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A BLOCK LANCZOS METHOD FOR THE
LINEAR RESPONSE EIGENVALUE PROBLEM∗

ZHONGMING TENG† AND LEI-HONG ZHANG‡

Abstract. In the linear response eigenvalue problem arising from computational quantum chemistry and physics
one needs to compute a small portion of eigenvalues around zero together with the associated eigenvectors. Lanczos-
type methods are particularly suitable for such a task. However, single-vector Lanczos methods can only find one
copy of any multiple eigenvalue and can be very slow when the desired eigenvalues form a cluster. In this paper, we
propose a block Lanczos-type implementation for the linear response eigenvalue problem, which is able to compute
a cluster of eigenvalues much faster and more efficiently than the single-vector version. Convergence results are
established and reveal the accuracy of the approximations of eigenvalues in a cluster and of the eigenspace. A practical
thick-restart procedure is introduced to alleviate the increasing numerical difficulties of the block Lanczos method in
computational costs, memory demands, and numerical stability. Numerical examples are presented to support the
effectiveness of the thick-restart block Lanczos method.
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1. Introduction. In this paper, we consider the Linear Response Eigenvalue Problem
(LREP)

(1.1) Hz :=

[
0 K
M 0

] [
y
x

]
= λ

[
y
x

]
=: λz,

where K and M are N × N real symmetric matrices and one of them is positive definite.
LREP (1.1) is also known as the Random Phase Approximation (RPA) eigenvalue problem.
Such a problem is one of the most widely used in computational quantum chemistry and
physics for studying the excitation energy of many-particle systems [13, 14, 18] which
have applications for silicon and other nanoscale materials. There has been a great deal
of recent work and interest in developing efficient numerical algorithms and simulation
techniques for excitation response calculations of molecules for materials design in energy
science [3, 4, 8, 11, 15, 27, 28].

In LREP, usually both K and M are positive semidefinite or definite [1, 2, 14, 20, 24].
But there are also cases where one of them may be indefinite [12]. To put it in a relatively
general setting, in this paper, we assume

(1.2) K and M are n×n real symmetric and M is positive definite,

unless explicitly stated otherwise.
From (1.1), we have Kx = λy and My = λx, and they together lead to

KMy = λ2y, MKx = λ2x.
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Recall (1.2). Since KM = KM1/2M1/2 has the same eigenvalues as the symmetric matrix
M1/2KM1/2, all eigenvalues of KM are real. Denote these eigenvalues by ωi (1 ≤ i ≤ N )
in ascending order, i.e.,

(1.3) ω1 ≤ ω2 ≤ · · · ≤ ωN .

The eigenvalues of MK are ωi (1 ≤ i ≤ N ), too. Let ι =
√
−1 denote the imaginary unit

and set

(1.4) λi =

{√
ωi, if ωi ≥ 0,

ι
√
−ωi, if ωi < 0.

The eigenvalues of H are ±λi for i = 1, 2, . . . , N . This practice of enumerating the eigenval-
ues of H is also used later for the much smaller projection of H .

In this paper, we attempt to develop an efficient block Lanczos method for LREP. A
Lanczos-type method for LREP was first introduced by Tsiper in [22, 23]. Tsiper’s Lanczos
method is a recursive process to reduce bothK andM to tridiagonal form, given initial vectors
v0 and u0 with vT

0u0 6= 0. A corresponding convergence theory of Tsiper’s Lanczos method
for LREP has been established in [19]. Besides the convergence analysis of Tsiper’s method,
[19] introduces a better implementation of the Lanczos-type method, which is called the first
Lanczos method for LREP. This version of the Lanczos method reduces K to a tridiagonal
matrix and M to a diagonal matrix. It can be regarded as a natural extension of the classical
Lanczos method for the symmetric eigenvalue problem. The associated convergence analysis
shows that Tsiper’s Lanczos method may need up to twice as many Lanczos steps as the first
Lanczos method in order to reach the same accuracy.

It is well known that a single-vector Lanczos method can only find one copy of any
multiple eigenvalue, and it can be very slow when the desired eigenvalues lie in a cluster;
see, e.g., [10]. To compute all or some of the copies of a multiple eigenvalue, one prefers a
block Lanczos method that is able to compute a cluster of eigenvalues much faster and more
efficiently on modern computer architecture than a single-vector Lanczos method. This is
particularly important for LREP because only the first small portion of the eigenvalues, i.e.,
λi in (1.4) for i = 1, . . . , k with k � N , are of interest. Thus, algorithms that are capable
of computing efficiently eigenvalues in a cluster of the interesting part and even all or some
copies of a multiple eigenvalue are particularly desirable. This was the motivation to develop
a block implementation of the first Lanczos method of [19].

In order to reflect the above mentioned advantages of the block Lanczos method, we
establish a convergence theory to bound the approximation error of an eigenvalue cluster as
well as of the entire approximate eigenspace associated with the cluster.

With increasing dimension of the Krylov subspace, the simple version of a block Lanczos
method usually suffers from numerical difficulties affecting computational costs, memory
demands, and numerical stability. To alleviate these and to make it more practical, we
incorporate a restarting procedure to our block Lanczos method for LREP. There are several
types of restarting schemes for the classic Lanczos method for the symmetric eigenvalue
problem, including the implicitly restart method [9, 16], the Krylov-Schur method [17], and
the thick-restart method [25, 26]; by considering the special structure of LREP, the thick-restart
method of [25, 26] turns out to be efficient and is used in this paper.

The rest of this paper is organized as follows. In Section 2 we collect some basic results
for LREP and M -canonical angles for two subspaces that are used frequently in our later
developments. In Section 3, a block Lanczos method for LREP and the associated convergence
theorems are established. Section 4 is devoted to the thick-restart block Lanczos method for
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LREP. We present some numerical examples in Section 5 to show the numerical behaviors of
the thick-restart block Lanczos method for LREP. Finally, conclusions are drawn in Section 6.

Throughout this paper, Rn×m is the set of all n × m real matrices, Rn = Rn×1, and
R = R1. In (or simply I if its dimension is clear from the context) is the n×n identity matrix,
and 0n×m is an n×mmatrix of zeros. The superscript “H” denotes conjugate transpose, while
“T” denotes transpose only. ‖ · ‖F denotes the Frobenius norm of a matrix. For X ∈ Rm×n,
rank(X) is the rank of X and R(X) = span(X) represents the column space of X; the
submatrices X(k:`,:) and X(:,i:j) of X consist of row k to row ` and column i to column j,
respectively. For matrices or scalars Xi, diag(X1, . . . , Xk) denotes the block diagonal matrixX1

. . .
Xk

 .
Given A ∈ RN×N and B ∈ RN×nb , the nth Krylov subspace of A on B is defined by

Kn(A,B)
def
= span{B,AB, . . . , An−1B}.

2. Preliminaries. Given a symmetric positive definite M ∈ RN×N , the M -inner prod-
uct and its induced M -norm are defined by

〈x, y〉M
def
= yTMx, ‖x‖M =

√
〈x, x〉

M
.

If 〈x, y〉M = 0, then we say x ⊥M y or y ⊥M x. The projector ΠM is termed the M -
orthogonal projector onto X if for any vector x ∈ RN ,

ΠM x ∈ X and (I −ΠM)x ⊥M X.

