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AN OPTIMIZATION-BASED MULTILEVEL ALGORITHM FOR
VARIATIONAL IMAGE SEGMENTATION MODELS∗

ABDUL K. JUMAAT† AND KE CHEN†

Abstract. Variational active contour models have become very popular in recent years, especially global
variational models which segment all objects in an image. Given a set of user-defined prior points, selective variational
models aim at selectively segmenting one object only. We are concerned with the fast solution of the latter models.
Time marching methods with semi-implicit schemes (gradient descents) or additive operator splitting are used
frequently to solve the resulting Euler-Lagrange equations derived from these models. For images of moderate size,
such methods are effective. However, to process images of large size, urgent need exists in developing fast iterative
solvers. Unfortunately, geometric multigrid methods do not converge satisfactorily for such problems. Here we
propose an optimization-based multilevel algorithm for efficiently solving a class of selective segmentation models.
It also applies to the solution of global segmentation models. In a level-set function formulation, our first variant
of the proposed multilevel algorithm has the expected optimal O(N logN) efficiency for an image of size n× n
with N = n2. Moreover, modified localized models are proposed to exploit the local nature of the segmentation
contours, and consequently, our second variant—after modifications—practically achieves super-optimal efficiency
O(
√
N logN). Numerical results show that a good segmentation quality is obtained, and as expected, excellent

efficiency is observed in reducing the computational time.

Key words. active contours, image segmentation, level-set function, multilevel, optimization methods, energy
minimization
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1. Introduction. Image segmentation can be defined as the process of separating objects
from their surroundings. The principal goal of segmentation is to partition an image into
homogeneous regions, which connect spatially groups of pixels called classes or subsets with
respect to one or more characteristics or features.

Different models and techniques have been developed so far, including histogram analysis
and thresholding [25, 34], region growing [2], or edge detection and active contours [3, 15]. Of
all these techniques, variational techniques [15, 30] are proven to be very efficient for extracting
homogeneous areas compared with other models such as statistical methods [16, 17, 18] or
wavelet techniques [26].

Segmentation models can be classified into two categories, namely, edge-based and region-
based models; other models may mix these categories. Edge-based models refer to models that
are able to drive the contours towards image edges by the influence of an edge detector function.
The snake algorithm proposed by Kass et al. [23] was the first edge-based variational model
for image segmentation. Further improvement on the algorithm with geodesic active contours
and the level-set formulation led to effective models [10, 35]. Region-based segmentation
techniques try to separate all pixels of an object from its background pixels based on the
intensity and hence find image edges between regions satisfying different homogeneity criteria.
Examples of region-based techniques are region growing [7, 22], the watershed algorithm
[8, 22], thresholding [22, 38], and fuzzy clustering [36]. The most celebrated and efficient
variational model for images with and without noise is the Mumford-Shah [30] model, which
reconstructs the segmented image as a piecewise smooth intensity function. Since the model
cannot be implemented directly and easily, it is often approximated. The Chan-Vese (CV)
[15] model is a simplified and reduced form of that in [30] without approximation. The
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simplification is achieved by replacing the piecewise smooth function by a piecewise constant
function and, in the case of two phases, by a separation of the image into the foreground and
the background.

The segmentation models described above are suited for global segmentation due to the
fact that all features or objects in an image are to be segmented. In reality, not all objects can
be identified in general because of the non-convexity of such models. There exist many studies
of these models. For the convex CV model [14], once discretised, the optimization problem
can be solved by fast graph cut-type methods with O(N logN) efficiency (at the level of a
multigrid method) for an image sized n× n with N = n2 [39, 40].

This paper is concerned with another type of image segmentation models, namely selective
segmentation. They are defined as the process of extracting one object of interest in an image
based on some known geometric constraints [20, 33, 37]. Two effective models are Badshah-
Chen [6] and Rada-Chen [33], which use a mixture of edge-based and region-based ideas in
addition to imposing constraints. Recently, a convex selective variational image segmentation
model referred to as Convex Distance Selective Segmentation was successfully proposed by
Spencer and Chen [37]. The convex model allows a global minimiser to be found independently
of the initialisation [14, 37]. The additive operator splitting (AOS) method with a balloon force
term (suitable for images of moderate size, faster than gradient type methods) was proposed
for such models. However, to process images of large size, urgent need exists in developing
fast multilevel methods.

Both the multilevel and multigrid methods are developed using the idea of a hierarchy of
discretizations. However, a multilevel method is based on a discretize-optimize scheme (alge-
braic) where the minimization of a variational problem is solved directly without using a partial
differential equation (PDE). In contrast, a multigrid method is based on an optimize-discretize
scheme (geometric) which solves a PDE numerically. The two methods are interconnected
since both can have geometric interpretations and use similar inter-level information transfers.

The latter multigrid methods have been used for solving a few variational image segmenta-
tion models in the level-set formulation. For geodesic active contours models, linear multigrid
methods have been developed [24, 31, 32]. In 2008, Badshah and Chen [4] have successfully
implemented a multigrid method to solve the Chan-Vese nonlinear elliptical partial differential
equation. In 2009, Badshah and Chen [5] also have developed two multigrid algorithms for
modelling variational multiphase image segmentations. While the practical performance of
these methods is good, however, they are sensitive to parameters and hence not effective,
mainly due to non-smooth coefficients which lead to smoothers not having an acceptable
smoothing rate (which in turn is due to jumps or edges that separate segmented domains).
Therefore, the above multigrid methods behave like the cascadic multigrids [29] where only
one multigrid cycle is needed.

Here we pursue the former type of optimization-based multilevel methods based on a
discretize-optimize scheme where the minimization is solved directly (without using PDEs).
The idea has been applied to other image problems in denoising and deblurring [11, 12, 13] but
not yet to segmentation problems. However, the method is found to get stuck in local minima
due to a non-differentiability of the energy functional. To overcome such situation, Chan
and Chen [11] have proposed the “patch detection" idea in the formulation of the multilevel
method, which is efficient for image denoising problems. However, as the image size increases,
the method can be slow because the patch detection idea searches the entire image for the
possible patch size on the finest level after each multilevel cycle.

In this work, we consider a differentiable form of variational image segmentation models
and develop the multilevel algorithm for the resulting models without using a “patch detection"
idea. We are not aware of any similar work on multilevel algorithms for segmentation models
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in the level-set formulation. The key finding is that the resulting multilevel algorithm converges
while being not very sensitive to parameter choices, unlike geometric multigrid methods [5],
which are known to have convergence problems.

The rest of the paper is organized in the following way. In Section 2, we briefly review a
global segmentation model, namely the Chan-Vese model [15], and two selective segmentation
models, the Badshah-Chen model [6] and the Rada-Chen model [33]. In Section 3, we
present an optimization-based multilevel algorithm for the selective segmentation models.
In Section 4, we propose localized segmentation models and furthermore present multilevel
methods for solving them in Section 5. In Section 6, we give some experimental results to
test the algorithms. We compare the new methods to the previously fast methods from the
literature, namely the AOS method for the Badshah-Chen [6] and Rada-Chen [33] models
(since multigrid methods are not yet developed for them). However, a multiscale AOS method
(for Badshah-Chen [6] and Rada-Chen [33]) based on the pyramid idea is implemented and
included in the comparison. Section 7 contains concluding remarks.

2. Review of three existing models. In this section we first introduce the global seg-
mentation model [15] because it provides the foundation for the selective segmentation models
as well as a method for minimizing the associated functional. Next, we discuss two selective
segmentation models by Badshah-Chen [6] and Rada-Chen [33] before addressing the issue of
solving these models fast.

2.1. The Chan-Vese model. The Chan and Vese (CV) model [15] can be considered a
special case of the piecewise constant Mumford-Shah functional [30] where the functional is
restricted to only two phases, i.e., constants, representing the foreground and the background
of the given image z(x, y).

Assume that z is formed of two regions of approximately piecewise constant intensities
of distinct (unknown) values c1 and c2 separated by some (unknown) curve or contour Γ. Let
the object to be detected be represented by the region Ω1 with the value c1 inside the curve Γ,
whereas outside Γ, in Ω2 = Ω\Ω1, the intensity of z is approximated by the value c2. Then,
with Ω = Ω1 ∪ Ω2, the Chan-Vese model minimizes the following functional:

min
Γ,c1,c2

FCV (Γ, c1, c2) ,

FCV (Γ, c1, c2) = µ length (Γ) + λ1

∫
Ω1

(z − c1)
2
dxdy + λ2

∫
Ω2

(z − c2)
2
dxdy.

(2.1)

Here, the constants c1 and c2 are viewed as the average values of z inside and outside the
variable contour Γ. The fixed parameters µ, λ1, and λ2 are non-negative but have to be
specified. In order to minimize equation (2.1), the level-set method is applied [15], where the
unknown curve Γ is represented by the zero level set of the Lipschitz function φ such that

Γ = {(x, y) ∈ Ω : φ(x, y) = 0} ,
Ω1 = inside (Γ) = {(x, y) ∈ Ω : φ(x, y) > 0} ,
Ω2 = outside (Γ) = {(x, y) ∈ Ω : φ(x, y) < 0} .

