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A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC˚

CLEMENS PECHSTEIN: AND CLARK R. DOHRMANN;

Abstract. In this theoretical study, we explore how to automate the selection of weights and primal constraints
in BDDC methods for general SPD problems. In particular, we address the three-dimensional case and non-diagonal
weight matrices such as the deluxe scaling. We provide an overview of existing approaches, show connections between
them, and present new theoretical results: A localization of the global BDDC estimate leads to a reliable condition
number bound and to a local generalized eigenproblem on each glob, i.e., each subdomain face, edge, and possibly
vertex. We discuss how the eigenvectors corresponding to the smallest eigenvalues can be turned into generalized
primal constraints. These can be either treated as they are or (which is much simpler to implement) be enforced
by (possibly stronger) classical primal constraints. We show that the second option is the better one. Furthermore,
we discuss equivalent versions of the face and edge eigenproblem which match with previous works and show an
optimality property of the deluxe scaling. Lastly, we give a localized algorithm which guarantees the definiteness of
the matrix rS underlying the BDDC preconditioner under mild assumptions on the subdomain matrices.

Key words. preconditioning, domain decomposition, iterative substructuring, BDDC, FETI-DP, primal con-
straints, adaptive coarse space, deluxe scaling, generalized eigenvalue problems, parallel sum
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1. Introduction. The method of balancing domain decomposition by constraints
(BDDC) [20] (see [19, 34] for closely related methods) is, together with the dual-primal
finite element tearing and interconnecting (FETI-DP) method [33], among the most-advanced
non-overlapping domain decomposition methods for partial differential equations. The two
methods can be considered as dual to each other, and for symmetric positive definite (SPD)
problems, the corresponding preconditioned operators have identical spectrum (up to values
of 1 and 0) [12, 72, 75, 77].

For a variety of PDEs discretized by the finite element method, the condition number
of the preconditioned system can be bounded by Cp1 ` logpH{hqq2, where H{h is the
maximal ratio of the subdomain diameter and the element size. Covered cases are scalar
diffusion problems [59, 63, 74, 81], linear elasticity [62] as well as positive definite problems
in Hpcurlq [14, 18, 24, 125] and Hpdivq [88, 89]. Beyond the SPD case, algorithms and theory
have been extended to certain saddle point problems such as Stokes flow [48, 71], almost
incompressible elasticity [36, 60, 91], Reissner-Mindlin plates [69], and porous media flow
[104, 107, 114, 117]. The same kind of bound has been obtained for spectral elements [90],
boundary elements [92, 93], mortar methods [43, 44], discontinuous Galerkin [16, 18, 28, 29,
103], and isogeometric analysis [7, 8, 9, 40, 64]. Without giving a list of further references, we
note that BDDC and FETI-DP were successfully applied to many more problems, mostly of
a mechanical type. Preconditioners based on a Schur complement approximation similar to
BDDC were recently proposed by Kraus et al. [65] and Schöberl [102].

The constant C in the bound is usually independent of the subdomain diameters and
mesh sizes and thus also of the number of subdomains, which is necessary for scalability.
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Ideally, C is also independent of problem parameters, typically coefficient jumps [36, 63, 96],
coefficient ratios [24], or geometry details [14, 59]. As shown in [63, 75, 77], at least for SPD
problems, part of the analysis is problem-independent, and the condition number estimate
reduces to a single norm estimate of a projection operator (PD). For a given decomposition
into subdomains, this estimate is influenced by two sources: (i) the weights/scalings and
(ii) the primal constraints.

(i) Several scalings have been used in the literature. The multiplicity scaling is not robust
for coefficient jumps. A coefficient-dependent scaling, sometimes called ρ-scaling, based
on constant values per vertex/edge/face leads to robustness for coefficient jumps between
subdomains. The stiffness scaling takes more information into account and may look promising
but can lead to very high condition numbers in the case of irregular meshes [59] or mildly
varying coefficients [93, 98]. A trade off “between” the latter two for jumps along interfaces
has been proposed in [93, 98]; see also [94]. All the scalings above involve diagonal weight
matrices. The deluxe scaling introduced in [23] (for early experiments see also [22]) breaks
with this rule as the weights are dense matrices per subdomain face/edge/vertex. For subdomain
faces, it was observed several times that the deluxe scaling can lead to very good results
[8, 18, 24, 54, 69, 88]. Computationally economic versions are discussed in [24, 53].

(ii) The selection of good primal constraints is not an easy task either. On the one
hand, choosing too few constraints leads to poor performance of the preconditioner [113,
Algorithm A]. On the other hand, choosing too many constraints results in a large coarse
problem, which leads to a computationally inefficient method. Although large coarse problems
can be alleviated using multiple levels [78, 108, 115, 116], it is better to keep the coarse problem
size at a necessary minimum. For scalar diffusion and linear elasticity with coefficients that are
constant in each subdomain, good selection algorithms are available; see [113] as well as [105]
and the references therein. For hard problems with varying coefficients or coefficient jumps
along subdomain interfaces, these recipes may happen to work but can also easily lead to poor
performance [30, 57, 67, 96] (see [94, 97, 98] for the classical FETI method). This has led to
problem-adapted algorithms for choosing primal constraints, called adaptive BDDC/FETI-DP,
which we discuss in the following. Although the adaptive choice means more computational
work, this can pay off in highly parallel regimes, where local operations are expected to be
comparably cheap [51, 123, 124].

Mandel and Sousedík [76] were the first to investigate, for general diagonal scalings, the
influence of primal constraints under quite general assumptions on SPD problems and in an
algebraic framework. They came up with a condition number indicator which is based on a
local estimate per closed face F , reading

ÿ

iPNF

|ΞiF pPDwqi|
2
Si
ď ωF

ÿ

iPNF

|wi|
2
Si
.

Here, NF is the set of subdomains shared by face F , ΞiF extracts the degrees of freedom
on F , the projection PD will be defined below, | ¨ |Si

is the subdomain (semi)norm, and
the estimate must hold for all functions w in the broken space W vanishing on all but the
subdomains in NF and satisfying all primal constraints between these subdomains. The best
constant ωF is the maximal eigenvalue of an associated generalized eigenproblem and as
such computable. The maximum of all indicators ωF turned out to be quite reliable for some
practical applications. The eigenvectors corresponding to the largest eigenvalues can also be
used to create new, adaptive constraints in order to enhance the condition number. Together
with Šístek, this approach was extended to three-dimensional problems [79, 108].

The idea of replacing difficult local estimates by local generalized eigenproblems has
been used before, e.g., in smoothed aggregation multigrid [13], balancing Neumann-Neumann
methods [11], or spectral AMGe [17]. More recently, this technique has been used in over-
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lapping Schwarz methods [26, 31, 32, 35, 85, 109, 120]; see also the recent monograph [25].
Spillane and Rixen [110] have employed it for the classical FETI method; see also [38].
Kraus, Lymbery, and Margenov [65] use a similar idea in the context of the additive Schur
complement approximation. Other works on BDDC and FETI-DP will be mentioned below.

There are four limitations of the method in [76, 79, 108]:
(a) The theory considers only diagonal scaling matrices.
(b) In the original works, the local bounds are only indicators and were not (yet) proven

to be reliable.
(c) Primal constraints in BDDC and FETI-DP are usually linear conditions between

functions on two different subdomains involving the degrees of freedom of a glob, i.e.,
a vertex, an open edge, or an open face. The eigenvectors corresponding to the largest
eigenvalues of the generalized eigenproblem associated with F above, however,
typically involve the degrees of freedom on the closed face F . One possibility is to
split the eigenvectors and create new, adaptive constraints on the corresponding open
face F and the edges forming its boundary. This can possibly lead to unnecessary
constraints. Another possibility (actually the one suggested in [79]) is to disregard
the conditions on the face boundary, but this is not supported theoretically.

(d) It is assumed that the initial set of primal constraints already controls the kernel of the
underlying PDE such as the rigid body modes of elasticity; this is needed to realize
the (formal) matrix inverse rS´1 in the BDDC preconditioner. It would be good if the
local eigenproblems could even detect these kernels and guarantee that rS is definite.

Issue (b) has only been resolved quite recently. In [54], Klawonn, Radtke, and Rheinbach
show that for two-dimensional problems, where all vertices are chosen primal, the maximum
of all indicators ωF serves as a reliable condition number bound up to a benign factor. In that
work, more general scaling matrices are also considered. In their recent article [49], Klawonn,
Kühn, and Rheinbach show a reliable condition number bound for general three-dimensional
problems, where all vertices are chosen primal, using a diagonal scaling matrix. Up to a
benign factor, the bound is the maximum over all the indicators ωF and some additional
indicators associated with those subdomain edges that share four or more subdomains. To
guarantee the reliability, the obtained face constraints are split into face and edge constraints
as described above. The authors also provide some recipes on how the additional work for the
edge indicators can be minimized.

A suggestion to resolve issue (d) for the Poisson equation and linear elasticity was
recently presented in [6] involving perturbed operators in the BDDC preconditioner which are
guaranteed to be invertible while not degrading the condition number too much.

In our article, we briefly review the new approach in [49] and show that it can be equally
obtained from a pair-based localization of the PD estimate. In the main part of our work,
however, we take a different path and provide a similar framework as in [79] but using a
glob-based localization. Here, a glob is an open subdomain face, edge, or possibly vertex. On
each glob G, we define an indicator ωG associated with the local estimate

ÿ

iPNG

|ΞiGpPDwqi|
2
Si
ď ωG

ÿ

iPNG

|wi|
2
Si
.(1.1)

Here, NG is the set of subdomains shared by G, ΞG extracts the degrees of freedom on G,
and the estimate must hold for all functions w in the broken space W vanishing on all but
the subdomains NG and with all primal constraints enforced between wi, wj , for i, j P NG.
The best local indicator ωG can again be obtained by a generalized eigenproblem, and the
corresponding eigenvectors associated with the smallest eigenvalues can be used to create
adaptive constraints. Solutions are given to all of the above issues:
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(a) We allow general scaling matrices that only need to be block-diagonal with respect
to the partitioning into globs.

(b) Up to a benign factor, the maximum over all indicators ωG serves as a reliable
computable condition number bound.

(c) The constraints on open faces need not be split and can be used as they are. The
eigenvectors obtained on subdomain edges, however, are not in the usual form of
primal constraints. We show that we can use them as they are (thereby generalizing
the notion of primal constraints), or convert them to classical primal constraints,
which is more efficient and fully supported by theory.

(d) The local eigenproblems stay well-defined even if the set of initial primal constraints
is empty. Under mild assumptions on the subdomain matrices, we can show that using
essentially the eigenvectors corresponding to zero eigenvalues as primal constraints
guarantees that the inverse rS´1 appearing in the BDDC preconditioner exists. Our
approach is different from [6] and more general.

In the following, we would like to comment on other approaches to this problem. A first
group of papers considers two-dimensional problems, where all vertices are a priori chosen
as primal. On subdomain faces (there called edges), generalized eigenvalue problems (and
sometimes analytic estimates) are used to adaptively choose additional primal constraints. To
review and compare, we need a little more notation: let F be the subdomain face shared by
the subdomains i and j, let S‹kF denote the “Neumann face” matrices (rSpkqFF in the notation
of [15, 119]), i.e., the Schur complement of the subdomain matrix eliminating all degrees of
freedom (dofs) except those on F , and let SkF denote the ”Dirichlet face” matrices (SpkqFF in
the notation of [15, 119]), i.e., starting with the subdomain matrix, eliminating all interior dofs,
and then selecting the block corresponding to the dofs on face F .

‚ Klawonn, Radtke, and Rheinbach [50, 53] consider scalar diffusion and compressible
elasticity with discontinuous coefficients discretized by P 1 finite elements. They
propose to use three generalized eigenproblems per face,

S‹iF v “ λMiF v, S‹jF v “ λMjF v, S‹iF v “ λ
pρi
pρj
S‹jF v,(1.2)

where pρk is the maximal coefficient on the subdomain k and MkF is a scaled mass
matrix. The discrete Sobolev inequality |v|2SkF

ď C1|v|
2
S‹kF

` C2|v|
2
MF

completes
the theory and leads to a reliable method for scalar diffusion and linear elasticity with
varying coefficients. The authors use a coefficient-dependent scaling based on the
values pρk, similar to the ρ-scaling.

‚ Chung and Kim [45] have worked out a fully algebraic approach (though limited to
two-dimensional problems). They propose to use two eigenproblems per face,

pSiF ` SjF qv “ λpS‹iF ` S
‹
jF qv, S‹iF v “ λS‹jF v.(1.3)

General scalings are allowed, but the condition number bound depends on the norm
of the scaling matrices. For the multiplicity and the deluxe scaling, this norm is
bounded by 1.

In both approaches, in contrast to [76, 79], several (simpler) eigenproblems/estimates are
combined. Moreover, the influence of the primal constraints on the neighboring vertices
(on BF ) are not included in the local eigenproblems. These two issues raise the question
whether the obtained primal constraints are really necessary, or in other words, whether the
local bound is efficient; see also [53, 119].

In our approach, we follow Mandel and Sousedík [76] and use a natural eigenproblem
that directly follows from the localization (1.1) of the global PD estimate. This eigenproblem

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC 277

involves unknowns on all subdomains shared by the glob, i.e., for a face about twice as many
as for the eigenproblems (1.2)–(1.3). Here, the (good) influence of a priori chosen primal
dofs on neighboring globs can (but need not) be included. Disregarding them leads to a much
simpler implementation, but including them can reduce the number of primal constraints
needed for a desired condition number bound. Besides that, we have collected a number of
abstract tools for modifying/simplifying generalized eigenproblems.

Intermediate steps of our work are documented in the form of slides [22, 95]. In [95], we
show that for the deluxe scaling, on each subdomain face F shared by the subdomains i and j,
one can alternatively use the generalized eigenproblem

pS‹iF : S‹jF qv “ λpSiF : SjF qv(1.4)

where the colon : denotes the parallel sum of matrices introduced by Anderson and Duffin [3].
This idea has recently been discussed in a publication by Klawonn, Radtke, and Rheinbach [54]
comparing three different methods for the two-dimensional case: the method by Mandel and
Sousedík [76], their own approach [53], and our intermediate approach [95] involving the
parallel sum, for which they propose a variant for general scalings,

pS‹iF : S‹jF qv “ λpDJjFSiFDjF `D
J
iFSjFDiF qv,(1.5)

whereDkF are the face scaling matrices. A sound theory for all three cases is given but limited
to the two-dimensional case. Moreover, economic variants are proposed, where SiF , S‹iF ,
etc. are replaced by matrices where not all subdomain degrees of freedom are eliminated but
only those at a certain distance from the face F . Kim, Chung, and Wang [46, 47] have also
compared the method by Chung and Kim [45] with (1.5). Zampini [122, 123, 124] as well as
Calvo and Widlund [15, 119] have experimented with (1.4) too and give suggestions for the
three-dimensional case.

In our current paper, we show a new theoretical link: if one disregards the influence of
neighboring globs, then the natural generalized eigenproblem corresponding to (1.1) on face
G “ F shared by the subdomains i and j is equivalent to (1.5). In case of the deluxe scaling,
(1.5) is identical to (1.4). Moreover, we show that the deluxe scaling minimizes the matrix
trace of the left-hand side matrix in (1.5), which is in favor of making the eigenvalues larger.
Whereas in [95], we have used the parallel sum as an auxiliary tool, our new minimizing result
shows that it is really encoded into BDDC.

The three-dimensional case including subdomain edges has turned out to be a particularly
hard problem. For simplicity, consider an edge E shared by three subdomains i, j, k. Calvo
and Widlund [15, 119] suggest to use

pS‹iE : S‹jE : S‹kEqv “ λpTiE ` TjE ` TkEqv(1.6)

in the context of deluxe scaling, where TiE “ SiE : pSjE ` SkEq. Kim, Chung, and Wang
[46, 47] give a choice for general scalings:

pS‹iE : S‹jE : S‹kEqv “ λpAiE `AjE `AkEqv,(1.7)

where AiE “ DJjESiEDjE `DJkESiEDkE . We provide two alternatives. Firstly, one can
use the natural edge eigenproblem, optionally simplified by discarding the primal constraints
on neighboring globs. We then show how to use the eigenvectors obtained as constraints
in the BDDC algorithm. Secondly, we show that with further simplifications, the natural
eigenproblem can be decoupled into n´1 independent eigenproblems where n is the number of
subdomains shared by the edge. When recombining the decoupled problems, one obtains (1.7)
in general and (1.6) in case of the deluxe scaling.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

278 C. PECHSTEIN AND C. R. DOHRMANN

Let us note that Stefano Zampini has experimented with

pS‹iE : S‹jE : S‹kEqv “ λpSiE : SjE : SkEqv,

which behaves robustly for some Hpcurlq problems [125], but a theoretical validation is yet
missing (and we do not show any).

Apparently, the eigenproblems (1.6) and (1.7) are simpler than the natural one correspond-
ing to (1.1), but the primal constraints resulting from (1.6), (1.7) may be unnecessary. Vice
versa, the natural eigenproblem corresponding to (1.1) will lead to efficient constraints but is
more complicated to compute. Our decoupled choice is in between.

Note that for all the eigenproblems considered, we show how initially chosen primal
constraints on the respective glob (G, F , or E) can be built in. Essentially, the eigenproblems
have to be projected onto the space where the initial constraints hold.

We hope that our theoretical study will contribute to a better understanding of the proposed
methods and the links between them and to help identify a good trade-off between (a) the more
efficient but also more complicated “natural” eigenproblems and (b) simpler eigenproblems
that potentially lead to unnecessary constraints but are easier to compute.

The remainder of this paper is organized as follows: In Section 2 we discuss the problem
setting, the BDDC preconditioner, an abstract theory for the condition number, and primal
constraints on globs. Section 3 provides a localization of the global PD estimate under mild
assumptions on the weight/scaling matrices. Moreover, we localize the condition for rS to
be definite. The local estimate is turned into an eigenproblem, which is discussed in detail
in Section 4. Section 5 is devoted to the choice of the adaptive constraints for both the face
and edge eigenproblems. Section 6 discusses the deluxe scaling and its optimality property.
In Section 7 we combine the local definiteness condition from Section 3 and some abstract
results from Section 4 to show how in practice and under mild assumptions on the subdomain
matrices, the global definiteness of rS can be guaranteed. An appendix contains auxiliary,
technical results.

Our paper is meant to be comprehensive and self contained. To get an overview, we
recommend to skip the sections marked with an asterisk (˚) for the first time. Experienced
BDDC readers may initially skip Section 2 as well.

Some Notation: X˚ denotes the algebraic dual of the finite-dimensional (real) vector space
X . We always identify the bi-dual X˚˚ with X . For an Euclidean space X “ Rn, we even
identify X˚ with X . For a linear operator A : X Ñ Y , the transpose AJ : Y ˚ Ñ X˚ is given
by xAJψ, xy “ xψ,Axy for x P X , ψ P Y ˚, where x¨, ¨y are the dual pairings. A linear oper-
ator A : X Ñ X˚ (with X finite-dimensional) is said to be symmetric if xAx, yy “ xAy, xy
for all x, y P X , positive semi-definite if xAx, xy ě 0 for all x P X , and positive definite if
xAx, xy ą 0 for all x P Xzt0u. Symmetric and positive semi-definite (SPSD) operators A,
B : X Ñ X˚ have the following properties, which we will use frequently:

(i) xAx, xy “ 0 ðñ x P kerpAq,
(ii) kerpA`Bq “ kerpAq X kerpBq,

(iii) rangepA`Bq “ rangepAq ` rangepBq,
(iv) |x|A :“ xAx, xy1{2 is a semi-norm on X .

If P : X Ñ X is a projection (P 2 “ P ), then X “ kerpP q ‘ rangepP q, where ‘ denotes the
direct sum. Moreover, pI ´ P q is a projection too, and the identities kerpI ´ P q “ rangepP q

and rangepI ´P q “ kerpP q hold. Product spaces are denoted by V1ˆ¨ ¨ ¨ˆVN or
ÂN

i“1 Vi .

2. BDDC in an algebraic setting. In this section, we summarize the main components
of the BDDC method and fix the relevant notation. For the related FETI-DP method, see
Appendix B. We give abstract definitions of globs (equivalence classes of degrees of freedom),
classical primal constraints, and generalized primal constraints.
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2.1. Problem setting. We essentially follow the approach and notation in [75] and
require quite minimal assumptions. The problem to be solved is the system of linear equations

(2.1) find pu P U : RJS R
loomoon

“: pS

pu “ RJg
loomoon

“: pg

,

where

S “

»

—

–

S1 0
. . .

0 SN

fi

ffi

fl

, g “

»

—

–

g1

...
gN

fi

ffi

fl

, R “

»

—

–

R1

...
RN

fi

ffi

fl

,

with SPSD matrices Si. The assembled system matrix pS is assumed to be definite such
that (2.1) has a unique solution. Let Wi be the (real) Euclidean space of subdomain (interface)
degrees of freedom (dofs) and U the Euclidean space of global (interface) dofs such that

Ri : U ÑWi, R : U ÑW :“W1 ˆ . . .ˆWN ,

Si : Wi ÑWi, S : W ÑW.