Consider two subspaces X and Y of RN , and suppose k = dim(X) ≤ dim(Y) = `. Let
X ∈ RN×k and Y ∈ RN×` be M -orthogonal basis matrices of X and Y, respectively, i.e.,

XTMX = Ik, X = R(X) and Y TMY = I`, Y = R(Y ).

Denote the singular values of Y TMX by σj for 1 ≤ j ≤ k in ascending order, i.e.,
σ1 ≤ · · · ≤ σk. The k M -canonical angles θ(j)

M(X,Y) from1 X to Y are defined by

0 ≤ θ(j)
M(X,Y) = arccosσj ≤

π

2
for 1 ≤ j ≤ k.

Set

ΘM(X,Y) = diag(θ(1)
M(X,Y), . . . , θ(k)

M(X,Y)),

where θ(1)
M(X,Y) ≥ · · · ≥ θ(k)

M(X,Y). In particular, when k = 1, X reduces to a vector, and
there is only one M -canonical angle from X to Y. In what follows, we sometimes place a
vector or matrix at one or both arguments of ΘM(., .) with the understanding that this refers to
the subspace spanned by the vector or the columns of the matrix argument.

Later in this paper, we need the Chebyshev polynomials of the 1st kind defined as follows,

Tn(τ) =

{
cos(n arccos τ) for |τ | ≤ 1,

1
2

(
τ +
√
τ2 − 1

)n
+ 1

2

(
τ −
√
τ2 − 1

)n
for |τ | ≥ 1.

1If ` = k, we may say that these angles are between X and Y [10].
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They frequently show up in numerical analysis and computations because of their numerous
nice properties, for example, |Tn(τ)| ≤ 1 for |τ | ≤ 1, and |Tn(τ)| grows extremely fast for
|τ | > 1.

The following results are critical for our later developments. The reader is referred
to [1, 10, 19] for proofs and details.

LEMMA 2.1 ([10, Proposition 2.1]). Let X,Y ⊆ RN with k = dim(X) ≤ dim(Y) = `.
For any Ŷ ⊆ Y with dim(Ŷ) = dim(X) = k, we have θ(j)

M(X,Y) ≤ θ(j)
M(X, Ŷ) for 1 ≤ j ≤ k.

LEMMA 2.2 ([1, Theorem 2.3]). The following statements hold for any symmetric
matrices M, K ∈ RN×N with M being positive definite.
(a) There exists a nonsingular Y = [y1, y2, . . . , yN ] ∈ RN×N such that

K = Y Λ2Y T, M = XXT, Λ = diag(λ1, λ2, . . . , λN ),

where λ21 ≤ λ22 ≤ · · · ≤ λ2N and X = Y −T = [x1, x2, . . . , xN ].
(b) The ith column of Z = [ Y ΛX ] is the eigenvector corresponding to the eigenvalue λi of

(1.1).
(c) Let (λi, zi) (i = 1, 2) be two eigenpairs of H , and partition zi =

[
sHi , t

H
i

]H
. Then,

(i) if λ1 6= λ̄2, then sH1 t2 + sH2 t1 = 0.
(ii) if λ1 6= ±λ2, then sH1 t2 = sH2 t1 = 0.

LEMMA 2.3 ([19, Theorem 2.2]). Given 0 6= v0 ∈ RN and 0 6= u0 ∈ RN such that
Mv0 = u0. There exist nonsingular U, V ∈ RN×N such that V e1 = αv0 and Ue1 = βu0
for some α, β ∈ R, and

UTV = IN , UTKU = T, V TMV = D,

where T is tridiagonal and D is diagonal.

3. Block Lanczos method for LREP.

3.1. Block Lanczos process for LREP. The first Lanczos process for LREP presented
in [19] is a partial realization of the decomposition in Lemma 2.3. The block Lanczos process
for LREP mentioned in this section is actually a block implementation of the first Lanczos
process. We summarize its simple form in Algorithm 3.1, where no further treatment is given
when rank(Ṽi+1) < nb happens in Line 8. Given V0 ∈ RN×nb with rank(V0) = nb and
U0 = MV0 where nb ≥ 1 is the block size. According to [19], if rank(Vi) = nb for i =
1, 2, . . . , n, then we know that the recursively computed Pn, Qn ∈ RN×nnb , the symmetric
block-tridiagonal matrix Tn ∈ Rnnb×nnb , and the block-diagonal matrix Dn ∈ Rnnb×nnb in
Algorithm 3.1 satisfy

(3.1) P T
nQn = Innb

, KPn = QnTn + Vn+1BnE
T
n, MQn = PnDn,

where

(3.2)

Pn = [U1, U2, . . . , Un], Qn = [V1, V2, . . . , Vn],

Tn =


A1 BT

1

B1 A2
. . .

. . . . . . BT
n−1

Bn−1 An

 , Dn = diag(Γ1, Γ2, . . . , Γn),

and ET
n =

[
0nb×(n−1)nb

, Inb

]
. Here, Dn is symmetric positive definite because every diago-

nal block Γj for 1 ≤ j ≤ n is symmetric positive definite. It is noted that ‖Vi(:,j)‖2 = 1 for
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j = 1, 2, . . . , nb in Algorithm 3.1 is enforced for all i. This is for convenience rather than
necessity. It is possible to use ‖Ui(:,j)‖2 = 1 for j = 1, 2, . . . , nb instead or enforce neither.
When nb = 1, Algorithm 3.1 reduces to the single-vector Lanczos process for LREP in [19].
Let

Pn = span (Pn) , Qn = span (Qn) , Hn =

[
0 Tn
Dn 0

]
.

Then, the following lemma generalizes [19, Lemma 3.1].
LEMMA 3.1. In Algorithm 3.1, if Γi is nonsingular for i = 1, 2, . . . , n, then we have

Kn(KM,V0) = Qn, Kn(MK,U0) = Pn.

Basically the block Lanczos method for LREP is this block Lanczos process followed by
solving the small scale LREP for Hn to obtain approximate eigenpairs for H in (1.1). Let the
eigenvalues ±µj (1 ≤ j ≤ nnb) of Hn be enumerated in the same way as for H in (1.4) and
let the corresponding eigenvectors be ẑj , i.e.,

(3.3) Hnẑj = µj ẑj , ẑj =

[
ŷj
x̂j

]
, x̂j , ŷj ∈ Rnnb .

Approximate eigenpairs of H , i.e., Ritz pairs, are then taken to be

(3.4) (µj , z̃j), where z̃j =

[
Qnŷj
Pnx̂j

]
.

Algorithm 3.1 A block Lanczos process for LREP.
Input: Choose U0, V0 ∈ RN×nb such that rank(V0) = nb, MV0 = U0 and an integer n ≥ 1.
Output: Pn, Qn, Tn, Dn and Vn+1 in (3.1) and (3.2).

1: Let βj = ‖V0(:,j)‖2 (j = 1 : nb), B = diag(β1, . . . , βnb
), V1 = V0B

−1, W = V T
0 U0,

U1 = (U0)W−1B, and Γ1 = B−1WB−1.
2: A1 = UT

1KU1, Ṽ2 = KU1 −A1V1.
3: If rank(Ṽ2) < nb, stop;
4: Let βj = ‖Ṽ2(:,j)‖2 (j = 1 : nb), B1 = diag(β1, . . . , βnb

), and V2 = Ṽ2B
−1
1 .