To simplify the notation, denote the regularized versions of the Heaviside function and
the Dirac delta function, respectively, by

H (φ(x, y)) =
1

2

(
1 +

2

π
arctan

φ

ε

)
and δ (φ(x, y)) =

ε

π (ε2 + φ2)
.
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Thus, equation (2.1) becomes

min
φ,c1,c2

FCV (φ, c1, c2) ,

FCV (φ, c1, c2) = µ

∫
Ω

|∇H(φ)| dxdy + λ1

∫
Ω

(z − c1)
2
H(φ) dxdy

+ λ2

∫
Ω

(z − c2)
2

(1−H(φ)) dxdy.

(2.2)

Keeping the level-set function φ fixed and minimizing (2.2) with respect to c1 and c2, we
have

(2.3) c1(φ) =

∫
Ω
z(x, y)H(φ) dxdy∫

Ω
H(φ) dxdy

, c2(φ) =

∫
Ω
z(x, y) (1−H(φ)) dxdy∫

Ω
(1−H(φ)) dxdy

.

After that, by fixing the constants c1 and c2 in FCV (φ, c1, c2), the first variation with respect
to φ yields the following Euler-Lagrange equation:

µδ (φ)∇ ·
(
∇φ
|∇φ|

)
− λ1δ (φ) (z − c1)

2
+ λ2δ (φ) (z − c2)

2
= 0 in Ω,

δ (φ)

|∇φ|
∂u

∂~n
= 0 on ∂Ω.

(2.4)

Notice that the nonlinear coefficient in equation (2.4) may have a zero denominator, so the
equation is not defined in such cases. A commonly-adopted idea to deal with |∇φ| = 0 was
to introduce a small positive parameter β to (2.2) and (2.4), so that the new Euler-Lagrange
equation becomes

µδ (φ)∇ ·

 ∇φ√
|∇φ|2 + β

− λ1δ (φ) (z − c1)
2

+ λ2δ (φ) (z − c2)
2

= 0 in Ω,

δ (φ)

|∇φ|
∂u

∂~n
= 0 on ∂Ω,

which corresponds to minimizing the following differentiable energy function instead of (2.2):

min
φ,c1,c2

FCV (φ, c1, c2) ,

FCV (φ, c1, c2) = µ

∫
Ω

√
|∇H (φ)|2 + β dxdy + λ1

∫
Ω

(z − c1)
2
H (φ) dxdy

+ λ2

∫
Ω

(z − c2)
2

(1−H (φ)) dxdy.

2.2. The Badshah-Chen model. The selective segmentation model by Badshah-Chen
(BC) [6] combines the edge-based model of Gout et al. [20, 21] with the intensity-fitting terms
of Chan-Vese [15]. For an image z(x, y) with a marker set

A = {wi = (x∗i , y
∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω

of n1 geometrical points on or near the target object [33, 41], the selective segmentation
idea tries to detect the boundary of a single object in Ω closest to A among all objects with
homogeneous intensity; here n1 ≥ 3. The geometrical points in A define an initial polygonal
contour and guide its evolution towards Γ [41].
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The BC minimization [6] is given by

min
Γ,c1,c2

FBC (Γ, c1, c2) ,

FBC (Γ, c1, c2) = µ

∫
Γ

d(x, y)g (|∇z(x, y)|) dxdy

+ λ1

∫
inside(Γ)

(z − c1)
2
dxdy + λ2

∫
outside(Γ)

(z − c2)
2
dxdy.

(2.5)

In this model, the function g (|∇z|) = 1
1+η|∇z(x,y)|2 is an edge detector which helps to stop

the evolving curve on the edge of the targeted object. The strength of detection is adjusted by
a parameter η. The function g (|∇z|) is constructed such that it takes small values (close to 0)
near object edges and large values (close to 1) in flat regions. The function d(x, y) is a marker
distance function which is close to 0 when approaching the points from the marker set and is
given as

d(x, y) = distance ((x, y),A) =

n1∏
i=1

(
1− e−

(x−x∗i )2

2κ2 − e−
(y−y∗i )2

2κ2

)
, ∀(x, y) ∈ Ω,

where κ is a positive constant. Alternative distance functions d(x, y) are also possible [33, 41].
Using a level-set formulation, the functional (2.5) becomes

min
φ,c1,c2

FBC (φ, c1, c2) ,

FBC (φ, c1, c2) = µ

∫
Ω

d(x, y)g (|∇z(x, y)|) |∇H (φ)| dxdy

+ λ1

∫
Ω

(z − c1)
2
H (φ) dxdy + λ2

∫
Ω

(z − c2)
2

(1−H (φ)) dxdy.

(2.6)

Keeping the level-set function φ fixed and minimizing (2.5) with respect to c1 and c2, we have

c1(φ) =

∫
Ω
z(x, y)H (φ) dxdy∫

Ω
H (φ) dxdy

, c2(φ) =

∫
Ω
z(x, y) (1−H (φ)) dxdy∫

Ω
(1−H (φ)) dxdy

.

Finally, keeping the constants c1 and c2 fixed in FBC (φ, c1, c2) , the following Euler-Lagrange
equation for φ is derived:

µδ (φ)∇ · dg

 ∇φ√
|∇φ|2 + β

− λ1δ (φ) (z − c1)
2

+λ2δ (φ) (z − c2)
2

= 0 in Ω,

dg
δ (φ)

|∇φ|
∂u

∂~n
= 0 on Ω.

(2.7)

The small positive parameter β is introduced to avoid singularities in (2.7), which corresponds
to minimizing the following differentiable form of the BC model in replacement of (2.6)

min
φ,c1,c2

FBC (φ, c1, c2)

FBC (φ, c1, c2) = µ

∫
Ω

G(x, y)

√
|∇H (φ)|2 + β dxdy

+ λ1

∫
Ω

(z − c1)
2
H (φ) dxdy + λ2

∫
Ω

(z − c2)
2

(1−H (φ)) dxdy,

(2.8)
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where G = d(x, y)g(x, y). To facilitate faster convergence, a balloon force term αG|∇φ| is
added to (2.7) as in [6].

2.3. The Rada-Chen model. The Rada-Chen (RC) model [33] imposes a further con-
straint on Ω1 to ensure that its area is closest to the internal area defined by the marker set.
From the polygon formed by the geometrical points in the set A, denote by A1 and A2 the
area inside and outside the polygon, respectively. The areas A1 and A2 are computed to
approximate the area of the object of interest. The RC model also incorporates a similar edge
detection function as in the BC model into the regularization term. The energy minimization
problem is given by

min
Γ,c1,c2

FRC (Γ, c1, c2) ,

FRC (Γ, c1, c2) = µ

∫
Γ

g (|∇z(x, y)|) dxdy + λ1

∫
Ω1

(z − c1)
2
dxdy

+ λ2

∫
Ω2

(z − c2)
2
dxdy + ν

(∫
Ω1

dxdy −A1

)2

+ ν

(∫
Ω2

dxdy −A2

)2

.

(2.9)

Rewriting (2.9) into a level-set formulation as in (2.3), we arrive at the following Euler-
Lagrange equation for φ:

µδ (φ)∇ · g

 ∇φ√
|∇φ|2 + β

− λ1δ (φ) (z − c1)
2

+ λ2δ (φ) (z − c2)
2

−νδ (φ)

((∫
Ω

H (φ) dxdy −A1

)
−
(∫

Ω

(1−H (φ)) dxdy −A2

))
= 0 in Ω,

dg
δ (φ)

|∇φ|
∂u

∂~n
= 0, on Ω.

(2.10)

As with the BC model, in the actual implementation of the RC model, the small positive
parameter β is introduced to avoid singularities in (2.10), which corresponds to minimizing
the following differentiable form of the RC model

min
φ,c1,c2

FRC (φ, c1, c2)

FRC (φ, c1, c2) = µ

∫
Ω

g (|∇z(x, y)|)
√
|∇H (φ)|2 + β dxdy

+ λ1

∫
Ω

(z − c1)
2
H (φ) dxdy + λ2

∫
Ω

(z − c2)
2

(1−H (φ)) dxdy

+ ν

(∫
Ω

H (φ) dxdy −A1

)2

+ ν

(∫
Ω

(1−H (φ)) dxdy −A2

)2

.

(2.11)

To stimulate faster convergence, a balloon force term is added to (2.10), which is defined as
αg(x, y) |∇φ(x, y)|.

We use the abbreviations BC0 and RCO to refer to the AOS algorithm previously used to
solve the BC model and the RC model in [6] and [33], respectively.

Of course, it is known that such AOS methods are not designed for processing large
images. To assist AOS, a pyramid method can be used. In the process of the curve evolution,
the pyramid scheme employs a decomposition of the image into different scale, and then
coarse segmentation is performed on the coarse-scale image using the AOS method instead of
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directly working with the original-size image. Then, the segmentation result is interpolated
and adopted to an initial contour for the fine-scale image, thus gradually optimizing the contour
and reaching the final segmentation result. We refer to the pyramid method for BC and RC
models as BCP and RCP, respectively.