For an illustration see also Figure 2.3 (left). We simply call the indices i “ 1, . . . , N
subdomains. Each matrix Ri corresponds to a local-to-global mapping

gi : t1, . . . ,dimpWiqu Ñ t1, . . . ,dimpUqu

and pRiq`k “ 1 if and only if k “ gip`q (the local dof ` on the subdomain i corresponds to the
global dof k), and 0 otherwise. We assume that each mapping gi is injective. Therefore, Ri
has full row rank, and we conclude that1

RiR
J
i “ I, RJi Ri “ diagpµ

piq
k q

dimpUq
k“1 , with µpiqk P t0, 1u.(2.2)

Moreover, RJR “ diagpµkq
dimpUq
k“1 with µk “

řN
i“1 µ

piq
k being the multiplicity of the dof k.

We assume throughout that µk ě 2 for all k, which implies in particular that R has full column
rank and the subspace

xW :“ rangepRq(2.3)

is isomorphic to U .
REMARK 2.1. Let us note that the assumptions we made so far are fulfilled not only for

the standard discretizations of the Poisson equation or compressible linear elasticity. Merely,
all our definitions, assumptions (with the exception of Section 7), and the derived theoretical
results hold for a series of SPD problems inHpcurlq [14, 24, 125] andHpdivq [88, 89], spectral
elements [90], boundary elements [92, 93], mortar discretizations [43, 44], discontinuous
Galerkin discretizations [16, 18, 28, 29, 40, 103], or isogeometric analysis [7, 8, 9, 40, 64].

REMARK 2.2. Typically, the matrices Si are constructed from (larger) subdomain finite
element stiffness matrices Ai based on a non-overlapping domain decomposition (e.g., using a
graph partitioner) by the (formal) static condensation of non-shared dofs. For the corresponding
BDDC preconditioner for the non-condensed system, see, e.g., [79]. We stress that the

1Note that RJ in (2.1) actually maps W˚ to U˚ and assembles local contributions to the global residual (i.e., a
functional), whereas RJi in (2.2) plays a different role as it extends a function in Wi to U by putting all dofs to 0 that
are not shared by subdomain i.
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matrices Ai themselves need not be SPSD but only their Schur complements Si, e.g., as in
[71, 91]. Otherwise, the theory in this paper (and most of the available, relevant literature) is
based heavily on energy arguments, and in this sense, the SPSD condition on Si can (so far)
not be relaxed.

REMARK 2.3. The assumption that each dof is at least shared by two subdomains is
purely to simplify our presentation. All our results can be generalized to the case µk ě 1,
which is, e.g., convenient for BETI [68]. Moreover, we could allow that Ri is rank-deficient
and assume that RiRJi is diagonal with ones and zeros. Then, however, some formulas would
require adaptations. Such “phantom dofs” appear in the TFETI method [27]. See also [93] for
both cases.

2.2. The BDDC preconditioner. There are two main ingredients for the BDDC precon-
ditioner. The first one is the averaging operator

ED : W Ñ U, EDw :“
N
ÿ

i“1

RJi Diwi ,

where Di : Wi Ñ Wi are weight matrices that need not be SPSD but fulfill the following
condition.

CONDITION 2.4 (partition of unity).

N
ÿ

i“1

RJi DiRi “ I (or equivalently EDR “ I).

PROPOSITION 2.5. Under Condition 2.4, rangepEDq “ U , and RED : W Ñ W is a
projection onto xW .

Proof. We have

U Ą rangepEDq Ą rangepEDRq “ U, and pREDq
2 “ REDRED “ RED.

Finally, rangepREDq “ RprangepEDqq “ rangepRq “ xW .
The simplest weights are given by the multiplicity scaling, Di “ diagp1{µgip`qq

dimpWiq

`“1 ,
where gip`q is the global dof corresponding to the local dof ` on the subdomain i. In some
papers ([75, p. 180], [72, 79]), the weight matricesDi are assumed to be diagonal with positive
entries. In the current paper, we allow more general weights (see Condition 3.4 below). A
special choice, the deluxe scaling, is discussed in Section 6.

The second ingredient is an intermediate subspace ĂW that fulfills the following conditions.
CONDITION 2.6.

xW Ă ĂW ĂW.

CONDITION 2.7. S is definite on ĂW (kerpSq XĂW “ t0u).
The construction of ĂW is further described in Section 2.5.2 below. Condition 2.7 is needed

for both the practical application of the BDDC preconditioner and its analysis, and it will be
further discussed in Section 3.1 as well as in Section 7. Let

Ĩ : ĂW ÑW

denote the natural embedding operator and define the restricted operator

rS :“ ĨJSĨ : ĂW Ñ ĂW˚.
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Due to Condition 2.7, rS is definite and thus has a well-defined inverse. The BDDC precondi-
tioner for problem (2.1) is defined by

M´1
BDDC :“ ED pĨ rS´1 ĨJqEJD : U Ñ U.

If we explicitly choose a basis for ĂW , then Ĩ and S̃ have matrix representations and rS´1

can be constructed via a block Cholesky factorization (see e.g. [62, 72]). Depending on the
structure of the space ĂW , this can cause a loss of sparsity, which leads to inefficient local
solvers when using, e.g., nested dissection. The original BDDC method [20] is based on
primal dofs (explained in Section 2.5), and it provides an efficient algorithm (Appendix C)
to realize Ĩ rS´1 ĨJ using a change of basis only implicitly and preserving sparsity. A more
general construction of the space ĂW (cf. [79]) has certain importance for our work as well and
will be investigated in Section 2.6, Section 5.4, and Appendix C.3.

2.3. Abstract analysis. Theorem 2.9 below has been shown several times in the literature
(see, e.g., [75, 77]). For its statement we need the projection operator

PD :“ I ´RED : W ÑW.

The following properties can be derived from Proposition 2.5.
PROPOSITION 2.8. Under Condition 2.4 and Condition 2.6,
(i) P 2

D “ PD,
(ii) PDw “ 0 ðñ w P rangepRq “ xW ,

(iii) PDw P ĂW ðñ w P ĂW, in particular PDpĂW q Ă ĂW, rangepPDq XĂW “ PDpĂW q.

THEOREM 2.9 ([75, Theorem 5]). Let the assumptions from Section 2.1 hold, and let
Condition 2.4 (partition of unity), Condition 2.6 (xW Ă ĂW Ă W ), and Condition 2.7 (S is
definite on ĂW ) be fulfilled. Then

λminpM
´1
BDDC

pSq ě 1.

Moreover, the three estimates

|REDw|
2
S ď ω |w|2S @w P ĂW,(2.4)

|PDw|
2
S ď ω |w|2S @w P ĂW,(2.5)

λmaxpM
´1
BDDC

pSq ď ω

are equivalent. Summarizing, (2.5) implies κpM´1
BDDC

pSq ď ω.
A proof based on the fictitious space lemma is provided in Appendix A; see also [65].
REMARK 2.10. In general, the definiteness of rS does not follow from (2.4) or (2.5). Con-

sider one global dof (U “ R) shared by two subdomains with S1 “ D1 “ 1, S2 “ D2 “ 0,
and ĂW “W “ R2. Then rS is singular, but |PDw|2S “ 0 and |REDw|2S “ |w|

2
S .

REMARK 2.11. For a fixed problem matrix S and weight matrices Di, consider two
BDDC preconditioners based on some spaces ĂW p1q Ă ĂW p2q (typically meaning that ĂW p1q has
more primal constraints than ĂW p2q), and let λp1qmax, λp2qmax denote the corresponding maximal
eigenvalues. Then λp1qmax ď λ

p2q
max. Since in practice, λmin is close or even equal to 1 [12, 72,

76, 77], we can expect the smaller space (with the larger set of primal constraints) to lead to a
smaller condition number.
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FIG. 2.1. Two examples of subdomain decompositions and globs. Top: 2D example, bottom: 3D example, left:
subdomain decomposition, middle: visualization of globs with NG displayed, right: parent graph. Arrow points from
parent to “child”.

2.4. Globs. In BDDC and FETI-DP the intermediate space ĂW is described using primal
dofs or coarse dofs. In this particular paper, we restrict ourselves to primal dofs that are
associated with globs2.

DEFINITION 2.12 (globs). For each global dof k P t1, . . . ,dimpUqu, we define the set

Nk :“
 

i “ 1, . . . , N : µ
piq
k “ 1

(

of sharing subdomains. The set t1, . . . ,dimpUqu of global dofs is partitioned into equivalence
classes, called globs, with respect to the equivalence relation k „ k1 ðñ Nk “ Nk1 . We
denote by G the set of all globs and by NG the set of subdomains shared by glob G. Finally,
we define the set

Gi :“ tG P G : i P NGu

of globs for the subdomain i. If |NG| “ 2, we call G a face, and we denote the set of all faces
(of the subdomain i) by F (Fi, respectively).

DEFINITION 2.13 (glob relationships). A glob G1 is called an ancestor of G2 if
NG1

Ľ NG2
, and G1 is called a parent of G2 if G1 is an ancestor of G2 and there is no

other glob G3 with NG1 Ľ NG3 Ľ NG2 . Certainly, a glob can have several parents. If
a glob has no parents, we call it a base glob. Two globs G1 ‰ G2 are called neighbors if
|NG1 XNG2 | ě 2, i.e., if they share at least two common subdomains.

Figure 2.1 illustrates these definitions (assuming a relatively fine mesh and a finite element
space with node-based dofs such that sets of nodes appear as geometrical sets).

REMARK 2.14. For general partitions of 3D finite element meshes, e.g., obtained from a
graph partitioner, it can be hard to classify globs geometrically, in particular, to distinguish
between vertices and edges. For some rules/heuristics, see [55, Section 2], [62, Section 3],
[24, Section 5]. For our purposes, such a classification is not needed. The above definition also

2Note that many different definitions of globs are used in the literature: sometimes globs are geometrical sets
[82, 93] and sometimes the set of globs excludes vertices [76].
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FIG. 2.2. Illustration of dofs and globs for left: conforming standard P 1 finite element discretization, middle:
C2-continuous B-spline discretization (grid lines displayed), right: standard P 1 discontinuous Galerkin discretization.
White rectangles belong to the subdomain vertex, solid dots belong to subdomain edges; a dashed line marks the dofs
of a subdomain.

resembles the fat faces/edges/vertices of isogeometric analysis (cf. Figure 2.2 (middle) and [7]),
and it is also applicable to discontinuous Galerkin discretizations (cf. Figure 2.2 (right) and
[29]). Moreover, the setting is not only limited to two- and three-dimensional problems. Lastly,
note that our theory holds for any alternative definition of globs that refines Definition 2.12 in
the sense that each glob of Definition 2.12 is a union of the refined globs. For instance, one
may want to split a glob if it is not connected geometrically; see also [62, 93, 123, 124].

DEFINITION 2.15. Let UG denote the Euclidean space of dofs on G (with a fixed
numbering). For any i P NG, let RiG : Wi Ñ UG be the (zero-one) restriction matrix (of full
rank) extracting these dofs such that RiGRJiG “ I .

Since UG has a fixed dof numbering, we conclude that there exists a matrix pRG : U Ñ UG
such that

RiGRi “ pRG @i P NG , pRG pRJG “ I @G P G;(2.6)

see also Figure 2.3 (right). Since the globs are disjoint to each other,

RiG1
RJiG2

“

#

I if G1 “ G2 P Gi,
0 otherwise.

(2.7)

We define the cut-off/filter matrices

ΞiG :“ RJiGRiG , ΞG :“ diagpΞiGq
N
i“1 ,

pΞG :“ pRJG
pRG ,(2.8)

which are diagonal matrices with entry 1 if the corresponding dof is on G and 0 otherwise.3

From the previous definitions and properties we conclude that

ΞiGRi “ RipΞG , ΞGR “ RpΞG , Ξ2
G “ ΞG , pΞ2

G “
pΞG .(2.9)

By construction, we have the following partitions of unity on Wi and U ,
ÿ

GPGi

ΞiG “ I,
ÿ

GPG

pΞG “ I,(2.10)

as well as the following characterization of the “continuous” space (cf. [75])

xW :“ rangepRq “ tw PW : @G P G @i, j P NG : RiGwi ´RjGwj “ 0u.(2.11)

3Our expression ΞiGwi corresponds to IhpθGwiq in the terminology of [113].
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U W
R

RJ
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pRG
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RiG

Rj

UG

Ri

G

FIG. 2.3. Left: Illustration of the operators R and RJ. Right: Illustration of relation (2.6).

2.5. Primal dofs and the space ĂW . Various definitions of primal dofs have been used
for FETI-DP [33, 62, 63, 70, 93, 113] and BDDC [20, 75, 76] in the literature. Here, we
require that a primal dof must be associated with a glob and is nothing but a linear combination
of regular dofs within that glob. In Section 2.5.3 below, we discuss a more general definition
of primal dofs and the space ĂW based on closed globs, which we, however, do not use in the
main part of our theory.

2.5.1. Classical primal dofs. The following definition is more common in BDDC meth-
ods, which is why we term it “classical”; see Section 2.5.3 for a more general definition.

DEFINITION 2.16. Classical primal dofs on the open glob G are described by a matrix

QJG : UG Ñ UΠG :“ RnΠG ,

where nΠG ě 0 is the number of primal dofs associated with a glob G. The subspace of UG
where the primal dofs vanish is

UG∆ :“ ty P UG : QJGy “ 0u.

We set

WΠi :“
â

GPGi
UΠG , WΠ :“

âN

i“1
WΠi , and UΠ :“

â

GPG
UΠG » RnΠ ,

with nΠ “
ř

GPG nΠG the total number of primal dofs. Analogously to Section 2.1, we can
find zero-one matrices

RΠi : UΠ ÑWΠi , RΠ : UΠ ÑWΠ , and RΠiG : WΠi Ñ UΠG ,(2.12)

and a matrix pRΠG : UΠ Ñ UΠG such that RΠiGRΠi “ pRΠG independent of i P NG. Let

Ci : Wi ÑWΠi , Ci :“
ÿ

GPGi

RJΠiGQ
J
GRiG .

be the matrix evaluating all primal dofs associated with the subdomain i, and define the dual
subspaces [75, 113]

Wi∆ :“ kerpCiq “ twi PWi : @G P Gi : QJGRiGwi “ 0u, W∆ :“
âN

i“1
Wi∆.(2.13)

REMARK 2.17. The operators/spacesRΠ, UΠ,WΠ correspond toRc, Uc,X , respectively,
from [76, Section 2.3]. The operator QP from [75, 76] reads

QJP “
ÿ

GPG

pRJΠGQ
J
G
pRG : U Ñ UΠ
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TABLE 2.1
Notation concerning globs.

symbol explanation reference
F (Fi) set of faces (associated with subdomain i) Definition 2.12
G (Gi) set of globs (associated with subdomain i) Definition 2.12
G˚ (G˚i ) subset of G (Gi), not totally primal Definition 2.21
NG set of subdomain indices associated with glob G Definition 2.12
G (GG) closure of G (set of globs in the closure of G) Definition 2.27
DiG glob scaling matrix UG Ñ UG Assumption 3.4
RiG restriction matrix Wi Ñ UG Definition 2.15
pRG restriction matrix U Ñ UG (2.6)
QJG evaluation of primal dofs Definition 2.16
ΞG (ΞiG) filter matrix W ÑW (Wi ÑWi) (2.8)
pΞG filter matrix U Ñ U (2.8)

in our notation. So Definition 2.16 is equivalent to saying that QJP is block-diagonal with
respect to the partitions of (primal) dofs into globs.

The next condition states that the primal dofs on G are linearly independent. This can
always be achieved by a (modified) Gram-Schmidt orthonormalization or, more generally, by
a QR factorization [37, Section 5.2].

CONDITION 2.18 (linearly independent primal dofs). For each glob G P G, the columns
of the matrix QG are linearly independent.

The following condition is needed later on:
CONDITION 2.19 (Ci surjective).

kerpCJi q “ t0u for all i “ 1, . . . , N.

PROPOSITION 2.20. Let tQJGuGPG be primal dofs in the sense of Definition 2.16. Then
Condition 2.18 is equivalent to Condition 2.19.

Proof. Recall that CJi “
ř

GPGi R
J
iGQGRΠiG, i.e., CJi is block-diagonal with respect

to the partition of Wi into globs and to the partition of WΠi into tUΠGuGPGi . Hence CJi is
injective if and only if all the matrices tQGuGPGi are injective.

Some special primal dofs control all dofs on a glob (in applications, these are typically
subdomain vertices):

DEFINITION 2.21 (totally primal glob). We call a glob G totally primal if QJG is injective
(typically the identity). The set of globs (for the subdomain i) which are not totally primal is
denoted by G˚ (G˚i respectively).

2.5.2. The space ĂW . Following [20, 72, 75, 76], we define the “partially continuous
space” ĂW based on primal dofs.

DEFINITION 2.22. For given primal dofs tQJGuGPG in the sense of Definition 2.16, we set

ĂW :“ tw PW : @G P G @i, j P NG : QJGpRiGwi ´RjGwjq “ 0u.(2.14)

Obviously, the space above fulfills Condition 2.6, i.e., xW Ă ĂW Ă W . The following
characterization can be shown using the properties of the restriction matrices RΠ...; cf. [75],
[76, Section 2.3].

PROPOSITION 2.23. If the primal dofs are linearly independent (Condition 2.18), then

ĂW “ tw PW : DuΠ P UΠ @i “ 1, . . . , N : Ciwi “ RΠiuΠu.(2.15)
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The side conditions in (2.14) are called primal constraints, and they fulfill two purposes:
First, we need enough constraints such that Condition 2.7 holds (rS is invertible). Second,
additional constraints may be needed to get a good constant in the bound (2.5) (recall Re-
mark 2.11: the smaller the space ĂW , the (potentially) smaller the constant ω). In particular
this is important for 3D problems or parameter-dependent problems. The first purpose is
treated in Section 3.1 and in Section 7. The rest of the paper is mainly devoted to the second
purpose. Here, one has to take into account that, although a smaller space leads to a better
condition number, the amount of coupling within ĂW should be kept at a minimum, otherwise
the algorithm is not efficient. For example, if ĂW “ xW , then rS (which should actually be
cheaper to invert) is the same as the original problem matrix.

Before proceeding, we provide two basic results on the space ĂW . The first one clarifies
its dimension.

PROPOSITION 2.24. If the primal dofs are linearly independent (Condition 2.18), then
dimpĂW q “ nΠ `

řN
i“1 dimpWi∆q.

The second result allows us to write ĂW as a direct sum of a continuous and a discontinuous
space; see also [75, Section 5], [113, Section 6.4].

PROPOSITION 2.25. If the primal dofs are linearly independent (Condition 2.18), then

ĂW “ xWΠ ‘W∆ ,

where xWΠ “ rangeppΦq Ă xW is given by the full-rank matrix

pΦ: UΠ Ñ xW, pΦ :“ RQP “ R
ÿ

GPG

pRJGQG
pRΠG .

Moreover, pΦi “ CJi RΠi “ p
ř

GPGi R
J
iGQGRΠiGqRΠi, so the basis has local support.

REMARK 2.26. If the primal dofs are orthogonal, i.e., for all G P G: QJGQG “ I , then
CipΦi “ I . Otherwise, one can redefine pΦ to fulfill the latter property; cf. [75, Lemma 9].

2.5.3. Primal dofs on closed globs˚. In some references and implementations, primal
dofs are defined on the closure of globs; cf. [52, 79, 113].

DEFINITION 2.27. The closure G of a glob G is given by G and all its ancestors, i.e.,

G :“
ď

G1PGG

G1, where GG :“ tG1 P G : NG1 Ě NGu.

Let UG denote the space of dofs on G (with a fixed numbering). Analogously to the above,
we can find zero-one matrices RiG : Wi Ñ UG and pRG : U Ñ UG extracting these dofs such
that RiGRi “ pRG independent of i P NG.

DEFINITION 2.28. Primal dofs on the closed glob G are described by a matrix

QJ
G

: UG Ñ UΠG :“ RnΠG .

The analogous definitions of Ci : Wi ÑWΠi and QJP : U Ñ UΠ are

Ci “
ÿ

GPGi

RJΠiGQ
J

G
RiG, QJP “

ÿ

GPG
RJΠGQ

J

G
pRG,

and the space ĂW can now be defined as in (2.15).
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Recall that for the classical primal dofs (on “open” globs), the proof of Proposition 2.20
is very simple. For the closed case, an analogue is not presently known. Yet, the following is
easily verified:

PROPOSITION 2.29. Let RGG :“ pRG pRJ
G

denote the restriction matrix from the dofs on
G to the (fewer) dofs on the open glob G. If for each G P G, the matrix RGGQG has full
column rank, then also QG has full column rank (analogous to Condition 2.18).

If RGGQG has linearly dependent columns, then we can split each primal dof on the
closed glob G into primal dofs on all the open globs G1 P GG, orthonormalize them together
with the existing ones, and finally obtain linearly independent primal dofs on open globs
(Condition 2.18). However, to our best knowledge, no algorithm exists to date which gets
Condition 2.18 to hold by modifying QG without increasing the overall number of primal dofs.
See also [79, p. 1819]. This is one of the reasons why we use Definition 2.16.