5: for i = 2, 3, . . . , n do
6: Γi = V T

i MVi, Ui = MViΓ
−1
i .

7: Ai = UT
i KUi, Ṽi+1 = KUi − ViAi − Vi−1BT

i−1.
8: If rank(Ṽi+1) < nb, break;
9: Let βj = ‖Ṽi+1(:,j)‖2 (j = 1 : nb), Bi = diag(β1, . . . , βnb

), and Vi+1 = Ṽi+1B
−1
i .

10: end for

3.2. Convergence analysis. Naturally we would use the first few µj as approximations
to the first few λj . In this section we investigate how accurate such approximations could be.
As we know, compared to a single-vector Lanczos method, a block Lanczos method with a
block size that is not smaller than the multiplicity of an eigenvalue can be used to compute all
copies of that eigenvalue. Therefore, motivated by [10], we directly analyze the convergence
to a cluster of eigenvalues including multiple eigenvalues, and consider to bound the errors of
the approximate eigenpairs belonging to the eigenvalue cluster together rather than separately
for each individual eigenpair. Consider λi to λ(i+nb−1) and their corresponding eigenvectors
of LREP, in which λ`1 to λ`2 form a cluster as illustrated in the following figure.
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λ21 λ2i λ2`1 λ
2
`2

λ2i+nb
λ2N

cluster

Here, the cluster is described in terms of the squares of the eigenvalues since the eigenvalues
of LREP come in pairs {−λ, λ} and they may be purely imaginary numbers.

Note that by (3.3) and (3.4) we get

Tnx̂j = µj ŷj , Dnŷj = µj x̂j ,

TnDnŷj = µ2
j ŷj , DnTnx̂j = µ2

j x̂j .

Since Dn is symmetric positive definite, the eigenvalues of D1/2
n TnD

1/2
n are µ2

j with the

corresponding eigenvectors D−1/2n x̂j for 1 ≤ j ≤ nnb, i.e.,

(3.5) D1/2
n TnD

1/2
n

(
D−1/2n x̂j

)
= µ2

j

(
D−1/2n x̂j

)
.

We first present some technical lemmas for our later developments. These lemmas are critical
in our main theorem.

LEMMA 3.2 ([10, Proposition 2.4]). Let X and Y be two subspaces in RN with
equal dimensions dim(X) = dim(Y) = k. Suppose θ(1)

M(X,Y) < π/2. Then, for any set
{y1, y2, . . . , yk1} of the basis vectors in Y where 1 ≤ k1 ≤ k, there is a set {x1, x2, . . . , xk1}
of linearly independent vectors in X such that ΠMxj = yj for 1 ≤ j ≤ k1, where ΠM is the
M -orthogonal projector onto Y.

LEMMA 3.3. Let f ∈ Pn where Pn is the collection of all polynomials of degree no higher
than n and V0 = R(V0). Then, for any v̂ ∈ V0, if f(µ2

j ) = 0, then f(KM)v̂ ⊥M QnD
−1
n x̂j ,

where µj and x̂j are defined by (3.3) and 1 ≤ j ≤ nnb.
Proof. First, by assumptions, for any v̂ ∈ V0, we have Mv̂ = U1c for some c ∈ Rnb .

Now, for any integer 0 ≤ m ≤ n, note from (3.1)

v̂T(MK)mMQnD
−1
n x̂j = v̂TM(KM)m−1KMQnD

−1
n x̂j

= cTUT
1 (KM)m−1(QnTnDn + Vn+1BnE

T
nDn)D−1n x̂j

= cTUT
1 (KM)m−1Qn(TnDn)D−1n x̂j + cTUT

1 (KM)m−1Vn+1BnE
T
nx̂j

= cTUT
1 (KM)m−1Qn(TnDn)D−1n x̂j (by (MK)m−1U1 ∈ Pn⊥Vn+1)

= · · · = cTUT
1Qn(TnDn)mD−1n x̂j = cT[Inb

, 0, . . . , 0](TnDn)mD−1n x̂j ;

thereby, for any f ∈ Pn,

v̂T[f(KM)]
T
MQnD

−1
n x̂j = cT[Inb

, 0, . . . , 0]f(TnDn)D−1n x̂j

= f(µ2
j )c

T[Inb
, 0, . . . , 0]D−1n x̂j = f(µ2

j )c
TΓ−11 x̂j,1,

where x̂j,1 is the sub-vector consisting of the first nb components of x̂j . Thus, if f(µ2
j ) = 0,

f(KM)v̂ ⊥M QnD
−1
n x̂j .

LEMMA 3.4 ([19, Lemma 3.5]). We have, for 1 ≤ j ≤ nnb, λ2j ≤ µ2
j ≤ λ2N−nnb+j

.
LEMMA 3.5 ([5, Problem III.6.15]). For N ×N Hermitian matrices A and B, we have,

for any unitarily invariant norm,

|||Λ(A)− Λ(B)||| ≤ |||A−B|||

where Λ(A) is the diagonal matrix whose diagonal elements are the eigenvalues of A in
descending order, i.e., Λ(A) = diag(λ1(A), . . . , λN (A)) with λ1(A) ≥ · · · ≥ λN (A), and
Λ(B) is defined similarly.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK LANCZOS FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM 511

Partition Y and Λ2 in Lemma 2.2 as

Y =
[ i−1 nb N−nb−i+1

Y1 Y2 Y3
]
, Λ2 =


i−1 nb N−nb−i+1

i−1 Λ2
1

nb Λ2
2

N−nb−i+1 Λ2
3

.
Let Λ̂ 2

2 = diag(λ2`1 , . . . , λ
2
`2

), Ŷ2 = Y(:,`1:`2), Ŷ
⊥
2 be the M -orthogonal complement of Ŷ2,

and ΠM be the M -orthogonal projector onto R(Y2). In the rest of this section, we always
assume

(3.6) θ(1)
M(V0, Y2) < π/2,

i.e., the matrix V T
0 MY2 is nonsingular, which is generically true for a randomly chosen starting

V0. By Lemma 3.2, there exists Ψ ∈ RN×(`2−`1+1) with R(Ψ) ⊂ R(V0) such that

(3.7) ΠMΨ = Ŷ2,

or equivalently, Y2Y T
2 MΨ = Ŷ2.

THEOREM 3.6. Let Ψ satisfy (3.7). We have

(3.8) ‖diag(µ2
`1 − λ

2
`1 , . . . , µ

2
`2 − λ

2
`2)‖F

≤ (λ2N − λ2`1)×
(

∆`1

Ξ`1,`2 × Υn,`1,`2

)2

× ‖ tan2ΘM(Ŷ2, Ψ)‖F,

where

δ`2 =
λ2i+nb

− λ2`2
λ2N − λ2`2

, Υn,`1,`2 =

∣∣∣∣Tn−`1

(
δ`2 + 1

δ`2 − 1

)∣∣∣∣ ,
∆`1 = max

i+nb≤j≤N

`1−1∏
t=1

|λ2j − µ2
t |, Ξ`1,`2 = min

`1≤j≤`2

`1−1∏
t=1

|λ2j − µ2
t |.