The above variational models, the BC model (2.8) and the RC model (2.11), respectively,
will be conveniently solved by our new proposed multilevel scheme. The models BC0, RCO,
BCP, and RCP will serve as comparisons to our method in segmenting large images.

As remarked before, the reason for seeking alternative optimization-based multilevel
methods instead of applying a geometric multigrid method is that there are no effective
smoothers for the latter case, and consequently, there exist no converging multigrid methods
for the Euler-Lagrange equations for our variational models.

3. An O(N logN) optimization-based multilevel algorithm. The main objective of
this section is to present the first version of our multilevel formulation for two selective
segmentation models: the BC model [6] and the RC model [33]. This section provides the
foundation for the development of our main multilevel algorithm for the localized versions of
these models. For simplicity, for a given image of size n× n, we shall assume n = 2L. The
standard coarsening defines L + 1 levels: k = 1 (the finest), 2, . . . , L, L + 1 (the coarsest),
such that level k has τk × τk “superpixels” with each “superpixel” having bk × bk pixels,
where τk = n/2k−1 and bk = 2k−1. Figures 3.2(a-e) illustrate the case of L = 4, n = 24,
for an 16× 16 image with 5 levels: level 1 has each pixel of the default size of 1× 1 while
the coarsest level 5 has a single superpixel of size 16× 16. If n 6= 2L, the multilevel method
can still be developed with some coarse level superpixels of square shape and the rest of
rectangular shape.

3.1. Multilevel algorithm for the BC model. Our goal is to solve (2.8), i.e., the BC
model [6], using a multilevel method in a discretize-optimize scheme. Before we proceed
further, one may wonder how to discretize the total variation (TV) term

TV (u) =

∫
Ω

|∇u| dxdy.

In fact, TV is most often discretized by

TVd (u) =
n−1∑
i,j=1

√(
∇+
x u
)2
i,j

+
(
∇+
y u
)2
i,j

=
n−1∑
i,j=1

√
(ui+1,j − ui,j)2

+ (ui,j+1 − ui,j)2
.

There are other ways to define the discrete TV by finite difference, but the above form is the
simplest one according to [28]. In addition, the reason why this form is considered a reasonable
discretization of TV relies in the notion of consistency that is well known in numerical analysis:
if we consider a regular function U : R2 → R and its discretization

(i, j) 7→ Uh (i, j) = U (ih, jh) ,

for h > 0, we have

h−1 |∇Uh| (ih, jh)→ |∇U(x, y)| ,

as h→ 0, ih→ x, and jh→ y.
Furthermore, central differences are undesirable for TV discretization (in a discretize-

optimize approach) because they miss thin structure [19] as the central differences at (i, j) do
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not depend on ui,j :

TVd (u) =

n−1∑
i,j=1

√((
∇+
x u
)
i,j
/2 +

(
∇−x u

)
i,j
/2
)2

+
((
∇+
y u
)
i,j
/2 +

(
∇−y u

)
i,j
/2
)2

=

n−1∑
i,j=1

√(
(ui+1,j − ui−1,j) /2

)2
+
(
(ui,j+1 − ui,j−1) /2

)2
.

To avoid this problem, one-sided differences can be used. More discussions on discretizing
TV can be found in [19] and [28] and the references therein.

Using the above information, the discretized version of (2.8) is given by:

min
φ,c1,c2

FBC (φ, c1, c2) ≡ min
φ,c1,c2

F aBC (φ1,1, φ2,1, . . . , φi−1,j , φi,j , φi+1,j , . . . , φn,n, c1, c2)

with

F aBC (φ1,1, φ2,1, . . . , φi−1,j , φi,j , φi+1,j , . . . , φn,n, c1, c2)

= µ̄

n−1∑
i,j=1

Gi,j

√
(Hi,j −Hi,j+1)

2
+ (Hi,j −Hi+1,j)

2
+ β

+ λ1

n∑
i,j=1

(zi,j − c1)
2
Hi,j + λ2

n∑
i,j=1

(zi,j − c2)
2

(1−Hi,j),

(3.1)

where φ denotes a row vector,

µ̄ =
µ

h
, h =

1

n− 1
, Gi,j = G(xi, yj),

c1 =

n∑
i,j=1

zi,jHi,j

n∑
i,j=1

Hi,j

, c2 =

n∑
i,j=1

zi,j (1−Hi,j)

n∑
i,j=1

(1−Hi,j)
, and

Hi,j =
1

2
+

1

π
arctan

φi,j
ε
.

As a prelude to multilevel methods, consider the minimization of (3.1) by the coordinate
descent method on the finest level 1:

Given φ(0)=
(
φ

(0)
i,j

)
and set m = 0.

(3.2) Solve φ(m+1)
i,j = arg min

φi,j∈R
F locBC (φi,j , c1, c2) for i, j = 1, 2, . . . , n.

Repeat the above step with m = m+ 1 until stopped.
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FIG. 3.1. The interaction of φi,j at a central pixel (i, j) with neighboring pixels on the finest level 1. Clearly
only 3 terms (pixels) are involved with φi,j (through regularisation).

Here equation (3.2) is obtained by expanding and simplifying the main model in (3.1), i.e.,

F locBC(φi,j , c1, c2)

≡ F aBC
(
φ

(m−1)
1,1 , φ

(m−1)
2,1 , . . . , φ

(m−1)
i−1,j , φi,j , φ

(m−1)
i+1,j , . . . , φ

(m−1)
n,n , c1, c2

)
− F (m−1)

BC

= µ̄

(
Gi,j

√(
Hi,j −H(m)

i+1,j

)2
+
(
Hi,j −H(m)

i,j+1

)2
+ β

+Gi−1,j

√(
Hi,j −H(m)

i−1,j

)2
+
(
H

(m)
i−1,j −H

(m)
i−1,j+1

)2

+ β

+Gi,j−1

√(
Hi,j −H(m)

i,j−1

)2

+
(
H

(m)
i,j−1 −H

(m)
i+1,j−1

)2

+ β

)
+ λ1(zi,j − c1)

2
Hi,j + λ2(zi,j − c2)

2
(1−Hi,j),

with Neumann boundary condition, where F (m−1)
BC denotes the sum of all terms in F aBC that

do not involve φi,j . Minimization of c1, c2 is done as before. Clearly, it seems that this is
a coordinate descent method. As such, the method will exhibit a decay of the functional
F aBC(φ(m)) ≤ F aBC(φ(m−1)) from one substep to the next. It should be remarked that the
formulation in (3.2) is based on the work in [9, 11].

Using (3.2), we illustrate the interaction of φi,j with its neighboring pixels on the finest
level 1 in Figure 3.1. We use this basic structure to develop a multilevel method.

The one-dimensional problem in (3.2) may be solved by any suitable optimization method;
here to proceed from φ(m−1) → φ→ φ(m), we solve the first-order condition

µ̄Gi,j

(
2Hi,j −H(m)

i+1,j −H
(m)
i,j+1

)
√(

Hi,j −H(m)
i+1,j

)2

+
(
Hi,j −H(m)

i,j+1

)2

+ β

+
µ̄Gi−1,j

(
Hi,j −H(m)

i−1,j

)
√(

Hi,j −H(m)
i−1,j

)2

+
(
H

(m)
i−1,j −H

(m)
i−1,j+1

)2

+ β
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+
µ̄Gi,j−1

(
Hi,j −H(m)

i,j−1

)
√(

Hi,j −H(m)
i,j−1

)2

+
(
H

(m)
i,j−1 −H

(m)
i+1,j−1

)2

+ β

+ λ1(zi,j − c1)
2 − λ1(zi,j − c2)

2
= 0.

As an example, using Newton iterations, one obtains an iteration of the form

(3.3) φnewi,j = φoldi,j − T old/Bold,

where

T old =
µ̄Gi,j

(
2Holdi,j −H

(m)
i+1,j−H

(m)
i,j+1

)
√(

Holdi,j −H
(m)
i+1,j

)2
+
(
Holdi,j −H

(m)
i,j+1

)2
+β

+
µ̄Gi−1,j

(
Holdi,j −H

(m)
i−1,j

)
√(

Holdi,j −H
(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

+
µ̄Gi,j−1

(
Holdi,j −H

(m)
i,j−1

)
√(

Holdi,j −H
(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

+ λ1(zi,j − c1)
2 − λ1(zi,j − c2)

2
,

Bold =

2µ̄Gi,j√(
Holdi,j −H

(m)
i+1,j

)2
+
(
Holdi,j −H

(m)
i,j+1

)2
+β

−
µ̄Gi,j

(
2Holdi,j −H

(m)
i+1,j−H

(m)
i,j+1

)2√((
Holdi,j −H

(m)
i+1,j

)2
+
(
Holdi,j −H

(m)
i,j+1

)2
+β

) 3
2

+
µ̄Gi−1,j√(

Holdi,j −H
(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

−
µ̄Gi−1,j

(
Holdi,j −H

(m)
i−1,j

)2√((
Holdi,j −H

(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

) 3
2

+
µ̄Gi,j−1√(

Holdi,j −H
(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

−
µ̄Gi,j−1

(
Holdi,j −H

(m)
i,j−1

)2√((
Holdi,j −H

(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

) 3
2

.

