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ALMOST OPTIMAL CONVERGENCE OF FEM-FDM FOR
A LINEAR PARABOLIC INTERFACE PROBLEM∗

MATTHEW O. ADEWOLE†

Abstract. The solution of a second-order linear parabolic interface problem by the finite element method is
discussed. Quasi-uniform triangular elements are used for the spatial discretization while the time discretization is
based on a four-step implicit scheme. The integrals involved are evaluated by numerical quadrature, and it is assumed
that the mesh cannot be fitted to the interface. With low regularity assumption on the solution across the interface,
the stability of the method is established, and an almost optimal convergence rate of O

(
k4 + h2

(
1 + 1

| log h|

))
in the L2(Ω)-norm is obtained. In terms of matrices arising in the scheme, we show that the scheme preserves the
maximum principle under certain conditions. Numerical experiments are presented to support the theoretical results.
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1. Introduction. Let Ω be a convex polygonal domain in R2 with boundary ∂Ω and
Ω1 ⊂ Ω be an open domain with smooth boundary Γ = ∂Ω1. Let Ω2 = Ω \ Ω̄1 be another
open domain contained in Ω with boundary Γ ∪ ∂Ω. We consider the parabolic interface
problem

(1.1) ut −∇ · (a(x, t)∇u) + b(x, t)u = f(x, t) in Ω× (0, T ]

with initial and boundary conditions

u(x, 0) = u0(x) in Ω

u(x, t) = 0 on ∂Ω× [0, T ]
(1.2)

and interface conditions

[u]Γ = 0[
a(x, t)

∂u

∂n

]
Γ

= g(x, t),
(1.3)

where 0 < T < ∞, the symbol [u] denotes the jump of a quantity u across the interface Γ,
and n is the unit outward normal to the boundary ∂Ωi, i = 1, 2.

The interface conditions are defined as the differences of the limiting values from each
side of the interface, i.e.,

[u]m∈Γ := lim
x→m+

u2(x, t)− lim
x→m−

u1(x, t)

and [
a(x, t)

∂u

∂n

]
m∈Γ

:=

[
lim

x→m+
a2∇u2(x, t)− lim

x→m−
a1∇u1(x, t)

]
· n .

The input functions a(x, t), b(x, t), and f(x, t) are assumed continuous on each domain but
discontinuous across the interface for t ∈ [0, T ].
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FIG. 1.1. A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ.

Time evolution equations (which often lead to parabolic PDEs) are considered to study
and understand the dynamics of nature. The best-known linear parabolic PDE is the heat (or
diffusion) equation, where an interface problem occurs when the heat transfer (or diffusion)
involves more than one material medium, each having different properties such as conductivi-
ties, diffusion constants, etc. The solutions of interface problems may show higher regularities
in each individual material region than in the entire physical domain because of discontinuities
across the interface [3, 5]. Thus, achieving higher-order accuracy may be difficult using a
classical method, hence, there is a need to find the solution to the problem by variational
formulations. In what follows, we give a brief overview of existing works relevant to this
research.

The study of interface problems by the FEM was first carried out by Babuska [3]. He
studied finite element approximations to elliptic interface problems on smooth domains with
a smooth interface. He formulated the problem as a minimization problem and defined and
analyzed a quadratic functional which was used to obtain an error estimate of optimal order in
the H1(Ω)-norm. For more works on linear elliptic interface problems, see [4, 7, 14, 16, 20].
The finite element approximation of nonlinear elliptic interface problems was discussed
in [12, 17, 18, 28].

Using backward Euler time discretization, Chen and Zou [5] studied the convergence
of the fully discrete solution to the exact solution using a fitted FEM. They obtained error
estimates for clearly defined interpolation and elliptic projection operators, which were used
to prove suboptimal error estimates in the L2(0, T ;L2(Ω)) and L2(0, T ;H1(Ω))-norms when
the global regularity of the solution is low. Sinha and Deka [24] proposed and analyzed an
unfitted finite element discretization for both elliptic and parabolic problems with discontinuous
coefficients. An optimal-order error estimate in the H1-norm and an almost optimal-order
error estimate in the L2-norm were derived for elliptic interface problems. An extension
to parabolic interface problems was also discussed, and estimates in the L2(H1)-norm and
the L2(L2)-norm were derived for the spatially discrete scheme. A fully discrete scheme
based on the backward Euler method was analyzed, and an optimal-order error estimate in the
L2(H1)-norm was derived.

Sinha and Deka [25] studied FEMs for second-order semilinear elliptic and parabolic
interface problems in two-dimensional convex polygonal domains. The approximation theory
of Brezzi-Rappaz-Raviart was used to obtain an optimal error estimate in the H1-norm for
semilinear elliptic problems, and the linear theory of interface problems was used to obtain a
similar estimate for semilinear parabolic problems. They assumed that the mesh can be fitted
exactly to the arbitrary interface, which might not be so in practice.

Deka and Ahmed [8] improved on the works of [5, 23] and also confirmed the optimal
error estimates in the L2(0, T ;L2(Ω))-norm. Optimal error estimates in the L2(L2) and
L2(H1) norms were established for linear semi-discrete schemes, and a similar error estimate
was also extended to semilinear interface problems.
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Recently, Chaoxia Yang [27] studied the convergence of the finite element solution of
a nonlinear parabolic interface problem with a linear source term. A linearized two-step
backward difference scheme was used for the time discretization, and convergence rates of
almost optimal order in the L2-norm were established for the fully discrete scheme.

It is known that spatial and time discretizations are sources of errors in the FEM, however,
research has largely focused on the use of the FEM for linear parabolic interface problems with
emphasis on the improvement on the spatial discretization, whereas not much work considered
improvements on the time discretization. The most-widely used first-order backward Euler
time discretization is of low accuracy in time. Therefore this work is designed to analyze and
demonstrate (with relevant examples) the convergence rate of the finite element solution with
a four-step time discretization to the exact solution under certain regularity assumptions on the
data of the problem. The result of this work shows that almost optimal order of convergence
in the L2(Ω)-norm can be obtained when the integrals involved are evaluated by numerical
quadrature and in the case that the mesh cannot be fitted to the interface. In this study, the
linear theories of interface and non-interface problems and the Sobolev imbedding inequality
are used. Other tools utilized in this paper are approximation properties for linear interpolation
operators and projection operators.

We employ the standard notation for Sobolev spaces and norms in this paper. For m ≥ 0
and real p with 1 ≤ p ≤ ∞, let Wm,p denote the Sobolev space of order m. For the case
p = 2, we write Wm,p = Hm. Hm

0 (Ω) represents the closed subspace of Hm(Ω) that is the
closure of C∞0 (Ω) with respect to the norm of Hm(Ω). We use the definition and notation
in [1] when m is fractional.

For a given Banach space B, we define

u ∈Wm,p(0, T ;B)⇔
u(t) ∈ B for a.e. t ∈ (0, T ) and

∑m
i=0

∫ T
0

∥∥∥∂iu
∂ti (t)

∥∥∥p
B
dt < 0 1 ≤ p <∞,

u(t) ∈ B for a.e. t ∈ (0, T ) and
∑m
i=0 ess sup0≤t≤T

∥∥∥∂iu
∂ti (t)

∥∥∥
B
< 0 p =∞,

equipped with the norms

‖u‖Wm,p(0,T ;B) =


[∑m

i=0

∫ T
0

∥∥∥∂iu
∂ti (t)

∥∥∥p
B
dt
]1/p

1 ≤ p <∞,∑m
i=0 ess sup0≤t≤T

∥∥∥∂iu
∂ti (t)

∥∥∥
B

p =∞.