In particular, if also λ`1 > µ`1−1, then

∆`1

Ξ`1,`2
=

∣∣∣∣∣ (λ2N − µ2
1) · · · (λ2N − µ2

`1−1)

(λ2`1 − µ
2
1) · · · (λ2`1 − µ

2
`1−1)

∣∣∣∣∣ .
Proof. Let nc = `2 − `1 + 1 and nr = N − nb − i+ 1 for convenience. It follows from

(3.7) that

Ψ = Y XTΨ = Y Y TMΨ = [Y1, Y2, Y3]

Y T
1

Y T
2

Y T
3

MΨ

= Y1Y
T
1 MΨ + Y2Y

T
2 MΨ + Y3Y

T
3 MΨ = Y1Y

T
1 MΨ + Ŷ2Ŷ

T
2 MΨ + Y3Y

T
3 MΨ.

The last equality holds because of (3.7) and Ŷ T
2 MΨ = Inc

. Let Ψ0 = Ψ(ΨTMΨ)−1/2,
f ∈ Pn−1 with f(µ2

j ) = 0 for 1 ≤ j ≤ `1 − 1, and

Z = f(KM)Ψ0 = Y1f(Λ2
1)Y T

1 MΨ0 + Ŷ2f(Λ̂ 2
2 )Ŷ T

2 MΨ0 + Y3f(Λ2
3)Y T

3 MΨ0.
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Note that Ŷ T
2 MZ = f(Λ̂ 2

2 )Ŷ T
2 MΨ0 and Ŷ T

2 MΨ0 is nonsingular; if f(Λ̂ 2
2 ) is also nonsin-

gular (which is true for the one we choose later), we have

Z0 = Z
(
Ŷ T
2 MZ

)−1
= Z

(
Ŷ T
2 MΨ0

)−1 [
f(Λ̂ 2

2 )
]−1

= Y1R1 + Ŷ2 + Y3R3

and rank(Z0) = nc, where

Rj = f(Λ2
j )Y

T
j MΨ0

(
Ŷ T
2 MΨ0

)−1 [
f(Λ̂ 2

2 )
]−1

, for j = 1, 3.

LetE = Z0(ZT
0MZ0)−1/2 andF = ME. Then,E has full column rank and R(E) ⊂ Qn

by Lemma 3.1. Write E = QnÊ with Ê ∈ Rnnb×nc . It is true that ÊTDnÊ = Inc
by

ETME = Inc
. Denote the eigenvalues of F TKF by γ2j where 1 ≤ j ≤ nc. Then, by (3.1),

F TKF = ETMKME = ÊTQT
nMKMQnÊ

= ÊTDnP
T
nKPnDnÊ = ÊTD1/2

n (D1/2
n TnD

1/2
n )D1/2

n Ê.

Because f(µ2
j ) = 0 for 1 ≤ j ≤ `1 − 1, according to Lemma 3.3, we know

E ⊥M QnD
−1
n x̂j for 1 ≤ j ≤ `1 − 1.

That means

x̂T
jD
−1
n QT

nMQnÊ = x̂T
jD
−1
n DnÊ = x̂T

j Ê = 0,

i.e., (D
1/2
n Ê)TD

−1/2
n x̂j = 0 for 0 ≤ j ≤ `1 − 1. It is noted from (3.5) that D−1/2n x̂j is the

eigenvector of D1/2
n TnD

1/2
n associated to the eigenvalue µ2

j . Hence, by Cauchy’s interlacing
inequality,

(3.9) µ2
`1+j−1 ≤ γ

2
j for 1 ≤ j ≤ nc.

For any vector g ∈ Rnc , let ĝ = (ZT
0MZ0)−1/2g, and consider the Rayleigh quotient of

F TKF − λ2`1I ,

gTF TKFg − λ`1gTg

gTg
=
ĝTZT

0 (MKM − λ`1M)Z0ĝ

ĝTZT
0MZ0ĝ

=
ĝT
[
RT

1(Λ2
1 − λ2`1Ii−1)R1 + (Λ̂ 2

2 − λ2`1Inc) +RT
3(Λ2

3 − λ2`1Inr
)R3

]
ĝ

ĝT [RT
1R1 + Inc

+RT
3R3] ĝ

≤
ĝT
[
(Λ̂ 2

2 − λ2`1Inc
) +RT

3(Λ2
3 − λ2`1Inr

)R3

]
ĝ

ĝTĝ
.

(3.10)

The last inequality in (3.10) holds because

ĝTRT
1(Λ2

1 − λ2`1Ii−1)R1ĝ ≤ 0 and ĝT(RT
1R1 +RT

3R3)ĝ ≥ 0.

Denote by γ̂2j for 1 ≤ j ≤ nc the eigenvalues of (Λ̂ 2
2 − λ2`1Inc

) +RT
3(Λ2

3 − λ2`1Inr
)R3. We

have γ2j − λ`1 ≤ γ̂2j for 1 ≤ j ≤ nc by (3.10). Then, it follows from (3.9), Lemma 3.4, and

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK LANCZOS FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM 513

Lemma 3.5 that

‖diag(µ2
`1 − λ

2
`1 , . . . , µ

2
`2 − λ

2
`2)‖F ≤ ‖diag(γ21 − λ2`1 , . . . , γ

2
nc
− λ2`2)‖F

= ‖ diag
(
(γ21 − λ2`1)− (λ2`1 − λ

2
`1), . . . , (γ2nc

− λ2`1)− (λ2`2 − λ
2
`1)
)
‖F

≤ ‖diag
(
γ̂21 − (λ2`1 − λ

2
`1), . . . , γ̂2nc

− (λ2`2 − λ
2
`1)
)
‖F

≤ ‖RT
3(Λ2

3 − λ2`1Inr
)R3‖F (by Lemma 3.5)

≤ (λ2N − λ2`1)‖RT
3R3‖F.

Since

‖Y T
3 MΨ0(Ŷ T

2 MΨ0)−1‖F ≤

∥∥∥∥∥
[
Y T
1 MΨ0(Ŷ T

2 MΨ0)−1

Y T
3 MΨ0(Ŷ T

2 MΨ0)−1

]∥∥∥∥∥
F

= ‖ tanΘM(Ŷ2, Ψ0)‖F,

we have

(3.11) (λ2N − λ2`1)‖RT
3R3‖F = (λ2N − λ2`1)

×
∥∥∥∥ [f(Λ̂ 2

2 )
]−1 [

Y T
3 MΨ0(Ŷ T

2 MΨ0)−1
]T [

f(Λ2
3)
]2 × Y T

3 MΨ0(Ŷ T
2 MΨ0)−1

[
f(Λ̂ 2

2 )
]−1 ∥∥∥∥

F

≤ (λ2N − λ2`1) max
i+nb≤j≤N

[
f(λ2j )

]2 × max
`1≤j≤`2

1[
f(λ2j )

]2 × ‖ tan2ΘM(Ŷ2, Ψ0)‖F.

Take

f(t) = (t− µ2
1) · · · (t− µ2

`1−1)×Tn−`1(τ) ∈ Pn−1, where τ =
2t− (λ2i+nb

+ λ2N )

λ2N − λ2i+nb

.