2.6. Generalized primal constraints˚. Mandel, Sousedík, and Šístek [79] use a more
general definition of the space ĂW , which is of central importance to our own work:

ĂW “ tw PW : Lw “ 0u,(2.16)

where L : W Ñ X :“ RM is a matrix with M linearly independent rows. One easily shows
that xW Ă ĂW ĂW (Condition 2.6) holds if and only if LR “ 0, or equivalently,

Lw “ 0 @w P xW.(2.17)

Apparently, Definition 2.22 (based on the classical primal dofs) is a special case of (2.16)
but not vice versa. For the general form (2.16), the application y “ Ĩ rS´1ĨJψ for ψ PW is
equivalent to solving the global saddle point problem

„

S LJ

L 0

 „

y
z



“

„

ψ
0



.(2.18)

For the special case of L discussed below, a more viable option is given in Appendix C.
REMARK 2.30. Actually, for any space ĂW with xW Ă ĂW Ă W (Condition 2.6), there

is a matrix L such that (2.16)–(2.17) holds. In a FETI-DP framework (see Appendix B),
the property (2.17) implies that L “ L̄B for some L̄, and thus, such constraints can be
implemented by deflation [41, 46, 47, 53, 58]. The balancing Neumann-Neumann method [73]
can be interpreted as a BDDC method with (2.16), however, the constraints L are global; cf.
[93, p. 110].

In [79], Mandel et al. require that each constraint (each row of L) is local to a glob, i.e.,
for each glob G P G, there exist matrices LjG : UG Ñ XG, j P NG, such that

Lw “
ÿ

GPG
RJXG

ÿ

jPNG

LjGRjGwj ,(2.19)

where X is isomorphic to
Â

GPG XG and RXG : X Ñ XG is the zero-one matrix extracting
the “G” component. If L is of form (2.19) then

(i) L has linearly independent rows if and only if the block row matrix r¨ ¨ ¨|LjG|¨ ¨ ¨ sjPNG

has linearly independent rows for all G P G.
(ii) Lw “ 0 holds if and only if

ÿ

jPNG

LjGRjGwj “ 0 @G P G,(2.20)
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(iii) Lw “ 0 for all w P xW (Condition (2.17)) if and only if

ÿ

jPNG

LjG “ 0 @G P G.(2.21)

The above form of constraints is important to our study because our localized bounds (implying
the central bound (2.5) of the PD operator) hold (and are sharp) if constraints of the form (2.19),
(2.21) are imposed (in addition to previously fixed primal constraints). In particular, they
pop out of local generalized eigenproblems associated with globs that share more than two
subdomains and that involve more than just a few dofs such as subdomain edges.

Mandel, Sousedík, and Šístek provide an algorithm for the efficient solution of the global
saddle point problem (2.18) based on the multifrontal massively parallel sparse direct solver
MUMPS [1]. In Appendix C.3, we give an extension of the algorithm proposed in [20] which
realizes Ĩ rS´1ĨJ by solving local saddle point problems and one global (coarse) SPD problem.
Under the perspective of the extended algorithm, BDDC with generalized (but still glob-based)
primal constraints becomes amenable for multiple levels [56, 78, 108, 116]. This is because
the coarse problem is again an SPD problem that can be subassembled from SPSD subdomain
contributions. Thus, the subdomains of the second level can be defined as agglomerates of the
first level subdomains. Multiple levels can be a rather attractive option for problems with high
contrast coefficients [18, 53, 96, 97, 98] and/or a detailed underlying geometry [21, 24, 76].
Nevertheless, as we will show in Section 5.4 below, rather than using the generalized primal
constraints, it is much more favorable to use potentially stronger classical primal constraints
and the conventional algorithm from Appendix C.1–C.2 (which is naturally amenable to
multiple levels). Although our result holds for the general case, we will describe it later in
Section 5, when needed.

3. Localization. In this section, we provide a local condition implying the global def-
initeness of rS (Section 3.1, Condition 2.7). After introducing our mild assumptions on the
weight/scaling matrices Di and showing some technical results in Section 3.2, we provide
local estimates implying the global estimate (2.5) of the PD-operator in Section 3.3. We also
review a similar approach by Klawonn, Kühn, and Rheinbach [49] (Section 3.4). Through-
out this section, we assume a space ĂW based on classical primal dofs (Definition 2.16 and
Definition 2.22).

3.1. A local, glob-based condition for the definiteness of rS. The problem of how to
guarantee definiteness of rS already arose in the original FETI-DP method [33]. Suitable
choices of primal constraints are known for scalar diffusion and linear elasticity problems
([70, 113]). For the general SPD case, however, an all-purpose recipe is yet missing (to our
best knowledge). As one can see easily, the definiteness of S on ĂW (Condition 2.7) implies
the necessary local condition

Si is definite on Wi∆ @i “ 1, . . . , N,(3.1)

which is, however, not sufficient (see Figure 3.1 for a counterexample).
Condition 3.1 below is local and sufficient (Lemma 3.2) although not necessary. In

Section 7, we provide an algorithm that computes a set of primal constraints such that
Condition 3.1 can be guaranteed under mild assumptions on the problem. For each globG P G,
we define the (Euclidean) space

WNG
:“ tw “ rwisiPNG

: wi PWiu,(3.2)
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FIG. 3.1. Example where (3.1) is not sufficient to guarantee that rS is definite; 2D Laplace problem with
Dirichlet boundary conditions on the dashed line. A bullet indicates primal constraint on a subdomain vertex.

FIG. 3.2. Sketch of a vertex G (marked with ˝) and the neighboring globs where constraints enforced in the
associated space ĂWNG

(marked with thick lines and black dots).

where rwisiPNG
simply designates a block vector. We denote by wNG

PWNG
the restriction

of w PW to the subdomains in NG and define the subspace

ĂWNG
:“ tw PWNG

: Dz P ĂW : wi “ zi @i P NGu

“
 

w PWNG
: @i ‰ j P NG @G

1, ti, ju Ă NG1 : Q
J
G1pRiG1wi ´RjG1wjq “ 0

(

,
(3.3)

i.e., the space of functions living “around” G, where (previously fixed) primal constraints
are enforced on all the neighboring globs of G; cf. Definition 2.13. See Figure 3.2 for a
two-dimensional example where G is a vertex. If G is a typical edge in a three-dimensional
problem, then in addition to the previously fixed constraints on the edge G, also previously
fixed constraints on the neighboring vertices, edges, and faces are enforced.

CONDITION 3.1 (local kernel condition). For each glob G P G˚ (i.e., not totally primal),
assume that

@w P ĂWNG
: p@i P NG : Si wi “ 0

˘

ùñ p@i, j P NG : RiGwi “ RjGwjq.

LEMMA 3.2. Condition 3.1 implies Condition 2.7 (S is definite on ĂW ).
Proof. Let Condition 3.1 hold and let w P kerpSq X ĂW be arbitrary but fixed. Then

Siwi “ 0 for all i “ 1, . . . , N . Due to Condition 3.1 for all not totally primal globs G,

@i, j P NG : RiGwi “ RjGwj .

On the remaining totally primal globs, we get the same condition from Definition 2.22 and
Definition 2.21. So, all dofs are continuous across all globs, and with (2.11), w P xW . Since
kerpSq XxW “ t0u (cf. Section 2.1), w “ 0. Summarizing, kerpSq XĂW “ t0u.

REMARK 3.3. Condition 3.1 is similar to but substantially different from [76, Assump-
tion 8]. The latter reads as follows. For all faces F P F ,

@w P ĂWNF
: pSiwi “ 0, Sjwj “ 0q ùñ pRiFwi “ RjFwjq,(3.4)
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where ti, ju “ NF and F is the closed face (Definition 2.27). Under the additional assumption
that for each glob G P GzF , one can connect each pair ti, ju Ă NG via a path through faces
(which is fulfilled for usual domain decompositions), one can show that Condition 2.7 holds.
Neither Condition 3.1 nor (3.4) are necessary for Condition 2.7 to hold.

3.2. Assumption on the weight matrices. In our subsequent theory, we need the fol-
lowing, mild assumption on the scaling matrices Di:

ASSUMPTION 3.4 (Di block diagonal). Each scaling matrix Di is block diagonal with
respect to the glob partition, i.e., there exist matrices DiG : UG Ñ UG, G P Gi such that

Di “
ÿ

GPGi

RJiGDiGRiG .

The condition below is a glob-wise partition of unity, and the proposition thereafter is
easily verified.

CONDITION 3.5 (glob-wise partition of unity). For each glob G P G, there holds
ÿ

jPNG

DjG “ I.

PROPOSITION 3.6. Let Assumption 3.4 hold. Then for all G P G and i P NG,

ΞiGDi “ DiΞiG , ΞGD “ DΞG(3.5)

(where D “ diagpDiq
N
i“1), and

EDw “
ÿ

GPG

pRJG
ÿ

iPNG

DiGRiGwi .(3.6)

Moreover, Condition 2.4 (partition of unity) is equivalent to Condition 3.5.
Proof. Firstly, we show (3.5) and (3.6):

ΞiGDi
Ass. 3.4
“

ÿ

GPGi

ΞiGR
J
iG

looomooon

“RJiG

DiG RiG
loomoon

“RiGΞiG

Ass. 3.4
“ DiΞiG

EDw “

N
ÿ

i“1

RJi Diwi
Ass. 3.4
“

N
ÿ

i“1

ÿ

GPGi

RJi R
J
iG

loomoon

“ pRJG

DiGRiGwi “
ÿ

GPG

pRJG
ÿ

iPNG

DiGRiGwi .

Secondly, (3.6) implies EDR “
ř

G1PG
pRJG1

ř

iPNG1

DiG1
pRG1 .

If Condition 2.4 holds, then the left-hand side evaluates to I , and we obtain Condition 3.5
by multiplying from the left by pRG and from the right by pRJG (for an arbitrary G P G and
using (2.6)). Conversely, if Condition 3.5 holds, then the right-hand side evaluates to I due
to (2.10), thus Condition 2.4 is fulfilled.

The following two results will be helpful for Section 3.3.
LEMMA 3.7. Let Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise

partition of unity) hold. Then

(i)
ΞGED “ EDΞG , pREDΞGq

2 “ REDΞG ,

ΞGPD “ PDΞG , pPDΞGq
2 “ PDΞG .
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(ii)
ΞiGpPDwqi “ RJiG

ÿ

jPNGztiu

DjGpRiGwi ´RjGwjq.

In particular,

ΞGPDw “ 0 ðñ
`

@i, j P NG : RiGwi “ RjGwj
˘

.

(iii) If G is totally primal (G R G˚, cf. Section 2.5.1), then

ΞGPDw “ 0 @w P ĂW.

Proof. (i) By definition, ED “ RJD with D “ diagpDiq
N
i“1. From (2.9), (3.5) we get

pΞGED “ pΞGR
JD “ RJΞGD “ RJDΞG “ EDΞG .

The other assertions follow immediately from (2.9), the fact that pREDq2 “ RED (Proposi-
tion 3.6 and Proposition 2.5), and the definition of PD.

(ii) From the definitions of ED and PD we get

RiGpPDwqi “ RiGwi ´ pRGEDw @i P NG .(3.7)

Applying pRG to formula (3.6), we find that

pRGEDw
(3.6)
“

ÿ

G1PG

pRG pRJG1
ÿ

jPNG1

DjG1RjG1wj
(2.7)
“

ÿ

jPNG

DjGRjGwj .

Substituting the latter result into (3.7) yields

RJiGRiGpPDwqi “ RJiG

´

RiGwi ´
ÿ

jPNG

DjGRjGwj

¯

.

The definition of ΞiG and Condition 3.5 yield the desired formula.
(iii) If G R G˚ and w P ĂW , then QJGpRiGwi ´ RjGwjq “ 0 for all i, j P NG; cf.

Definition 2.22. Since QJG is non-singular, RiGwi “ RjGwj , and Lemma 3.7(ii) implies that
ΞGPDw “ 0.

3.3. A glob-based localization of the PD estimate (2.5). Recall the formula stated in
Lemma 3.7(ii) and the space WNG

from (3.2). We define

PD,G : WNG
ÑWNG

: pPD,Gwqi :“ RJiG
ÿ

jPNGztiu

DjGpRiGwi ´RjGwjq.(3.8)

LEMMA 3.8. Let Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise
partition of unity) hold. Then

(i) ΞiGpPDwqi “ pPD,GwNG
qi @w PW @i P NG, where wNG

“ rwjsjPNG
,

(ii) P 2
D,G “ PD,G,

(iii) kerpPD,Gq “ tw PWNG
: @i, j P NG : RiGwi “ RjGwju,

(iv) PD,Gw P ĂWNG
ðñ w P ĂWNG

, with the space ĂWNG
from (3.3),

in particular, PD,GpĂWNG
q Ă ĂWNG

and rangepPD,Gq XĂWNG
“ PD,GpĂWNG

q,

(v) there exists a projection operator rPD,G : ĂWNG
Ñ ĂWNG

such that
PD,GrING

“ rING
rPD,G, where rING

: ĂWNG
ÑWNG

is the natural embedding.
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Proof. Part (i) follows from Lemma 3.7(ii) and the definition of PD,G, Part (ii) from
Lemma 3.7(i). Part (iii) can be derived using Lemma 3.7(ii). Part (iv): for y P WNG

and
w “ PD,Gy one easily shows that

QJGRiGwi “ QJGRiGpΞiGyi ´R
J
iGyGq, where yG “

ÿ

jPNG

DiGRjGwj ,

QJGpRiGwi ´RjGwjq “ QJGpRiGyi ´RjGyjq.

Finally, Part (v) follows from Parts (ii) and (iii).
REMARK 3.9. If ĂW does not originate from primal dofs on open globs (Definition 2.16),

then Parts (iii) and (v) do not necessarily hold.
As the next theorem shows, the global bound (2.5) can be established from local bounds

associated with individual globs (with ĂWNG
, PD,G defined as in (3.3), (3.8), respectively):

Local glob estimate:

(3.9)
ÿ

iPNG

|pPD,Gwqi|
2
Si
ď ωG

ÿ

iPNG

|wi|
2
Si

@w P ĂWNG
.

THEOREM 3.10. Let Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise
partition of unity) be fulfilled, and let ĂW be defined by classical primal dofs (Definition 2.22).
For each glob G P G˚ (that is not totally primal), assume that the local estimate (3.9) holds
with some constant ωG ă 8. Then the global PD-estimate (2.5) holds with

ω “
´

max
i“1,...,N

|G˚i |2
¯

`

max
GPG˚

ωG
˘

,

where |G˚i | denotes the cardinality of the set G˚i . In particular, if, in addition, rS is definite
(Condition 2.7), then Theorem 2.9 implies κBDDC ď ω.

Proof. Firstly, we use (2.10), Lemma 3.7(iii), and Lemma 3.8(i) to obtain

pPDwqi “
ÿ

GPGi

ΞiGpPDwqi “
ÿ

GPG˚i

ΞiGpPDwqi “
ÿ

GPG˚i

pPD,GwNG
qi .

Secondly, the Cauchy-Bunyakovsky-Schwarz inequality and the local bounds (3.9) imply

N
ÿ

i“1

|pPDwqi|
2
Si
ď

N
ÿ

i“1

|G˚i |
ÿ

GPG˚i

|pPD,GwNG
qi|

2
Si

ď
`

max
i“1,...,N

|G˚i |
˘

ÿ

GPG˚

ÿ

jPNG

|pPD,Gwqj |
2
Sj

ď
`

max
i“1,...,N

|G˚i |
˘

ÿ

GPG˚

ÿ

jPNG

ωG |wi|
2
Si

ď
`

max
i“1,...,N

|G˚i |
˘

N
ÿ

i“1

ÿ

GPG˚i

ωG |wi|
2
Si
.

Finally,
ř

GPG˚i
ωG ď pmaxi“1,...,n |G˚i |qpmaxGPG˚ ωGq.

The arguments in the proof above are not new and are used in all the known theoretical
condition number bounds of FETI, FETI-DP, and BDDC for specific PDEs and discretizations;
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see, e.g., [8, 23, 61, 63, 80, 81, 113]. The more recent works [18, 53] make implicitly use
of Theorem 3.10, and a similar result for the two-dimensional case can be found in [54,
Theorem 5.1].

REMARK 3.11. If Assumption 3.4 did not hold, i.e, if the matrices Di were not block-
diagonal with respect to the globs, then we would need an estimate of the form

ÿ

iPNG

|ΞiGpPDwqi|
2
Si
ď ωG

ÿ

jPN`G

|wj |
2
Sj

@w P ĂW,

where N`
G are the subdomains of NG and all their next neighbors.

REMARK 3.12. Certainly, if the local glob estimate (3.9) holds on a larger space than
ĂWNG

, then we get a similar result (possibly with a pessimistic bound ωG). A possible choice
for such a space is

ĂWG
NG

:“ tw “ rwisiPNG
: @i ‰ j P NG : QJGR

J
iGwi “ QJGR

J
jGwju,

i.e., the space of functions living “around” G, where only the primal constraints associated
with G are enforced. We shall make use of this later in Section 4.2, Strategy 4.

REMARK 3.13. Whereas the local estimate (3.9) is glob-based, other localizations used
in the literature are subdomain-based. For example, translating the suggestion of Kraus et
al. [65, Section 5] to our framework leads to the estimate

|pPDwqi|
2
Si
ď ωi

ÿ

jPNi

|wj |
2
Sj

@w P ĂWNi ,

where Ni are the neighboring subdomains of i and ĂWNi
is the restriction of ĂW to these.

Another option, related to the work by Spillane and Rixen [110], is
ÿ

jPNi

|pPDwqj |
2
Sj
ď ωi |wi|

2
Si
,

for all w PW that vanish in all but the i-th subdomain.

3.4. A review of a pair-based localization˚. The local estimate (3.9) was first proposed
in [76] (see also [79, 106, 108]), however, there in slightly different form on every closed
face F ,

`

|Ξi,F pPDwqi|
2
Si
` |Ξj,F pPDwqj |

2
Sj

˘

ď ωF
`

|wi|
2
Si
` |wj |

2
Sj

˘

,(3.10)

where NF “ ti, ju, Ξi,F :“
ř

GĂF Ξi,G is the filter matrix corresponding to F , and (3.10)
must hold for all w PW with wk “ 0 for k R ti, ju and with all primal constraints enforced
between wi and wj . Under Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise
partition of unity), the estimate can be expressed using a space ĂWF and an operator PD,F
defined analogously to ĂWNG

and PD,G, respectively. In [76, 79], the local bounds are used to
define the condition number indicator

rω :“ max
FPF

ωF .(3.11)

If every glob G is either totally primal or |NG| “ 2 (typical for two-dimensional problems),
then it does not matter whether one uses the open or closed face, and (2.5) holds with ω “ rω.
Thus, rω is indeed a reliable bound for the condition number; see also [54, Theorem 5.1].

For the three-dimensional case, the reliability of (3.11) was open for quite a long time.
In their recent preprint [49], Klawonn, Kühn, and Rheinbach show that in general, (3.11) is
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reliable if (i) all vertices are totally primal and (ii) one includes some estimates associated with
those subdomain edges that share more than three subdomains. In the following, we present
this latest theory under a slightly different perspective.

If Assumption 3.4 (glob-wise partition of unity) holds then

pPDwqi “
ÿ

jPNi

ÿ

GPG˚
ti,juĂNG

RJiGDjGpRiGwi ´RjGwjq,(3.12)

where Ni :“
Ť

GPGi NG is the set of neighboring subdomains of the subdomain i. This
formula motivates a neighbor-based viewpoint and the following definition.

DEFINITION 3.14 (generalized facet). For each pair ti, ju, i ‰ j, we define the general-
ized facet

Γij :“
ď

GPG˚ : ti,juĂNG

G,

i.e., the set of dofs shared by the subdomains i and j, excluding totally primal dofs. Note that
Γji “ Γij . The set of non-trivial generalized facets is given by

Υ˚ :“ tΓij : i, j “ 1, . . . , N, i ‰ j, Γij ‰ Hu.

REMARK 3.15. Most of these generalized facets are closed faces. Assume that every
vertex is chosen totally primal, then in two dimensions, all generalized facets are actually
closed faces. In three dimensions, if we have a regular subdomain edge E shared by four or
more subdomains, then for each pair i ‰ j with ti, ju P NE where no face F exists such
that ti, ju P NF , we get a generalized facet Γij . According to [49, 99], for decompositions
generated from a graph partitioner, most of the subdomain edges share only three subdomains.

We fix an ordering of the dofs for each set Γij and denote by RiΓij
: Wi Ñ UΓij

the corresponding zero-one restriction matrix. For each sub-glob G Ă Γij , we denote by
RGΓij

: UΓij
Ñ UG the zero-one restriction matrix such that RiG “ RGΓij

RiΓij
.