We write L2(0, T ;B) = W 0,2(0, T ;B) and Hm(0, T ;B) = Wm,2(0, T ;B). We shall use
the following spaces

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2), Y = L2(Ω) ∩H1(Ω1) ∩H1(Ω2)

equipped with the norms

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2) ∀v ∈ X,
‖v‖Y = ‖v‖L2(Ω) + ‖v‖H1(Ω1) + ‖v‖H1(Ω2) ∀v ∈ Y.

The paper is organized as follows. In Section 2, we describe a finite element discretization
of the problem, establish an error estimate for the interpolation operator, and state approxima-
tions across the interface. In Section 3, we establish the stability of the method and prove a
convergence rate of almost optimal order for the fully discrete scheme. A discrete maximum
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principle of the scheme is established in Section 4, and numerical examples are presented in
Section 5. A conclusion is given in Section 6. Throughout this paper, C is a generic positive
constant (which is independent of the mesh parameter h and the time step size k) and may
take on different values at different occurrences. Regarding the regularity of solutions of the
interface problem (1.1)–(1.3), we have the following results:

THEOREM 1.1. Let f ∈ H1(0, T ;L2(Ω)), g ∈ H1(0, T ;H1/2(Γ)), and u0 ∈ H1
0 (Ω).

Then the problem (1.1)–(1.3) has a unique solution

u ∈ L2(0, T ;X) ∩H1(0, T ;Y )

and

‖u‖L2(0,T ;X) ≤ C
[
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖H1(Ω) + ‖g(0)‖H1/2(Γ)

+ ‖g(T )‖H1/2(Γ) + ‖g‖L2(0,T ;H1/2(Γ))

]
.

(1.4)

Proof. This follows from [22, Theorem 2.1, p. 736].
In what follows, we obtain the weak form by multiplying (1.1) by a test function

v ∈ H1
0 (Ω) and using Green’s identity yielding

(1.5) (ut, v) +A(u, v) = (f, v) + 〈g, v〉Γ ∀v(t) ∈ H1
0 (Ω), a.e. t ∈ [0, T ],

where

(φ, ψ) =

∫
Ω

φψ dx A(φ, ψ) =

∫
Ω

[a(x, t)∇φ · ∇ψ + b(x, t)φψ] dx

〈φ, ψ〉Γ =

∫
Γ

φψ dΓ .

We recall that for u ∈ H1(Ω), the boundary values of u (i.e. u|∂Ω) are defined in H1/2(∂Ω),
the trace space of H1(Ω). Similarly, the trace space on the interface Γ is H1/2(Γ). The trace
operator from H1(Ω) to H1/2(∂Ω) is continuous and satisfies the embedding

‖z‖H1/2(∂Ω) ≤ C‖z‖H1(Ω) ∀z ∈ H1(Ω).

See Adams [1] and Evans [9] for more information on the trace operator.

2. The finite element discretization. Th denotes a partition of Ω into disjoint triangles
K (called elements) such that no vertex of any triangle lies in the interior of any side of another
triangle. The domain Ω1 is approximated by a domain Ωh1 with a polygonal boundary Γh
whose vertices all lie on the interface Γ. Ωh2 represents the domain with ∂Ω and Γh as its
exterior and interior boundaries, respectively.

Let hK be the diameter of an element K ∈ Th and h = maxK∈Th hK . Let T ?h denote the
set of all elements that are intersected by the interface Γ:

T ?h = {K ∈ Th : K ∩ Γ 6= ∅}.

K ∈ T ?h is called an interface element, and we write Ω?h =
⋃
K∈T ?

h
K. The triangulation Th

of the domain Ω satisfies the following conditions:
(i) Ω̄ =

⋃
K∈Th K̄.

(ii) If K̄1, K̄2 ∈ Th and K̄1 6= K̄2, then either K̄1 ∩ K̄2 = ∅ or K̄1 ∩ K̄2 is a common vertex
or a common edge.
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FIG. 2.1. A typical interface element.

(iii) Each K ∈ Th is either in Ωh1 or Ωh2 and has at most two vertices lying on Γh.
(iv) For each element K ∈ Th, let rK and r̄K be the diameters of its inscribed and circum-

scribed circles, respectively. It is assumed that, for some fixed h0 > 0, there exist
two positive constants C0 and C1, independent of h, such that

C0rK ≤ h ≤ C1r̄K ∀h ∈ (0, h0).

For any interface element K ∈ T ?h , let K1 = K ∩ Ω1 and K2 = K ∩ Ω2. It was shown by
Chen and Zou [5] that

either meas(K1) ≤ Ch3
K or meas(K2) ≤ Ch3

K .

Let Sh ⊂ H1
0 (Ω) denote the space of continuous piecewise linear functions on Th vanishing

on ∂Ω. The FE solution uh(x, t) ∈ Sh is represented as

uh(x, t) =

Nh∑
j=1

αj(t)φj(x) ,

where each basis function φj , j = 1, 2, . . . , Nh, is a pyramid function with unit height. For
the approximation ĝ(t), let {zj}nh

j=1 be the set of all nodes of the triangulation Th that lie on
the interface Γ and {ψj}nh

j=1 be the hat functions corresponding to {zj}nh
j=1 in the space Sh.

See [5, 6] for the construction of such finite element spaces. Let πh : C(Ω̄) → Sh be the
Lagrange interpolation operator corresponding to the space Sh. The standard interpolation
theory cannot be applied because the solutions of interface problems are non-smooth or even
discontinuous across the interface. We follow Chen and Zou [5] for the proof of the following
result.

LEMMA 2.1. For the linear interpolation operator πh : C(Ω̄) → Sh, we have, for
m = 0, 1 and 0 < h < 1,

(2.1) ‖u− πhu‖Hm(Ω) ≤ Ch2−m
(

1 +
1

| lnh|

)1/2

‖u‖X ∀u ∈ X.

Proof. By standard finite element interpolation theory [5, 6, 26], for any triangle
K ∈ Th\T ∗h ,

(2.2) ‖u− πhu‖Hm(K) ≤ Ch2−m‖u‖H2(K), for m = 0, 1.
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Now, for any element K ∈ T ∗h , using Hölder’s inequality and the fact that meas(K1) ≤ Ch3,
we have

‖u− πhu‖2Hm(K1) ≤
∑
|α|≤m

‖Dα(u− πhu)‖2L2(K1)

≤ [meas(K1)]
p−2
p

 ∑
|α|≤m

‖Dα(u− πhu)‖pL2(K1)

2/p

≤ Ch
3(p−2)

p

 ∑
|α|≤m

‖Dα(u− πhu)‖pL2(K1)

2/p

for p > 2.

Therefore,

‖u− πhu‖Hm(K1) ≤ Ch
3(p−2)

2p ‖u− πhu‖Wm,p(Ki) ≤ Ch
3(p−2)

2p ‖u− πhu‖Wm,p(K).

