
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 47, pp. 1–17, 2017.
Copyright c© 2017, Kent State University.
ISSN 1068–9613.

IDENTIFYING THE MAGNETIC PERMEABILITY
IN MULTI-FREQUENCY EM DATA INVERSION∗

GIAN PIERO DEIDDA†, PATRICIA DÍAZ DE ALBA‡, AND GIUSEPPE RODRIGUEZ‡

Abstract. Electromagnetic induction surveys are among the most popular techniques for non-destructive
investigation of soil properties in order to detect the presence of either ground inhomogeneities or of particular
substances. In this paper we develop a regularized algorithm for the inversion of a nonlinear mathematical model well
established in applied geophysics, starting from noisy electromagnetic data collected by varying both the height of the
measuring device with respect to the ground level and its operating frequency. Assuming the conductivity to be known
in advance, we focus on the determination of the magnetic permeability of the soil with respect to depth, and give the
analytical expression of the Jacobian matrix of the forward model, which is indispensable for the application of the
inversion algorithm. Finally, numerical experiments on synthetic data sets illustrate the effectiveness of the method.
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1. Introduction. Frequency domain electromagnetic induction (EMI) techniques are
among the most used geophysical methods for near-surface characterization in a variety of
domains, from environment surveying to precision agriculture, from archaeology to unex-
ploded ordnance (UXO) detection [4, 12, 13, 14, 15, 18, 19, 20, 24, 26, 29]. The typical
measuring instrument is composed by two coils at distance ρ, one transmitter and one receiver
(loop-loop device), and produces a single frequency scanning signal. The dipoles may be
aligned horizontally or vertically with respect to the ground level.

Traditionally employed as a mapping tool, today this technique is more and more used
as an imaging tool thanks to the growing availability of ground-based multi-coil and multi-
frequency EM devices (e.g., Geonics MK-2, Geophex GEM-2, CMD mini-Explorer, CMD
Explorer, Dualem-21S, and Dualem-421S), which provide comprehensive multi-depth data,
able to quantify the subsoil variability. These devices produce simultaneous measurement of
both the real and imaginary parts of the ratio between the secondary magnetic field and the
primary magnetic field components, providing information about the amplitude and the phase
of the signal. The real part, or the in-phase component, is mainly affected by the magnetic
permeability of the subsoil; the imaginary part, also called the out-of-phase or quadrature
component, mainly by the electrical conductivity.

During the last decades, much effort has been made to invert the out-of-phase data in order
to retrieve a 1D layered model of electrical conductivity, using linear (see, e.g., [2, 5, 16])
or nonlinear models [3, 6, 10, 23] and assuming a fixed magnetic permeability equal to the
free space value, i.e., µ0 = 4π10−7H/m (Henry/meter). In many cases, however, EMI data is
equally affected by magnetic susceptibility and electrical conductivity.

The presence or absence of magnetically susceptible materials causes significant differ-
ences in the observed responses. Over a nonmagnetic earth model, the in-phase response goes
to zero as the operating frequency decreases, while it becomes negative when susceptible
targets are present with more negative values as the magnetic permeability increases; see
Remark 3.1 below. The negative values of the in-phase response at low frequencies cannot
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be reproduced by a pure conductivity model. As pointed out in [8], an inversion algorithm
that properly takes into account the effects of susceptibility is always required, whether or
not the knowledge of the variation of the magnetic permeability within the earth is desired;
see also [22, 30]. Indeed, since susceptibility influences data differently across the range of
operating frequencies, inverting for just the conductivity can produce inaccurate solutions
and unreliable conductivity models [31] as data strongly affected by susceptibility will be
underfit while less-affected data will be overfit to compensate. In this situation, real features
and artefacts in the inverted conductivity model are often indistinguishable.

Both linear and nonlinear models are severely ill-conditioned, and the error propagation
must be controlled via regularization algorithms. An algorithm for the solution of a nonlinear
model [10, 27, 28] is described in [6], where the computation is performed by a Gauss–Newton
method, regularized by means of the truncated singular value decomposition (TSVD) [9]. The
method proposed in the paper deals with the classical approach of neglecting the effects of
magnetic permeability and recovers the conductivity from the quadrature component of the
signal. The loop-loop device is assumed to use a single scanning frequency, and multiple
measurements are obtained by varying the height of the instrument above the ground. A
relaxation parameter ensures both the convergence of the iterative method and the positivity of
the solution. The algorithm has been extended to deal with multi-frequency data in [7], where
experiments are performed with both real and imaginary synthetic data sets.

In this work we fix our attention on the identification of the magnetic permeability. The
main result is to obtain stable formulas for the computation of the Jacobian of the model
with respect to the magnetic permeability variation, which is required in order to solve the
problem using the Gauss–Newton iteration. We investigate numerically the conditioning of
the problem, as well as the performance of the analytically exact Jacobian in comparison to its
finite difference approximation, both in terms of accuracy and of computing time. Then, under
the working assumption that the conductivity is known in advance, we verify the reliability
of the inversion algorithm and investigate the information content of data sets obtained by
varying either the scanning frequency of the device or its height above the ground. The use
of computer generated data sets with a noise level typical of real applications allows us to
analyze the behaviour of the algorithm in a controlled setting. This is an essential step, before
facing the more challenging task of determining both the conductivity and the permeability
from experimental data.