Note that f(Λ̂ 2
2 ) is nonsingular, otherwise some of the exact eigenvalues have been found.

Then −1 ≤ τ ≤ 1 for λ2i+nb
≤ t ≤ λ2N , and

τ |t=λ2
`2

=
2λ2`2 − (λ2i+nb

+ λ2N )

λ2N − λ2i+nb

=
δ`2 + 1

δ`2 − 1
,

where

δ`2 =
λ2i+nb

− λ2`2
λ2N − λ2`2

.

Therefore we have

min
`1≤j≤`2

|f(λ2j )| ≥ Υn,`1,`2 × min
`1≤j≤`2

`1−1∏
t=1

|λ2j − µ2
t |,(3.12)

|f(λ2j )| ≤ max
i+nb≤j≤N

`1−1∏
t=1

|λ2j − µ2
t |, for i+ nb ≤ j ≤ N.(3.13)

Inequality (3.8) is now a consequence of (3.11), (3.12), and (3.13).
Theorem 3.6 is particularly useful to bound the approximate eigenvalue errors when a

cluster of eigenvalues, including the case of multiple eigenvalues, occurs. Nevertheless, it
is also applicable to the simple eigenvalue case. Specifically, set `2 = `1 = i to obtain the
following corollary.
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COROLLARY 3.7. For 1 ≤ i ≤ nnb, there exists a vector ψi ∈ R(V0) such that
ΠMψi = yi, and

0 ≤ µ2
i − λ2i ≤ (λ2N − λ2i )× ∆̃2

i × Υ−2n,i × (tanΘM(yi, ψi))
2,

where

δi =
λ2i+nb

− λ2i
λ2N − λ2i

, Υn,i =

∣∣∣∣Tn−i

(
δi + 1

δi − 1

)∣∣∣∣ , and ∆̃i = max
i+nb≤j≤N

i−1∏
t=1

∣∣∣∣∣λ2j − µ2
t

λ2i − µ2
t

∣∣∣∣∣ .
Next we treat the eigenspace approximations. Lemma 2.2(b) says that zj =

[
λjy

T
j , x

T
j

]T
is the

eigenvector of H associated with its eigenvalue λj . That means the eigenspaces consist of
two components which are spanned by the columns of Y and X , respectively. Similarly, the
approximate eigenspaces are composed by Qn and Pn. Thus, we are interested in bounding
the angles from R

(
Y(:,`1:`2)

)
to Qn = Kn(KM,V0) and the angles from R

(
X(:,`1:`2)

)
to

Pn = Kn(MK,U0). This is established in the following theorem.
THEOREM 3.8. Let Ψ be defined in (3.7) and Φ = MΨ . We have

‖ tanΘM(Y(:,`1:`2), Qn)‖F ≤
i−1∏
j=1

λ2N − λ2j
λ2`1 − λ

2
j

× Υ−1n,i,`2
× ‖ tanΘM(Y(:,`1:`2), Ψ)‖F,(3.14)

(3.15) ‖ tanΘM−1(X(:,`1:`2), Pn)‖F

≤
i−1∏
j=1

λ2N − λ2j
λ2`1 − λ

2
j

× Υ−1n,i,`2
× ‖ tanΘM−1(X(:,`1:`2), Φ)‖F,

where

δ`2 =
λ2i+nb

− λ2`2
λ2N − λ2`2

and Υn,i,`2 =

∣∣∣∣Tn−i

(
δ`2 + 1

δ`2 − 1

)∣∣∣∣ .
Proof. Take

f(t) = (t− λ21) · · · (t− λ2i−1)×Tn−i(τ), where τ =
2t− (λ2i+nb

+ λ2N )

λ2N − λ2i+nb

.

It follows that

|f(λ2j )| = 0 for 1 ≤ j ≤ i− 1,(3.16)

min
`1≤j≤`2

|f(λ2j )| ≥ Υn,i,`2 ×
i−1∏
t=1

|λ2`1 − λ
2
t |,(3.17)

max
i+nb≤j≤N

|f(λ2j )| ≤
i−1∏
t=1

|λ2N − λ2t |,(3.18)

and f(Λ̂ 2
2 ) is nonsingular. Recall the proof of Theorem 3.6. Let Z = f(KM)Ψ0 where

Ψ0 = Ψ(ΨTMΨ)−1/2. Then,

Z = f(KM)Ψ0 = Y1f(Λ2
1)Y T

1 MΨ0 + Ŷ2f(Λ̂ 2
2 )Ŷ T

2 MΨ0 + Y3f(Λ2
3)Y T

3 MΨ0.
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We have, by (3.16), (3.17), (3.18), and Lemma 2.1,

‖ tanΘM(Y(:,`1:`2), Qn)‖F ≤ ‖ tanΘM(Ŷ2, Z)‖F

=

∥∥∥∥(Ŷ ⊥2 )TMZ(ZTMZ)−1/2
[
Ŷ T
2 MZ(ZTMZ)−1/2

]−1∥∥∥∥
F

=

∥∥∥∥(Ŷ ⊥2 )TMZ
(
Ŷ T
2 MZ

)−1∥∥∥∥
F

=

∥∥∥∥[Y T
1 MZ
Y T
3 MZ

](
Ŷ T
2 MZ

)−1∥∥∥∥
F

=

∥∥∥∥[f(Λ2
1)Y T

1 MΨ0

f(Λ2
3)Y T

3 MΨ0

](
Ŷ T
2 MΨ0

)−1 [
f(Λ̂ 2

2 )
]−1∥∥∥∥

F

=

∥∥∥∥∥∥∥
[
f(Λ2

1)
f(Λ2

3)

]Y T
1 MΨ0

(
Ŷ T
2 MΨ0

)−1
Y T
3 MΨ0

(
Ŷ T
2 MΨ0

)−1
[f(Λ̂ 2

2 )
]−1∥∥∥∥∥∥∥

F

≤ max
1≤j≤i−1

i+nb≤j≤N

f(λ2j )× max
`1≤j≤`2

1

f(λ2j )
× ‖ tanΘM(Ŷ2, Ψ0)‖F.

≤
i−1∏
j=1

λ2N − λ2j
λ2`1 − λ

2
j

× Υ−1n,i,`2
× ‖ tanΘM(Ŷ2, Ψ)‖F,

which gives (3.14). Similarly we can prove (3.15).
Similarly to Corollary 3.7, the following corollary bounds the eigenvector approximations

in the case of simple eigenvalues.
COROLLARY 3.9. Use the notation of Corollary 3.7 and let φi = Mψi. We have, for

1 ≤ i ≤ nnb,

tanΘM(yi,Qn) ≤
i−1∏
j=1

λ2N − λ2j
λ2i − λ2j

× Υ−1n,i × tanΘM(yi, ψi),

tanΘM−1(xi,Pn) ≤
i−1∏
j=1

λ2N − λ2j
λ2i − λ2j

× Υ−1n,i × tanΘM−1(xi, φi).