Again by standard finite element interpolation theory,

‖u− πhu‖Hm(K1) ≤ Ch
3p−6
2p +1−m‖u‖W 1,p(K) for any p > 2, m = 0, 1.

Recall the Sobolev embedding inequality in two dimensions [21],

‖φ‖Lp(Ωi) ≤ Cp
1/2‖φ‖H1(Ωi) ∀p > 2, φ ∈ H1(Ωi), i = 1, 2.

Therefore,

(2.3) ‖u− πhu‖Hm(K1) ≤ Ch
3p−6
2p +1−mp1/2‖u‖H1(K) for any p > 2, m = 0, 1.

By means of the extensions [5],

(2.4) ‖u− πhu‖Hm(K2) ≤ Ch2−m‖u‖H2(K), m = 0, 1,

it follows from (2.3) and (2.4) that

(2.5)
∑
K∈T ∗

h

‖u− πhu‖2Hm(K) ≤ Ch
4−2m

[
1 + ph1−6/p

]
‖u‖2X .

From (2.2) and (2.5), we have

‖u− πhu‖2Hm(Ω) ≤ Ch
4−2m‖u‖2X + Ch4−2mph1−6/p‖u‖2X , m = 0, 1, p > 2.

Since p > 2, we take

p = 2

(
1 +

1

| lnh|

)
> 2 for 0 < h < 1,

and (2.1) follows.
For the approximation property of gh to the interface function g, we have the following

result (cf. [5]).
LEMMA 2.2. Assume that g ∈ H2(Γ). Then we have

|〈g, vh〉Γ − 〈gh, vh〉Γh
| ≤ Ch3/2‖g‖H2(Γ)‖vh‖H1(Ω?

h) ∀vh ∈ Sh.

We recall some results which will be used in our analysis; see [7, 24] for proofs.
LEMMA 2.3. Let Ω?h be the union of all interface triangles and f ∈ H2(Ω) for t ∈ [0, T ].

Then we have

‖v‖H1(Ω?
h) ≤ Ch1/2‖v‖X ∀v ∈ X,

|(f, v)− (f, v)h| ≤ Ch2‖f‖H2(Ω)‖v‖H1(Ω).
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3. Error estimates. We discuss a fully discrete scheme based on a four-step backward
difference approximation and analyze almost optimal order error estimates in the L2(Ω)-norm.
The finite element analysis of parabolic non-interface problems is described in Thomee [26]
and the references therein. The interval [0,T] is divided into M (for simplicity) equally-spaced
subintervals:

0 = t0 < t1 < . . . < tM = T

with tn = nk, k = T/M being the time step. Let In = (tn−1, tn] be the nth subinterval, and
let

un = u(x, tn), fn = f(x, tn), and gn = g(x, tn).

For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the backward difference quotients defined
by

∂1wn =
wn − wn−1

τ1
n = 1, 2, . . . ,M,

∂2wn =
3wn − 4wn−1 + wn−2

2τ2
n = 2, 3, . . . ,M,

∂3wn =
11wn − 18wn−1 + 9wn−2 − 2wn−3

6τ3
n = 3, 4, . . . ,M,

∂4wn =
25wn − 48wn−1 + 36wn−2 − 16wn−3 + 3wn−4

12k
n = 4, 6, . . . ,M,

where τ1, τ2, and τ3 are the time steps used to obtain U1
h , U2

h , and U3
h , respectively. The fully

discrete finite element approximation to (1.5) is defined as follows: with U0
h = πhu0, find

Unh ∈ Sh such that

(∂1U1
h , vh)h +Ah(U1

h , vh) = (f1, vh)h + 〈g1
h, vh〉Γh

∀vh ∈ Sh,
(∂2U2

h , vh)h +Ah(U2
h , vh) = (f2, vh)h + 〈g2

h, vh〉Γh
∀vh ∈ Sh,

(∂3U3
h , vh)h +Ah(U3

h , vh) = (f3, vh)h + 〈g3
h, vh〉Γh

∀vh ∈ Sh,
(∂4Unh , vh)h +Ah(Unh , vh) = (fn, vh)h + 〈gnh , vh〉Γh

∀vh ∈ Sh,
n = 4, 5, . . . ,M,

(3.1)

where (ψ, φ)h : H1(Ω) × H1(Ω) → R, Ah(φ, ψ) : H1(Ω) × H1(Ω) → R, and
〈g(x, t), vh〉Γh

: H1/2(Γ)×H1(Ω)→ R are given by

(ψ, φ)h =
∑
K∈Th

∫
K

ψφ dx, Ah(φ, ψ) =
∑
K∈Th

∫
K

[a(x, t)∇φ · ∇ψ + b(x, t)φψ] dx ,

〈g(x, t), vh〉Γh
=

∫
Γh

g(x, t)φ dx ∀φ, ψ ∈ H1(Ω), g ∈ H1/2(Γ), t ∈ [0, T ].

Correspondingly, (ψ, φ)h : H1(Ω) ×H1(Ω) → R, Ah(φ, ψ) : H1(Ω) ×H1(Ω) → R and
〈g(x, t), vh〉Γh

: H1/2(Γ) × H1(Ω) → R are the discrete versions of (ψ, φ), A(φ, ψ), and
〈g(x, t), vh〉Γ, respectively, and are obtained numerically using quadrature schemes. See [13]
and the reference therein for more information on numerical integration in the FEM.
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The scheme (3.1) is zero-stable. To see this, we obtain the first characteristic polynomials

ρ1(y) = y − 1

ρ2(y) =
3

2
y2 − 2y +

1

2

ρ3(y) =
11

6
y3 − 3y2 +

3

2
y − 1

3

ρ4(y) =
25

12
y4 − 4y3 + 3y2 − 4

3
y +

1

4
.

The roots of these polynomials have moduli less than one, and the roots with modulus one are
simple. See [19] for more information on zero-stability of multistep methods. The analysis of
this work is done with the assumption that ∂

iu
∂ti exist for i = 1, . . . , 5. It can be shown using a

Taylor expansion that

‖Unh − 2Un−1
h + Un−2

h ‖L2(Ω) ≤ (∆t)2λ0

‖Unh − 3Un−1
h + 3Un−2

h − Un−3
h ‖L2(Ω) ≤ (∆t)3λ1

‖Unh − 4Un−1
h + 6Un−2

h − 4Un−3
h + Un−4

h ‖L2(Ω) ≤ (∆t)4λ2

(3.2)

for sufficiently small ∆t and λ0, λ1, λ2 ≥ 0. We have the following stability result:
LEMMA 3.1. Let ai(x, t), bi(x, t), and fi(x, t) be continuous on Ωi × (0, T ], i = 1, 2,

and suppose that g(x, t) ∈ L2(0, T ;H1/2(Γ)). Then there exists a constant C independent of
k and h such that

‖Unh ‖2L2(Ω) + k‖Unh ‖2H1(Ω)

≤ C

‖U0
h‖2L2(Ω) + k

n∑
j=1

(
‖f j‖2L2(Ω) + ‖gjh‖

2
H1/2(Γh)

)
+ k3

 ,(3.3)

for n = 1 . . . and 0 < k ≤ k0 < 1.
Proof. We take τ1 = τ2 = τ3 = k. Let vh = U1

h in the first equation in (3.1). Then

‖U1
h‖2L2(Ω) + c1k‖U1

h‖2H1(Ω) ≤ ‖U
1
h‖L2(Ω)‖U0

h‖L2(Ω) + k‖f1‖L2(Ω)‖U1
h‖L2(Ω)

+ k‖g1
h‖H1/2(Γh)‖U1

h‖L2(Ω).