Moreover, for each pair pi, jq with Γij P Υ˚, we denote by Wij , ĂWij the restriction of
W , ĂW , respectively, to the two components i, j. The restriction of a vector w P ĂW or W is
denoted by wij . With this notation, we deduce from (3.12) that

pPDwqi “
ÿ

j : ΓijPΥ˚

RJiΓij

´

ÿ

GĂΓij

RJGΓij
DjGRGΓij

¯

looooooooooooooomooooooooooooooon

“: DjΓij

pRiΓij
wi ´RjΓij

wjq

“
ÿ

j : ΓijPΥ˚

RJiΓij
DjΓij pRiΓijwi ´RjΓijwjq

looooooooooooooooooomooooooooooooooooooon

“: pPD,Γij
wijqi

,

where PD,Γij
: Wij Ñ Wij . The following result was first shown in [49, Lemma 6.1] with

essentially the same constant.
LEMMA 3.16. Let Assumption 3.4 (glob-wise partition of unity) be fulfilled. If for every

Γij P Υ˚, the inequality

|pPD,Γij
wijqi|

2
Si
` |pPD,Γij

wijqj |
2
Sj
ď ωij

´

|wi|
2
Si
` |wj |

2
Sj

¯

@wij P ĂWij

holds, then

|PDw|
2
S ď ω |w|2S @w P ĂW,

with ω “
`

maxi“1,...,N n
2
i

˘ `

maxΓijPΥ˚ ωij
˘

, where ni :“ |tj : Γij P Υ˚u|.
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Proof. The Cauchy-Bunyakovsky-Schwarz inequality implies

N
ÿ

i“1

|pPDwqi|
2
Si
ď

N
ÿ

i“1

ni
ÿ

j: ΓijPΥ˚

|pPD,Γijwijqi|
2
Si

ď
`

max
i“1,...,N

ni
˘

ÿ

ΓijPΥ˚

´

|pPD,Γij
wijqi|

2
Si
` |pPD,Γij

wijqj |
2
Sj

¯

.

Employing the local estimate and using Cauchy-Bunyakovsky-Schwarz another time yields

N
ÿ

i“1

|pPDwqi|
2
Si
ď

`

max
i“1,...,N

ni
˘

ÿ

ΓijPΥ˚

ωij

´

|wi|
2
Si
` |wj |

2
Si

¯

“
`

max
i“1,...,N

ni
˘

N
ÿ

i“1

ÿ

j: ΓijPΥ˚

ωij |wi|
2
Si

ď
`

max
i“1,...,N

n2
i

˘`

max
ΓijPΥ˚

ωij
˘

N
ÿ

i“1

|wi|
2
Si
.

Unlike the glob-based operator PD,G, the pair-based operator PD,Γij
fails to be a pro-

jection. For this reason and the fact that adaptive constraints on the generalized facets Γij
would have to be specially treated (e.g., split) in order to ensure that the constraints associated
with each subdomain are linearly independent, we do not pursue the pair-based localization
further. Note, however, that parts (not all) of our theory could be transferred to the pair-based
localization.

4. The glob eigenproblem for general scalings. The local glob estimate (3.9) is directly
related to a generalized eigenproblem A “ λB, where A, B correspond to the right- and
left-hand side of the estimate, respectively, and the best constant is the inverse of the minimal
eigenvalue. We show this relation in detail (Section 4.1), allowing both A, B to be singular
(in this, our presentation differs from [77, 79]). Next, we show how to reduce generalized
eigenproblems by using Schur complements and how to modify them, obtaining the same or
related estimates. In Section 4.2, we discuss the eigenproblem associated with estimate (3.9)
and provide some strategies on how it could be computed in practice.

4.1. Technical tools for generalized eigenproblems˚. The following definition and
lemma are common knowledge but stated and proved for the sake of completeness; see also
[37, Section 7.7.1], [79, Lemma 2], [109, Definition 2.10, Lemma 2.11], and [31, 53] for
similar results.

DEFINITION 4.1. Let V be a finite-dimensional (real) Hilbert space and A, B : V Ñ V ˚

linear operators. We call pλ, yq a (real) generalized eigenpair of pA,Bq if either
(a) λ P R and y P V zt0u fulfill Ay “ λBy, or
(b) λ “ 8 and y P kerpBqzt0u.

We will not need complex eigenvalues in the sequel. In this text, we say that λ is a genuine
eigenvalue of pA,Bq if there is an associated eigenvector in V zpkerpAq X kerpBqq.

Apparently, λ is a generalized eigenvalue of pA,Bq if and only if 1{λ is a generalized
eigenvalue of pB,Aq, where 1{0 :“ 8 and 1{8 :“ 0. The eigenspaces corresponding to
λ “ 0 and λ “ 8 are kerpAq and kerpBq, respectively. If kerpAq X kerpBq is non-trivial,
then every pλ, yq with λ P R Y t8u and y P kerpAq X kerpBq is a generalized eigenpair.
If an eigenvalue λ has only eigenvectors in kerpAq X kerpBq, then we call it ambiguous in
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the sequel. If B is non-singular, then the generalized eigenvalues of pA,Bq are the same
as the regular eigenvalues of B´1A, and if B is SPD, then they are the same as those of
B´1{2AB´1{2, where B1{2 is the SPD matrix square root. The next lemma treats the general
SPSD case, and its proof is given on page 297.

LEMMA 4.2. Let V be a finite-dimensional (real) Hilbert space and A, B : V Ñ V ˚

linear operators that are SPSD. Then there exist at least n “ dimpV q´dimpkerpBqq genuine
generalized eigenvalues

0 ď λ1 ď λ2 ď . . . ď λn ă 8

and a basis tyku
dimpV q
k“1 of V such that pλk, ykqnk“1 and p8, ykq

dimpV q
k“n`1 are generalized eigen-

pairs of pA,Bq and

xByk, y`y “ δk`, xAyk, y`y “ λkδk` @k, ` “ 1, . . . , n,

and kerpBq “ spantyku
dimpV q
k“n`1 . Furthermore, for any k P t0, . . . , n´ 1u with λk`1 ą 0,

xBz, zy ď
1

λk`1
xAz, zy @z P V, xBy`, zy “ 0, ` “ 1, . . . , k.

The constant in this bound cannot be improved.
The next result is interesting in itself; cf. [109, Lemma 2.11].
COROLLARY 4.3. Let k P t0, . . . , n´ 1u with λk`1 ą 0 as in the previous lemma and

let Πk : V Ñ V be the projection defined by Πkv :“
řk
`“1xBv, y`yy`. Then

|Πkv|A ď |v|A , |pI ´Πkqv|A ď |v|A , |Πkv|B ď |v|B , |pI ´Πkqv|B ď |v|B .

Moreover,

|pI ´Πkqv|
2
B ď

1

λk`1
|pI ´Πkqv|

2
A ď

1

λk`1
|v|2A @v P V.

Proof. All the estimates can be easily verified by expanding v P V with respect to the
eigenvectors, i.e., v “

řdimpV q
`“1 β`y`, and by using the results of Lemma 4.2.

For the proof of Lemma 4.2, we need an auxiliary result.
PRINCIPLE 4.4 (“Schur principle”: reduction of infinite eigenvalues by Schur comple-

ment). Let V be a finite-dimensional (real) Hilbert space and A, B : V Ñ V ˚ two linear and
self-adjoint operators. Let V2 Ă kerpBq be a subspace and V1 some complementary space
such that V “ V1 ‘ V2 (direct sum, not necessarily orthogonal). In that situation, we may
identify V with V1 ˆ V2 and write

A “

„

A11 A12

A21 A22



, B “

„

B11 0
0 0



.

Assume that kerpA22q Ă kerpA12q (cf. Lemma D.3), and let S1 :“ A11 ´ A12A
:
22A21 be a

generalized Schur complement (cf. Appendix D). Then the following holds:
(i) pλ, yq is a generalized eigenpair of pA,Bq if and only if

either λ “ 8 and y P kerpBq, or

y “

„

y1

´A:22A21y1 ` v
K
2



for some vK2 P kerpA22q,

and pλ, y1q is a generalized eigenpair of pS1, B11q.
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(ii) Assume that A, B are positive semi-definite, and let y1, . . . , ym P V1 be fixed. Then

xBz, zy ď γxAz, zy @z P V : xB

„

y`
0



, zy “ 0, ` “ 1, . . . ,m,

if and only if

xB11z1, z1y ď γxS1z1, z1y @z1 P V1 : xB11y`, z1y “ 0, ` “ 1, . . . ,m.

Proof of the “Schur” Principle 4.4. Part (i): Let pλ, yq be a generalized eigenpair of
pA,Bq and assume that y R kerpBq. Consequently λ ‰ 8 and

A11y1 `A12y2 “ λB11y1 ,

A21y1 `A22y2 “ 0.

The second line holds if and only if y2 “ ´A:22A21y1 ` vK2 for some vK2 P kerpA22q.
Substituting y2 into the first line yields

A11y1 ´A12pA
:
22A21y1 ´ v

K
2 q “ λB11y1 .

Due to our assumption vK2 P kerpA12q, and so S1y1 “ λB11. Conversely, assume that pλ, y1q

is a generalized eigenpair of pS1, B11q. If λ “ 8, then y1 P kerpB1q and y defined as in (i)
fulfills y P kerpBq, so p8, yq is a generalized eigenpair of pA,Bq. If λ ‰ 8, one can easily
verify that Ay “ λBy for y defined as in (i).

Part (ii) follows from the definition of B and from the minimizing property of S1:

xBz, zy “ xB11z1, z1y ď γxS11z1, z1y ď γxAz, zy.

Proof of Lemma 4.2. We apply the “Schur” Principle 4.4 with V2 :“ kerpBq and some
complementary space V1 such that n “ dimpV1q. Since A is SPSD, Lemma D.3 ensures that
indeed kerpA22q Ă kerpA12q. Now B11 is positive definite, has a well-defined inverse, and
defines an inner product pv, wqB11 :“ xB11v, wy on V1. Apparently, B´1

11 S11 : V1 Ñ V1 is
self-adjoint with respect to p¨, ¨qB11

. The classical spectral theorem (see e.g., [37, Section 8.1])
yields the existence of eigenpairs prλk, rykqnk“1 such that 0 ď rλ1 ď rλ2 ď . . . ď rλn ă 8 with
prykq

n
k“1 forming a basis of V1 and

xB11ryk, ry`y “ δk`, xS1ryk, ry`y “ rλkδk` @k, ` “ 1, . . . , n.

Next, we show an auxiliary estimate. Let k ă n be such that rλk`1 ą 0. Let z1 P V1 be of the
form z1 “

řdimpV1q

`“k`1 β`ry`, which is equivalent to xB11ry`, z1y “ 0, ` “ 1, . . . , k. Then

xB11z1, z1y “

n
ÿ

`“k`1

β2
` ď

1

rλk`1

n
ÿ

`“k`1

rλ`β
2
` “

1

rλk`1

xS1z1, z1y.

The constant cannot be improved due to the Courant-Fisher minimax principle [37, Theo-
rem 8.1.2]. Let pykq

dimpV q
k“n`1 be a basis of kerpBq and set

λk “ rλk, yk “

„

ryk
´A:22A21ryk



for k “ 1, . . . , n.

Now all the statements follow from Principle 4.4.
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The “Schur” Principle 4.4 is not only valuable for the proof of Lemma 4.2 but will be quite
useful in our subsequent theory and method as it provides a way to reduce an eigenproblem
by keeping all the finite eigenvalues. Conversely, Principle 4.4 can be used to unroll a Schur
complement popping up in a generalized eigenproblem.

Sometimes, we want to compute with matrices but on a subspace of Rn for which we do
not have a basis at hand. The following principle is a slight generalization of [76, Lemma 5].

PRINCIPLE 4.5 (projected eigenproblem). Let A, B P Rnˆn, let Π: Rn Ñ Rn be some
projection onto a subspace rangepΠq Ă Rn, and let Q P Rnˆn be SPD on rangepI ´Πq, e.g.,
Q “ tI with t P R ą 0.

(i) For λ P r0,8q,

(a) ΠJAΠy “ λΠJBΠy and y P rangepΠq

if and only if

(b) pΠJAΠ` pI ´ΠJqQpI ´Πqqy “ λΠJBΠy.

(ii) If A is SPD on rangepΠq, then ΠJAΠ` pI ´ΠJqQpI ´Πq is SPD.
Proof. Part (i): If (a) holds, then y P rangepΠq “ kerpI´Πq, and so (b) holds. If (b) holds,

then pI´ΠJqQpI´Πqy P rangepΠJq “ kerpI´ΠJq, and so pI´ΠJqQpI´Πqy “ 0. Since
Q is SPD on rangepI ´Πq, we obtain that pI ´Πqy “ 0, i.e., y P kerpI ´Πq “ rangepΠq,
and so (a) holds.

Part (ii): Assume that A is SPD on rangepΠq and that

xpΠJAΠ` pI ´ΠJqQpI ´Πqqy, yy “ 0.

Then xAΠy,Πyy “ 0 and xQpI ´Πqy, pI ´Πqyy “ 0. Due to the assumptions on A and Q,
we obtain Πy “ 0 and pI ´Πqy “ 0, and finally y “ 0.

REMARK 4.6. It is yet questionable, whether it is easier to construct a basis for a subspace
of Rn or a projection onto it. If the matrices Si stem from sparse stiffness matrices, then
we would like the basis transformation matrix to be sparse too in the sense that all rows and
columns have Op1q non-zero entries except for Op1q rows/columns which may be dense.

REMARK 4.7 (“saddle point” eigenproblem). With similar arguments as in the proof of
the “Schur” Principle 4.4, one can show that the generalized eigenproblem

xAy, zy “ λxBy, zy @y, z P V :“ tv P Rn : Cv “ 0u,

with surjective C P Rmˆn, m ă n, is equivalent to
„

A CJ

C 0

 „

v
µ



“ λ

„

B 0
0 0

 „

v
µ



,

up to some eigenvalues of infinity. The latter eigenproblem is posed on the simpler space
Rn`m.

In the following two principles, the eigenvalues might change.
PRINCIPLE 4.8 (eigenproblem on larger space). Let V , A, B be as in Lemma 4.2, and

let rV Ą V be a larger space with the natural embedding operator E : V Ñ rV . Suppose that
there are SPSD operators rA, rB : rV Ñ rV ˚ such that A “ EJ rAE and B “ EJ rBE, and let
prλk, rykq be the eigenpairs of p rA, rBq according to Lemma 4.2. If rλk`1 P p0,8q, then for all
z P V with xEJ rBry`, zy “ 0, ` “ 1, . . . , k,

xBz, zy “ x rBEz,Ezy ď
1

rλk`1

x rAEz,Ezy “
1

rλk`1

xAz, zy.
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PRINCIPLE 4.9 (nearby eigenproblem). Let V , A, B be as in Lemma 4.2, and let rA,
rB : V Ñ V ˚ be two SPSD operators such that

rA ď c1A and B ď c2 rB,

and let prλk, rykq be the eigenpairs of p rA, rBq according to Lemma 4.2. If rλk`1 P p0,8q, then
for all z P V with x rBry`, zy “ 0, ` “ 1, . . . , k,

xBz, zy ď c2x rBz, zy ď
c2

rλk`1

x rAz, zy ď
c1 c2
rλk`1

xAz, zy.

When A, B have block structure, a special application of Principle 4.9 allows us to
decouple the eigenproblem (at the price of an approximation).

PRINCIPLE 4.10 (decoupling). Let A, B : V n Ñ pV nq˚ be SPSD block operators for a
finite-dimensional Hilbert space V ,

A “

»

—

–

A11 ¨ ¨ ¨ A1n

...
. . .

...
An1 ¨ ¨ ¨ Ann

fi

ffi

fl

, B “

»

—

–

B11 ¨ ¨ ¨ B1n

...
. . .

...
Bn1 ¨ ¨ ¨ Bnn

fi

ffi

fl

,

and let m ď n be the maximal number of non-zero block-entries per row of B. For each
i “ 1, . . . , n, let Si be the Schur complement of A that eliminates all but the i-th block. Then

»

—

–

S1

. . .
Sn

fi

ffi

fl

ď nA, B ď m

»

—

–

B11

. . .
Bnn

fi

ffi

fl

.

So if pλpiqk , y
piq
k q are the eigenpairs of pSi, Biiq and if λpiqki`1 P p0,8q, then for all z P V n with

xBiiy
piq
` , ziy “ 0, for ` “ 1, . . . , ki,

xBz, zy ď nm max
i“1,...,n

1

λki`1
xAz, zy.

Of course, a different choice of the space splitting (leading to the block structure) can lead to
different spectra in the decoupled eigenproblem.

Proof. The first spectral inequality follows from the minimizing property of the Schur
complement (Lemma D.5), while the second one is simply a consequence of the Cauchy-
Bunyakovsky-Schwarz inequality. The rest follows from Principle 4.9 (nearby eigenproblem).

We also provide a simple result to recombine decoupled eigenproblems pAi, Biq,
i “ 1, . . . , n.

PRINCIPLE 4.11 (recombination). Let V be a finite-dimensional Hilbert space, and let
Ai, Bi : V Ñ V ˚, i “ 1, . . . , n, be SPSD operators. We consider the single eigenproblem

xpA1 : A2 : . . . : AN q
looooooooooomooooooooooon

“:A

y, zy “ λxpB1 `B2 ` . . .`BN q
looooooooooooomooooooooooooon

“:B

y, zy for y, z P V,

with eigenpairs pyk, λkq. Then, for m ă n with λm`1 ą 0,

|z|2Bi
ď

1

λm`1

|z|2Ai
@z P Rn : xByk, zy “ 0 @i “ 1, . . . , n.

The same result holds for any A with A ď Ai for all i “ 1, . . . , n.
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Proof. For i and z as above, |z|2Bi
ď |z|2

B
ď 1

λm`1
|z|2A ď 1

λm`1
|z|2Ai

.
Finally, we need a result for general eigenproblems of a special structure.
LEMMA 4.12. Let V be a finite-dimensional Hilbert space, A : V Ñ V ˚ a linear SPSD

operator, and P : V Ñ V a projection (P 2 “ P ). Then for

B :“ β PJAP, with β P p0,8q,

the following statements hold:
(i) The eigenspace of infinite generalized eigenvalues of pA,Bq is given by

kerpBq “ kerpP q ‘ pkerpAq X rangepP qq ,

and the ambiguous eigenspace by

kerpAq X kerpBq “ pkerpAq X kerpP qq ‘ pkerpAq X rangepP qq.

(ii) If kerpAq Ă kerpP q, then pA,Bq has no genuine zero eigenvalues.
(iii) If kerpAq X rangepP q “ t0u and if pA,Bq has no genuine zero eigenvalues, then

kerpAq Ă kerpP q.

Proof. (i) Since P is a projection, V “ kerpP q ‘ rangepP q. Assume that

v “ v1 ` v2 P kerpBq, with v1 P kerpP q, v2 P rangepP q.

From the definition of B we see that Bv1 “ 0, and thus, if v P kerpBq, then

0 “ xBv, vy “ xBv2, v2y “ β xAPv2, Pv2y “ β xAv2, v2y,

and so Av2 “ 0. Conversely, if v1 P kerpP q and v2 P kerpAq X rangepP q, then
v1 ` v2 P kerpBq. The formula for kerpAq X kerpBq is then straightforward.

(ii) If kerpAq Ă kerpP q, then kerpAqX rangepP q “ t0u, and so kerpBq “ kerpP q. Also,
kerpAq X kerpBq “ kerpAq X kerpP q and kerpAqz kerpBq “ H.

(iii) Let λ1 ď . . . be the genuine eigenvalues of pA,Bq according to Lemma 4.2. If there
are no genuine zero eigenvalues, then λ1 ą 0. Suppose v P kerpAq, then

xBv, vy ď
1

λ1
xAv, vy “ 0,

and so v P kerpBq “ kerpP q ‘ pkerpAq X rangepP qq, using Part (i). Due to our assumptions,
kerpAq X rangepP q “ t0u, and so v P kerpP q.

Let us apply the “Schur” Principle 4.4 to the generalized eigenproblem pA, βPJAP q
and eliminate kerpP q. If kerpAq X rangepP q “ t0u, then the reduced eigenproblem neither
has ambiguous nor infinite eigenvalues. Under the stronger condition kerpAq Ă kerpP q (see
Lemma 4.12(ii) and (iii)), the reduced eigenproblem has only eigenvalues in p0,8q.

4.2. Generalized eigenproblems associated with the estimate (3.9). Let us fix a set of
linearly independent primal dofs in the sense of Definition 2.16 (possibly an empty set), and
let G P G˚. Recall the space ĂWNG

from (3.3), and let rING
: ĂWNG

ÑWNG
denote the natural

embedding. Moreover define

SNG
:“ diagpSiqiPNG

: WNG
ÑWNG

,

and consider the
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generalized eigenproblem associated with glob G:

rSNG
y “ λ rBGy py P ĂWNG

q,(4.1)

with

rSNG
:“ widetildeIJNG

SNG
rING

, rBG :“ rPJD,G
rSNG

rPD,G “ rIJNG
PJD,GSNG

PD,GrING
,

where rPD,G is the projection operator from Lemma 3.8(v). The next result immediately
follows from Lemma 4.2.

COROLLARY 4.13. Let pλG,k, ryG,kq
dimpĂWNG

q

k“1 be the generalized eigenpairs of prSNG
, rBGq

according to Lemma 4.2 with 0 ď λG,1 ď λG,2 ď . . . ď 8.
(i) If there are no genuine zero eigenvalues (λG,1 ą 0), then the estimate (3.9) holds

with

ωG “
1

λG,1
.