REMARK 3.10. Listed below are some comments for Theorems 3.6 and 3.8.
(a) Similarly to Theorem 3.6 and 3.8, by slight modifications of the above proofs, we can

obtain a bound for

‖ diag(λ2N−nnb+`1
− µ2

`1 , . . . , λ
2
N−nnb+`2

− µ2
`2)‖F

and bounds for the associated eigenspace approximations, i.e., bounds for theM -canonical
angles from R(Y(:,N−nnb+`1:N−nnb+`2)) to Qn and the M−1-canonical angles from
R(X(:,N−nnb+`1:N−nnb+`2)) to Pn, respectively.

(b) Although we use the Frobenius norm in Theorems 3.6 and 3.8 to measure the accuracy
of eigenvalues and eigenspace approximations, the arguments in the proofs work for any
unitarily invariant norm (see [10] for some properties of the unitarily invariant norm).

(c) Compared to the single-vector version of the first Lanczos method in [19], our convergence
results have already reflected, to some extent, the advantages of this block Lanczos version.
For example, it is shown in Corollary 3.7 that the bound for the convergence speed of

the block version for the approximate eigenvalue µi is proportional to
∣∣∣Tn−i

(
δi+1
δi−1

)∣∣∣−2
where δi =

λ2
i+nb

−λ2
i

λ2
N−λ2

i
, which is better than

∣∣∣Tn−i

(
δ̃i+1

δ̃i−1

)∣∣∣−2 with δ̃i =
λ2
i+1−λ

2
i

λ2
N−λ2

i
es-

tablished in the single-vector Lanczos method for LREP [19]; although each Lanczos
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step in the block version requires more computational work than in the single-vector
one, we argue that the improvements induced in the factor δi can pay for the additional
computational work, especially when the desired eigenpairs are from a well-separated
cluster. The same comment is still valid for the bound on the convergence speed of the
eigenvector approximations in Corollary 3.9.

4. Restart. Recalling (3.1) and (3.2), we know that the quantities computed by the block
Lanczos method (Algorithm 3.1) satisfy the following relationship for LREP,{

KPn = QnTn + Vn+1BnE
T
n,

MQn = PnDn,
(4.1)

where P T
nQn = Innb

. A problem with Algorithm 3.1 is that, as the iteration proceeds, compu-
tational and memory costs increase rapidly, and numerical stability deteriorates gradually. This
is also true for the classical Lanczos method for the standard symmetric eigenvalue problem.
To resolve these issues, a restarting strategy usually turns out to be an efficient remedy. Several
restarting schemes (e.g., [9, 17, 25, 26]) have been proposed in the literature. For our case, the
LREP, the thick-restart technique [25, 26] appears to be an effective one, and we describe the
detailed procedure in this section.

Note that Tn and Dn are symmetric and Dn is positive definite. By Lemma 2.2(a), there
exist nonsingular matrices S,R ∈ Rnnb×nnb with S = R−T such that

(4.2) Tn = SΩ2
nS

T and Dn = RRT,

where Ω2
n = diag(µ2

1, . . . , µ
2
nnb

) and µ2
1 ≤ · · · ≤ µ2

nnb
. Let S = [s1, s2, . . . , snnb

] and
R = [r1, r2, . . . , rnnb

]. To save the costs of forming larger subspaces in the block Lanczos
process and to reduce the costs in the Ritz procedure for solving the resulting LREP for
larger nnb, the iteration is restarted after the basis vector Vn+1 has been computed. Since the
eigenvalues of interest lie in the left part of the spectrum (1.3), the eigen-information of the
wanted Ritz values (appearing in the top-left of Ω2

n) and Ritz vectors (the corresponding ones
appearing to the left of S and R) should be maintained as much as possible. Suppose k×nb is
the number of Ritz values to be kept in the top-left of Ω2

n. Let Sk and Rk be the submatrices
consisting of the first knb columns of S and R, respectively, i.e.,

Sk = [s1, s2, . . . , sknb
] and Rk = [r1, r2, . . . , rknb

].

Then, by (4.2), it follows that

(4.3) TnRk = SkΩ
2
k and DnSk = RkIknb

,

where Ω2
k = diag(µ2

1, . . . , µ
2
knb

).
For the thick-restart technique [25, 26], post-multiply byRk and Sk in both equations (4.1),

respectively, gives {
KPnRk = QnTnRk + Vn+1BnE

T
nRk,

MQnSk = PnDnSk.
(4.4)

By (4.3), we can rewrite (4.4) as{
KPnRk = QnSkΩ

2
k + Vn+1BnE

T
nRk,

MQnSk = PnRk.
(4.5)
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Let

P̂k = PnRk, Q̂k = QnSk, D̂k = Iknb
, W = RT

kEn, V̂k+1 = Vn+1, B̂k = Bn, T̂k = Ω2
k.

Then, (4.5) can be expressed as{
KP̂k = Q̂kT̂k + V̂k+1B̂kW

T,

MQ̂k = P̂kD̂k,
(4.6)

and P̂ T
k Q̂k = RT

kP
T
nQnSk = Iknb

.
The restarting begins with P̂k and Q̂k as the first knb basis vectors, and V̂k+1 as the

(k + 1)st block. To compute Ûk+1, according to the block Lanczos process in Algorithm 3.1,
we compute

Γ̂k+1 = V̂ T
k+1MV̂k+1 and Ûk+1 = MV̂k+1Γ̂

−1
k+1;

thus, P̂k and Q̂k are expanded to

P̂k+1 = [P̂k, Ûk+1] and Q̂k+1 = [Q̂k, V̂k+1],

respectively, which satisfy P̂ T
k+1Q̂k+1 = I(k+1)nb

. For the next V̂k+2, we first compute

Ṽk+2 = KÛk+1 − V̂k+1Û
T
k+1KÛk+1 − Q̂kP̂ T

kKÛk+1

= KÛk+1 − V̂k+1Âk+1 − Q̂kWB̂T
k ,

where Âk+1 = ÛT
k+1KÛk+1. By (4.6) and P̂ T

k+1Q̂k+1 = I(k+1)nb
, Ṽ T

k+2P̂k+1 = 0. Set
βj = ‖Ṽk+2(:,j)‖2 for j = 1, 2, . . . , nb, B̂k+1 = diag(β1, . . . , βnb

), and V̂k+2 = Ṽk+2B̂
−1
k+1.

Compute

Ûk+2 = MV̂k+2Γ̂
−1
k+2 with Γ̂k+2 = V̂ T

k+2MV̂k+2,

and expand P̂k+1 and Q̂k+1 to P̂k+2 = [P̂k+1, Ûk+2] and Q̂k+2 = [Q̂k+1, V̂k+2], respectively.
Consequently, we have

KP̂k+1 = Q̂k+1

[
T̂k WB̂T

k

B̂kW
T Âk+1

]
+ V̂k+2B̂k+1E

T
k+1,

MQ̂k+1 = P̂k+1

[
D̂k

Γ̂k+1

]
,

where ET
k+1 = [0nb×k nb

, Inb
].

Continue the procedure for i ≥ 2 to obtain

Ṽk+i+1 = KÛk+i − V̂k+iÛT
k+iKÛk+i − V̂k+i−1ÛT

k+i−1KÛk+i − Q̂k+i−2P̂ T
k+i−2KÛk+i

= KÛk+i − V̂k+iÂk+i − V̂k+i−1B̂T
k+i−1,

where Âk+i = ÛT
k+iKÛk+i. The last equality holds because

P̂ T
k+i−2KÛk+i = 0(k+i−2)nb×nb

and ÛT
k+i−1K = B̂T

k+i−1V̂
T
k+i + ÂTQ̂T

k+i−1,
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where

ÂT =

{
[B̂kW

T, ÂT
k+i−1], i = 2,

[0nb×(k+i−3)nb
, B̂T

k+i−2, Â
T
k+i−1], i > 2.