By Young’s inequality,

1

2
(1− k)‖U1

h‖2L2(Ω) + c1k‖U1
h‖2H1(Ω) ≤

1

2
‖U0

h‖2L2(Ω) + k‖f1‖2L2(Ω) + k‖g1
h‖2H1/2(Γh).

For 0 < k ≤ k0 < 1, there exists a constant C0 = 1
1−k0 such that

1 < (1− k)−1 ≤ (1 + C0k) ≤ C0.

Therefore,

‖U1
h‖2L2(Ω) + 2c1k‖U1

h‖2H1(Ω) ≤ (1 + C0k)‖U0
h‖2L2(Ω)

+ 2(1 + C0k)k
(
‖f1‖2L2(Ω) + ‖g1

h‖2H1/2(Γh)

)
.

(3.4)
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Let vh = U2
h in (3.1). Then

1

k
‖U2

h‖2L2(Ω) + c1‖U2
h‖2H1(Ω) ≤

1

k
‖U2

h‖L2(Ω)‖U1
h‖L2(Ω) + ‖f2‖L2(Ω)‖U2

h‖L2(Ω)

+
1

2k
‖U2

h‖L2(Ω)‖U2
h − 2U1

h + U0
h‖L2(Ω)

+ ‖g2
h‖H1/2(Γh)‖U2

h‖L2(Ω).

By Young’s inequality and (3.2), we have

1

2
(1− k) ‖U2

h‖2L2(Ω) + c1k‖U2
h‖2H1(Ω)

≤ 1

2
‖U1

h‖2L2(Ω) + 2k‖f2‖2L2(Ω) + 2k‖g2
h‖2H1/2(Γh) +

1

4
λ2

0k
3.

(3.5)

For 0 < k ≤ k0, (3.5) becomes

‖U2
h‖2L2(Ω) + 2c1k‖U2

h‖2H1(Ω) ≤ (1 + C0k)‖U1
h‖2L2(Ω)

+ 4(1 + C0k)k
{
‖f2‖2L2(Ω) + ‖g2

h‖2H1/2(Γh)

}
+

1

2
(1 + C0k)λ2

0k
3.

(3.6)

By a similar argument as that leading to (3.6), we obtain

‖U3
h‖2L2(Ω) + 2c1k‖U3

h‖2H1(Ω) ≤ (1 + C0k)‖U2
h‖2L2(Ω)

+ 4(1 + C0k)k
{
‖f3‖2L2(Ω) + ‖g3

h‖2H1/2(Γh)

}
+ (1 + C0k)λ2

0k
3 +

4

9
(1 + C0k)λ2

1k
5.

(3.7)

It follows from (3.4)–(3.7) that

‖U3
h‖2L2(Ω) + 2c1k‖U3

h‖2H1(Ω)

≤ (1 + C0k)3‖U0
h‖2L2(Ω)

+ 4k

3∑
j=1

{
(1 + C0k)4−j

(
‖f j‖2L2(Ω) + ‖gjh‖

2
H1/2(Γh)

)}

+ k3λ2
0

2∑
j=1

(1 + C0k)2−j +
4

9
k5(1 + C0k)λ2

1.

(3.8)

For n = 4, 5, . . ., a simple calculation shows that

1

k
‖Unh ‖2L2(Ω) + c1‖Unh ‖2H1(Ω) ≤

1

k
‖Un−1

h ‖L2(Ω)‖Unh ‖L2(Ω) +
1

4
k3λ2‖Unh ‖L2(Ω)

+
1

3
k2λ1‖Unh ‖L2(Ω) +

1

2
kλ0‖Unh ‖L2(Ω)

+ ‖Unh ‖L2(Ω)‖fn‖L2(Ω) + ‖Unh ‖L2(Ω)‖gnh‖H1/2(Γh).

By Young’s inequality, we have

1

2
(1− k) ‖Unh ‖2L2(Ω) + c1k‖Unh ‖2H1(Ω)

≤ 1

2
‖Un−1

h ‖2L2(Ω) + 2k‖fn‖2L2(Ω) + 2k‖gnh‖2H1/2(Γ)

+
3

16
k7λ2

2 +
1

3
k5λ2

1 +
3

4
k3λ2

0.

(3.9)
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For 0 < k ≤ k0 with k0 < 1, (3.9) becomes

‖Unh ‖2L2(Ω) + 2c1k‖Unh ‖2H1(Ω) ≤ (1 + C0k)‖Un−1
h ‖2L2(Ω)

+ 4(1 + C0k)k
(
‖fn‖2L2(Ω) + ‖gnh‖2H1/2(Γ)

)
+ 2(1 + C0k)

(
3

16
k7λ2

2 +
1

3
k5λ2

1 +
3

4
k3λ2

0

)
.

By iteration on n, we obtain

‖Unh ‖2L2(Ω) + 2c1k‖Unh ‖2H1(Ω)

≤ (1 + C0k)n−3‖U3
h‖2L2(Ω)

+ 4k

n∑
j=4

{
(1 + C0k)n−j+1

(
‖f j‖2L2(Ω) + ‖gjh‖

2
H1/2(Γh)

)}
+ 2

(
3

16
k7λ2

2 +
1

3
k5λ2

1 +
3

4
k3λ2

0

) n∑
j=4

(1 + C0k)n−j+1.

(3.10)

Now the bound (3.3) follows from (3.8) and (3.10).
The result below establishes the convergence of the fully discrete solution to the exact

solution in the L2(Ω)-norm.
THEOREM 3.2. Let un and Unh be the solutions of (1.5) and (3.1), respectively. Sup-

pose that ai(x, t), bi(x, t), and fi(x, t) are continuous on Ωi × (0, T ], i = 1, 2, and let
g(x, t) ∈ L2(0, T ;H2(Γ)). Then there exists a positive constant C independent of h and k
such that

‖un − Unh ‖L2(Ω) ≤
[
k4 + h2

(
1 +

1

| log h|

)]
C.

The proof of this result requires some preparations:
LEMMA 3.3. For all νh, ωh ∈ Sh, we have

(3.11) |A(νh, ωh)−Ah(νh, ωh)| ≤ Ch‖νh‖H1(Ω?
h)‖ωh‖H1(Ω?

h) .

Proof. Let K̃ denote either K1 or K2; see Figure 2.1.

|A(νh, ωh)−Ah(νh, ωh)| ≤ C
∑
K∈T ?

h

∫
K̃

{|∇νh · ∇ωh|+ |νhωh|}

≤ C
∑
K∈T ?

h

{
‖∇νh‖L2(K̃)‖∇ωh‖L2(K̃) + ‖νh‖L2(K̃)‖ωh‖L2(K̃)

}
≤ C

∑
K∈T ?

h

{
h‖∇νh‖L2(K)‖∇ωh‖L2(K) + h−1‖νh‖L2(K)‖ωh‖L2(K)

}
.

We have made use of the fact that νh and ωh are linear on K ∈ Th and meas(K̃) ≤ Ch3.
Now, (3.11) follows using an inverse inequality [21].