In Section 2 we describe the nonlinear forward model which expresses the EMI measure-
ments typical of a loop-loop system as functions of the electromagnetic features of the soil.
Section 3 deals with the inverse problem and the solution method. The analytical expression
of the Jacobian of the forward model is given in Section 4. Section 5 discusses our numerical
experiments, and Section 6 summarizes the content of the paper and describes our intentions
for future work.

2. The forward problem. We briefly recall here the forward model which describes the
data measured by a loop-loop EM device, when the distribution of the conductivity and the
magnetic permeability in the subsoil layers is known. It is obtained from Maxwell’s equations
after introducing suitable simplifications to account for the symmetry of the problem. It has
been described in [10] and [27, 28]. Each subsoil layer is assumed to have thickness dk, to
be characterized by a conductivity σk and a magnetic permeability µk, for k = 1, . . . , n; see
Figure 2.1. The thickness dn of the deepest layer is considered infinite. The two coils of the
measuring device are at height h above the ground, and their distance is ρ.

Let

(2.1) uk(λ) =
√
λ2 + iσkµkω, k = 1, . . . , n,
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FIG. 2.1. Discretization and representation of the subsoil.

where ω is the angular frequency of the electromagnetic wave generated by the instrument,
that is, 2π times the frequency in Hertz, and i =

√
−1. The variable λ ranges from zero to

infinity, and it measures the ratio between the depth below the ground surface and the inter-coil
distance ρ. If we denote the characteristic admittance in the k-th layer by

(2.2) Nk(λ) =
uk(λ)

iµkω
, k = 1, . . . , n,

then it is shown in [27] that the surface admittance Yk(λ) at the top of the same layer satisfies
the recursion

(2.3) Yk(λ) = Nk(λ)
Yk+1(λ) +Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))
,

for the backward index k = n− 1, . . . , 1. To initialize the recursion we set Yn(λ) = Nn(λ).
Notice that both the characteristic and the surface admittances depend upon the frequency ω
via the functions uk(λ).

Assuming that the instrument coils are vertically aligned, the ratio of the secondary to the
primary field [6, 10] is given by

(2.4) M1(σ,µ;h, ω) = −ρ3
∫ ∞
0

λ2e−2hλRω,0(λ)J0(ρλ) dλ,
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where σ = (σ1, . . . , σn)T , µ = (µ1, . . . , µn)T , Js(λ) denotes the Bessel functions of the
first kind of order s,

(2.5) Rω,0(λ) =
N0(λ)− Y1(λ)

N0(λ) + Y1(λ)
,

N0(λ) = λ/(iµ0ω), and Y1(λ) is computed by the recursion (2.3). We have explicitly
highlighted the dependence upon the frequency ω in Rω,0(λ) since it will be useful in the
following.

For the horizontal orientation of the coils, (2.4) is replaced by

(2.6) M2(σ,µ;h, ω) = −ρ2
∫ ∞
0

λe−2hλRω,0(λ)J1(ρλ) dλ.

We remark that both (2.4) and (2.6) are complex-valued functions which can be expressed
in terms of the Hankel transform

(2.7) Hν [f ](ρ) =

∫ ∞
0

f(λ)Jν(ρλ)λ dλ, ν = 0, 1.

The available measuring devices, in general, return both the real (in-phase) and the imaginary
(quadrature) components of the fields ratio.

3. The inverse problem. We assume the electrical conductivity to be known in advance
for each of the n subsoil layers. We will denote it by σ̂ = (σ̂1, . . . , σ̂n)T . Then, the free
variables are the values of the magnetic permeabilities in each layer, that is, the components of
the vector µ ∈ Rn.

Some recent EM devices allow for taking simultaneous measurements using a set of
different operating frequencies. Moreover, the acquisition can be repeated at different heights.
To account for this, we set h = h1, . . . , hmh

and ω = ω1, . . . , ωmω and consider the corre-
sponding 2mhmω data values bνij , where i = 1, . . . ,mh and j = 1, . . . ,mω. Here, ν = 1, 2
represents the two possible orientations of the coils, vertical and horizontal.

The inverse problem consists of fitting the model to the data, that is, to determine the
permeability vector µ which produces the best approximation

Mν(σ̂,µ;hi, ωj) ≈ bνij , ν = 1, 2, i = 1, . . . ,mh, j = 1, . . . ,mω.