To develop a multilevel version of this coordinate descent method, we may interpret (3.2) as
looking for the best update φ(m)

i,j (given an old iterate φ(m−1)
i,j ; here a scalar constant) that

minimizes the local merit functional F locBC (φi,j , c1, c2). On level 1 the local minimization for
c takes the form

F locBC (φi,j , c1, c2) = F locBC

(
φ

(m)
i,j + c, c1, c2

)
.

Hence, we may rewrite (3.2) in an equivalent form:
Given φ(m)

i,j with m = 0, . . .

Solve ĉ = arg min
c∈R

F locBC

(
φ

(m)
i,j + c, c1, c2

)
,

φ
(m+1)
i,j = φ

(m)
i,j + ĉ, for i, j = 1, 2, . . . , n.

(3.4)

Repeat the above step with m = m+ 1 until stopped.
Now consider how the update is done on a general level k = 2, . . . , L+ 1. Similarly to

k = 1, we derive the simplified formulation for each of the τk × τk subproblems in a block
of bk × bk pixels, e.g., the multilevel method for k = 2 is to find the best correction constant
to update this block so that the underlying merit functional, related to all four pixels (see
Figure 3.2(b)), achieves a local minimum.
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For the levels k = 1, . . . , 5, Figure 3.2 illustrates the multilevel partition of an image of
size 16× 16 pixels from (a) the finest level (level 1) to (e) the coarsest level (level 5).

Observe that bkτk = n on level k, where τk is the number of boxes and bk is the block
size. Thus, from Figure 3.2(a), b1 = 1 and τ1 = n = 16. On the other levels k = 2, 3, 4, 5,
we see that the block size bk = 2k−1 and τk = 2L+1−k since n = 2L. In Figure 3.1, we
illustrate a box� interacting with the neighboring pixels • on level 3. In addition, Figure 3.2(f)
illustrates the fact that a variation by ci,j inside an active block only involves its boundary of
precisely 4bk − 4 pixels, not all b2k pixels, in that box denoted by the symbols C, B, ∆,∇.
This is important for an efficient implementation.

With the above information, we are now ready to formulate the multilevel approach
for the general level k. Let’s set the following: b = 2k−1, k1 = (i− 1) b + 1, k2 = ib,
`1 = (j − 1) b+ 1, `2 = jb, and c = (ci,j). Then, the computational stencil involving c on
level k has the following structure:

(3.5)

This illustration is consistent with Figure 3.2(f), and the key point is that the interior pixels
(non-boundary pixels) do not involve ci,j in the first nonlinear term of the formulation. This is
because the finite differences are not changed at interior pixels by the same update as in√(

φ̃k,l + ci,j − φ̃k+1,l − ci,j
)2

+
(
φ̃k,l + ci,j − φ̃k,l+1 − ci,j

)2

+ β

=

√(
φ̃k,l − φ̃k+1,l

)2

+
(
φ̃k,l − φ̃k,l+1

)2

+ β.

Then, as a local minimization for c, the problem (3.4) is equivalent to minimizing

FBC1 (ci,j)

= µ̄

`2∑
`=`1

Gk1−1,`

√[
ci,j −

(
φ̃k1−1,` − φ̃k1,`

)]2
+
(
φ̃k1−1,` − φ̃k1−1,`+1

)2
+ β

+ µ̄

k2−1∑
k=k1

Gk,`2

√[
ci,j −

(
φ̃k,`2+1 − φ̃k,`2

)]2
+
(
φ̃k,`2 − φ̃k+1,`2

)2
+ β

+ µ̄Gk2,`2

√[
ci,j −

(
φ̃k2,`2+1 − φ̃k2,`2

)]2
+
[
ci,j −

(
φ̃k2+1,`2 − φ̃k2,`2

)]2
+ β

+ µ̄

`2−1∑
`=`1

Gk2,`

√[
ci,j −

(
φ̃k2+1,` − φ̃k2,`

)]2
+
(
φ̃k2,` − φ̃k2,`+1

)2
+ β

+ µ̄

k2∑
k=k1

Gk,`1−1

√[
ci,j −

(
φ̃k,`1−1 − φ̃k,`1

)]2
+
(
φ̃k,`1−1 − φ̃k+1,`1−1

)2
+ β

+ λ2

k2∑
k=k1

`2∑
`=`1

(
1−H

(
φ̃k,` + ci,j

))(
zk,` − c2

)2
+λ1

k2∑
k=k1

`2∑
`=`1

H
(
φ̃k,` + ci,j

)(
zk,` − c1

)2
.
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For the third term, we may note that

√
(c− a)

2
+ (c− b)2

+ β =

√
2

(
c− a+ b

2

)2

+ 2

(
a− b

2

)2

+ β.

Thus, we conclude that the local minimization problem for block (i, j) on the level k with
respect to ci,j amounts to minimising the following equivalent functional

FBC1 (ci,j) = µ̄

`2∑
`=`1

Gk1−1,`

√
(ci,j − hk1−1,`)2 + υ2

k1−1,` + β

+ µ̄

k2−1∑
k=k1

Gk,`2

√(
ci,j − υk,`2

)2
+ h2

k,`2
+ β

+ µ̄

`2−1∑
`=`1

Gk2,`

√
(ci,j − hk2,`)

2
+ υ2

k2,`
+ β

+ µ̄

k2∑
k=k1

Gk,`1−1

√
(ci,j − υk,`1−1)

2
+ h2

k,`1−1 + β

+ µ̄
√

2Gk2,`2

√
(ci,j − ῡk2,`2)

2
+ h̄2

k2,`2
+
β

2

+ λ1

k2∑
k=k1

`2∑
`=`1

H(φ̃k,` + ci,j)(zk,` − c1)
2

+ λ2

k2∑
k=k1

`2∑
`=`1

(
1−H(φ̃k,` + ci,j)

)
(zk,` − c2)

2
,

(3.6)

where we have used the following notation (which will be used later also):

hk,` = φ̃k+1,` − φ̃k,`, υk,` = φ̃k,`+1 − φ̃k,`, υk2,`2 = φ̃k2,`2+1−φ̃k2,`2 ,

hk2,`2 = φ̃k2+1,`2−φ̃k2,`2 , ῡk2,`2 =
υk2,`2 + hk2,`2

2
, h̄k2,`2 =

υk2,`2 − hk2,`2
2

,

hk1−1,` = φ̃k1,`−φ̃k1−1,`, υk1−1,` = φ̃k1−1,`+1−φ̃k1−1,`, υk,`2 = φ̃k,`2+1−φ̃k,`2 ,
hk,`2 = φ̃k+1,`2 − φ̃k,`2 , hk2,` = φ̃k2+1,` − φ̃k2,`, υk2,` = φ̃k2,`+1 − φ̃k2,`,

υk,`1−1 = φ̃k,`1 − φ̃k,`1−1, hk,`1−1 = φ̃k+1,`1−1−φ̃k,`1−1.

On the coarsest level, we look for a single constant update for the current approximation
φ̃, that is, we solve for min

c
FBC1(φ̃+ c) with

FBC1(φ̃+ c) = µ̄

n−1∑
i,j=1

Gi,j

√
(φ̃i,j + c− φ̃i,j+1 − c)

2
+ (φ̃i,j + c− φ̃i+1,j − c)

2
+ β

+ λ1

n∑
i,j=1

H(φ̃i,j + c)(zi,j − c1)
2
+λ2

n∑
i,j=1

(
1−H(φ̃k,` + ci,j)

)
(zi,j − c1)

2
,
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which is equivalent to

min
c
F̂BC1(φ̃+ c),

F̂BC1(φ̃+ c) = λ1

n∑
i,j=1

H(φ̃i,j + c)(zi,j − c1)
2

+ λ2

n∑
i,j=1

(
1−H(φ̃k,` + ci,j)

)
(zi,j − c1)

2
.

(3.7)

In general, (3.6) can be written as min
ci,j∈R

FBC1

(
φ̃+ Pc

)
, where Pc = c~d and φ̃, ~d ∈ Rn2

. To

interpret our method as a hierarchical gradient descent method, we may view a general update
as choosing the best c to solve minc F

a
BC(φ̃+ Pc) where, e.g.,

level 1, at pixel (1, 1) : ~d = ( 1 , 0, · · · , 0; 0, 0, · · · , 0; · · · ; 0, 0, · · · , 0),

(2, 1) : ~d = (0, 1 , · · · , 0; 0, 0, · · · , 0; · · · ; 0, 0, · · · , 0),

level 2, superpixel (1, 1) : ~d = ( 1, 1 , 0, · · · , 0; 1, 1 , 0, · · · , 0; · · · ; 0, 0, 0, · · · , 0).

