space from (5.24) rewrites as
(C.8) Win = {w; € W;: Lyw; = 0}.
Step 2. For each subdomain ¢, we construct a matrix ¥, : R9% — W, such that
(C9) LV, =1,

e.g., we could use U; = L] (L;L])~!. A distinguished choice are the energy-minimizing
functions given by the solution of the saddle point system

S; L][Y, 0
<0 Bl
with Lagrange multipliers A; € R * i
PROPOSITION C.7. For a matrix V; fulfilling (C.9), the following statements hold:
(i) The columns of VU, are linearly independent.
(ii) The system matrix in (C.10) is invertible.
(iii) If U, is constructed via (C.10), then {S;V;, z;» = 0, Vz; € W;a.
Proof. Part (i) follows immediately from (C.9).
Part (ii). S; is definite on ker(L;) = W;a (cf. (3.1)), and ker(L, ) = {0}.
Part (iii). From the first line in (C.10) and from (C.8) we derive for z; € W;a,

<Si\I/i, Zz> = —<E;I—A“ Zz> = —<AZ‘, ElZl> (Cié;) 0. O

Step 3. Corresponding to (C.7), the shape functions are arranged into groups correspond-
ing to the globs:

(C.11) W= [ [ ]
One easily shows the property
(C.12) LicRicV'?) = 5aarl.

Step 4. Next, we loop over all globs G € G and return to the original constraint matrices
{L;c}jene. We form the matrix

Ko = [""LjGRjG‘I’;G)|“‘]jeNG - [...,chy...]jeNG € RTIG X anG

and compute a coefficient matrix

YG = YjG ERqHGX'ﬂHG’

JjeNG
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whose columns form a basis of ker(K¢), i.e.,
(C.13) KgYq =0, nng = rank(Yy) = dim(ker(Kg)).

This can, e.g., be done by a singular value decomposition (SVD); see [37, Section 2.5]. As we
have shown in (5.28) in the proof of Theorem 5.18,

(C14) dlm(ker(Kg)) = qra — TG -

Step 5. The number nj¢ will be the number of coarse basis functions used on the glob G.
Therefore, the global space of coarse dofs is given by Up := R"™ with n;p = .o niiG-
The coarse basis itself is given by

~

U: Ug — W, U= [...@(@,...]Geg,

where

\I’Z(-G)Yic: ieNg,

@(G): R™1G¢ 5 W . \NIII(G) =
¢ 0 otherwise.

THEOREM C.8. For the construction above the following statements hold:
(i) range(¥) W,

(i) the columns of ¥ are linearly independent and dim(range(¥)) = np,

(iii) W = range(\fl) @ Wa,

(iv) if all matrices V; are constructed via (C.10), then

~

(Sw,z)y =0 Vw € range(V), z € Wa.

Proof. Part (i). We simply show that range(\fl(G)) e W for an arbitrary but fixed glob
G € G. From the definition of W(%) and property (C.12) we derive that for any glob G’ € G
and any j € N,

I;jG/RjG/‘II§G))/jG = 6GG’}/jG lfj € NG s

LRV =
GG 0 otherwise.

From (C.6) and the above we conclude that

~ b KicYia ifj
Z LjGIRjGI\I/;-G) Z { coKjeYje ifjeNa

N, N, 0 otherwise
_ Zjej\/c K;cYje ifG' =G,
0 otherwise,

but due to (C.13), this expression always evaluates to zero.
Part (ii). Firstly, we define

T = diag(WO)YN RIS W, where U 1= 0 ¢ RIMVOXO0 457 ¢ AT |
- —(G)
o= [ [8 V) Joeg
such that we can write

¥ = T diag(Ys)ceg -
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From (C.11), we observe that the columns of U are just columns of some matrix ¥, extended
by zero to the remaining subdomains. Hence, Proposition C.7 implies that W is injective. Since
each Y is injective, VU is injective as well.

Part (iii). Let ¥ be as above. From Proposition C.7 we obtain that range(¥) n Wa = {0},

~ ~

which implies that range(¥) n Wa = {0}, so the sum range(¥) + Wa is direct and
dim(range(¥) + Wa) = ny + dim(Wa).

~

From (C.14) and Proposition 5.17 we obtain that dim(W) = dim(Wa) + ni, therefore the

sum must equal .
Part (iv). Proposition C.7(iii) implies that for z; € Wa;,

(S, zy = (8 Y. W9 Rng,z) = 0. 0
" Geg; N L
Based on the direct sum W = range(¥) @ Wa, the operator [ S~11" can be realized as
in Section C.2.

Appendix D. Generalized inverse and Schur complement.

Throughout this section, V' is a finite-dimensional vector space and A: V' — V* a linear
operator.

DEFINITION D.1 (generalized inverse). AT: V* — V is a generalized inverse® of A if

AATf = f  Vferange(A).
From this definition, one easily derives
(D.1) AT Az = 2 4 v for some v € ker(A) Vo eV,

as well as the following statement.