Let Ph : X ∩H1(Ω)→ Sh be the elliptic projection of the exact solution u in Sh defined
by

(3.12) Ah(Phν, φ) = A(ν, φ) ∀φ ∈ Sh, t ∈ [0, T ].
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For this projection, we have the following result.
LEMMA 3.4. Let ai(x, t), bi(x, t) be continuous on Ωi × (0, T ] for i = 1, 2. Assume that

u ∈ X ∩H1
0 , and let Phu be defined as in (3.12). Then

‖Phu− u‖H1(Ω) ≤ Ch
(

1 +
1

| lnh|

)1/2

‖u‖X ,

‖Phu− u‖L2(Ω) ≤ Ch2

(
1 +

1

| lnh|

)
‖u‖X .

(3.13)

Proof. For ρ > 0, we have with an arbitrary φ ∈ Sh

ρ‖Phu− u‖2H1(Ω) ≤ Ah(Phu− u, Phu− u)

≤ Ah(Phu, Phu− φ)−Ah(u, Phu− φ)

+Ah(Phu− u, φ− u),

≤ |A(u, Phu− φ)−Ah(u, Phu− φ)|
+ |Ah(Phu− u, φ− u)|.

Using Hölder’s inequality with meas(K̃) ≤ Ch3, we obtain

ρ‖Phu− u‖2H1(Ω) ≤ Ch‖u‖H1(Ω)‖Phu− φ‖H1(Ω) + ‖Phu− u‖H1(Ω)‖φ− u‖H1(Ω)

≤ Ch‖u‖H1(Ω)‖Phu− u‖H1(Ω) + Ch‖u‖H1(Ω)‖u− φ‖H1(Ω)

+ ‖Phu− u‖H1(Ω)‖φ− u‖H1(Ω)

≤ εCh2‖u‖2H1(Ω) +
3

4ε
‖Phu− u‖2H1(Ω) + ε‖φ− u‖2H1(Ω).

Using (2.1) with ε = 2/ρ and φ = πhu, we have

(3.14) ‖Phu− u‖H1(Ω) ≤ Ch
(

1 +
1

| lnh|

)1/2

‖u‖X ∀u ∈ X.

Now consider the dual problem

−∇ · (a(x, t)∇ψ) + b(x, t)ψ = Phu− u in Ω,

ψ = 0 on ∂Ω,

whose weak form is

(3.15) A(ψ, φ) = (Phu− u, φ) ∀φ ∈ H1
0 (Ω).

By the Poincaré inequality [2],

µ1‖ψ‖2H1(Ω) ≤ A(ψ,ψ) = (Phu− u, ψ) ≤ ‖Phu− u‖L2(Ω)‖ψ‖L2(Ω)

≤ C‖Phu− u‖L2(Ω)‖ψ‖H1(Ω).

Thus, we arrive at

(3.16) ‖ψ‖H1(Ω) ≤ C‖Phu− u‖L2(Ω).

From the definition of X and the fact that ψ ∈ H1
0 (Ω),

‖ψ‖X ≤ C‖ψ‖H2(Ω) ≤ C‖∆ψ‖L2(Ω) ≤ C‖a∆ψ‖L2(Ω)

= C‖Phu− u+∇a · ∇ψ − bψ‖L2(Ω)

≤ C‖Phu− u‖L2(Ω).(3.17)
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In the last inequality, we have made use of (3.16) and the fact that a and b are bounded. Now,
it follows from (3.15) that for all φ ∈ Sh,

‖Phu− u‖2L2(Ω) = A(Phu− u, ψ) = A(Phu− u, ψ − φ) +A(Phu− u, φ)

≤ C‖Phu− u‖H1(Ω)‖ψ − φ‖H1(Ω) + |A(Phu, φ)−Ah(Phu, φ)|.

By (2.1), (3.14), and Lemma 3.3 with φ = πhψ, we obtain

‖Phu− u‖2L2(Ω) ≤ Ch
2

(
1 +

1

| lnh|

)
‖u‖X‖ψ‖X + Ch‖Phu‖H1(Ω?

h)‖πhψ‖H1(Ω?
h).

It follows from Lemma 2.3 that

‖Phu− u‖2L2(Ω) ≤ Ch
2

(
1 +

1

| lnh|

)
‖u‖X‖ψ‖X + Ch2‖Phu‖H1(Ω)‖πhψ‖H1(Ω).

It is easy to see from (3.12) and the definition of πh that ‖πhψ‖H1(Ω) ≤ C‖ψ‖H1(Ω) and
‖Phψ‖H1(Ω) ≤ C‖ψ‖H1(Ω) for C > 0, therefore

‖Phu− u‖2L2(Ω) ≤ Ch
2

(
1 +

1

| lnh|

)
‖u‖X‖ψ‖X .(3.18)

Now (3.13) follows from (3.14), (3.17), and (3.18).
LEMMA 3.5. Let ai(x, t), bi(x, t) be continuous on Ωi × (0, T ], for i = 1, 2. Assume

that u ∈ X ∩H1
0 , and let Phu be defined as in (3.12). Then

‖(Phu− u)t‖H1(Ω) ≤ Ch
(

1 +
1

| lnh|

)1/2

(‖u‖X + ‖ut‖X) ,

‖(Phu− u)t‖L2(Ω) ≤ Ch2

(
1 +

1

| lnh|

)
(‖u‖X + ‖ut‖X) .

(3.19)

Proof. Let ξ = Phu − u, and assume that at is uniformly bounded. Following the
argument of Thomee [26], we have for ρ > 0,

ρ‖ξt‖2H1(Ω) ≤ A(ξt, ξt) = A(ξt, φ− ut) +A(ξt, (Phu)t − φ)

= A(ξt, φ− ut) +

∫
Ω

[
∂

∂t
(a∇ξ)− ∂a

∂t
∇ξ
]
· ∇((Phu)t − φ) dx

+

∫
Ω

[
∂

∂t
(bξ)− ∂b

∂t
ξ

]
((Phu)t − φ) dx

≤ ρ

2
‖ξt‖2H1(Ω) +

1

2ρ
‖φ− ut‖2H1(Ω) + ‖ξ‖2H1(Ω) + ‖(Phu)t − φ‖2H1(Ω).

The last inequality is obtained after some calculations using Young’s inequality. From
Lemma 2.1 and (3.13) with φ = πhut, we obtain

‖(Phu− u)t‖H1(Ω) ≤ Ch
(

1 +
1

| lnh|

)1/2

(‖u‖X + ‖ut‖X).

Following the duality argument similar to the one that led to (3.18), it is not difficult to arrive
at

‖(Phu− u)t‖L2(Ω) ≤ Ch2

(
1 +

1

| lnh|

)
(‖u‖X + ‖ut‖X).
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Proof of Theorem 3.2. Letting zn = Phu
n − Unh in (3.1) and using (3.12), we have

(3.20) (∂4zn, vh)h +Ah(zn, vh) = B1 +B2,

where

B1 = (∂4(Phu
n − un), vh)h + (∂4un − unt , vh) + (∂4un, vh)h − (∂4un, vh),

B2 = (fn, vh)− (fn, vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh
.