The solutions of the above local minimization problems, solved using a Newton method
as in (3.3) or a fixed point method for t iterations (inner iteration), defines the updated solution
φ̃ = φ̃ + Qkc. Here Qk is the interpolation operator distributing ci,j to the corresponding
bk × bk block on the level k as illustrated in (3.5). Then, we obtain a multilevel method if
we cycle through all levels and all blocks on each level until the solution converges to the
prescribed tolerance tol or reaches the prescribed maximum cycle (outer iteration).

So finally, our implementation of the proposed multilevel method is summarized in
Algorithm 1.

Algorithm 1 BC1 – Multilevel algorithm for the BC model

Given z, an initial guess φ̃, and the stop tolerance tol with L+ 1 levels.
1) Iteration starts with φold = φ̃ (φ̃ contains the initial guess before the first iteration and the

updated solution at all later iterations).
2) Smooth for t iterations the approximation on the finest level k = 1, that is, solve

minφi,j F
loc
BC(φi,j , c1, c2) or (3.4) for i, j = 1, 2, . . . , n.

3) Iterate for t times on each coarse level k = 2, 3, . . . , L, L+ 1:
I If k ≤ L, compute the minimiser c of (3.6) or solve minci,j FBC1(ci,j);
I If k = L+ 1, solve (3.7) or minc F̂BC1(φ̃+ c) on the coarsest level.

Add the correction φ̃ = φ̃+Qkc, where Qk is the interpolation operator distributing ci,j
to the corresponding bk × bk block on level k, as illustrated in (3.5).

4) Return to Step 1 unless
‖φ̃−φold‖

2

‖φ̃‖
2

< tol or until the prescribed maximum of cycles is

reached. Otherwise exit with φ = φ̃.

Here, Steps 2–3 simply update φ̃ from the finest to the coarsest level k = 1, 2, . . . , L, L+1,
so they might be viewed as a single step. We will use the term BC1 to refer to the multilevel
Algorithm 1. In this algorithm, we recommend to start updating our multilevel algorithm in a
fast manner, i.e., to adjust the fine structure before the coarse level. We found in a separate
experiment that if we adjust the coarse structure before the fine level, then convergence is
slower.
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3.2. Multilevel algorithm for the RC model. The generalization of the above algorithm
to other models is similar. For the RC model, the discretized version of (2.11) takes the
following form

min
φ,c1,c2

FRC (φ, c1, c2) ,

FRC (φ, c1, c2) = µ̄

n−1∑
i,j=1

gi,j

√
(Hi,j −Hi,j+1)

2
+ (Hi,j −Hi+1,j)

2
+ β

+ λ1

n∑
i,j=1

(zi,j − c1)
2
Hi,j + λ2

n∑
i,j=1

(zi,j − c2)
2

(1−Hi,j)

+ ν
(
−A1 +

n∑
i,j=1

Hi,j

)2

+ ν
(
−A2 +

n∑
i,j=1

(
1−Hi,j

))2

.

(3.8)

Consider the minimization of (3.8) by the coordinate descent method on the finest level 1:

Given φ(m)=
(
φ

(0)
i,j

)
with m = 0.

(3.9) Solve φ
(m)
i,j = arg min

φi,j ,c1,c2∈R
F locRC (φi,j , c1, c2) for i, j = 1, 2, . . . , n.

Set φ(m+1)
i,j =

(
φ

(m)
i,j

)
and repeat the above steps with m = m+ 1 until stopped.

Here, the functional in (3.9) is

F locRC (φi,j , c1, c2) = FRC − F0

= µ̄

(
gi,j

√
(Hi,j −H(m)

i+1,j)
2

+ (Hi,j −H(m)
i,j+1)

2
+ β

+ gi−1,j

√
(Hi,j −H(m)

i−1,j)
2

+ (H
(m)
i−1,j −H

(m)
i−1,j+1)

2
+ β

+ gi,j−1

√
(Hi,j −H(m)

i,j−1)
2

+ (H
(m)
i,j−1 −H

(m)
i+1,j−1)

2
+ β

)
+ λ1(zi,j − c1)2Hi,j + λ2(zi,j − c2)2(1−Hi,j)

+ ν(Hi,j −A1)2 + ν((1−Hi,j)−A2)2.

The functional F0 refers to a collection of all terms that do not depend on φi,j . At the boundary,
a Neumann condition for φi,j is used. In order to introduce the multilevel algorithm we first
rewrite (3.9) into an equivalent form:

ĉ = arg min
c∈R

F locRC

(
φ

(m)
i,j + c, c1, c2

)
, φ

(m+1)
i,j = φ

(m)
i,j + ĉ

for i, j = 1, 2, . . . , n.

(3.10)
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Similar to BC1, we arrive at the following local functional for ĉ on a general level:

FRC1 (ci,j) = µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2
+ υ2

k1−1,` + β

+ ν

k2∑
k=k1

`2∑
`=`1

(−A1 +H(φ̃k,` + ci,j))
2

+ µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2
+ υ2

k2,`
+ β

+ µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)

2
+ h2

k,`1−1 + β

+ µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)

2
+ h̄2

k2,`2
+
β

2

+ λ1

k2∑
k=k1

`2∑
`=`1

H(φ̃k,` + ci,j)(zk,` − c1)
2

+ λ2

k2∑
k=k1

`2∑
`=`1

(1−H(φ̃k,` + ci,j))(zk,` − c2)
2

+ µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)

2
+ h2

k,`2
+ β

+ ν

k2∑
k=k1

`2∑
`=`1

(
−A2 + (1−H(φ̃k,` + ci,j))

)2

.

(3.11)

A single constant update of the current φ̃ on the coarsest level is obtained by solving

min
c
F̂RC1(φ̃+ c),

F̂RC1(φ̃+ c) = λ1

n∑
i,j=1

H(φ̃i,j + c)(zi,j − c1)
2
+ν

n∑
i,j=1

(
−A1 +H(φ̃i,j + c)

)2

+ λ2

n∑
i,j=1

(
1−H(φ̃i,j + c)

)
(zi,j − c2)

2

+ ν

n∑
i,j=1

(
−A2 +

(
1−H(φ̃i,j + c)

))2

.

(3.12)

Our implementation of the proposed multilevel method is summarized in Algorithm 2 which
will be referred to as RC1.

Before we conclude this section, we give a brief convergence analysis of BC1 and RC1.
Let N = n2 be the total number of pixels (unknowns). First, we compute the number of
floating point operations (flops) for BC1 for level k as follows:
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Algorithm 2 RC1 – Multilevel algorithm for the RC model

Given z, an initial guess φ̃, and a stopping tolerance tol with L+ 1 levels.
1) Iteration starts with φold = φ̃ (φ̃ contains the initial guess before the first iteration and the

updated solution at all later iterations).
2) Smooth for t iterations the approximation on the finest level 1, i.e., solve

minφi,j F
loc
RC(φi,j , c1, c2) or (3.10) for i, j = 1, 2, . . . , n.

3) Iterate for t times on each coarse level k = 2, 3, . . . , L, L+ 1:
I If k ≤ L, compute the minimiser c of (3.11) or solve minci,j FRC1(ci,j);
I If k = L+ 1, solve (3.12) or minc F̂RC1(φ̃+ c) on the coarsest level.

Add the correction φ̃ = φ̃+Qkc, where Qk is the interpolation operator distributing ci,j
to the corresponding bk × bk block on level k, as illustrated in (3.5).

4) Return to Step 1, unless
‖φ̃−φold‖

2

‖φ̃‖
2

< tol or until the prescribed maximum of cycles is

reached. Otherwise exit with φ = φ̃.

Quantities Flop counts for BC1
h, υ 4bkτ

2
k

λ1 term 2N
λ2 term 2N

s smoothing steps 38bkτ
2
ks

Then, the flop counts for all levels is ξBC1 =
L+1∑
k=1

(
4N + 4bkτ

2
k + 38bkτ

2
ks
)
, where

k = 1 (the finest) and k = L+ 1 (the coarsest). Next, we compute an upper bound for BC1:

ξBC1 = 4(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

38Ns

bk

)
= 4(L+ 1)N + (4 + 38s)N

L∑
k=0

(
1

2k

)
< 4N log n+ 12N + 76Ns ≈ O (N logN) .

Similarly, the flops for RC1 is given as
Quantities Flop counts for RC1
h, υ 4bkτ

2
k

λ1 term 2N
λ2 term 2N
ν term 4N

s smoothing steps 31bkτ
2
ks

Hence, the total flop counts for RC1 is ξRC1 =
L+1∑
k=1

(
8N + 4bkτ

2
k + 31bkτ

2
ks
)
. This gives an

upper bound for RC1:

ξRC1 = 8(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

31Ns

bk

)
= 8(L+ 1)N + (4 + 31s)N

L∑
k=0

(
1

2k

)
< 8N log n+ 16N + 62Ns ≈ O (N logN) .