(ii) Let us fix a numbermG such that 0 ă λG,mG`1 ă 8, and let ΦG,add : RmG ÑWNG

be the matrix whose columns are the first mG eigenvectors,

ΦG,add “
“

¨ ¨ ¨
ˇ

ˇrING
ryG,k

ˇ

ˇ ¨ ¨ ¨
‰mG

k“1
.

Then

ÿ

iPNG

|pPD,Gwqi|
2
Si
ď

1

λG,mG`1

ÿ

iPNG

|wi|
2
Si

@w P ĂWNG
, ΦJG,addP

J
D,GSNG

PD,Gw “ 0,

which is an improved estimate compared to (3.9).
LEMMA 4.14. If Assumption 3.4 (Di block diagonal) holds and Condition 3.1 (local

kernel condition) is fulfilled, then (4.1) has no genuine zero eigenvalues.
Proof. Condition 3.1 is equivalent to kerpSNG

q XĂWNG
Ă kerpPD,Gq, which, by using

Lemma 3.8(v), is further equivalent to

kerp rSNG
q Ă kerp rPD,Gq.

Due to Assumption 3.4 and Lemma 3.8(v), rPD,G is a projection, and so the statement follows
from Lemma 4.12(ii).

REMARK 4.15. The converse of Lemma 4.14 does not hold in general. In Section 7,
we will formulate additional assumptions under which one can conclude Condition 3.1 (local
kernel condition) from the positivity of the genuine eigenvalues.

One can now think of several strategies.
Strategy 1. We solve the generalized eigenproblem (4.1) right away.
Strategy 2. If each Si is the Schur complement of a sparse stiffness matrix Ai, then we

can unroll the elimination and consider, by applying the “Schur” Principle 4.4, the associated
sparse generalized eigenproblem, which has the same spectrum up to ambiguous and infinite
eigenvalues. Applying additionally Principle 4.5 (projected eigenproblem) leads to the method
in [76, 79] except that the eigenproblem therein is posed on the closed faces and that the roles
of A and B are interchanged.
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Strategy 3. In Strategies 1 and 2, we expect a series of infinite eigenvalues. To get rid of
(some of) them, observe that

kerp rPD,Gq “ rXG ‘ pYG,

rXG “ tw P ĂWNG
: @i P NG : RiGwi “ 0u,

pYG “ tw P ĂWNG
: @i P NG : RiGcwi “ 0 and @j P NG : RiGwi “ RjGwju,

where RiGc is the restriction matrix extracting all dofs not associated with glob G with the
property

RJiGRiG `R
J
iGcRiGc “ I.(4.2)

Functions from the space rXG Ă ĂWNG
vanish onG, whereas functions from pYG are continuous

on G and vanish on all other dofs. Using a change of basis, we can parametrize ĂWNG
and the

two subspaces above explicitly. Forming the Schur eigenproblem according to Principle 4.4,
eliminating kerp rPD,Gq, we get rid of some ambiguous infinite eigenvalues, which may be
important in practice.

Strategy 4. We apply Principle 4.8 and embed the eigenproblem into the larger space

ĂWG
NG

:“ tw PWNG
: @i, j P NG : QJGpRiGwi ´RjGwjq “ 0u

from Remark 3.12. We warn the reader that by doing this, we discard any (good) influence
of the primal constraints on the neighboring globs of G. Defining the projection operator
rPGD,G analogously as rPD,G in Lemma 3.8(v), replacing ĂWNG

by ĂWG
NG

, we find that the
eigenproblem has the form p rSGNG

, p rPGD,Gq
J
rSGNG

rPGD,Gq. As an advantage,

kerp rPGD,Gq “ XG ‘ pY ,

where the first space

XG “
 

w PWNG
: @i P NG : RiGwi “ 0

(

“
â

iPNG

twi PWi : RiGwi “ 0u Ą rXG

is much simpler than rXG. Consequently, it is much simpler to implement the Schur comple-
ment operator of SNG

on ĂWG
NG

eliminating XG ‘ pY . Let us also note that if no primal con-
straints are enforced on the neighboring globs (G1 with |NGXNG1 | ě 2), then ĂWNG

“ ĂWG
NG

,
i.e., the two eigenproblems are identical.

For all strategies, the underlying spaces are given implicitly, as subspaces of Rn. One can
either explicitly parametrize them by Rm, m ă n (i.e., constructing a basis), or construct a
projection from Rn to the subspace and apply Principle 4.5 (projected eigenproblem). As an
alternative, one can use the constraints defining the subspace in the eigenproblem (Remark 4.7).
Note also that for all the Strategies 1–4, the initially chosen primal constraints on the glob G
are preserved. Modifying them means changing the eigenproblem; see also Remark 4.16
below.

No matter which of the four strategies we use, we will always get the statement of
Corollary 4.13 (with some of the operators replaced):
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1. If the minimal eigenvalue λG,1 of the respective generalized eigenproblem is positive,
then the local glob estimate (3.9) holds with ωG “ 1

λG,1
.

2. We can improve the estimate by enforcing additional constraints of the form

ΦJG,addP
J
D,GSNG

PD,GwNG
“ 0.(4.3)

These constraints are of the more general form in Section 2.6 and fulfill the condi-
tions (2.19)–(2.20) of locality and consistency.

REMARK 4.16 (orthogonality of constraints). For each of the strategies, we consider a
generalized eigenproblem of the form: find eigenpairs py, λq P rV ˆ R:

xAy, zy “ λxBy, zy @z P rV :“ tv P V : Cv “ 0u,

where Cv “ 0 correspond to initially chosen constraints. An adaptively chosen constraint
reads

xqk, wy :“ xByk, wy “ 0,

where yk is an eigenvector. Assume that B is SPD. Then the functionals qk are pairwise
orthogonal in the B´1-inner product. Since Cyk “ 0, it follows that

CB´1qk “ 0,

so the new constraints qk are also pairwise orthogonal to the initial constraints in theB´1-inner
product. This pattern also applies to the simpler eigenproblems in the following section.

5. Adaptive choice of the primal dofs. In this section, we
(i) study in more detail the structure of the glob eigenproblem (4.1) for subdomain faces

(Section 5.2) and general globs (Section 5.3),
(ii) show how to turn the constraints (4.3) originating from the local generalized eigen-

problems into primal dofs (Section 5.4),
(iii) provide a way to rewrite the glob eigenproblem using a transformation of variables

and to decouple it into n´ 1 independent eigenproblems where n is the number of
subdomains shared by the glob (Section 5.5),

(iv) show that recombining the n´1 problems into a single one leads to the eigenproblem
proposed by Kim, Chung, and Wang (Section 5.6),

(v) comment on how the eigenproblems could be organized in an algorithm (Section 5.7).
To this end, we need further notation (given below) and the parallel sum of matrices (Sec-
tion 5.1).

DEFINITION 5.1. For G P Gi let

SiG :“ RiGSiR
J
iG(5.1)

denote the restriction of Si to the dofs on G, and let

SiGGc :“ RiGSiRiGc , SiGcG :“ RiGcSiRiG, SiGc :“ RiGcSiRiGc

denote the other subblocks of Si, where RiGc is the restriction matrix from (4.2). Finally, we
define the (generalized) Schur complement

S‹iG :“ SiG ´ SiGGcS:iGcSiGcG .(5.2)
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FIG. 5.1. Left: Laplace/linear elasticity: SkFc empty, S‹kF singular. Right: Linear elasticity, straight edge E:
SkEc “ SkF singular, SkFc “ SkE non-singular, S‹kF , S‹kE singular.

REMARK 5.2. In practice, the matrix S‹kG is usually linked to a problem on the sub-
domain k with fixed dofs on G and homogeneous “Neumann” conditions on the remaining
boundary dofs. Figure 5.1 shows that it may happen that SkG, SkGc , or S‹kG are singular.

REMARK 5.3. As we use these matrices in the subsequent eigenproblems, we spend some
words on their handling in practice. Suppose that Si is the Schur complement of a sparse
matrix Ai eliminating interior dofs. Since SiG is a principal minor of Si, its application can be
realized by a subdomain solve. Some direct solvers, such as MUMPS [2] or PARDISO [66],
offer the possibility of computing the dense matrix SiG directly. Since Gc usually contains
many more dofs thanG, computing SiGGc , SiGc in the same way would be inefficient. Instead,
following Stefano Zampini [121], one can compute S:i once and extract S‹iG as a principal
minor of S:i ; see also [84].

5.1. The parallel sum of matrices˚. The following definition was originally introduced
by Anderson and Duffin [3] for Hermitian positive semi-definite matrices.

DEFINITION 5.4 (parallel sum of matrices [3]). For two SPSD matrices A, B P Rnˆn,
the parallel sum of A, B is given by

A : B “ ApA`Bq:B,

where pA`Bq: is a generalized inverse, i.e., pA`BqpA`Bq:f “ f for all f P rangepA`Bq;
cf. Definition D.1. The definition is independent of the particular choice of the generalized
inverse (cf. [3, p. 579] and Proposition D.2),A : B “ B : A [3, Lemma 1], andA : B is again
SPSD [3, Lemma 2, Lemma 4]. Moreover, due to [3, Lemma 6], pA : Bq : C “ A : pB : Cq.

REMARK 5.5. If A and B are both SPD, then A : B “ pA´1 ` B´1q´1. Therefore,
up to a factor of 2, the above matrix generalizes the harmonic mean value 2

a´1`b´1 of two
positive scalars a, b; cf. [5]. Moreover, it can be shown that for A, B SPD,

xJpA : Bqx “ inf
x“x1`x2

pxJ1 Ax1 ` x
J
2 Bx2q @x P Rn,

i.e., }x}A:B is the natural norm on the sum of the Hilbert spaces pRn, } ¨ }Aq, pRn, } ¨ }Bq; see
also [10], [4, Theorem 9], and Corollary 5.11 below, as well as [112, Eqn. (4)] for a related
result.

Let A, B be as in Definition 5.4. We easily see that

A : A “ 1
2A, pcAq : pcBq “ cpA : Bq @c P R`0(5.3)

(see also [3, Theorem 10]). Since A, B are SPSD, we have

kerpA`Bq “ kerpAq X kerpBq, rangepA`Bq “ rangepAq ` rangepBq,

and we can conclude that

kerpA : Bq “ kerpAq ` kerpBq, rangepA : Bq “ rangepAq X rangepBq;(5.4)
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cf. [3, Lemma 3]. From Definition 5.4 and Proposition D.2, one easily shows

A : B “ A´ApA`Bq:A “ B ´BpA`Bq:B;(5.5)

see also [4, Eq. (10)]. Next, let us consider the generalized eigenproblem

Ap “ λpA`Bqp(5.6)

in the sense of Section 4.1. With the above relations, it is straightforward to verify that, if
pp, λq is an eigenpair of (5.6) (and p R kerpAq X kerpBq), then λ P r0, 1s and

Bp “ p1´ λqpA`Bqp,

pA : Bqp “ λp1´ λqpA`Bqp.(5.7)

From (5.4) and (5.7), we easily conclude that

A : B ď A, A : B ď B,(5.8)

which is a special case of [3, Lemma 18] (as usual, A ď B stands for yJAy ď yJBy for all
y P Rn). Anderson and Duffin also show an important transitivity property:

LEMMA 5.6 ([3, Corollary 21]). Let D, E, F P Rnˆn be SPSD matrices. Then D ď E
implies D : F ď E : F .

As the next proposition shows, the parallel sum A : B is—up to a factor of two—a sharp
“lower bound matrix” of A and B.

PROPOSITION 5.7. Let A, B be as in Definition 5.4 and let the matrix C P Rnˆn be
SPSD with C ď A and C ď B. Then

C ď 2pA : Bq.

Proof. Due to Lemma 5.6, C ď A implies 1
2C “ C : C ď A : C. With the same Lemma,

C ď B implies A : C ď A : B.
The following result states that the parallel sum of two spectrally equivalent matrices is

spectrally equivalent to the parallel sum of the original matrices.
PROPOSITION 5.8. Let A, rA, B, rB P Rnˆn be SPSD, and assume that

αA ď rA ď αA, βB ď rB ď βB,

with strictly positive constants α, α, β, β. Then

minpα, βqpA : Bq ď rA : rB ď maxpα, βqpA : Bq.

Proof. Firstly, we set γ :“ minpα, βq, γ :“ maxpα, βq and observe that

γA ď rA ď γA, γB ď rB ď γB.

Secondly, from Lemma 5.6 and (5.3) we obtain

rA : rB ď pγAq : rB ď pγAq : pγBq “ γpA : Bq

as well as the analogous lower bound rA : rB ě γpA : Bq.
PROPOSITION 5.9. For non-negative constants c1, c2 and a SPSD matrix A,

pc1Aq : pc2Aq “ c1pc1 ` c2q
:c2A.
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The last lemma of this section appears to be new (for earlier versions see [52, 95]) and
generalizes the elementary identity and inequality

a b2

pa` bq2
`

a2 b

pa` bq2
“

a b

a` b
,

a b2

pa` bq2
ď minpa, bq

for non-negative scalars a, b with a` b ą 0, cf. [113, (6.19), p. 141].
LEMMA 5.10. Let A, B P Rnˆn be SPSD. Then

BpA`Bq:ApA`Bq:B `ApA`Bq:BpA`Bq:A “ A : B.

In particular,

BpA`Bq:ApA`Bq:B

ApA`Bq:BpA`Bq:A

+

ď A : B ď

#

A,

B.

Proof. Since A : B “ BpA`Bq:A “ ApA`Bq:B (see Definition 5.4),

BpA`Bq:ApA`Bq:B
loooooooooooooomoooooooooooooon

“:H1

`ApA`Bq:BpA`Bq:A
loooooooooooooomoooooooooooooon

“:H2

“ pA : BqpA`Bq:B ` pA : BqpA`Bq:A

“ pA : BqpA`Bq:pA`Bq “ A : B.

The last identity holds because for any v P Rn, pA ` Bq:pA ` Bqv “ v ` vK for some
vK P kerpA ` Bq “ kerpAq X kerpBq Ă kerpAq ` kerpBq “ kerpA : Bq; cf. (D.1),
Appendix D, and (5.4). So H1 `H2 “ A : B. Since H1 and H2 are both SPSD, we have that
H1, H2 ď A : B. Due to (5.8), A : B ď A, B, which concludes the proof.

The following corollary appears to be a special case of [4, Theorem 9].
COROLLARY 5.11. For SPSD matrices A, B P Rn,

|x|2A:B “ inf
x“x1`x2

|x1|
2
A ` |x2|

2
B @x P Rn.

Proof. Minimization yields the first order condition x˚1 “ pA`Bq
:Bx` x1K for some

x1K P kerpA`Bq “ kerpAq X kerpBq and x˚2 “ pA`Bq
:Ax` x2K for a suitable vector

x2K P kerpAqXkerpBq. The Hessian is given by A`B, so all these solutions are minimizers.
Due to Lemma 5.10, |x˚1 |

2
A ` |x

˚
2 |

2
B “ xJpA : Bqx “ |x|2A:B .

REMARK 5.12. Unfortunately, Lemma 5.10 cannot be generalized to three matrices (see
also [15]), in the sense that already for SPD matrices A, B, C,

BpA`B ` Cq´1ApA`B ` Cq´1B ­ď A : B in general!

Our counterexample in Appendix E shows that BpA`B ` Cq´1ApA`B ` Cq´1B ­ď A.
Since A : B ď A, the above inequality cannot hold.

5.2. Subdomain faces. Suppose that F is a face shared by the subdomains NF “ ti, ju.
Firstly, we have a look at the right-hand side of eigenvalue problem (4.1).

LEMMA 5.13. Under Assumption 3.4, for a face F with NF “ ti, ju, we have

zJPJD,FSNG
PD,F y “ pRiF zi ´RjF zjq

JMF pRiF yi ´RjF yjq @y, z PWNF
,

with

MF :“ DJjFSiFDjF `D
J
iFSjFDjF .(5.9)
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Proof. We obtain from (3.8) that

pPD,Fwqi “ RJiFDjF pRiFwi ´RjFwjq ,

pPD,Fwqj “ RJjFDiF pRjFwj ´RiFwiq .

Hence, using that RkFSkRJkF “ SkF for k P ti, ju,

zJPJD,FSNG
PD,F y

“ pRiF zi ´RjF zjq
J rDJjF ´DJiF s

„

SiF 0
0 SjF

 „

DjF

´DiF



looooooooooooooooooooooomooooooooooooooooooooooon

“ pDJjFSiFDjF `D
J
iFSjFDjF q

pRiF yi ´RjF yjq.

The lemma shows that the constraints zJPJD,GSNG
PD,Fw “ 0 are classical primal

constraints (Definition 2.16), and so for each column z of ΦG,add in (4.3), we can use

MF pRiF zi ´RjF zjq

as an additional column in QG (after a modified Gram-Schmidt orthonormalization).
Secondly, we investigate the structure of the eigenproblem (4.1). The next lemma reduces

the eigenproblem on ĂWF
NF

(Strategy 4) to an eigenproblem on a subspace of UG.
LEMMA 5.14. Let F be a face shared by subdomains NF “ ti, ju. Then the correspond-

ing generalized eigenproblem of Strategy 4, i.e., finding eigenpairs py, λq P ĂWF
NF
ˆ R,

xSNF
y, zy “ λxPJD,FSNF

PD,F y, zy @z P ĂWF
NF

(5.10)

is (up to infinite eigenvalues) equivalent to finding eigenpairs pqyF , λq P UF∆ ˆ R,

xpS‹iF : S‹jF qqyF , qzF y “ λxMF qyF , qzF y @qzF P UF∆ ,

where qyF :“ RiF yi ´ RjF yj , qzF :“ RiF zi ´ RjF zj , UF∆ “ tq P UF : QJF q “ 0u, and
MF is the matrix from (5.9).

Proof. Let us first rewrite (5.10) using Lemma 5.13:

„

zi
zj

J„

Si 0
0 Sj

„

yi
yj



“ λpRiF zi ´RjF zjq
JMF pRiF yi ´RjF yjq.

Due to Definition 5.1, we have

yk “ RJkF ykF `R
J
kF cykF c for k P ti, ju,(5.11)

for some vectors ykF , ykF c . Since y P ĂWF
NF

(not ĂWNF
), we do not get any constraints on

yiF c , yjF c . Moreover, since PD,F y is independent of yiF c , yjF c , we can use the “Schur”
Principle 4.4. With (5.2), we obtain that the eigenproblem (5.10) is (up to infinite eigenvalues)
equivalent to

„

ziF
zjF

J„

S‹iF 0
0 S‹jF

„

yiF
yjF



“ λpziF ´ zjF q
JMF pyiF ´ yjF q,(5.12)
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where the eigenvectors and test vectors fulfill QJF pyiF ´ yjF q “ 0, QJF pziF ´ zjF q “ 0,
respectively. To get the last side condition explicitly, we use a simple transformation of
variables:

yiF “ pyF `
1
2qyF , ziF “ pzF `

1
2qzF ,

yjF “ pyF ´
1
2qyF , zjF “ pzF ´

1
2qzF .

(5.13)

Since

yiF ´ yjF “ qyF , ziF ´ zjF “ qzF ,

the condition y, z P ĂWF
NF

is equivalent to

pyF , pzF P UF , qyF , qzF P UF∆ .

A straightforward calculation shows that
„

ziF
zjF

J „

S˚iF 0
0 S˚jF

 „

yiF
yjF



“

„

pzF
qzF

J „
S˚iF ` S

˚
jF

1
2 pS

˚
iF ´ S

˚
jF q

1
2 pS

˚
iF ´ S

˚
jF q

1
4 pS

˚
iF ` S

˚
jF q

 „

pyG
qyG



.(5.14)

Hence, we can use the “Schur” Principle 4.4 once again and eliminate pyF , pzF from the
eigenproblem (5.12). The corresponding Schur complement of the matrix in (5.14) is given by

1
4 rpS

‹
iF ` S

‹
jF q ´ pS

‹
iF ´ S

‹
jF qpS

‹
iF ` S

‹
jF q

:pS‹Fi ´ S
‹
jF qs

“ 1
4 rpS

‹
iF ` S

‹
jF qpS

‹
iF ` S

‹
jF q

:pS‹Fi ` S
‹
jF q ´ pS

‹
iF ´ S

‹
jF qpS

‹
iF ` S

‹
jF q

:pS‹Fi ´ S
‹
jF qs

“ 1
4 r2S

‹
iF pS

‹
iF ` S

‹
jF q

:S‹jF ` 2S‹jF pS
‹
iF ` S

‹
jF q

:S‹iF s

“ S‹iF : S‹jF ;

cf. Definition 5.4 (Section 5.1).
REMARK 5.15.
(i) The generalized eigenproblem pS‹iF : S‹jF qv “ λMF v has been used in [52, 54]

and in [15, 95, 123, 124] for the deluxe scaling, which we further investigate in
Section 6.1 below.