With vh = zn, we have

B1 ≤ ‖∂4(Phu
n − un)‖2L2(Ω) +

1

2
‖zn‖2L2(Ω) + ‖∂4un − unt ‖2L2(Ω),

+ γCh4‖∂4un‖2X +
1

4γ
‖zn‖2H1(Ω).

(3.21)

Using Lemma 2.2, Lemma 2.3, and the fact that ‖Dαzn‖L2(Ω) = 0 for |α| = 2, we have

B2 ≤ Ch2‖fn‖H2(Ω)‖zn‖H1(Ω) + Ch2‖gn‖H2(Γ)‖zn‖H1(Ω)

≤ C(γ)h4
(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)
+

1

2γ
‖zn‖2H1(Ω).(3.22)

Substituting (3.21) and (3.22) into (3.20), we find, for c1 > 0,

1

k
‖zn‖2L2(Ω) + c1‖zn‖2H1(Ω)

≤ C

k

(
‖zn‖L2(Ω)‖zn−1‖L2(Ω) + ‖zn‖L2(Ω)‖zn−2‖L2(Ω)

+ ‖zn‖L2(Ω)‖zn−3‖L2(Ω) + ‖zn‖L2(Ω)‖zn−4‖L2(Ω)

)
+ ‖∂4(Phu

n − un)‖2L2(Ω) +
1

2
‖zn‖2L2(Ω)

+ ‖∂kun − unt ‖2L2(Ω) + Ch4‖∂4un‖2X

+ Ch4
(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)
+

3

4γ
‖zn‖2H1(Ω).

With γ = 3
4c1

, we obtain(
1− 4

7
k

)
‖zn‖2L2(Ω) ≤ C

(
‖zn−1‖2L2(Ω) + ‖zn−2‖2L2(Ω)

+ ‖zn−3‖2L2(Ω) + ‖zn−4‖2L2(Ω)

)
+ C

[
k‖∂4(Phu

n − un)‖2L2(Ω) + k‖∂4un − unt ‖2L2(Ω)

+ kh4‖∂4un‖2X + kh4
(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)]
.

(3.23)
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For k ∈ (0, 1) it holds that
(
1− 4

7k
)−1

< 1 + 4
3k <

7
3 , and therefore (3.23) becomes

‖zn‖2L2(Ω) ≤ C
[
‖zn−1‖2L2(Ω) + ‖zn−2‖2L2(Ω) + ‖zn−3‖2L2(Ω) + ‖zn−4‖2L2(Ω)

+ k‖∂4(Phu
n − un)‖2L2(Ω) + k‖∂4un − unt ‖2L2(Ω) + kh4‖∂4un‖2X

+ kh4
(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)]
,

for n = 4, . . . ,M . By iteration on n, we have

‖zn‖2L2(Ω) ≤ C
[
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω) + ‖z2‖2L2(Ω) + ‖z3‖2L2(Ω)

]
+ Ck

n∑
j=4

‖∂4(uj − Phuj)‖2L2(Ω) + Ch4k

n∑
j=4

(‖f j‖2H2(Ω) + ‖gj‖2H2(Γ))

+ Ck

n∑
j=4

‖∂4uj − ujt‖2L2(Ω) + Ch4k
n∑
j=4

‖∂4uj‖2X .

After a simple calculation, we obtain

‖zn‖2L2(Ω) ≤ C
[
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω) + ‖z2‖2L2(Ω) + ‖z3‖2L2(Ω)

]
+ C

∫ tn

0

‖(u− Phu)t‖2L2(Ω) dt+ Ck8

∫ tn

0

‖∂
5u

∂t5
‖2L2(Ω) dt

+ Ch4

∫ tn

0

[
‖u‖2X + ‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
dt

≤ C
[
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω) + ‖z2‖2L2(Ω) + ‖z3‖2L2(Ω)

]
+ Ch4

(
1 +

1

| log h|

)2

×∫ tn

0

[
‖u‖2X + ‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
dt

+ Ck8

∫ tn

0

‖∂
5u

∂t5
‖2L2(Ω) dt

(3.24)

by applying (3.13) and (3.19) to the above inequalities. Let z1 = Phu
1 − U1

h . From (3.12)
and (3.1), we have

(∂1z1, vh)h +Ah(z1, vh) = (∂1(Phu
1 − u1), vh)h + (∂1u1 − u1

t , vh)

+ (∂1u1, vh)h − (∂1u1, vh)

+ (f1, vh)− (f1, vh)h + 〈g1, vh〉Γ − 〈g1
h, vh〉Γh

.

With vh = z1, we have

1

τ1
‖z1‖2L2(Ω) + µ1‖z1‖2H1(Ω) ≤

1

τ1
‖z0‖L2(Ω)‖z1‖L2(Ω) + ‖∂1(Phu

1 − u1)‖2L2(Ω)

+
1

2
‖z1‖2L2(Ω) + ‖∂1u1 − u1

t‖2L2(Ω) + Ch4‖∂1u1‖2X

+ Ch4
(
‖f1‖2H2(Ω) + ‖g1‖2H2(Γ)

)
+

3

4γ
‖z1‖2H1(Ω),
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where we have made use of Lemma 2.2 and Lemma 2.3 in the last inequality. With γ = 3
4µ1

,
we obtain(

1− 2

3
τ1

)
‖z1|2L2(Ω) ≤ ‖z

0‖2L2(Ω) + τ1‖∂1(Phu
1 − u1)‖2L2(Ω) + τ1‖∂1u1 − u1

t‖2L2(Ω)

+ τ1h
4‖∂1u1‖2X + τ1Ch

4
(
‖f1‖2H2(Ω) + ‖g1‖2H2(Γ)

)
.

For τ1 ∈ (0, 1), there is a constant C > 0 such that
(
1− 2

3τ1
)−1 ≤ C, therefore,

‖z1‖2L2(Ω) ≤ C
[
‖z0‖2L2(Ω) + τ1‖∂1(Phu

1 − u1)‖2L2(Ω) + τ1‖∂1u1 − u1
t‖2L2(Ω)

+ τ1h
4‖∂1u1‖2X + τ1h

4
(
‖f1‖2H2(Ω) + ‖g1‖2H2(Γ)

)]
≤ C‖z0‖2L2(Ω) + C

∫ t1

0

‖(u− Phu)t‖2L2(Ω) dt+ Cτ2
1

∫ t1

0

‖utt‖2L2(Ω) dt

+ Ch4

∫ t1

0

[
‖u‖2X + ‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
dt

≤ C‖z0‖2L2(Ω) + Cτ2
1

∫ t1

0

‖utt‖2L2(Ω) dt

+ Ch4

(
1 +

1

| log h|

)2 ∫ t1

0

[
‖u‖2X + ‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
dt.

(3.25)

Here, we employ (3.13) and (3.19) in the above inequalities. By similar arguments to the one
that led to (3.25), we arrive at

‖z2‖2L2(Ω) ≤ C
[
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω)

]
+ Cτ4

2

∫ t2

0

‖uttt‖2L2(Ω) dt

+ Ch4

(
1 +

1

| log h|

)2

×∫ t2

0

[
‖u‖2X + ‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
dt,

(3.26)

‖z3‖2L2(Ω) ≤ C
[
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω) + ‖z2‖2L2(Ω)

]
+ Cτ6

3

∫ t3

0

‖utttt‖2L2(Ω) dt

+ Ch4

(
1 +

1

| log h|

)2

×∫ t3

0

[
‖u‖2X + ‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
dt.