One can observe that both BC1 and RC1 are of the optimal complexity O(N logN) expected
for a multilevel method and ξRC1 > ξBC1.

It may be remarked that both algorithms BC1 and RC1 are easily parallelizable, and
hence, there is much potential to explore parallel efficiency. However, below we consider how
to improve the sequential efficiency in a simple and yet effective manner.
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4. The new localized models. The complexity of the above algorithms is O(N logN)
per cycle through all levels for an image sized n × n with N = n2. As this is optimal for
most problems, there is no need to consider further reductions in many cases, e.g., for image
denoising. However, segmentation is a special problem because the evolution of the level-set
function φ is always local in selective segmentation. Below we include this locality into
reformulations of the problem and explore further reduction of the O(N logN) complexity,
consequently achieving super-optimal efficiency.

Motivated by developing faster solution algorithms than Algorithms 1–2 and by methods
using narrow band region-based active contours, localized models amenable to a fast solution
are proposed in this section for the BC model [6] and the RC model [33], respectively.
Subsequentially, we present the corresponding multilevel algorithms to solve them. As
expected, the complexity of the new models will be directly linked to the length of the
segmented objects at each iteration; at the discrete level, this length is usually O(

√
N). Our

use of narrow band regions is fundamentally different from active contours in that we apply
the idea to a model not just to a numerical procedure.

The key notation used below is the following as illustrated in Figure 4.1. Given a level-set
function φ (intended to represent Ω1), a local function b defined by

b(φ(x, y), γ) = H (φ(x, y) + γ)
(
1−H(φ(x, y)− γ)

)
characterizes the narrow band region domain Ωγ = Ω1 (γ) ∪ Γ ∪ Ω2 (γ) surrounding the
boundary Γ, with Ω1 (γ) and Ω2 (γ) denoting the γ-band region inside and outside of Γ,
respectively. A similar notation is also used by [27, 41]. Note that b = 1 inside Ωγ and 0
outside, and similarly, b (φ(x, y), γ)H (φ) = 1 inside Ω1 (γ) and 0 outside, i.e., we have
b (φ(x, y), γ) (1−H (φ)) = 1 inside Ω2 (γ) and 0 outside. Furthermore, after discretization,
we introduce the notation for the set falling into the γ-band where b = 1:

B(φ) =
{

(i, j)
∣∣ − γ ≤ φi,j ≤ γ i.e., φ (x, y) + γ > 0 and φ(x, y)− γ < 0

}
.

We propose a localized version of the BC model [6] by the following optimization problem

min
Γ,c1,c2

FBL (Γ, c1, c2) , FBL (Γ, c1, c2) := µ

∫
Γ

dgds+ F γBL (Γ, c1, c2) ,

where a refinement of the model is achieved by

F γBL (Γ, c1, c2) = λ1

∫
Ω1(γ)

(z − c1)
2
dxdy + λ2

∫
Ω2(γ)

(z − c2)
2
dxdy.

In the level-set formation,

min
φ,c1,c2

FBL (φ, c1, c2) ,

FBL (φ, c1, c2) = µ

∫
Ω

dg

√
|∇H (φ)|2 + β dxdy

+ λ1

∫
Ω

(z − c1)
2
b (φ, γ)H (φ) dxdy

+ λ2

∫
Ω

(z − c2)
2
b (φ, γ) (1−H (φ)) dxdy.

(4.1)
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Next, we propose a localized RC model of the form

min
φ,c1,c2

FRL (φ, c1, c2) ,

FRL (φ, c1, c2) = µ

∫
Ω

g (|∇z(x, y)|)
√
|∇H (φ)|2 + β dxdy

+ λ1

∫
Ω

(z − c1)
2
b (φ, γ)H (φ) dxdy + λ2

∫
Ω

(z − c2)
2
b (φ, γ) (1−H (φ)) dxdy

+ ν
(∫

Ω

b (φ, γ)H (φ) dxdy −A1

)2

+ ν
(∫

Ω

b (φ, γ) (1−H (φ)) dxdy −A2

)2

.

(4.2)

5. Multilevel algorithms for localized segmentation models. We now show how to
adapt the above Algorithms 1–2 to the new formulations (4.1) and (4.2).

Multilevel algorithm for the localized BC model. Discretize the functional (4.1) as

FBL (φ, c1, c2) = µ̄
n−1∑
i,j=1

Gi,j

√
(Hi,j −Hi,j+1)

2
+ (Hi,j −Hi+1,j)

2
+ β

+ λ1

n∑
i,j=1

(zi,j − c1)
2
Hi,jbi,j + λ2

n∑
i,j=1

(zi,j − c2)
2

(1−Hi,j) bi,j ,

(5.1)

where G = dg, Gi,j = G(xi, yj), (i, j) ∈ B(φ). Minimization of (5.1) by the coordinate
descent method on the finest level 1 leads to the following local minimization for only
(i, j) ∈ B(φ(m)):

F locBL(φi,j , c1, c2) =µ̄

(
Gi,j

√
(Hi,j −H(m)

i+1,j)
2

+ (Hi,j −H(m)
i,j+1)

2
+ β

+Gi−1,j

√
(Hi,j −H(m)

i−1,j)
2

+ (H
(m)
i−1,j −H

(m)
i−1,j+1)

2
+ β

+Gi,j−1

√
(Hi,j −H(m)

i,j−1)
2

+ (H
(m)
i,j−1 −H

(m)
i+1,j−1)

2
+ β

)
+ λ1(zi,j − c1)

2
Hi,jbi,j + λ2(zi,j − c2)

2
(1−Hi,j) bi,j ,

where bi,j = 1, if (i, j) ∈ B(φ(m)) and bi,j = 0 else.
Further, the multilevel method for the localized BC model (4.1) at a general level for

updating the block [k1, k2]× [`1, `2] amounts to minimizing the following local functional

FBC2 (ci,j) = µ̄

`2∑
`=`1

Gk1−1,`

√
(ci,j − hk1−1,`)

2
+ υ2

k1−1,` + β

+ µ̄

k2−1∑
k=k1

Gk,`2

√
(ci,j − υk,`2)

2
+ h2

k,`2
+ β

+ µ̄

`2−1∑
`=`1

Gk2,`

√
(ci,j − hk2,`)

2
+ υ2

k2,`
+ β

+ µ̄

k2∑
k=k1

Gk,`1−1

√
(ci,j − υk,`1−1)

2
+ h2

k,`1−1 + β
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Algorithm 3 BC2 – Multilevel algorithm for the new local BC model
• Input γ and the other quantities as in Algorithm 1.
• Apply Algorithm 1 to new functionals by replacing

min
φi,j

F locBC(φi,j , c1, c2) on the finest level by min
φi,j

F locBL(φi,j , c1, c2);

min
ci,j

FBC1(ci,j) on coarse levels by min
ci,j

FBC2(ci,j).

All other steps are identical.

+ µ̄
√

2Gk2,`2

√
(ci,j − ῡk2,`2)

2
+ h̄2

k2,`2
+ β/2

+ λ1

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

H(φ̃k,` + ci,j)(zk,` − c1)
2
b(φ̃k,` + ci,j , γ)

+ λ2

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
1−H(φ̃k,` + ci,j)

)
(zk,` − c2)

2
b(φ̃k,` + ci,j , γ),

similar to Algorithm 1, where (i, j) ∈ B(φ̃). The difference is that φ̃ := φ̃+ ci,j only needs
an update if the set [k1, k2] × [`1, `2] ∩ B(φ̃) is non-empty. We will use the abbreviation
BC2 to refer to the multilevel Algorithm 3.

Multilevel algorithm for the localized RC model. The functional (4.2) is discretized
as

FRL (φ, c1, c2) = µ̄

n−1∑
i,j=1

gi,j

√
(Hi,j −Hi,j+1)

2
+ (Hi,j −Hi+1,j)

2
+ β

+ λ1

n∑
i,j=1

(zi,j − c1)
2
Hi,jbi,j + λ2

n∑
i,j=1

(zi,j − c2)
2

(1−Hi,j) bi,j

+ ν
(
−A1 +

n∑
i,j=1

Hi,jbi,j

)2

+ ν
(
−A2 +

n∑
i,j=1

(1−Hi,j) bi,j

)2

.

(5.2)

Further, at a general level, whenever a block [k1, k2]× [`1, `2] overlaps with B(φ̃) (i.e., the
set [k1, k2]× [`1, `2] ∩B(φ̃) is non-empty), the multilevel method minimizes

FRC2(ci,j)

= µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2
+ υ2

k1−1,` + β

+ µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+ µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2
+ υ2

k2,`
+ β

+ µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)

2
+ h̄2

k2,`2
+
β

2
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Algorithm 4 RC2 – Multilevel algorithm for the new and local RC model
• Input γ and the other quantities as in Algorithm 2.
• Apply Algorithm 2 to new functionals from replacing

min
φi,j

F locRC(φi,j , c1, c2) on the finest level by min
φi,j

F locRL(φi,j , c1, c2);

min
ci,j

FRC1(ci,j) on coarse levels by min
ci,j

FRC2(ci,j).