We summarize what we have obtained in this section in Algorithm 4.1, the thick-restart
block Lanczos Algorithm for LREP. We denote it by BlanLR(n,k) where the indices
n and k are the parameters for the thick-restart. We point out that after the first restart of
BlanLR(n,k), i.e., after the execuation of line 19 of Algorithm 4.1, the new computed basis
matrices P̂n, Q̂n ∈ RN×nnb , the symmetric matrix T̂n ∈ Rnnb×nnb and the block-diagonal
matrix D̂n ∈ Rnnb×nnb in Algorithm 4.1 satisfy the relationship P̂ T

n Q̂n = Innb
and{

KP̂n = Q̂nT̂n + V̂n+1B̂nE
T
n,

MQ̂n = P̂nD̂n,

where

T̂n =



T̂k WB̂T
k

B̂kW
T Âk+1 B̂T

k+1

B̂k+1 Âk+2
. . .

. . . . . . B̂T
n−1

B̂n−1 Ân


,

D̂n = diag(Iknb
, Γ̂k+1, . . . , Γ̂n).

(4.7)

Note that T̂n is no longer a block-tridiagonal matrix.
Finally, we have a few more remarks for BlanLR(n,k):

1. In our numerical implementation of BlanLR(n,k), we monitor the convergence of
a Ritz pair (µj , z̃j) by its relative residual norm

(4.8) r(µj) =
‖Hz̃j − µj z̃j‖1

(‖H‖1 + |µj |)‖z̃j‖1
.

2. In order not to miss the wanted eigenvalues, we keep the converged Ritz values
in ascending order in the restarting swap procedure. When K is indefinite, purely
imaginary Ritz values might emerge. In this case we sort them by ascending order of
their squares.

3. A deflation procedure is part of our numerical implementation. According to
Lemma 2.2(c), deflations can be done by orthogonalizing the newly generated block
Ṽ against the associated part of the converged eigenvectors.

4. While our block Lanczos method BlanLR(n,k) has been developed for real sym-
metric K and M , the algorithm can be rewritten to work for (complex) Hermitian K
and M . This is done by simply replacing all R by C (the set of complex numbers)
and each matrix/vector transpose by complex conjugate transpose.

5. Numerical examples. In this section, we present some numerical examples to illus-
trate the sharpness of our upper bounds for the convergence of the block Lanczos method and
evaluate the effectiveness of the thick-restart block Lanczos method for LREP.

EXAMPLE 5.1. We first examine our upper bounds of Theorems 3.6 and 3.8. For
simplicity, we consider diagonal matrices for K and M in this example. Set N = 100, take
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Algorithm 4.1 The thick-restart block Lanczos Algorithm for LREP (BlanLR(n,k)).
Input: U0, V0 ∈ RN×nb such that MV0 = U0 and integers k, n ≥ 1.
Output: Converged Ritz pairs (µj , z̃j) in (3.4).

1: Generate Pn, Qn, Tn, Dn and Vn+1 by Algorithm 3.1.
2: Compute the approximate eigenpairs of LERP.
3: if the stopping criterion is satisfied then
4: return;
5: else
% the restart begins

6: Compute the decomposition Tn = SΩ2
nS

T and Dn = RRT as in (4.2).
7: Let Sk = S(:,1:knb), Rk = R(:,1:knb), and Ωk = Ωn(1:knb,1:knb).
8: Compute P̂k = PnRk, Q̂k = QnSk, and W = RT

kEn.
9: Set D̂k = Iknb

, V̂k+1 = Vn+1, B̂k = Bn, and T̂k = Ω2
k.

10: Compute Γ̂k+1 = V̂ T
k+1MV̂k+1 and Ûk+1 = MV̂k+1Γ̂

−1
k+1.

11: Compute Âk+1 = ÛT
k+1KÛk+1 and Ṽk+2 = KÛk+1 − V̂k+1Âk+1 − Q̂kWB̂T

k .
12: βj = ‖Ṽk+2(:,j)‖2 (j = 1 : nb), B̂k+1 = diag(β1, . . . , βnb

), V̂k+2 = Ṽk+2B̂
−1
k+1.

13: Set P̂k+1 = [P̂k, Ûk+1] and Q̂k+1 = [Q̂k, V̂k+1].
14: end if

% the restart loop
15: for i = k + 2, . . . , n
16: Γ̂i = V̂ T

i MV̂i, Ûi = MV̂iΓ̂
−1
i , Âi = ÛT

i KÛi, Ṽi+1 = KÛi − V̂iÂi − V̂i−1B̂T
i−1.

17: βj = ‖Ṽi+1(:,j)‖2 (j = 1 : nb), B̂i = diag(β1, . . . , βnb
), V̂i+1 = Ṽi+1B̂

−1
i .

18: Set P̂i = [P̂i−1, Ûi] and Q̂i = [Q̂i−1, V̂i].
19: end for

% the restart ends
20: Goto step 2 with Tn = T̂n and Dn = D̂n given in (4.7) and Pn = P̂n, Qn = Q̂n,

Vn+1 = V̂n+1.

M = K = diag(λ1, . . . , λN ), where

λ1 = 1− η, λ2 = 1, λ3 = 1 + η, λj = 4 +
5j

N
, for j = 4, . . . , N,

and set i = `1 = 1, `2 = 3 and nb = 3. In such a case, there are two eigenvalue clusters:
{±λ1,±λ2,±λ3} and {±λ4, . . . ,±λN}, and Y = K−1/2.

We seek the approximations associated with the first cluster {±λ1,±λ2,±λ3}. In ad-
dition, we vary the parameter η > 0 to control the tightness among eigenvalues in the first
cluster and check how it affects the upper bounds of the approximate eigenpair errors in the
block Lanczos method for LREP. To make the numerical example repeatable, the initial block
V0 is chosen to be

V0 =



1 0 0
0 1 0
0 0 1
1
N sin 1 cos 1
...

...
...

N−nb

N sin(N − nb) cos(N − nb)


.
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In such a way, V0 satisfies the condition (3.6), i.e., V T
0 MY(:,1:3) is nonsingular. We implement

the simple version of the block Lanczos method, i.e., Algorithm 3.1 for LREP in MATLAB
with full reorthogonalization, and stop at n = 20, and then check the bounds for

diag(µ2
1 − λ21, µ2

2 − λ22, µ2
3 − λ23) and tanΘM(Y(:,1:3), Qn)

given by (3.8) and (3.14), respectively. Since i = `1 = 1, we know ∆`1 = 1 and Ξ`1,`2 = 1
in (3.8). Similarly, the first term in the right hand side of (3.14) also equals 1. For this reason,
we compute the following factors

ε1 = ‖ diag(µ2
1 − λ21, µ2

2 − λ22, µ2
3 − λ23)‖F,

ε2 = (λ2N − λ21)× Υ−220,1,3 × ‖ tan2ΘM(Y(:,1:3), Ψ)‖F,

ε3 = ‖ tanΘM(Y(:,1:3), Qn)‖F,

ε4 = Υ−120,1,3 × ‖ tanΘM(Y(:,1:3), Ψ)‖F,

where Ψ can be computed by (3.7) and indeed Ψ = V0(Y T
(:,1:3)MV0)−1 in this case. In fact,

by (3.8) and (3.14), ε2 and ε4 are upper bounds for ε1 and ε3, respectively. As η goes to 0,
Table 5.1 reports the numerical results of εi for i = 1, 2, 3, 4, from which we can see that
our bounds for the eigenvalues for cluster and the associated eigenspace are rather sharp.
In particular, the upper bounds ε2 and ε4 are comparable to the observed errors ε1 and ε3;
furthermore, they appear to be insensitive to η when η goes to 0.