(ii) If we consider the original glob eigenproblem (4.1) (on ĂWNG
), then we can still apply

the “Schur” Principle 4.4 to the splitting (5.11). But the primal constraints enforced
on the globs neighboring F (i.e., globs G ‰ F with |NG XNF | ě 2) result in an
equivalent eigenproblem of the form

„

ziF
zjF

J „

TiiF TijF
TjiF TjjF

 „

yiF
yjF



“ λpziF ´ zjF q
JMF pyiF ´ yjF q,

in general with TijF ‰ 0, TjiF ‰ 0. In that case, the transformation (5.13) will lead
to a matrix different than pS‹iF : S‹jF q.

5.3. Globs shared by more than two subdomains.. Recall that

pPD,Gyqi “ RJiG
ÿ

jPNGztiu

DjGpRiGyi ´RjGyjq.

Therefore, any new constraint of the form

pPD,Gzq
JSNG

PD,Gy “ 0
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that we wish to impose, rewrites as
ÿ

iPNG

´

ÿ

jPNGztiu

pRiGzi ´RjGzjq
JDJjG

¯

SiG

´

ÿ

jPNGztiu

DjGpRiGyi ´RjGyjq
¯

“ 0.(5.15)

(The matrix on the left-hand side is related to but substantially different from the matrix AE in
[46, 47].) It is not hard to show that (5.15) has the form

ÿ

jPNG

LjGRjGyj “ 0(5.16)

(Condition (2.19) from Section 2.6). From Lemma 3.8(iii), we know that PD,G vanishes
for functions that are continuous across G, from which we obtain

ř

jPNG
LjG “ 0, (Condi-

tion (2.21) from Section 2.6).
Appendix C shows that such generalized primal constraints (5.15) can be cast into an

algorithm very similar to the original BDDC method [20], leading to independent subdomain
problems and a sparse SPD coarse problem. Alternatively, in a FETI-DP framework, one can
enforce the generalized primal constraints by deflation [41, 53, 58]; see also [46, 47]. In the
next section, we suggest for BDDC to convert the constraints (5.16) into (stronger) classical
primal constraints and show that this is more favorable.

5.4. Enforcing generalized primal constraints by (stronger) classical primal con-
straints˚. In this section, we assume that we are given generalized primal constraints of
the form (2.19) (or (5.16)). We show first how these can be enforced by classical primal
constraints (cf. Definition 2.16). Although this can increase the total number of constraints, we
are able to show in a second step that the coarse problem underlying the classical constraints is
smaller or equal in its dimension to the coarse problem underlying the generalized constraints
(while the condition number bound that we obtain for the generalized constraints also holds
for the classical constraints).

Let G be an arbitrary but fixed glob G and consider one of the rows of the equation
ř

jPNG
LjGRjGwj “ 0, which we rewrite as

ÿ

jPNG

`JjGRjGwj “ 0,

where `jG is the column vector with the same entries as the selected row of LjG. Since the
constraint above is non-trivial and because of (2.21), at least two of the vectors t`jGujPNG

are non-zero. We select j˚ P NG such that `j˚G is non-zero. Without loss of generality, we
assume that

NG “ t1, . . . , nu, j˚ “ 1,

and introduce the simplified notation

wjG :“ RjGw, j P NG .

Next, we define a transformation of variables:
"

pw1G :“ 1
n

řn
j“1 wjG,

qwjG :“ wjG ´ w1G, @j “ 2, . . . , n.
(5.17)

The inverse transformation is given by
"

w1G “ pw1G ´
1
n

řn
k“2 qwkG,

wjG “ pw1G ´
1
n

řn
k“2 qwkG ` qwjG, @j “ 2, . . . , n.

(5.18)
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Using (2.21) one can show that
ř

jPNG
`JjGwjG “

řn
j“2 `

J
jG qwjG, and so,

`JkGpwiG ´ wjGq “ 0 @i, j P NG @k P NGztj
˚u(5.19)

ùñ `JjG qwjG “ 0 @j “ 2, . . . , n

ùñ
ÿ

jPNj

`JjGwjG “ 0.(5.20)

The first line is in a suitable form for classical primal constraints only that we should orthonor-
malize the vectors t`kGukPNGztj˚u and possibly drop some of them. Because of (2.21), the
space of vectors twiGuiPNG

fulfilling (5.19) is independent of the choice of the distinguished
index j˚. If |NG| “ 2, then (5.19) and (5.20) are equivalent.

From the development above, it becomes clear that in any case we end up with a matrixQJG
of full row rank such that for some matrix TG of full column rank,

LCG :“

»

—

—

–

...
LjG

...

fi

ffi

ffi

fl

jPNG

“ TGQ
J
G, rankpLCGq “ rankpQJGq(5.21)

(LCG is a block column vector). A primal dof matrix QJG fulfilling the above can be obtained
in various ways. Theoretically, we just have to remove linearly dependent rows from LCG. In
practice, one can use the (thin) QR factorization (either implemented via Householder, Givens,
or (modified) Gram-Schmidt; cf. [37, Section 5.2]):

LCG “
“

Q1 Q2

‰

„

R1

0



“ Q1R1, set TG :“ Q1, Q
J
G :“ R1

such that QJG is even upper triangular. Note that the QR factorization is also used in the
algorithm proposed in [79, Section 5]. In any case, the number of classical primal dofs on the
glob G is given by

nΠG “ dimpUΠGq “ rankpLCGq.

Following this construction for all globs results in classical primal dofs tQJGuGPG and the

corresponding space from Definition 2.22, which we denote by Ă

ĂW in order to distinguish it
from ĂW defined by (2.16). From Proposition 2.24, we obtain:

COROLLARY 5.16. Let ĂĂW be as in Definition 2.22 based on the classical primal dofs QJG
from (5.21), and let

Ă

ĂW∆ “

N
â

i“1

Ă

ĂWi∆ ,
Ă

ĂWi∆ :“ twi PWi : @G P Gi : QJGRiGwi “ 0u

(cf. (2.13)). Then for any space Ă

ĂWΠ fulfilling Ă

ĂW “
Ă

ĂWΠ ‘
Ă

ĂW∆,

dimp
Ă

ĂWΠq “ nΠ “ dimpUΠq “
ÿ

GPG
nΠG “

ÿ

GPG
rankpLCGq.

Before we can state the main theorem of this section, we need to discuss the dimension of
the more general space ĂW of the form (2.16), (2.19). Let rΠG denote the number of (linearly
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independent) constraints on G, i.e., the number of linearly independent rows of the equation
ř

jPNG
LjGRjGwj “ 0. Since each RjG is surjective,

rΠG “ rankpLRGq, where LRG :“
“

¨ ¨ ¨ |LjG| ¨ ¨ ¨
‰

jPNG
(5.22)

(LRG is a block row vector, opposed to LCG). Moreover, it is easily seen that

dimpĂW q “
N
ÿ

i“1

dimpWiq ´
ÿ

GPG
rΠG .(5.23)

We define the generalized dual spaces

Wi∆ :“
 

wi PWi : @G P Gi : LiGRiGwi “ 0
(

, W∆ :“
N
â

i“1

Wi∆(5.24)

as well as the numbers

qΠiG :“ rankpLiGq, qΠi :“
ÿ

GPGi

qΠi .(5.25)

PROPOSITION 5.17. Let ĂW be the space based on generalized primal constraints given
by (2.16), assume that (2.19), (2.21) hold, and let W∆ be as in (5.24). Then

(i) W∆ Ă ĂW,
(ii) the space W∆ in (5.24) is the maximal subspace of ĂW which has the form

ÂN
i“1 Vi,

(iii) dimpWi∆q “ dimpWiq ´ qΠi with qΠi from (5.25),
(iv) for any complementary space ĂWΠ fulfilling ĂW “ ĂWΠ ‘W∆,

dimpĂWΠq “

N
ÿ

i“1

qΠi ´
ÿ

GPG
rΠG ,

with rΠG from (5.22).
Proof. Parts (i)–(iii) can easily be verified. Since the sum in Part (iv) is direct, we obtain

from (5.23) and Part (iii) that

dimpĂWΠq “ dimpĂW q ´
N
ÿ

i“1

dimpWi∆q

“

´

N
ÿ

i“1

dimpWiq ´
ÿ

GPG
rΠG

¯

´

N
ÿ

i“1

´

dimpWiq ´
ÿ

GPGi

qΠiG

¯

“ ´
ÿ

GPG
rΠG `

ÿ

GPG

ÿ

jPNG

qΠjG “ ´
ÿ

GPG
rΠG `

N
ÿ

i“1

ÿ

GPGi

qΠiG .

We next state the main result of this section.
THEOREM 5.18. Let ĂW be the space based on generalized glob constraints given

by (2.16), and let ĂW∆ denote the corresponding dual space from (5.24). Then, for ĂĂW , ĂĂW∆ as
in Corollary 5.16,

Ă

ĂW Ă ĂW, dimp
Ă

ĂW∆q ď dimpĂW∆q,
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(a) (b)

FIG. 5.2. Two examples of generalized constraints on a vertex shared by four subdomains. White bullet: dual
(unconstrained) dof, black bullet: primal (constrained) dof, dashed line: constraint. In example (a), the coarse space
requires two basis functions, one having support on the two left subdomains and vanishing on the two right ones, the
other one supported on the right. Example (b) requires one coarse basis function. For both examples the stronger
constraint is simply the classical vertex constraint involving a single coarse dof.

and for any complementary spaces ĂWΠ, ĂĂWΠ with ĂW “ ĂWΠ ‘ĂW∆ and Ă

ĂW “
Ă

ĂWΠ ‘
Ă

ĂW∆,

dimp
Ă

ĂWΠq ď dimpĂWΠq.

Let us first rephrase the statement of Theorem 5.18 based on the following observa-

tion. According to [20, 75] (or Appendix C), the action of r

rI
r

rS´1r
rIJ can be performed by

independent subdomain problems and a sparse SPD coarse problem of dimension dimp
Ă

ĂWΠq.
Correspondingly, the operator Ĩ S̃´1ĨJ involving the more general space ĂW leads to a coarse
problem of size at least dimpĂWΠq. Actually, we show in Appendix C that the coarse problem
is of size exactly equal to dimpĂWΠq. So,

(i) although in Ă

ĂW more constraints are enforced than in ĂW , working with the space Ă

ĂW
leads to a coarse problem of lower dimension (thus more efficiently solvable) than
for ĂW .

(ii) At the same time, we obtain from Remark 2.11 that at high probability, the smaller

space Ă

ĂW leads to a smaller condition number as well.

Summarizing, the advantages of using the (stronger) classical primal dofs from (5.21) clearly
prevail.

The simple example in Figure 5.2 shows that this is (although counter-intuitive) indeed
possible.

REMARK 5.19. If the constraints are imposed by deflation in a FETI-DP framework
[41, 46, 47, 53, 58], things turn around: Since there, the number of dofs in the second coarse
problem equals the number of constraints, it is better to use the original constraints (2.19) (or
(5.16)) in the deflation process.

Proof of Theorem 5.18. The first two statements follow from Definition 2.16, (2.16), and
(5.19)–(5.20). The remainder of the proof is devoted to the inequality relating the primal
space dimensions. Beforehand, recall the matrices LCG from (5.21). From Corollary 5.16 and
Proposition 5.17, we obtain

dimp
Ă

ĂWΠq “
ÿ

GPG
rankpLCGq,

dimpĂWΠq “
ÿ

GPG

`

qΠG ´ rΠG

˘

, qΠG “
ÿ

jPNG

qΠjG .

We will show that each of the summands in the first line is less than or equal to the correspond-
ing one in the second line. Therefore, we can consider a single glob G P G at a time. For a
clearer presentation, we assume that NG “ t1, . . . , nu and omit the subscripts G and Π.
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For each j P NG we consider the matrix LjG, which may have incomplete row rank.
However, we can find matrices L̄jG of full row rank such that

LjG “ KjGL̄jG, qΠjG :“ rankpLjGq “ rankpL̄jGq ď rΠG ,(5.26)

for some matrix KjG P RrΠGˆqΠjG , e.g., via the thin QR factorization [37, Section 5.2]. It is
easy to see that

rankpLCq “ rankpL̄Cq, where L̄C :“

»

—

–

L̄1

...
L̄n

fi

ffi

fl

.

Therefore, we only have to show that

rankpL̄Cq ď q ´ r, where q “
n
ÿ

j“1

qj .

Recall that LR :“ rL1| ¨ ¨ ¨ |Lns and r “ rankpLRq; cf. (5.22). If m is the number of dofs on
the glob G, then

dimpkerpLRqq “ nm´ r.

A different characterization is related to the matrices tKju
n
j“1 from (5.26). From Lj “ KjL̄j

we derive

LR “ rK1| ¨ ¨ ¨ |Kns
loooooomoooooon

“:K

»

—

–

L̄1

. . .
L̄n

fi

ffi

fl

looooooooomooooooooon

“:L̄D

.

Since each L̄j is surjective, so is L̄D, and we can conclude that

dimpkerpLRqq “ dimpkerpL̄Dqq ` dimpkerpKqq.(5.27)

From rankpL̄jq “ qj it follows that dimpkerpL̄Dqq “ nm´
řn
j“1 qj “ nm´q. Combining

with (5.27), we obtain

dimpkerpKqq “ q ´ r.(5.28)

Finally, recall that
řn
j“1 Lj “ 0, which can be rewritten as

KL̄C “ rK1| . . . |Kns

»

—

–

L̄1

...
L̄n

fi

ffi

fl

“ 0.

In other words, the columns of L̄C are in kerpKq, and so there can only be as many linearly
independent columns as the dimension of kerpKq. To summarize,

rankpLCq “ rankpL̄Cq ď dimpkerpKqq “ q ´ r.
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5.5. Alternative eigenproblem for subdomain edges. In this section, we show that us-
ing the transformation of variables (5.17)–(5.18) and Principle 4.9 (nearby eigenproblem), one
can decouple the glob eigenproblem of Strategy 4 into |NG| ´ 1 independent eigenproblems,
similar to Principle 4.10. The price to pay is a potentially larger set of constraints because
(i) we use Strategy 4 and neglect the neighboring globs (cf. Definition 2.13) and (ii) replace
the coupled eigenproblem by a decoupled one.

Let G be an arbitrary but fixed glob and assume without loss of generality that
NG “ t1, . . . , nu. Recall the shortcut wiG “ RiGwi as well as the transformation (5.17):

"

pw1G :“ 1
n

řn
j“1 wjG,

qwjG :“ wjG ´ w1G @j “ 2, . . . , n.

Notice for |NG| “ 2 that this transformation (up to a positive or negative sign) is not biased
towards either the first or second subdomain in G. In contrast, for |NG| ą 2, there is a clear
bias towards the first subdomain.

LEMMA 5.20. Under the assumptions above,

ÿ

iPNG

|pPD,Gwqi|
2
Si
ď p|NG| ´ 1q

n
ÿ

i“2

qwJiGMiG qwiG ,

where

MiG :“ DJiG

´

ÿ

jPNGztiu

SjG

¯

DiG`

´

ÿ

jPNGztiu

DJjG

¯

SiG

´

ÿ

jPNGztiu

DjG

¯

,

for i “ 2, . . . , n.

For a face, i.e., G “ F P F , we have equality and M2F “MF .
Proof. Firstly, observe that

pPD,Gwqi “ RJiG
ÿ

jPNGztiu

DjGpwiG ´ wjGq

“ RJiG

$

’

’

&

’

’

%

ř

jPNGzt1u

´DjG qwjG i “ 1,

´

D1G qwiG `
ř

jPNGzt1,iu

DjGp qwiG ´ qwjGq
¯

i ‰ 1.

Using the above, we rewrite the expression
ÿ

iPNG

pPD,Gzq
J
i SipPD,Gwqi

in the new variables p pw1G, qw2G, . . . , qwnGq, ppz1G, qz2G, . . . , qznGq. The whole expression is
independent of pw1G, pz1G; in particular, the diagonal entry corresponding to pw1G, pz1G is simply
zero. The diagonal entry corresponding to qwkG, qzkG computes as

DJkGS1GDkG `

n
ÿ

i“2

´

D1Gδik`
n
ÿ

j“2
j‰i

DjGpδik ´ δjk

loooooooooooooooomoooooooooooooooon

“

$

’

&

’

%

řn
j“1
j‰i

DjG k “ i

DkG k ‰ i

q

¯J

SiG

´

D1Gδik`
n
ÿ

j“2
j‰i

DjGpδik ´ δjkq
¯

“ DJkG

´

n
ÿ

i“1
i‰k

SiG

¯

DkG `

´

n
ÿ

j“1
j‰k

DjG

¯J

SkG

´

n
ÿ

j“1
j‰k

DjG

¯

.
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The second inequality in Principle 4.10 yields the desired inequality.
Applying the whole idea of Principle 4.10 (decoupling), we have to compute the Schur

complement of diagpS‹iGqiPNG
but in the transformed variables p pw1G, qw2G, . . . , qwnGq elim-

inating qwkG for k “ 2, . . . , n, which we call rS‹kG in the sequel. From Lemma D.6, we
know that rS‹kG does not depend on the complementary space. Therefore, we may use the
simpler transformation pw1G, . . . , wnGq ÞÑ pw1G, . . . , wpk´1qG, qwkG, wpk`1qG, . . . , wnGq,
where wkG “ w1G ` qwkG. When we write the operator diagpS‹iGqiPNG

in the new variables,
then pw1G, qwkGq are decoupled from the remaining variables. So, if we form the Schur
complement eliminating wjG, j “ 1, . . . , n, j ‰ k, it suffices to take the Schur complement

of
„

S‹1G ` S
‹
kG S‹kG

S‹kG S‹kG



, which is

rS‹kG “ S‹kG ´ S
‹
kGpS

‹
1G ` S

‹
kGq

:S‹kG “ S‹kG : S‹1G,

where in the last step, we have used (5.5). Principle 4.10 implies
n
ÿ

k“2

qwJkGpS
‹
kG : S‹1Gq qwkG ď pn´ 1q

n
ÿ

j“1

wJjGS
‹
jGwjG ,

and we may alternatively study n´ 1 decoupled eigenproblems of the form

qzJiGpS
‹
iG : S‹1GqqyiG “ λqzJiGMiGqyiG for qyiG, qziG P UG∆ ,(5.29)

for i “ 2, . . . , n, and with the matrix MiG from Lemma 5.20. Apparently, there is a bias
towards the first subdomain.

REMARK 5.21. If we compute the decoupled eigenproblems independently to form primal
constraints, we have to orthonormalize eigenvectors originating from different eigenproblems.
This can, however, lead to many unnecessary constraints. A more attractive strategy could be
the following:

‚ Compute the eigenproblem for i “ 2 and get adaptive constraints QG2.
‚ For i “ 3, . . . , n:

– Project the eigenproblem i onto the space orthogonal to QG2, . . . , QGpi´1q.
– Compute the constraints QGi.

‚ Use QG2, . . . , QGn as set of adaptive constraints.
(This corresponds to updating UG∆ each time in the spirit of a Gauss-Seidel iteration.)

5.6. A recombined edge eigenproblem. A different recipe is to use Principle 4.11 and
recombine the decoupled eigenproblems (5.29) into a single one:

qzJGpS
‹
1G : S‹2G : . . . : S‹nGqqyG “ λqzJGpM2G ` . . .`MnGqqyG for qyG, qzG P U∆G ,

where MjG is the matrix from Lemma 5.20. Due to the Cauchy-Bunyakovsky-Schwarz
inequality,

MiG ď
ÿ

jPNGztiu

DJiGSjGDiG ` p|NG| ´ 1q
ÿ

jPNGztiu

DJjGSiGDjG

loooooooooooomoooooooooooon

“:AiG

.

Therefore,
n
ÿ

i“2

MiG ď

n
ÿ

i“2

ÿ

jPNGztiu

DJiGSjGDiG

loooooooooooooomoooooooooooooon

ď
ř

jPNG

ř

iPNGztju
DJiGSjGDiG

` pn´ 1q
n
ÿ

i“2

AiG ď |NG|

n
ÿ

i“1

AiG .
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Applying Principle 4.9 (nearby eigenproblem with constant c2 “ |NG| “ n) yields the
eigenproblem

qzJGpS
‹
1G : S‹2G : . . . : S‹nGqqyG “ λqzJGpA1G ` . . .`AnGqqyG for qyG, qzG P U∆G ,(5.30)

which is the one proposed by Kim, Chung, and Wang [46, 47].

5.7. Comments on the adaptive algorithm. In general, adaptively chosen constraints
can be enforced in several ways. Firstly, one can just add them to the previously chosen ones
(if there are any) and recompute some components of BDDC. Secondly, for FETI-DP, the
newly chosen constraints can be enforced by deflation; see [41, 46, 47, 53, 58]. Suppose, we
want to add adaptively chosen constraints to the existing primal constraints, then we fall into
one of the two cases below.

(i) If the chosen glob eigenproblems discard the influence of their neighboring globs
(or if the neighboring globs are all totally primal), then they can be computed
independently from each other.

(ii) Otherwise, one has to make an additional choice where either after computing the
adaptive constraints on a single glob, one would update at once the global set of
primal constraints (in the spirit of a Gauss-Seidel iteration), or not (like a Jacobi
iteration). In the first case, of course the ordering of the globs matters.