All other steps are identical.

+ µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)

2
+ h2

k,`1−1 + β

+ λ1

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

b
(
φ̃k,` + ci,j , γ

)
H(φ̃k,` + ci,j) (zk,` − c1)

2

+ λ2

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
1−H(φ̃k,` + ci,j)

)
b
(
φ̃k,` + ci,j , γ

)
(zk,` − c2)

2

+ ν

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
−A1 + b

(
φ̃k,` + ci,j , γ

)
H
(
φ̃k,` + ci,j

))2

+ ν

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
−A2 +

(
1−H

(
φ̃k,` + ci,j

))
b
(
φ̃k,` + ci,j , γ

))2

and then updates φ̃ by φ̃+ ci,j . We will refer to this Algorithm 4 as RC2.
Algorithms 3–4 have a complexity of O(γn logN) = O(

√
N logN), where logN refers

to the number of levels for a single object extraction. However, they are only applicable to
our selective models; for global models such as the CV model, the band idea promotes local
minimisers and is hence not useful.

6. Numerical experiments. In order to demonstrate the strengths and limitations of the
proposed multilevel method for both the original and the localized segmentation models, we
have performed several experiments. The main algorithms to be compared are:

Name Algorithm Description
BC0 Old The AOS algorithm [6] for the original BC model [6];
BCP Old The Pyramid scheme for BC0;
BC1 New The multilevel Algorithm 1 for the BC model;
BC2 New The multilevel Algorithm 3 for the localized BC model;
RC0 Old The AOS algorithm [33] for the original RC model [33];
RCP Old The Pyramid scheme for RC0;
RC1 New The multilevel Algorithm 2 for the RC model;
RC2 New The multilevel Algorithm 4 for the localized RC model.

Our aims of the tests are
i) to verify numerically the efficiency as n increases, i.e., if an algorithm is faster or

slower than or of the same magnitude as O(N logN), where N = n2;
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ii) to compare the quality, we use the so-called the Jaccard similarity coefficient (JSC)
and the Dice similarity coefficient (DSC):

JSC =
|Sn ∩ S∗|
|Sn ∪ S∗|

, DSC = 2
|Sn ∩ S∗|
|Sn|+ |S∗|

,

where Sn is the set of the segmented domain Ω1 and S∗ is the true set of Ω1. The
similarity functions return values in the range [0, 1]. The value 1 indicates perfect
segmentation quality while the value 0 indicates poor quality.

The test images used in this paper are listed in Figure 6.1. These are four images, which
include 3 real medical images and 1 synthetic image (Problem 1 has a known solution, which
helps computing JSC and DSC). The markers set also are shown in Figure 6.1. The initial
contour is defined by the markers set. We remark that for an image of size n×n, the number of
unknowns is N = n2, which means that for n = 256, 512, 1024, 2048, the respective number
of unknowns is N = 65536, 262144, 1048576, 4194304, i.e., we are solving large-scale
problems. Our algorithms are implemented in MATLAB R2017a on a computer with an Intel
Core i7 processor with CPU 3.60GHz and 16 GB RAM CPU. All the programs are stopped
when tol = 10−4 or when the maximum number of iterations maxit = 1500 is reached.

6.1. Comparison of BC2 with BC0, BC1, and BCP. In the following experiments, we
take the parameters λ1 = λ2 = 1, α = 0.01, β = 10−4, and κ = 4 . During the experiments
it was observed that the parameters ε and η can be in a range between ε ∈ [1/n, 1] and
η ∈ [10−3, 102].

First, we compare BC1 and BC2 using Problems 1–3. All the images are of size 256×256.
We take µ̄ = 0.05n2 (Problem 1) and µ̄ = 0.1n2 (Problems 2–3). For BC2, γ is between 30
to 100.

Figure 6.2(a) and 6.2(b) displays the successful selective segmentation results by BC1
and BC2, respectively, for capturing one object in the Problems 1–3. We see that that the
results from BC1 are quite similar to BC2. The computation times required by BC1 and BC2
to complete the selective segmentation task are tabulated below, where we observe that BC2 is
about 2 times faster than BC1.

Problem BC1 BC2
1 12.1 8.4
2 11.7 6.8
3 11.9 9.3

Second, against BC2, we test the algorithm BC0 based on additive operator splitting
(AOS) [6] and the pyramid scheme BCP based on BC0 and BC1. For this purpose, we segment
Problem 1 with different resolutions using µ = µ̄ = 0.05n2. The segmentation results for
an image of size 1024 × 1024 are presented in Figure 6.3, and the results for all sizes in
terms of quality and computation times needed to complete the segmentation tasks are given
in Table 6.1. Columns 5 (ratios of the CPU times) show that BC0, BCP, and BC1 are of
complexity O(N logN) while BC2 is of ‘super’-optimal efficiency O(

√
N logN).

Clearly BC0 (the AOS method for the BC model with an added balloon force) provides
an effective acceleration for images of moderate size n ≤ 256. Significant improvement can
be seen for BCP, which shows that the pyramid method together with AOS is better than BC0.
However, we can see that our BC1 and BC2 are faster than BC0 and BCP, while BC2 is faster
than the other 3 algorithms. The differences in the computation time of BC2 and the three
other algorithms become significant as the image size increases to n ≥ 512. The BC0 result
marked with “ ** " indicates that a very long time is required to complete the segmentation
task. For example, one can observe that BC0 needs almost 100 times more computation time
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TABLE 6.1
Comparison of computation time (in seconds) and segmentation quality of BC0, BCP, and BC1 with our BC2 for

Problem 1. The ratio close to 4.4 for time indicates O(N logN) speed while a ratio of 2.2 indicates O(
√
N logN)

“super-optimal" speed, where the number of unknowns isN = n2. Here and later, “ ** ” means taking too long to run.

Algorithm Size n× n
Number of

iteration
(outer)

Time tn
tn
tn−1

JSC DSC

256× 256 1293 227.8 1.0 1.0
BC0 512× 512 1276 898.5 3.9 1.0 1.0

1024× 1024 1234 4095.5 4.6 1.0 1.0
2048× 2048 ** ** ** ** **
256× 256 4 61.0 1.0 1.0

BCP 512× 512 2 180.0 3.0 1.0 1.0
1024× 1024 2 812.3 4.5 1.0 1.0
2048× 2048 2 3994.0 4.9 1.0 1.0
256× 256 2 11.6 1.0 1.0

BC1 512× 512 2 43.7 3.8 1.0 1.0
1024× 1024 2 173.2 4.0 1.0 1.0
2048× 2048 2 736.9 4.3 1.0 1.0
256× 256 2 10.5 1.0 1.0

BC2 512× 512 2 21.6 2.1 1.0 1.0
1024× 1024 2 42.5 2.0 1.0 1.0
2048× 2048 2 80.5 1.9 1.0 1.0

compared to BC2 to complete the segmentation in case of an image of size 1024× 1024. We
also see from the JSC and DSC values that all algorithms provide high segmentation quality.

6.2. Comparison of RC2 with RC0, RC1, and RCP. In the following experiments, we
fixed the parameters λ1 = λ2 = 1, α = 0.01, and β = 10−4. During the experiments it was
observed that the parameters ν, ε, and η can be in a range of ν ∈ [0.001, 0.01], ε ∈ [1/n, 1],
and η ∈ [10−3, 10−2].

We first compare RC1 and RC2 using Problems 1–3. All the images are of size 256× 256.
We take µ̄ = 0.05n2 (Problem 1) and µ = µ̄ = 0.1n2 (Problems 2–3). For RC2, γ is between
30 to 100. Figure 6.4(a) and 6.4(b) display the successful selective segmentation results of
RC1 and RC2, respectively, for capturing one object for Problems 1–3.

We then compare RC2 with RC0, RCP, and RC1 using Problem 1. Here µ = µ̄ = 0.05n2

for all algorithms. The segmentation results for an image of size 1024× 1024 illustrated in
Figure 6.5, and the quality measures and the computation time presented in Table 6.2 show that
RC2 can be 100 times faster than RC0, 17 times faster than RCP, and 4 times faster than RC1
for the case of an image of size 1024× 1024. In particular, the ratios of the CPU times verify
that RC0, RCP, and RC1 are of complexity O(N logN) while RC2 is of ‘super’-optimal
efficiency O(

√
N logN). Furthermore, the RC0 result with “ ** " indicates that too much

time is required to complete the segmentation task. The high values of JSC and DSC show
that RC0, RCP, RC1, and RC2 provide high segmentation quality.

For the benefit of the readers, in Figure 6.6 we demonstrate a convergent plot based on
Tables 6.1 and 6.2 of our proposed multilevel-based models (BC2 and RC2) for segmenting
Problem 1 with an image of size 2048×2048. One can see that the models are fast, converging
to tol in 2 iterations, that is, before the prescribed maxit.
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TABLE 6.2
Comparison of computation time (in seconds) and segmentation quality of RC0, RCP, and RC1 with RC2

for Problem 1. Again, the ratio close to 4.4 for time indicates O(N logN) speed while a ratio of 2.2 indicates
O(
√
N logN) “super-optimal" speed, where the number of unknowns is N = n2.