(3.27)

From (3.24)–(3.27) with k ∈ (0, 1), τ1 ≤ k4, τ2 ≤ k2, and τ3 ≤ k4/3, we have

‖zn‖2L2(Ω) ≤ C‖z
0‖2L2(Ω) + Ck8

∫ tn

0


5∑
j=2

‖∂
ju

∂tj
‖2L2(Ω)

 dt

+ Ch4

(
1 +

1

| log h|

)2

×∫ tn

0

[
‖u‖2X + ‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
dt.

(3.28)
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We obtain, from (3.13) and (3.28) with U0
h = πhu0,

‖un − Unh ‖2L2(Ω) ≤ 2‖un − Phun‖2L2(Ω) + 2‖zn‖2L2(Ω)

≤ Ch4

(
1 +

1

| log h|

)2{
‖u0‖2X + ‖un‖2X

+

∫ tn

0

[
‖u‖2X + ‖ut‖2X + ‖g‖2H2(Γ)

]
dt

}

+ Ck8

∫ tn

0


5∑
j=2

‖∂jt u‖2L2(Ω)

 dt.

(3.29)

The result follows from (3.29).
REMARK 3.6. The initial three steps of the scheme are constructed using a low-order

time discretization scheme. However, this does not affect the asymptotic convergence since the
scheme is stable. Moreover, in the error analysis, the step sizes of these low-order discretization
are chosen to be sufficiently small to guarantee the convergence rate.

REMARK 3.7. In the analysis, it was assumed that ∂
5u
∂t5 exists. However, if the regularity

of the solution with respect to time is very low, then the result obtained from the method may
not be different from other low-order time discretization methods.

REMARK 3.8. The author has not investigated higher-order time discretization scheme
which could lead to convergence rate of O(k5) and beyond. However, Thomee [26, p. 165]
reported that the stability of higher-order time discretization scheme beyond order 6 is not
guaranteed.

4. The discrete maximum principle (DMP). Here, we investigate the DMP of the
proposed scheme. We show that the DMP is preserved under certain assumptions. See Farago
et al. [10, 11] and the references therein for the DMP of parabolic non-interface problems.
With vh = φi in (3.1), we have

(4.1) M
25
12u

n − 4un−1 + 3un−2 − 4
3u

n−3 + 1
4u

n−4

k
+ Kun = ln,

where

Mij =

∫
Ω

φjφi dx Kij =

∫
Ω

[a∇φj · ∇φi + bφjφi] dx

lni =

∫
Ω

f(x, tn)φi dx +

∫
Γh

gh(x, tn)φi dΓh.

Let A = M + 12
25kK. Then (4.1) becomes

(4.2) Aun = M

[
48

25
un−1 − 36

25
un−2 +

16

25
un−3 − 3

25
un−4

]
+

12

25
k ln.

Let Ωij := supp(φi) ∩ supp(φj). If meas(Ωij) > 0, then for regular meshes [11, p. 157],∫
Ω

φiφj dx ≤ meas(Ωij),
∫

Ω

∇φi · ∇φj dx = −K0,

with some constants K0 > 0 independent of i, j, h and i 6= j.
LEMMA 4.1. Let a(x, t) > 0 and b(x, t) > 0 for (x, t) ∈ Ω×(0, T ). Let α = sup a(x, t)

and β = sup b(x, t) for (x, t) ∈ Ω× (0, T ). Let

(4.3) h < h0 := min

{
1,

√
αK0

cβ

}
and k ≥ 25ch2

12(αK0 − βch2)
.
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Then

(4.4) Aij ≤ 0, for i 6= j, i, j = 1, 2, . . . , Nh.

Proof.

Aij =

∫
Ω

φiφjdx+
12

25
k

∫
Ω

a∇φi · ∇φj + bφiφj dx

≤ ch2

[
1 +

12

25
k

(
β − αK0

ch2

)]
.

(4.5)

Inequality (4.4) now follows from (4.3) and (4.5).
We define the following

unmin := min{un1 , un2 , . . . , unNh
}, unmax := max{un1 , un2 , . . . , unNh

}

f
(n−1,n)
min := inf

x ∈ Ω
τ ∈ ((n−1)k, nk)

f(x, τ), f (n−1,n)
max := sup

x ∈ Ω
τ ∈ ((n−1)k, nk)

f(x, τ),

for n = 0, 1, . . . ,M .
THEOREM 4.2. Let the discretization be as in Section 3, and let
(i) Aij ≤ 0 for i 6= j, i, j = 1, 2, . . . , Nh,

(ii) Mii ≥ 0 for i = 1, 2, . . . , Nh.
Then the scheme (3.1) satisfies

(4.6) Un ≤ uni ≤ Un,

with

Un = min

{
0,

48

25
un−1

min −
36

25
un−2

max +
16

25
un−3

min −
3

25
un−4

max

}
+ kmin

{
0, f

(n−1,n)
min + min

Γ((n−1)k,nk)

gh

}
,

Un = max

{
0,

48

25
un−1

max −
36

25
un−2

min +
16

25
un−3

max −
3

25
un−4

min

}
+ kmax

{
0, f (n−1,n)

max + max
Γ((n−1)k,nk)

gh

}
,

where Γ((n−1)k,nk) := Γh × [(n− 1)k, nk], n = 4, . . . ,M .
Proof. (i) and (ii) imply

(4.7) A−1 ≥ 0 and A−1M ≥ 0 .

From (4.2) we obtain

un = A−1M

[
48

25
un−1 − 36

25
un−2 +

16

25
un−3 − 3

25
un−4

]
+

12

25
kA−1ln

≤
[

48

25
un−1

max −
36

25
un−2

min +
16

25
un−3

max −
3

25
un−4

min

]
A−1Me

+
12

25
k

[
f (n−1,n)

max + max
Γ((n−1)k,nk)

gh

]
A−1e,
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where e = (1, 1, . . . , 1)T . The lower bound in (4.6) is obtained by expressing the ith coordi-
nate of un and using (4.7). The upper bound can be proved in a similar manner.

REMARK 4.3. Following the same argument as above, it is not difficult to conclude
from (3.1) that

min
{

0, u0
min

}
+ kmin

{
0, f

(0,1)
min + min

Γ(0,k)

gh

}
≤ u1

i ≤

max
{

0, u0
max

}
+ kmax

{
0, f (0,1)

max + max
Γ(0,k)

gh

}
,

min

{
0,

4

3
u1

min −
1

3
u0

max

}
+ kmin

{
0, f

(1,2)
min + min

Γ(k,2k)

gh

}
≤ u2

i ≤

max

{
0,

4

3
u1

max −
1

3
u0

min

}
+ kmax

{
0, f (1,2)

max + max
Γ(k,2k)

gh

}
,

min

{
0,

18

11
u2

min −
9

11
u1

max +
2

11
u0

min

}
+ kmin

{
0, f

(2,3)
min + min

Γ(2k,3k)

gh

}
≤ u3

i ≤

max

{
0,

18

11
u2

max −
9

11
u3

min +
2

11
u0

max

}
+ kmax

{
0, f (2,3)

max + max
Γ(2k,3k)