In several publications [45, 53, 54, 76, 79], it is proposed to use a fixed tolerance as
bound for the eigenvalues and use all the corresponding eigenvectors simultaneously for
constraints. A different option is to impose one constraint at a time and update the neighboring
eigenproblems at once; see also Remark 5.21.

6. The deluxe scaling. The deluxe scaling was originally introduced in [23] for 3D
Hpcurlq problems and further used in, e.g., [8, 9, 14, 18, 23, 24, 54, 69, 88]. Recall the
definition of SiG from (5.1), and set

S̄G :“
ÿ

jPNG

SjG .

The deluxe scaling is the following choice of the scaling matrices DiG from Assumption 3.4:

DiG “ S̄´1
G SiG .(6.1)

It is easily seen that S̄G is a principal minor of the original problem matrix pS and as such
non-singular. The application of the inverse S̄´1

G can be realized in several ways. Firstly,
applying S̄´1

G is equivalent to solving an SPD matrix problem on the subdomains NG sharing
the glob G [8]. Secondly, some sparse direct solvers such as MUMPS [2] or PARDISO
[66] offer a Schur complement option to compute the dense matrices SjG in a complexity
comparable to a direct subdomain solve (see also Remark 5.3). The latter option might be
quite interesting for computations on a large number of cores [123, 124].

By construction, choice (6.1) fulfills the glob-wise partition of unity property (Condi-
tion 3.5). Note that it is not guaranteed that each single matrix SjG is non-singular. For
example, for the standard FEM-discretization of Poisson’s problem or linear elasticity, the
matrix SkF corresponding to Figure 5.1(left), is singular.

6.1. Deluxe scaling on faces. Recall that for a face F with NF “ ti, ju,

zJPJD,FSNF
PD,F y “ pRiF zi ´RjF zjq

JMF pRiF yi ´RjF yjq

with

MF “ DJiFSjFDiF `D
J
jFSiFDiF “ SiF S̄

´1
F SjF S̄

´1
F SiF ` SjF S̄

´1
F SiF S̄

´1
F SjF

for the deluxe scaling.
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Whereas it has been shown in many references [8, 18, 24] that DiFSiFDjF ď SiF and
DiFSiFDjF ď SiF . The inequality in Lemma 5.10 implies DJjFSiFDjF ď SiF : SjF ; see
also [53], and so

MF ď 2pSiF : SjF q.

The core of Lemma 5.10, however, implies the surprising result:
COROLLARY 6.1. If F is a face with NF “ ti, ju and if DiF , DjF are chosen according

to the deluxe scaling (6.1), then the following identity holds for MF (defined in (5.9)):

MF “ SiF : SjF .

Using Corollary 6.1, the eigenproblem in Lemma 5.14 (under the stated assumptions!)
rewrites as

qzJF pS
‹
iF : S‹jF qqyF “ λ qzJF pSiF : SjF qqyF for qyF , qzF P UF∆.

We warn the reader that possible constraints enforced on globs neighboring G are ignored in
the above eigenproblem, whereas they are present in the original eigenproblem (4.1).

REMARK 6.2. Assume that SkF is spectrally equivalent to αkSF , k P ti, ju, and S‹kF to
αkS

‹
F , k P ti, ju, with constant coefficients αk ą 0 and with benign equivalence constants.

Due to Proposition 5.9,

pαiSF q : pαjSF q “
αi αj
αi ` αj

SF , pαiS
‹
F q : pαjS

‹
F q “

αi αj
αi ` αj

S‹F .

Together with Proposition 5.8 we can instead study the eigenproblem

qzJFS
‹
F qyF “ λ qzJFSF qyF for qyF , qzF P UF∆.

For the case of scalar diffusion, S‹F corresponds to the H1{2pF q-norm and SF to the H1{2
00 pF q-

norm; see [113]. The coefficient-dependent scaling DkF “
αk

αi`αj
I (sometimes called

ρ-scaling, cf. [100, 113]) leads to the same eigenproblem.
REMARK 6.3. As noted by Stefano Zampini [123, 124], if we compute the eigenproblem

on the space UF instead of UF∆ and if SiF , SjF , S‹iF , S‹jF are all definite, then one can apply
the formula from Remark 5.5 and rewrite the eigenproblem as

pS´1
iF ` S

´1
jF qv “ λpS‹iF

´1
` S‹jF

´1
qv.

6.2. Optimality of the deluxe scaling for subdomain faces˚. The following lemma
can be seen as a matrix version of Corollary 5.11.

LEMMA 6.4. Let A, B P Rnˆn be SPSD matrices with A`B definite and define

MA,BpXq :“ XJAX ` pI ´XqJBpI ´Xq.

Then for any (fixed) symmetric positive definite matrix C P Rnˆn, the functional

JA,B,CpXq “ trpCMA,BpXqCq

attains its global minimum at

X˚ “ pA`Bq
´1B,

where trpMq :“
řn
i“1Mii denotes the trace of the matrix M P Rnˆn.
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Proof. Let us first assume that C “ I . From the properties of the trace, we see that for
any X , Y P Rnˆn,

JA,B,IpX ` Y q “ JA,B,IpXq ` 2 trpY JAX ` Y JBpX ´ Iqq ` trpY JpA`BqY q.

Since xM1,M2yF :“ trpMJ
1 M2q is an inner product on Rnˆn, we find that the gradient of

JA,B,I at X is given by AX `BpX ´ Iq. The gradient vanishes if and only if

pA`BqX “ B.

Since the expression trpY JpA`BqY q is positive unless Y “ 0, we have the global minimum.
For a general SPD matrix C, one easily sees that

CMA,BpXqC “ M
rA, rBp

rXq,

where rA “ CAC, rB “ CBC, and rX “ C´1XC. From the earlier case, the minimum of
JA,B,CpXq “ J

rA, rB,Ip
rXq is attained at rX˚ “ p rA` rBq´1

rB. Transforming back reveals the
formula for X˚.

COROLLARY 6.5. Let F be a subdomain face, and let 0 ď λ1pXq ď ¨ ¨ ¨ ď λnpXq ď 8
denote the generalized eigenvalues of

pSiF : SjF qy “ λMSiF ,SjF
pXqy for y P UF ,

so for X “ DjF and I ´ X “ DiF , the matrix on the right-hand side equals MF from
Lemma 5.14. Assume further that SiF : SjF is non-singular such that λ1pXq ą 0. Then the
choice X “ DjF “ pSiF ` SjF q

´1SjF according to the deluxe scaling minimizes

J pXq :“
n
ÿ

i“1

λipXq
´1.

Proof. We set C “ pSiF : SjF q
´1{2, where pSiF : SjF q

1{2 is the SPD matrix square
root. Then 0 ď λnpXq

´1 ď ¨ ¨ ¨ ď λ1pXq
´1 ă 8 are the regular eigenvalues of the matrix

CMSiF ,SjF
pXqC (recall that we have set8´1 :“ 0) and,

J pXq “ trpCMSiF ,SjF
pXqCq.

The rest follows from Lemma 6.4.
In a practical algorithm, one would actually like to minimize the number m of out-

liers where λ1pXq ď ¨ ¨ ¨ ď λmpXq ! λm`1pXq, but this would lead to a non-quadratic
optimization problem. But under the outlier assumption,

m
ÿ

i“1

λipXq
´1 «

n
ÿ

i“1

λipXq
´1 “ J pXq.

The term on the left-hand side is the sum over factors that we could potentially obtain in the
condition number bound, so minimizing the quadratic functional J pXq appears to be a good
alternative.

REMARK 6.6. The case of singular pSiF : SjF q is harder and left for future research.
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6.3. Economic deluxe scaling on faces˚. Economic versions of the deluxe scaling have
been proposed in [24, 54]. Recall that in the typical application, the matrix Si and the derived
matrices SiF , S‹iF stem from the elimination of interior subdomain dofs. Replacing the
original stiffness matrix Ki by the one just assembled over the elements at a distance ď η
from the face F , one arrives at matrices SiFη, S‹iFη with the properties

SiF ď SiFη, S‹iFη ď S‹iF ;(6.2)

for details see [54]. The economic deluxe scaling (on face the F shared by the subdomains i
and j) is given by

DiF :“ pSiFη ` SjFηq
´1SiFη .

For sufficiently small η, the computation of this matrix or its application to a vector is much
cheaper than for the original deluxe scaling. In [24], only one layer of elements is used (η “ h).
From (6.2) and Lemma 5.10, we obtain

MF “D
J
iFSjFDiF `D

J
jFSiFDjF ď DJiFSjFηDiF `D

J
jFSiFηDjF “SiFη : SjFη.(6.3)

From (6.2) and Proposition 5.8, we obtain

pS‹iFη : S‹jFηq ď pS
‹
iF : S‹jF q.(6.4)

In [54], it is proposed to consider the face eigenproblem

pS‹iFη : S‹jFηqv “ λpSiFη : SjFηqv.

In view of (6.2)–(6.4), this is an implicit application of Principle 4.9 (nearby eigenproblem).

6.4. Deluxe scaling on edges. For arbitrary globs, we consider the eigenproblem

SNG
“ λPJD,GSNG

PD,G in WNG
,

here discarding any influence of the primal constraints and letting the weight matrices
tDjGujPNG

vary subject to the condition
ř

jPNG
DjG “ I . One can show that the trace

of the matrix on the right-hand side attains a minimum if the weight matrices are chosen
according to the deluxe scaling.

Next, we investigate the decoupled eigenproblem from Section 5.5. Suppose again that
NG “ t1, . . . , nu, and set S7iG :“

ř

jPNGztiu
SjG “ S̄G ´ SiG. Then, due to Lemma 5.10,

MiG “ SiGS̄
´1
G S7iGS̄

´1
G SiG ` S

7

iGS̄
´1
G SiGS̄

´1
G S7iG “ SiG : S7iG.

Hence, the n´ 1 decoupled eigenproblems from (5.29) rewrite as

qzJiGpS
‹
iG : S‹1GqqyiG “ λqzJiGpSiG : S7iGqqyiG for qyiG, qziG P UG∆ , @i “ 2, . . . , n.

Applying Principle 4.11 (recombination), we obtain the single eigenproblem

qzJGpS
‹
1G : S‹2G : . . . : S‹nGqqyG “ λqzJGpT2G ` . . .` TnGqqyG for qyiG, qziG P UG∆ ,

where TiG :“ SiG : S7iG. Applying Principle 4.9 (nearby eigenproblem), replacing the matrix
on the right-hand side by T1G ` . . .` TnG, results in the eigenproblem proposed by Calvo
and Widlund [15, 119].

REMARK 6.7. Recall the eigenproblem (5.30),

qzJGpS
‹
1G : S‹2G : . . . : S‹nGqqyG “ λqzJGpA1G ` . . .`AnGqqyG for qyiG, qziG P UG∆ ,
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proposed by Kim, Chung, and Wang [46, 47], where AiG “
řn
j“1,j‰iD

J
jGSiGDjG. For the

deluxe scaling,

n
ÿ

i“1

AiG “
n
ÿ

i“1

n
ÿ

j“1,j‰i

SjGS̄
´1
G SiGS̄

´1
G SjG “

n
ÿ

j“1

SjGS̄
´1
G S7jGS̄

´1
G SjG ď

n
ÿ

j“1

TjG ,(6.5)

where in the last step, we have used Lemma 5.10. That means, for the deluxe scaling, one
can get from the Kim-Chung-Wang eigenproblem to the Calvo-Widlund eigenproblem by
Principle 4.9 (nearby eigenproblem) using the spectral inequality (6.5).

7. Achieving definiteness of rS. In this section, we show that under the following mild
assumptions, we can guarantee the definiteness of rS algorithmically.

ASSUMPTION 7.1. Each subdomain has at least one face.
ASSUMPTION 7.2. If F is a face of the subdomain k then

pSkwk “ 0, RkFwk “ 0q ùñ wk “ 0.

ASSUMPTION 7.3. For each k “ 1, . . . , N either
1. kerpSkq “ t0u, or
2. the subdomain k has two faces, or
3. the subdomain k has only one face F , NF “ tk, `u, and the matrix

MF “ DJkFS`FDkF `D
J
`FSkFD`F

is definite on UF∆ :“ tu P UF : QJFu “ 0u.
LEMMA 7.4. If Assumptions 7.1–7.3 hold, then for each G P G˚,

kerpSNG
q X rangepPD,Gq XĂWNG

“ t0u.

Proof. Throughout the proof, let w P kerpSNG
q X rangepPD,Gq XĂWNG

be arbitrary but
fixed. From w P rangepPD,Gq XĂWNG

and Lemma 3.8, we obtain that

w “ PD,Gy for some y P ĂWNG
.(7.1)

We treat two cases. Firstly, assume that G is a face shared by the subdomains i and j such that

wi “ pPD,Gyqi “ RJiGDjGpRiGyi ´RjGyjq,

wj “ pPD,Gyqj “ ´R
J
jGDiGpRiGyi ´RjGyjq.

(7.2)

Assume now that Siwi “ 0 and Sjwj “ 0. For k P ti, ju we apply Assumption 7.3:
1. If kerpSkq “ t0u, then wk “ 0.
2. If the subdomain k has two faces, namely G and F 1, then we see from (7.2) that
RkF 1wk “ 0, and Assumption 7.2 implies that wk “ 0.

3. Finally, if the subdomain k has only one face (namely G) and if MG is definite on
UG∆, then we have (using (7.2) and the fact that SiG “ RiGSiR

J
iG etc.)

0 “ |wi|
2
Si
` |wj |

2
Sj

“ pRiGyi ´RjGyjq
J pDJjGSiGDiG `D

J
iGSjGDiGq

loooooooooooooooooomoooooooooooooooooon

“MG

pRiGyi ´RjGyjq.

Since RiGyi ´ RjGyi P UG∆ and since MG is definite on that space, we can
conclude that RiGyi ´ RjGyj “ 0. This is sufficient to conclude (from (7.2)) that
wi “ wj “ 0.
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Secondly, assume that G P G˚zF . Due to our assumptions, Skwk “ 0, for all k P NG. For
any such k, since the subdomain k has a face F (cf. Assumption 7.1), we see from (7.1) and
the formula for PD,G that RkFwk “ 0. Assumption 7.2 implies that wk “ 0.

THEOREM 7.5. Let Assumptions 7.1–7.3 hold. Assume further that for each glob G P G˚
the glob eigenproblem

p rSNG
, rPJD,G

rSNG
rPD,G

loooooooomoooooooon

“ rBG

q on ĂWNG

has no zero eigenvalues. Then S is definite on ĂW .
Proof. Let G P G˚ be arbitrary but fixed, and set A “ rSNG

, P “ rPD,G, and B “ rBG.
Thanks to Lemma 7.4,

kerpAq X rangepP q “ t0u,

and due to our assumptions, pA,Bq has no genuine zero eigenvalues. Lemma 4.12(iii) implies
that kerpAq Ă kerpP q, which means

@w P ĂWNG
:
`

@j P NG : Sjwj “ 0 ùñ rPD,Gw “ 0
˘

.

Due to Lemma 3.8(iii) the last identity implies

RiGwi ´RjGwj “ 0 @i, j P NG .

Since G P G˚ was arbitrary, Condition 3.1 is fulfilled, and Lemma 3.2 concludes the proof.

REMARK 7.6.
(i) Assumption 7.1 usually holds in practice, otherwise we would have subdomains

joined to the rest only by an edge or a vertex, which is somewhat unphysical.
(ii) Assumption 7.2 is fulfilled for the typical finite element discretizations and for the

typical differential operators, provided that
‚ the face F is large enough and
‚ each subdomain is connected.

Note that connectivity is a geometric concept that can, nevertheless, be made accessi-
ble via the matrix graph of the underlying sparse matrix; cf. [125].

(iii) Should neither Item 1 nor Item 2 of Assumption 7.3 hold, then Item 3 can be fulfilled
by computing the eigenproblem

MF “ λI

first and then converting any zero modes into primal constraints.
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Appendix A. Proof of Theorem 2.9 based on the fictitious space lemma.
We first show that (2.4) and (2.5) are equivalent. From the properties of ED and PD,

we find that there exists a projection rED : ĂW Ñ ĂW onto xW such that RED Ĩ “ Ĩ rED and
PD Ĩ “ ĨpI ´ rEDq. So (2.4) is equivalent to } rED}2

rS
ď ω and (2.5) to }I ´ rED}

2
rS
ď ω,

where } ¨ }
rS is the norm on ĂW induced by rS. Since rED is a non-trivial projection in a Hilbert

space, } rED} rS “ }I ´ rED} rS . This useful result is often ascribed to Kato (cf. [42, Appendix,
Lemma 4], [118, Lemma 3.6]) but has been proved several times in the literature; see Szyld’s
concise presentation [111] with further references.

For the condition number bound, we use Sergei Nepomnyashikh’s fictitious space lemma
[86], [87, Lemma 2.3]; see also [25, 39, 65]. Here, we have rewritten it in terms of duality
products rather than inner products.

LEMMA A.1 (Fictitious space lemma). Let H , rH be finite-dimensional Hilbert spaces,
and let A : H Ñ H˚, rA : rH Ñ rH˚ be bounded, self-adjoint, and positive definite linear
operators. Moreover, let Π: rH Ñ H be a bounded linear operator. Then

λmaxpΠ rA´1ΠJAq “ sup
rvPĂHzt0u

xAΠrv,Πrvy

x rArv, rvy
“: γ2 .(A.1)

In addition, let T : H Ñ rH be a linear operator such that

ΠTv “ v and γ1 x rATv, Tvy ď xAv, vy @v P H,(A.2)

for some constant γ1 ą 0. Then λminpΠ rA´1ΠJAq ě γ1. Summarizing,

κpΠ rA´1ΠJAq ď γ2{γ1 .

Proof. With }v}B :“ xBv, vy1{2 for a positive definite B and basic functional analy-
sis, we obtain }ψ}B´1 “ supvPV zt0u

xψ,vy
}v}B

and xψ, vy ď }ψ}B´1}v}B . Since the operator

Π rA´1ΠJA is self-adjoint with respect to the inner product xAv, vy, its spectrum is real. We
show (A.1) using the Rayleigh quotient and simply omit “zt0u” in all suprema:

λmaxpΠ rA´1ΠJAq “ sup
vPH

xΠ rA´1ΠJAv,Avy

xAv, vy

v“A´1ψ
“ sup

ψPH˚

}ΠJψ}2
rA´1

}ψ}2
A´1

“ sup
ψPH˚

sup
rvPĂH

xΠJψ, rvy2

}ψ}2
A´1}rv}2

rA

“ sup
rvPĂH

}Πrv}2A
}rv}2

rA

.

If (A.2) holds, then

}ψ}2A´1 “ sup
vPH

xψ,

“v
hkkikkj

ΠTv y2

}v}2A
“ sup
vPH

xΠJψ, Tvy2

}v}2A

ď }ΠJψ}2
rA´1 sup

vPH

}Tv}2
rA

}v}2A
ď

1

γ1
}ΠJψ}2

rA´1 .

Using the Rayleigh quotient we obtain the lower bound for λminpΠ rA´1ΠJAq.
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To get the BDDC condition number bound (see also [65]), we set H :“ U , rH :“ ĂW ,
A :“ pS, rA “ rS, and Π :“ ED Ĩ . Then bound (2.4) is equivalent to λmaxpM

´1
BDDC

pSq ď ω. To
get (A.2), we first define T : U Ñ ĂW by Tv :“ Rv for v P U , which is well-defined since
rangepRq Ă ĂW . From EDR “ I we conclude that ΠT “ ED ĨT “ I . Finally, since RED is
a projection,

x rATv, Tvy “ xSRv,Rvy “ xpSv, vy “ xAv, vy @v P H “ U,

so the inequality in (A.2) holds with γ1 “ 1 and λminpM
´1
BDDC

pSq ě 1.

Appendix B. The related FETI-DP method. Let Λ be an Euclidean space (usually
called space of Lagrange multipliers) and B : W Ñ Λ be a matrix (usually called the jump
operator) such that

xW “ kerpBq.

REMARK B.1. Identity (2.3) already implies the existence of a matrixB with xW “kerpBq.
For standard choices of B, see, e.g., [34, 113]. Furthermore, xW Ă ĂW ĂW (Condition 2.6)
implies the existence of a matrix L̄ of full rank such that ĂW “ kerpL̄Bq; see also [76,
Section 2.3] and Remark 2.30.

With rB :“ B Ĩ : ĂW Ñ Λ, problem (2.1) can be rewritten as

(B.1) find pru, λq P ĂW ˆ Λ:

«

rS rBJ

rB 0

ff

„

ru
λ



“

„

rg
0



,

where rg :“ ĨJg. Since the restriction of rS to kerp rBq is isomorphic to pS, which was assumed
to be definite, problem (B.1) is uniquely solvable up to adding an element from kerp rBJq to λ.
If S is definite on ĂW (Condition 2.7), then we can eliminate the variable ru and obtain the dual
equation

(B.2) F λ “ d,

where F :“ B Ĩ rS´1ĨJBJ and d :“ B Ĩ rS´1ĨJg. We assume that there exists a matrix
BD : W Ñ Λ such that

BJDB “ PD “ I ´RED .