Algorithm Size n× n
Number of

iteration
(outer)

Time tn
tn
tn−1

JSC DSC

256× 256 1500 260.5 1.0 1.0
RC0 512× 512 1385 975.0 3.7 1.0 1.0

1024× 1024 1404 4735.0 4.9 1.0 1.0
2048× 2048 ** ** ** ** **
256× 256 4 62.5 1.0 1.0

RCP 512× 512 2 187.2 3.0 1.0 1.0
1024× 1024 2 822.3 4.4 1.0 1.0
2048× 2048 2 3996.3 4.9 1.0 1.0
256× 256 2 13.0 1.0 1.0

RC1 512× 512 2 48.4 3.7 1.0 1.0
1024× 1024 2 189.9 3.9 1.0 1.0
2048× 2048 2 819.0 4.3 1.0 1.0
256× 256 2 11.5 1.0 1.0

RC2 512× 512 2 24.0 2.1 1.0 1.0
1024× 1024 2 46.9 2.0 1.0 1.0
2048× 2048 2 87.6 1.9 1.0 1.0

Furthermore, we have extended the number of iterations for BC2 and RC2 up to 6
iterations and plotted the residual history in the same Figure 6.6. We can observe that BC2
and RC2 keep converging.

6.3. Sensitivity tests on the algorithmic parameters. Sensitivity is a major issue that
has to be addressed and is tested below. We shall pay particular attention to the regularizing
parameter β that is known to be a sensitive parameter for the convergence of a geometric
multigrid method [4]; it turns out that our Algorithms 1–4 are more advantageous as they are
not very sensitive to β.

Tests for the parameter t. The inner iteration t indicates the number of iterations needed
to solve the minimization problem in each level. We test several numbers of t required by
BC2 and RC2 to segment the heart shape in Problem 1 and record the outer iteration needed
to achieve tol, the CPU time, and the quality of segmentation. The results are tabulated in
Table 6.3.

We can see that BC2 and RC2 work efficiently and effectively using only 1 inner iteration,
i.e., t = 1. As we increase t, the quality of the segmentation for BC2 and RC2 reduces, and
one needs more CPU time and outer iterations as well.

Tests for the parameter γ. The bandwidth parameter γ is an important parameter to be
tested. Its size determines how local the resulting segmentation will be. Below, we demonstrate
the effect of setting different values of γ in BC2 and RC2. We aim to segment an organ in
Problem 4 by applying BC2 and RC2 with varying γ. The results are presented in Figure 6.7.
Columns 2 and 3 of Figure 6.7 display the results using three γ-values (with increasingly
spread out bandwidth) for BC2 and RC2. Clearly, unless the value is too small (which results
in an incorrect segmentation), in general, both BC2 and RC2 are not much sensitive to the
choice of γ.
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TABLE 6.3
Dependence of BC2 and RC2 on t for the heart shape in Problem 1 (Figure 6.1).

Algorithm t:inner
iteration

Number of
iteration
(outer)

CPU JSC DSC

1 2 8.1 1.0 1.0
BC2 2 6 22.4 1.0 1.0

3 7 26.7 0.9 1.0
1 2 8.8 1.0 1.0

RC2 2 9 35.3 0.9 1.0
3 7 28.7 0.9 1.0

TABLE 6.4
Dependence of our new BC2 and RC2 on β for the heart shape in Problem 1 (Figure 6.1).

β BC2 RC2
FBL (φ, c1, c2) JSC DSC FRL (φ, c1, c2) JSC DSC

1 2.461759e+09 0.6 0.7 5.177135e+10 0.6 0.7
10e-1 2.258762e+09 0.9 1.0 5.168056e+10 0.9 1.0
10e-2 2.197002e+09 1.0 1.0 5.164663e+10 1.0 1.0
10e-4 2.178939e+09 1.0 1.0 5.163375e+10 1.0 1.0
10e-6 2.177950e+09 1.0 1.0 5.163266e+10 1.0 1.0
10e-8 2.176280e+09 1.0 1.0 5.163252e+10 1.0 1.0
10e-10 2.175254e+09 1.0 1.0 5.163243e+10 1.0 1.0

Tests for the parameter β. Finally, we examine the sensitivity of BC2 and RC2 with re-
spect to the important parameter β. Seven different values of β are tested: β = 1, 10−1, 10−2,
10−4, 10−6, 10−8, and 10−10 for segmenting the heart shape in Problem 1. For a quantitative
analysis, we evaluate the energy value FBL (φ, c1, c2) in equation (5.1), FRL (φ, c1, c2) in
equation (5.2), and the indexes JSC and DSC. The values of FBL (φ, c1, c2), FRL (φ, c1, c2),
JSC, and DSC are tabulated in Table 6.4. One can see that as β decreases, the functional
FBL (φ, c1, c2) and FRL (φ, c1, c2) get closer to each other. The segmentation quality mea-
sured by JSC and DSC increases as β decreases. This finding indicates that BC2 and RC2
are only sensitive to (unrealistic) large β but to a lesser extent to a very small β. In separate
experiments, we found that the BC2 and RC2 algorithms are not much sensitive with respect
to η, α, ε, and ν (involved in RC2 only), although there exist choices which give the optimal
quality of segmentation.

7. Conclusions. In this work, we presented an optimization-based multilevel method
to solve two variational and selective segmentation models (BC and RC), though the idea is
applicable to other global and variational models as well.

In Part 1, we presented two algorithms (BC1, RC1) for solving the respective models with
each algorithm having the expected optimal complexity of O(N logN) for the segmentation
of an image of size n× n or N = n2 unknowns (pixels). These algorithms can be adapted
to solve other segmentation models. In Part 2, we reformulated the models so that they
became localized versions that operate within a banded region of an active level-set contour,
and consequently obtained two further algorithms (BC2, RC2) with each algorithm having
the ‘super’-optimal complexity of approximately O(

√
N logN) depending on the objects to

be segmented. These algorithms are only applicable to our selective segmentation models.
Numerical experiments have verified the complexity claims, and comparisons with related
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algorithms (BC0, BCP, RC0, RCP for the standard models) show that the new algorithms
are many times faster than BC0, BCP, RC0, RCP while achieving a comparable quality of
segmentation.

Future works will address convexified selective variational models, such as [37], especially
in high dimensions and other image processing tasks, such as image registration and joint
registration, and segmentation models. There is much scope to explore the presented algorithms
on parallel platforms, especially for 3D problems.
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(a) Level 1: τ2
1 = 162 variables (b) Level 2: τ2

2 = 82 variables

(c) Level 3: τ2
3 = 42 variables (d) Level 4: τ2

4 = 22 variables

(e) Level 5: τ2
5 = 1 variable

(f) Level 3 block with b23 = 16 pixels
but only 12 effective terms in local

minimization F locBC

FIG. 3.2. Illustration of multilevel coarsening. Partitions (a)-(e): the red × shows image pixels, while the blue
• illustrates the variable c. (f) shows on coarse level 3 the difference of inner and boundary pixels interacting with
neighboring pixels •. The middle boxes � indicate the inner pixels which do not involve c, others boundary pixels
denoted by symbols C, B, ∆, ∇ involve c as in (3.4) via F locBC .
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FIG. 4.1. New modelling setup: replacement of domain Ω1 by a smaller domain Ωγ .

Problem 1 Problem 2

Problem 3 Problem 4

FIG. 6.1. Test images with the markers set.
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BC1 BC2

BC1 BC2

(a) BC1 (b) BC2

FIG. 6.2. Segmentation of Problems 1–3: Column (a) BC1 and (b) BC2.
BC0 BCP

BC1 BC2

FIG. 6.3. Segmentation of Problem 1 of size 1024× 1024 for BC0, BCP, BC1, and BC2.
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RC1 RC2

RC1 RC2

(a) RC1 (b) RC2

FIG. 6.4. Segmentation of Problems 1–3. (a) and (b) show the segmentation using RC1 and RC2, respectively.
RC0 RCP

RC1 RC2

FIG. 6.5. Segmentation of Problem 1 of size 1024 × 1024 for RC0, RCP, RC1, and RC2. For the same
segmentation result, RC2 can be 100 times faster than RC0, 17 times faster than RCP and 4 times faster than RC1;
see Table 6.2.
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FIG. 6.6. The number of iterations needed by BC2 and RC2 to achieve a set tol (residual) in segmenting an
image of size 2048× 2048 with tol = 10−4. BC2 and RC2 need 2 iterations. The extension up to 6 iterations shows
that the residuals of BC2 and RC2 keep decreasing.

(a) BC2 γ=1 (d) RC2 γ=1

(b) BC2 γ = 7 (e) RC2 γ = 7

(c) BC2 γ = 100 (f) RC2 γ = 100

FIG. 6.7. Dependence of algorithms BC2, RC2 on the parameter γ for Problem 4.
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