PROPOSITION D.2. For linear operators A, C, D: V' — V* with with ker(A) < ker(C)
and range(D) < range(A), the expression C AT D is invariant under the particular choice
of the generalized inverse AT, Moreover, if D = A, then CATA = C, and if C = A, then
AA'D = D.

For the following, let V' = V; x V5 and

A A
D.2 A= .
D-2) [Agl AQQ]

LEMMA D.3. If A is SPSD then ker(Aaz) < ker(Aj2) and range(As;) < range(Ass).
In particular, A22A£2A21 = Ao;.

Proof. Suppose that there exists an element vy € ker(Ag2)\{0} with A15v9 # 0. Then
there exists v1 € V; with (A12v2,v1) < 0. From the assumption on A we get for any 8 € R™,

o< (lsul [5s) - ooty
<0

=

which is a contradiction. From functional analysis we know that range(AT) = ker(A)° where
We = {yp e V*: (,w) = 0Vw e W} (for W < V) is the annihilator (see, e.g., [83, p. 23]).
This shows range(Az2)° = range(Asz1)° which implies the second assertion. O

DEFINITION D.4. Let A, V1, V5 be as in (D.2). Then the generalized Schur complement
(eliminating the components in Vs) is given by

Sy = Ay — A Al Ag,

STf, additionally, AT AAT = AT, then AT is called reflexive generalized inverse, but we do not need this property.
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where A;Q is a generalized inverse of Asa. If the conditions ker(Ass) < ker(Ais) and
range(As1) < range(Aas) hold, then this definition is independent of the particular choice
of AEQ.

The generalized Schur complement is closely related to the shorted operator in [4,
Theorem 1].

LEMMA D.5. Let A, Vi, V5 be as in (D.2) and assume that A is SPSD. Then the
generalized Schur complement S has the following properties:

(D.3) {(S1v1,v1) < (Av,v) Yo = [z;] ev,

U1

D4 Siv1, = {(Av, Vo =
( ) < 1% vl> < v ’U> v |:—A;2A21U1 +’U§(

] , v1 € Vi, vlf € ker(Agy).

Proof. Minimization of the quadratic functional {Av, v) with respect to v, for fixed vy
leads to the first-order condition

(D.5) Agovg + Asivy = 0.
By Lemma D.3, Ayjv; € range(Ass), and so all solutions of (D.5) have the form
vy = —A;2A21v1 + 115(, with vf € ker(Aag).

The Hessian is given by Aso and is by assumption positive semi-definite, so all these solutions
are minimizers. We verify (D.4):

_ T K f
- ) - 2 ) ) y
<A’U, U> <A11U1 1)1> + < A12A 2A211}1 1}1> + <A12’U2 ’U1> + <A211}1 A22A211}1>
+ <A211)1, ’Ué(> + <A22(A;2A21’Ul + Uf), A£2A21’U1 + U§(> = <Sl’l}1, ’Ul>,

where we have used Lemma D.3 and Definition D.1. Now (D.3) follows. 0

The next lemma shows that the Schur complement Sy : V; — Vj* is independent of the
particular choice of the complementary space V5.

LEMMA D.6. Let A: V. — V* be SPSD and let V = V1 @ Vo = Vi @ V3 be two (direct)
space splittings. Let Sy, S| be the generalized Schur complements corresponding to the first
and second splitting, respectively. Then S, = 5.

Proof. Forv € V let (v1,v2), (v1,v4) be the components corresponding to the first and
second splitting, respectively. From the properties of the direct sum, we see that there exists
mappings 71, T5 with T non-singular such that vy, = Thv1 + Tovg and ve = Ty Ll —Tyvy).
Let Ay1, Aja, A2y, Ags be the components of A corresponding to the first space splitting,
such that the components corresponding to the second splitting are given by

Ay — ATy T =TTy T Ay ATyt — T Ty T ATy
Ty T Aoy + Ty T Ago Ty ' Ty Ty T AgeTyt '

Computing the generalized Schur complement eliminating the second component (v5) and
using Lemma D.3, one can easily verify that S] = Sj. 0

Appendix E. A counterexample: B(A + B + C)"'A(A+ B+ C) 1B « A.
We set

. 75 —
A-T, B_[2.5 10 0.0275]7 0_[7.2 29]

0.0275 838.6 —-29 225
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Clearly, A, B, and C are SPD as the diagonal entries are strictly positive and
det(B) = 0.0134025, det(C) = 779.
However,

0(A—B(A+B+C) "A(A+ B+ C)™'B) = {—9.26834, 1}
0(10A— B(A+ B+ C) 'A(A+ B+ C)"'B) = {-0.248337, 10}.

So, for this particular example,

B(A+B+C) "A(A+B+C)'B « A
B(A+B+C) " A(A+B+C)'B £« 10A.

However, from Lemma 5.10 we obtain

B(A+B+C)"A(A+B+C)'B < BA+B+C) ' (A+C)A+B+C)'B
< B:(A+C) < B.

So it is really the inequality with A on the right-hand side that fails to hold in general.
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