gh

}
,

with τ1 = τ2 = τ3 = k.
REMARK 4.4. (4.6) gives a DMP involving four steps. However, a one time-level DMP

min
{

0, un−1
min − c0k

2
}

+ kmin

{
0, f

(n−1,n)
min + min

Γ((n−1)k,nk)

gh

}
≤ uni ≤

max
{

0, un−1
max +c0k

2
}

+ kmax

{
0, f (n−1,n)

max + max
Γ((n−1)k,nk)

gh

}(4.8)

could also be obtained. To see this, from (4.1), we have

Bun = M

[
−13

12
un + 4un−1 − 3un−2 +

4

3
un−3 − 1

4
un−4

]
+ kln,

where B = M + kK. If

h < h0 := min

{
1,

√
αK0

cβ

}
and k ≥ ch2

αK0 − βch2
,

then

Bij ≤ 0, for i 6= j, i, j = 1, 2, . . . , Nh,

and therefore,

un = B−1M

[
−13

12
un + 4un−1 − 3un−2 +

4

3
un−3 − 1

4
un−4

]
+ kB−1ln

≤ B−1M
[
un−1 + c0k

2e
]

+ kB−1ln.

(4.9)
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TABLE 5.1
Numerical results for Example 5.1.

h Error (k = 0.125)
0.291548 1.4308× 10−2

0.149147 3.10556× 10−3

0.0735402 7.78537× 10−4

0.046514 1.88909× 10−4

0.0197166 4.72251× 10−5

k Error (h = 0.0735402)
0.5 7.98632× 10−4

0.25 7.79875× 10−4

0.125 7.78537× 10−4

0.0625 7.78525× 10−4

The inequality (4.9) follows from a Taylor expansion

−c0k2e ≤ −13

12
un + 3un−1 − 3un−2 +

4

3
un−3 − 1

4
un−4 ≤ c0k2e

for c0 ≥ 0. From (4.9) we find

un ≤
[
un−1

max + c0k
2
]
B−1Me + k

[
f (n−1,n)

max + max
Γ((n−1)k,nk)

gh

]
B−1e.

The inequality on the right-hand side of (4.8) is obtained by expressing the ith coordinate
of un. The left-hand side can be proved in a similar manner.

5. Numerical results. For the numerical experiment, globally continuous piecewise
linear finite element functions based on quasi-uniform triangulation described in Section 2 are
used. The mesh generation and computation are done with FreeFEM++ [15].

EXAMPLE 5.1. We discuss the result of a two-dimensional linear parabolic interface
problem in the domain Ω = (−1, 1) × (−1, 1) where Ω1 is a circle centered at (0, 0) with
radius r =

√
x2 + y2 = 0.5, Ω2 = Ω \ Ω1, and the interface Γ is a circle of radius 0.5 and

therefore Γ 6= Γh.
Consider the problem (1.1) in Ω× (0, 10]. For the exact solution, we choose

u =


1
8 (1− 4r2)t cos(t) in Ω1 × (0, 10],

1
4 (1− x2)(1− y2)(1− 4r2) sin(t) in Ω2 × (0, 10].

We choose a and b as

a =

{
x2 + y2 in Ω1,

4 in Ω2,
b =

{
1 in Ω1,

exp(t) in Ω2.

The source function f , the interface function g, and the initial data u0 are determined from the
choice of u. The errors in the L2-norm at t = 8 for various step sizes k and mesh parameters h
are presented in Table 5.1. It can be seen from Table 5.1 that

Error u O

(
k3.86 + h2.01

(
1 +

1

| lnh|

))
.

The error estimate and the stability result also apply to a non-polygonal domain. We demon-
strate this with the next example.

EXAMPLE 5.2. We consider a two-dimensional linear parabolic interface problem on a
circular domain Ω with centre at (0, 0) and radius 1 unit. Ω1 is a circle centered at (0, 0) with
radius r =

√
x2 + y2 = 0.5, Ω2 = Ω \ Ω1, and the interface Γ is a circle of radius 0.5 and

therefore Γ 6= Γh.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

356 M. O. ADEWOLE

TABLE 5.2
Numerical results for Example 5.2.

h Error (k = 0.125)
0.277835 3.375× 10−3

0.145117 8.16377× 10−4

0.0747083 2.07443× 10−4

0.0373211 5.2466× 10−5

0.0185029 1.43451× 10−5

k Error (h = 0.0373211)
0.25 1.16381× 10−4

0.125 5.2466× 10−5

0.0625 5.11201× 10−5

0.03125 5.10271× 10−5

Consider the problem (1.1) in Ω× (0, 10]. For the exact solution, we choose

(5.1) u =

{
(2− 5x2 − 5y2) sin t in Ω1 × (0, 10],

(1− x2 − y2) sin t in Ω2 × (0, 10].

A piecewise constant value of a is used while b = 0:

a =

{
1 in Ω1,

5 in Ω2.

The source function f , the interface function g, and the initial data u0 are determined from the
choice of u. The errors in the L2-norm at t = 3 for various step sizes k and mesh parameters h
are presented in Table 5.2. It can be seen from the table that

Error u O

(
k5.53 + h1.94

(
1 +

1

| lnh|

))
.

In the above examples, the mesh cannot be fitted exactly to the interface. However, con-
vergence rate of optimal order could be obtained when the mesh captures the interface. We
demonstrate this with the example below.

EXAMPLE 5.3. We consider a linear parabolic interface problem in the domain
Ω = (−1, 1)× (−1, 1) and where Ω1 is a rectangle (−1, 0)× (−1, 1), Ω2 = (0, 1)× (−1, 1),
and the interface Γ is the straight line x = 0.

Consider the problem (1.1) in Ω× (0, 10]. For the exact solution, we choose

(5.2) u =

{
(1− y2)x(1 + x) sin(t) in Ω1 × (0, 10],

(1− y2) sin(4πx)t exp(−t) in Ω2 × (0, 10].

We choose b = 0 and a as

a =

{
t2 + 1 in Ω1,

1 in Ω2.

The source function f , the interface function g, and the initial data u0 are determined from the
choice of u. The errors in the L2-norm at t = 6 for various step sizes k and mesh parameters h
are presented in Table 5.3. It can be seen from the table that

Error u O
(
k3.94 + h1.99

)
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

FEM-FDM FOR A LINEAR PARABOLIC INTERFACE PROBLEM 357

TABLE 5.3
Numerical results for Example 5.3.

h Error (k = 0.3)
0.238603 2.91147× 10−3

0.127515 8.36758× 10−4

0.0653869 2.06193× 10−4

0.0329586 5.20176× 10−5

0.0170309 1.29882× 10−5

k Error (h = 0.0329586)
0.6 5.58632× 10−5

0.3 5.20176× 10−5

0.1 5.17526× 10−5

0.05 5.17489× 10−5

6. Conclusion. In this paper, we have analyzed the convergence of a FEM for a parabolic
interface problem with time discretization based on a four-step implicit scheme. It was shown
that the method is numerically stable and that higher-order accuracy in time could be obtained
for k ∈ (0, k0]. To achieve the same accuracy using the backward Euler scheme, the step
size k has to be very small which makes the latter computationally very time consuming. The
scheme was shown to satisfy the DMP under certain assumptions on the mesh parameter h
and time step k.
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