TABLE 5.1
ε1, ε3 together with their corresponding upper bounds ε2 and ε4 of Example 5.1.

η ε1 ε2 (bound for ε1) ε3 ε4 (bound for ε3)

10−1 2.1366× 10−12 1.1430× 10−11 3.6500× 10−8 4.9611× 10−7

10−2 2.4337× 10−12 9.4095× 10−12 2.1073× 10−8 4.4960× 10−7

10−3 1.5237× 10−12 9.2447× 10−12 3.9425× 10−8 4.4555× 10−7

10−4 4.5743× 10−13 9.2286× 10−12 3.3320× 10−8 4.4515× 10−7

10−5 8.3923× 10−13 9.2269× 10−12 2.9802× 10−8 4.4511× 10−7

EXAMPLE 5.2. To test the effectiveness of the block Lanczos method with thick-restart
technique for LREP, we choose 4 test problems TEST 1 to TEST 4 used previously in [21].
In particular, TEST 1 and TEST 2 come from the linear response analysis for Na2 and silane
(SiH4) compound, respectively, which are generated by the turboTDDFT code in QUANTUM
ESPRESSO [7]. The matrices K and M of TEST 1 and TEST 2 are symmetric positive definite
of order N = 1862 and 5660, respectively. TEST 3 and TEST 4 are then chosen to evaluate
BlanLR(n,k) for the case when K is indefinite. TEST 3 and TEST 4 consist of matrices
from the University of Florida Sparse Matrix Collection [6] to give K and M where M is
definite but K indefinite. The features of these matrices are presented in Table 5.2. In the case
when the two matrices from the collection have different dimensions, we extract the leading
principal submatrix of the larger one to have K or M of equal size.

We compare the thick-restart block Lanczos method in Algorithm 4.1 (BlanLR(n,k))
with the block Lanczos method without restart in Algorithm 3.1 (denote by BlanLR). Our goal
is to compute the first 5 eigenvalues, i.e., λi in (1.4) for i = 1, . . . , 5, and the corresponding
eigenvectors. A computed approximate eigenpair (µj , z̃j) is considered as converged when its
relative residual norm is bounded by 10−8,

r(µj) =
‖Hz̃j − µj z̃j‖1

(‖H‖1 + |µj |)‖z̃j‖1
≤ 10−8.
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TABLE 5.2
The matrices K and M of TEST 3 and TEST 4.

Problem N K M

TEST 3 5832 Na5 fv1
TEST 4 74752 SiO2 finan512

In this example, the block size is chosen as nb = 3, initially V0 = eye(N, 3) where eye is
MATLAB’s built-in function; the parameters n = 30 and k = 20 are used for the restart, which
means that the restart will be triggered whenever the dimension of the projection subspace
is larger than 90, and then 60 basis vectors are kept. We carried out our testing in MATLAB
version 8.5 (R2015a) on a laptop with 8G memory and CPU Intel core i5-3210M@2.50GHz.

The approximate eigenvalues (Ritz values) and the associated eigenvectors (Ritz vectors)
are computed when the dimension of the projection subspace fulfills the condition of the
restart in BlanLR(n,k). For Algorithm 3.1 (BlanLR), since there is no restarting and the
Lanczos process continues, we then choose to calculate the approximate eigenpairs (Ritz pairs)
whenever the same amount of Lanczos steps is carried out as in BlanLR(n,k), i.e., we
compute the approximate eigenpairs whenever the Lanczos steps equal to 30 + 10× (j − 1)
for j = 1, 2, . . . . We report the total number of Lanczos steps and the CPU time in seconds for
BlanLR(n,k) and BlanLR in Table 5.3. One can see from Table 5.3 that the thick-restart
block Lanczos method and the block Lanczos method without restart for LREP are competitive
in the number of Lanczos steps. But the thick-restart block Lanczos method reduces remarkably
the computation time (i.e., an indication of the reduction in the computational costs), which
is mainly due to the saving in the orthogonalization procedure and in solving much smaller
projected LREP’s.

To illustrate the accuracy of computed approximations, finally, we also calculate the
relative eigenvalue error

e(µj) =
|µj − λj |
|λj |

,

as well as the relative residual norm r(µj) given in (4.8) for the jth approximate eigenpair
(µj , z̃j). The accuracy of the first two computed eigenpairs of TEST 1 are compared between
BlanLR(n,k) and BlanLR. The corresponding numerical results are plotted in Figure 5.1.
It is clearly shown by Figure 5.1 that, compared to the simple version of the block Lanczos
method, the thick-restart block Lanczos method just needs one or two more restarts to obtain
the first two eigenpairs of TEST 1 in the same accuracy. Since the dimension of the projected
problem is bounded by nnb in BlanLR(n,k), the savings from the orthogonalization and
from the Ritz procedure for computing the resulting much smaller projected LREP’s outweigh
the additional restart steps.

TABLE 5.3
The number of Lanczos steps and CPU time in seconds for computing the first 5 eigenpairs of TEST 1 to TEST 4

by the BlanLR and BlanLR(30,20).

BlanLR(30,20) BLanLR
CPU time(s) Lanczos steps CPU time(s) Lanczos steps

TEST 1 3.816 173 6.541 149
TEST 2 65.760 393 117.711 349
TEST 3 3.586 253 20.916 229
TEST 4 106.579 553 776.920 469
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FIG. 5.1. Convergence behavior of BlanLR(n,k) with (n, k) = (30, 20) and BlanLR for computing the
first 2 eigenpairs of TEST 1.

6. Concluding remarks. In this paper, motivated by the fact that in LREP only a small
portion of eigenpairs near zero are required to be computed efficiently, we proposed a block
Lanczos method for (1.1). Theoretical bounds for the eigenvalue and eigenvector approxi-
mations are established in Theorems 3.6 and 3.8, respectively. These theorems are tailored
particularly to bound the errors in approximate eigenpairs belonging to a cluster of eigenvalues,
including the case of multiple eigenvalues; they are also applicable in the case of simple
eigenpairs. These theoretical convergence results reveal the accuracy of the approximations
of both eigenvalues in a cluster and eigenspace and show, to some extent, the advantages
of the block Lanczos method over the single-vector version. To make this block Lanczos
method more practical, we discussed in detail a thick-restart procedure to reduce memory
and orthogonalization costs. Numerical examples are presented to demonstrate that the final
thick-restart block Lanczos method can compute the desired eigenvalues in a cluster around
zero efficiently.
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