REMARK B.2. Under Assumption 3.4 and for fully redundant Lagrange multipliers, BD
indeed exists. For the fully redundant setting, Λ “

Â

GPG
Â

i,jPNG,iąj
UG. We denote the

components of λ P Λ by λG,ij , for G P G, i ą j P NG, and define

pBuqG,ij :“ RiGui ´RjGuj

(cf. (2.11)). The definition of BD then reads

pBDwqG,ij :“ DjGRiGwi ´DiGRjGwj .

This generalizes the well-known formula for diagonal matrices Di; see [113, Section 6.3.3] or
[93, Section 2.2.4.2]. The transpose is given by

pBJDµqi “
ÿ

GPGi

ÿ

jPNGztiu

signpi´ jqRJiGDjGµG,ij ,
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from which one can infer that BJDB “ PD. The FETI-DP preconditioner (for problem (B.2))
is defined as

(B.3) M´1
FETI´DP :“ BD S B

J
D : Λ Ñ Λ.

In [12, 72, 75, 77] it was shown that the bound (2.5) (or equally (2.4)) implies

κFETI´DP :“ κpM´1
FETI´DPF|Λ{ kerpĂBJq

q ď ω

and that the spectra of BDDC and FETI-DP (with corresponding components) are identical
except for possible eigenvalues equal to 1.

Appendix C. Realization of Ĩ rS´1ĨJ. The method in Section C.1–C.2 treats the case of
classical primal dofs (Section 2.5) and was introduced in [20]. For similar approaches see,
e.g., [33], [113, Section 6.4], [72], [62, Section 4.2], and [93, Section 5.3]. In Section C.3, we
extend the method to the generalized primal constraints from Section 2.6.

C.1. The energy minimizing basis of ĂWΠ for classical primal dofs. Let the matrices
Ci : Wi Ñ UΠi fulfill kerpCJi q “ t0u (Condition 2.19), let ĂW be defined via (2.15), i.e.,

ĂW “ tw PW : DuΠ P UΠ @i “ 1, . . . , N : Ciwi “ RΠiuΠu,

and Wi∆ “ twi PWi : Ciwi “ 0u, W∆ :“
ÂN

i“1Wi∆. Let Ψi : WiΠ ÑWi fulfill

CiΨi “ I.(C.1)

Such matrices Ψi exist because Ci is surjective, e.g., we could use Ψi “ CJi pCiC
J
i q
´1. A

distinguished choice is defined by the linear saddle point system
„

Si CJi
Ci 0

 „

Ψi

Λi



“

„

0
I



,(C.2)

with Lagrange parameters Λi : WΠi Ñ WΠi. Assume that Si is definite on kerpCiq “ Wi∆

(cf. Condition (3.1)). Due to kerpCJi q “ t0u (Condition 2.19)), problem (C.2) is guaranteed
to have a unique solution.

The columns of Ψi can be regarded as shape functions on the subdomain i. Condition (C.1)
states that the primal dof k of the shape function j evaluates to δkj .

PROPOSITION C.1.
(i) Ψi has full column rank,

(ii) rangepΨiq XWi∆ “ t0u,
(iii) if (C.2) holds then even

xSizi, wiy “ 0 @zi P rangepΨiq, wi PWi∆.

Proof. Part (i) follows directly from (C.1).
Part (ii). If wi “ Ψiv PWi∆, then 0 “ Ciwi “ CiΨiv “ v, so v “ 0 and wi “ 0.
Part (iii). From the first line of (C.2) we derive that for any wi PWi∆,

wJi SiΨi “ ´w
J
i C

J
i Λi “ ´ΛJi Ciwi

loomoon

“0

“ 0.

For each i “ 1, . . . , N , choose Ψi : WiΠ ÑWi such that (C.1) holds. We set

Ψ :“ diagpΨiq
N
i“1 : WΠ ÑW

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC 325

and define, in a finite element spirit, the assembled basis

rΨ: UΠ ÑW, rΨ :“ ΨRΠ ,(C.3)

where RΠ : UΠ “ RnΠ ÑWΠ is the matrix from (2.12) and has full column rank.
LEMMA C.2. Let rΨ be given as in (C.3). Then
(i) rΨ has full column rank, in particular, dimprangeprΨqq “ nΠ,

(ii) rangeprΨq Ă ĂW ,
(iii) ĂW “ rangeprΨq ‘W∆.
(iv) If for each i “ 1, . . . , N (C.2) holds, then even

xSw, zy “ 0 @w PW∆, z P rangeprΨq.

Proof. Part (i). Due to Proposition C.1(i), Ψ is injective. Since RΠ is injective, the
composition rΨ is injective too.

Part (ii). Due to (C.1), for any G P G and i P NG:

QJGRiGp
rΨqi “

ÿ

G1PGi

RiΠGR
J
ΠiG1

looooomooooon

“δGG1I

QJG1RiG1ΨiRΠi “ RiΠG CiΨi
loomoon

“I

RΠi “ pRΠG ,

and so QJGRiGprΨqi “ QJGRjGp
rΨqj for all i, j P NG.

Part (iii). From Proposition C.1(ii) we obtain rangepΨqXW∆ “ t0u, so the sum is direct.
Thanks to Part (i) and Proposition 2.24,

dimprangeprΨqq ` dimpW∆q “ nΠ ` dimpW∆q “ dimpĂW q,

so together with Part (ii), the direct sum must equal ĂW .
Part (iv) follows directly from Proposition C.1(iii).

C.2. Realization of Ĩ S̃´1ĨJ. For this section, we only make two assumptions. Firstly,

ĂW “ rangeprΨq ‘W∆,

where rΨ: UΠ Ñ ĂW is injective and W∆ “
ÂN

i“1Wi∆ with Wi∆ “ twi PWi : Ciwi “ 0u.
Secondly, we assume that rangeprΨq and W∆ are rS-orthogonal (see Remark C.6 for the
non-orthogonal case). Since the sum is direct, we can identify ĂW with the product space
ĂW :“ UΠ ˆW∆ and obtain

rI : ĂW ÑW :

„

wΠ

w∆



ÞÑ rΨwπ ` w∆, rI
J

: W˚ Ñ ĂW
˚

: f ÞÑ

„

rΨJf
f



.4

The operator rS can then be identified with rS : ĂW Ñ ĂW
˚

given by

„

vΠ

v∆

J

rS

„

wΠ

w∆



“ vJΠp
rΨJS rΨqwΠ ` v

J
∆Sw∆,

4To be strict, we actually add the embedded function w∆ P W∆ Ă W , and correspondingly, in the second

component of rI
J
f , we would have to write the embedding of f PW˚ ĂW˚

∆.
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which is a block-diagonal operator. Its inverse is given by

rS
´1

„

rΠ

r



“

„

prΨJS rΨq´1rΠ

z∆



,

where z∆ P W∆ is such that xSz∆, v∆y “ xr, v∆y for all v∆ P W∆. The latter can be
obtained by solving the saddle point problem

„

S CJ

C 0

 „

z∆

µ



“

„

r
0



,

whose system matrix is block-diagonal with blocks identical to (C.2).
To summarize, the application v “ Ĩ rS´1ĨJr, r PW , is now realized by

v “ rΨwΠ ` z∆,

where wΠ P RnP solves the (global) coarse problem

prΨJS rΨqwΠ “ rΨJr,(C.4)

and the components zi of z∆ solve the local (and independent) saddle point problems
„

Si CJi
Ci 0

 „

zi
µi



“

„

ri
0



.(C.5)

REMARK C.3. Certainly, the saddle point problems (C.2), (C.5) can either (i) be solved
as they are, (ii) be reformulated by penalty techniques, or (iii) by using a transformation of
basis [55, 72] one can enforce the constraints explicitly, eliminate some dofs, and reduce the
saddle point problem to an SPD problem.

REMARK C.4. For the energy minimizing construction (C.2), the coarse matrix in (C.4)
can be assembled from the subdomain contributions ΨJi SiΨi “ ´ΨJi C

J
i Λi “ ´Λi; cf.

[93, Section 5.3.4.2].
REMARK C.5. If Si is a Schur complement of a matrix Ki eliminating interior dofs, then

the saddle point problems (C.2) and (C.5) can easily be rewritten in terms of Ki and are thus
amenable to sparse direct solvers. In that context, however, it is recommended to suitably
scale the second line and to check for the right parameters such that the solver can cope with
the zero block on the lower right (e.g., weighted matching [101] in case of PARDISO).

REMARK C.6. Based on the block Cholesky factorization, a similar algorithm can also be
given for the case that rangeprΨq is not S-orthogonal to W∆. Then, however, the coarse and
the local problems are not anymore independent, and two local problems have to be solved;
see [72] and [93, Section 5.3].

C.3. A basis of ĂWΠ for generalized primal constraints. Let ĂW be a space generated
from generalized primal constraints, i.e., (2.16), (2.19). We give an algorithm by computing a
basis of ĂWΠ that has local support such that ĂW “ ĂWΠ ‘W∆, with W∆ defined in (5.24). We
only require that S is definite on ĂW (Condition 2.7).

Step 1. For each subdomain i and glob G P Gi we construct a matrix L̄iG P RrΠGˆqΠiG

of full row rank such that

LiG “ KiGL̄iG , qΠiG “ rankpL̄iGq “ rankpLiGq.(C.6)
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This can, e.g., be achieved by the QR factorization [37, Section 5.2] (see also the proof of
Theorem 5.18). We collect them into a subdomain constraint matrix

L̄i “

»

—

—

–

...
L̄iGRiG

...

fi

ffi

ffi

fl

GPGi

,(C.7)

which again has full row rank qΠi :“
ř

GPGi qΠiG. The space from (5.24) rewrites as

Wi∆ “ twi PWi : L̄iwi “ 0u.(C.8)

Step 2. For each subdomain i, we construct a matrix Ψi : RqΠi ÑWi such that

L̄iΨi “ I,(C.9)

e.g., we could use Ψi “ L̄Ji pL̄iL̄
J
i q
´1. A distinguished choice are the energy-minimizing

functions given by the solution of the saddle point system
„

Si L̄Ji
L̄i 0

 „

Ψi

Λi



“

„

0
I



(C.10)

with Lagrange multipliers Λi P RqΠiˆqΠi .
PROPOSITION C.7. For a matrix Ψi fulfilling (C.9), the following statements hold:
(i) The columns of Ψi are linearly independent.

(ii) The system matrix in (C.10) is invertible.
(iii) If Ψi is constructed via (C.10), then xSiΨi, ziy “ 0, @zi PWi∆.
Proof. Part (i) follows immediately from (C.9).
Part (ii). Si is definite on kerpL̄iq “Wi∆ (cf. (3.1)), and kerpL̄Ji q “ t0u.
Part (iii). From the first line in (C.10) and from (C.8) we derive for zi PWi∆,

xSiΨi, ziy “ ´xL̄Ji Λi, ziy “ ´xΛi, L̄iziy
(C.8)
“ 0.

Step 3. Corresponding to (C.7), the shape functions are arranged into groups correspond-
ing to the globs:

Ψi “
“

¨ ¨ ¨
ˇ

ˇΨ
pGq
i

ˇ

ˇ ¨ ¨ ¨
‰

GPGi
.(C.11)

One easily shows the property

L̄iGRiGΨ
pG1q
i “ δGG1I.(C.12)

Step 4. Next, we loop over all globs G P G and return to the original constraint matrices
tLjGujPNG

. We form the matrix

KG “
“

¨ ¨ ¨
ˇ

ˇLjGRjGΨ
pGq
j

ˇ

ˇ ¨ ¨ ¨
‰

jPNG
“

“

¨ ¨ ¨
ˇ

ˇKjG

ˇ

ˇ ¨ ¨ ¨
‰

jPNG
P RrΠGˆqΠG

and compute a coefficient matrix

YG :“

»

—

—

–

...
YjG

...

fi

ffi

ffi

fl

jPNG

P RqΠGˆnΠG ,
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whose columns form a basis of kerpKGq, i.e.,

KGYG “ 0, nΠG “ rankpYGq “ dimpkerpKGqq.(C.13)

This can, e.g., be done by a singular value decomposition (SVD); see [37, Section 2.5]. As we
have shown in (5.28) in the proof of Theorem 5.18,

dimpkerpKGqq “ qΠG ´ rΠG .(C.14)

Step 5. The number nΠG will be the number of coarse basis functions used on the glob G.
Therefore, the global space of coarse dofs is given by UΠ :“ RnΠ with nΠ “

ř

GPG nΠG.
The coarse basis itself is given by

rΨ: UΠ ÑW, rΨ :“
“

¨ ¨ ¨
ˇ

ˇrΨpGq
ˇ

ˇ ¨ ¨ ¨
‰

GPG ,

where

rΨpGq : RnΠG ÑW : rΨ
pGq
i :“

#

Ψ
pGq
i YiG i P NG ,

0 otherwise.

THEOREM C.8. For the construction above the following statements hold:
(i) rangeprΨq Ă ĂW ,

(ii) the columns of rΨ are linearly independent and dimprangeprΨqq “ nΠ,
(iii) ĂW “ rangeprΨq ‘W∆,
(iv) if all matrices Ψi are constructed via (C.10), then

xSw, zy “ 0 @w P rangeprΨq, z PW∆.

Proof. Part (i). We simply show that rangeprΨpGqq P ĂW for an arbitrary but fixed glob
G P G. From the definition of rΨpGq and property (C.12) we derive that for any glob G1 P G
and any j P NG1 ,

L̄jG1RjG1 rΨ
pGq
j “

#

L̄jG1RjG1Ψ
pGq
j YjG “ δGG1YjG if j P NG ,

0 otherwise.

From (C.6) and the above we conclude that

ÿ

jPN 1G

LjG1RjG1 rΨ
pGq
j “

ÿ

jPN 1G

#

δGG1KjG1YjG if j P NG

0 otherwise

“

#

ř

jPNG
KjGYjG if G1 “ G,

0 otherwise,

but due to (C.13), this expression always evaluates to zero.
Part (ii). Firstly, we define

Ψ
pGq

:“ diagpΨ
pGq
i qNi“1 : RqΠG ÑW, where Ψ

pGq
i :“ 0 P RdimpWiqˆ0 if i R NG ,

Ψ :“ r¨ ¨ ¨ |Ψ
pGq
| ¨ ¨ ¨ sGPG

such that we can write

rΨ “ Ψ diagpYGqGPG .
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From (C.11), we observe that the columns of Ψ are just columns of some matrix Ψi extended
by zero to the remaining subdomains. Hence, Proposition C.7 implies that Ψ is injective. Since
each YG is injective, rΨ is injective as well.

Part (iii). Let Ψ be as above. From Proposition C.7 we obtain that rangepΨqXW∆ “ t0u,
which implies that rangeprΨq XW∆ “ t0u, so the sum rangeprΨq `W∆ is direct and

dimprangeprΨq `W∆q “ nΠ ` dimpW∆q.

From (C.14) and Proposition 5.17 we obtain that dimpĂW q “ dimpW∆q ` nΠ, therefore the
sum must equal ĂW .

Part (iv). Proposition C.7(iii) implies that for zi PW∆i,

xSirΨi, ziy “ xSi
ÿ

GPGi

Ψ
pGq
i RΠG, ziy “ 0.

Based on the direct sum ĂW “ rangeprΨq ‘W∆, the operator Ĩ rS´1ĨJ can be realized as
in Section C.2.

Appendix D. Generalized inverse and Schur complement.
Throughout this section, V is a finite-dimensional vector space and A : V Ñ V ˚ a linear

operator.
DEFINITION D.1 (generalized inverse). A: : V ˚ Ñ V is a generalized inverse5 of A if

AA:f “ f @f P rangepAq.

From this definition, one easily derives

A:Ax “ x` vK for some vK P kerpAq @x P V,(D.1)

as well as the following statement.
PROPOSITION D.2. For linear operators A, C, D : V Ñ V ˚ with with kerpAq Ă kerpCq

and rangepDq Ă rangepAq, the expression CA:D is invariant under the particular choice
of the generalized inverse A:. Moreover, if D “ A, then CA:A “ C, and if C “ A, then
AA:D “ D.

For the following, let V “ V1 ˆ V2 and

A “

„

A11 A12

A21 A22



.(D.2)

LEMMA D.3. If A is SPSD then kerpA22q Ă kerpA12q and rangepA21q Ă rangepA22q.
In particular, A22A

:
22A21 “ A21.

Proof. Suppose that there exists an element v2 P kerpA22qzt0u with A12v2 ‰ 0. Then
there exists v1 P V1 with xA12v2, v1y ă 0. From the assumption on A we get for any β P R`,

0 ď

B

A

„

v1

βv2



,

„

v1

βv2

F

“ xA11v1, v1y
looooomooooon

ě0

`2β xA12v2, v1y
looooomooooon

ă0

,

which is a contradiction. From functional analysis we know that rangepAJq “ kerpAq˝ where
W ˝ :“ tψ P V ˚ : xψ,wy “ 0 @w PW u (for W Ă V ) is the annihilator (see, e.g., [83, p. 23]).
This shows rangepA22q

˝ Ă rangepA21q
˝ which implies the second assertion.

DEFINITION D.4. Let A, V1, V2 be as in (D.2). Then the generalized Schur complement
(eliminating the components in V2q is given by

S1 :“ A11 ´A12A
:
22A21,

5If, additionally, A:AA: “ A:, then A: is called reflexive generalized inverse, but we do not need this property.
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where A:22 is a generalized inverse of A22. If the conditions kerpA22q Ă kerpA12q and
rangepA21q Ă rangepA22q hold, then this definition is independent of the particular choice
of A:22.

The generalized Schur complement is closely related to the shorted operator in [4,
Theorem 1].

LEMMA D.5. Let A, V1, V2 be as in (D.2) and assume that A is SPSD. Then the
generalized Schur complement S1 has the following properties:

xS1v1, v1y ď xAv, vy @v “

„

v1

v2



P V,(D.3)

xS1v1, v1y “ xAv, vy @v “

„

v1

´A:22A21v1 ` v
K
2



, v1 P V1, v
K
2 P kerpA22q.(D.4)

Proof. Minimization of the quadratic functional xAv, vy with respect to v2 for fixed v1

leads to the first-order condition

A22v2 `A21v1 “ 0.(D.5)

By Lemma D.3, A21v1 P rangepA22q, and so all solutions of (D.5) have the form

v2 “ ´A:22A21v1 ` v
K
2 , with vK2 P kerpA22q.

The Hessian is given by A22 and is by assumption positive semi-definite, so all these solutions
are minimizers. We verify (D.4):

xAv, vy “ xA11v1, v1y ` x´A12A
:
22A21v1, v1y ` xA12v

K
2 , v1y ` xA21v1,´A

:
22A21v1y

` xA21v1, v
K
2 y ` xA22pA

:
22A21v1 ` v

K
2 q, A

:
22A21v1 ` v

K
2 y “ xS1v1, v1y,

where we have used Lemma D.3 and Definition D.1. Now (D.3) follows.
The next lemma shows that the Schur complement S1 : V1 Ñ V ˚1 is independent of the

particular choice of the complementary space V2.
LEMMA D.6. Let A : V Ñ V ˚ be SPSD and let V “ V1 ‘ V2 “ V1 ‘ V

1
2 be two (direct)

space splittings. Let S1, S11 be the generalized Schur complements corresponding to the first
and second splitting, respectively. Then S1 “ S11.

Proof. For v P V let pv1, v2q, pv1, v
1
2q be the components corresponding to the first and

second splitting, respectively. From the properties of the direct sum, we see that there exists
mappings T1, T2 with T2 non-singular such that v12 “ T1v1`T2v2 and v2 “ T´1

2 pv12´T1v1q.
Let A11, A12, A21, A22 be the components of A corresponding to the first space splitting,
such that the components corresponding to the second splitting are given by

„

A11 ´A12T
´1
2 T1 ´ T

J
1 T

´J
2 A21 A12T

´1
2 ´ TJ1 T

´J
2 A22T

´1
2

T´J2 A21 ` T
´J
2 A22T

´1
2 T1 T´J2 A22T

´1
2



.

Computing the generalized Schur complement eliminating the second component (v12) and
using Lemma D.3, one can easily verify that S11 “ S1.

Appendix E. A counterexample: BpA `B ` Cq´1ApA `B ` Cq´1B ­ď A.
We set

A “ I, B “

„

2.5 ¨ 10´5 0.0275
0.0275 838.6



, C “

„

7.2 ´29
´29 225


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Clearly, A, B, and C are SPD as the diagonal entries are strictly positive and

detpBq “ 0.0134025, detpCq “ 779.

However,

σpA´BpA`B ` Cq´1ApA`B ` Cq´1Bq “ t´9.26834, 1u

σp10A´BpA`B ` Cq´1ApA`B ` Cq´1Bq “ t´0.248337, 10u.

So, for this particular example,

BpA`B ` Cq´1ApA`B ` Cq´1B ­ď A

BpA`B ` Cq´1ApA`B ` Cq´1B ­ď 10A.

However, from Lemma 5.10 we obtain

BpA`B ` Cq´1ApA`B ` Cq´1B ď BpA`B ` Cq´1pA` CqpA`B ` Cq´1B

ď B : pA` Cq ď B.

So it is really the inequality with A on the right-hand side that fails to hold in general.
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