Specifically, we vectorize the data values bνij in lexicographical order into b ∈ Cm with
m = 2mhmω. We proceed similarly for the model predictions, thus obtaining the vector
M(µ) ∈ Cm, and minimize with respect to µ the spectral norm of either the in-phase or the
quadrature component of the residual between the data and the model, that is,

(3.1) µ∗ = arg min
µ∈Rn

1

2
‖r(µ)‖2,

where r(µ) = Re(b−M(µ)) or r(µ) = Im(b−M(µ)). We will denote the components of
the residual either by ri(µ), i = 1, . . . ,m, to emphasize their position in the vector r(µ), or by
rνij(µ), when it is important to underline their dependence upon the height hi (i = 1, . . . ,mh),
the frequency ωj (j = 1, . . . ,mω), and the vertical or horizontal orientation (ν = 1, 2).

REMARK 3.1. Choosing to minimize either the in-phase or the quadrature component
of the residual is in general a delicate decision. Figure 3.1 displays the graphs of the real
and imaginary part of the device response (2.4) as a function of the operating frequency f ,
for different values of the relative permeability µr = µ/µ0; see [8]. The graphs show that
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either one of the two components can be more or less significant when different ranges of the
frequency are considered. For example, for f < 103Hz or f > 106Hz, the in-phase component
is almost constant. Thus, the information content of the measurements is influenced by the
electromagnetic features of the signal and consequently by the particular device being used
and by the physical properties of the terrain. Moreover, since the quadrature component is not
monotone, its minimization could lead to non-uniqueness of the solution. We also remark that
negative values for the in-phase component are a clear indication of the presence of magnetic
susceptible materials in the investigation area [8].
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FIG. 3.1. In-phase (left) and quadrature (right) components of the response of an EM device, computed by (2.4),
as a function of the operating frequency f = ω/(2π). We let ρ = 1.66m, h = 1m, σ = 1S/m (Siemens/meter), and
µr = µ/µ0 = 1, 1.5, 2, 3.

In general, a robust and reliable inversion algorithm would minimize both the real and the
imaginary parts of the residual, possibly employing a tuning parameter to balance between the
two. Given the difficulties due to nonlinearity and ill-conditioning, in order to fully understand
the numerical issues involved in the computation, in this paper we chose to investigate the
minimization of just one of the two components, leaving to future work the implementation of
the full minimization of the complex residual and its application to experimental data.

Applying Newton’s method to the solution of (3.1) would require the computation (or
the approximation) of both the gradient vector and the Hessian matrix of the function to be
minimized, leading to an algorithm characterized by a large computational complexity.

To overcome this difficulty, following [6], we resort to the Gauss–Newton method, which
minimizes, at the kth iteration step, the norm of a linear approximation of the residual
r(µk + sk) with respect to the step size sk.

Let r(µ) be Fréchet differentiable. We can write

r(µk+1) ' r(µk) + J(µk)sk,

where J(µ) is the Jacobian of r(µ) = (r1(µ), . . . , rm(µ))T defined by

[J(µ)]ij =
∂ri(µ)

∂µj
, i = 1, . . . ,m, j = 1, . . . , n.

Here n is again the number of the subsoil layers and m = 2mhmω . The analytical expression
of the Jacobian matrix will be given in the next section.
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At each iteration k, the step length sk is the solution of the linear least squares problem

(3.2) min
s∈Rn

‖r(µk) + Jks‖,

with Jk = J(µk) or some approximation to it, leading to the following iterative method

(3.3) µk+1 = µk + sk = µk − J
†
k r(µk).

The symbol J†k denotes the Moore–Penrose pseudoinverse of the matrix Jk [1].
When the residuals ri(µk) are small or mildly nonlinear in a neighborhood of the solution,

the Gauss–Newton method is expected to behave similarly to Newton’s method [1]. We remark
that, while the physical problem is obviously consistent, this is not necessarily true in our case,
where the magnetic permeability µ(z) is approximated by a piecewise constant function and
the data are noisy.

The damped Gauss–Newton method replaces the approximation (3.3) by

(3.4) µk+1 = µk + αksk,

where αk is a relaxation parameter to be determined. To choose it, we use the Armijo–
Goldstein principle [17]. This choice of αk ensures convergence of the method provided
that µk is not a critical point [1]. The damped method allows us to include an important
physical constraint in the inversion algorithm, i.e., the positivity of the solution. In our
implementation, αk is the largest step size in the sequence 2−i, i = 0, 1, . . . , which both
satisfies the Armijo–Goldstein principle

‖r(µk)‖2 − ‖r(µk + αksk)‖2 ≥ 1

2
αk‖Jksk‖2

and ensures that all the components of the solution are positive.
Let us introduce the singular value decomposition (SVD) of the Jacobian matrix

(3.5) Jk = UΓV T ,

where Γ = diag(γ1, . . . , γp), with γ1 ≥ γ2 ≥ · · · ≥ γp > 0, p is the rank of Jk, and U , V are
matrices with orthonormal columns ui, vi, respectively [1]. The condition number of a matrix
can be defined in terms of the SVD as

cond(Jk) =
γ1
γp
.

This quantity plays an important role in the accuracy of the solution of the least-squares
problem (3.2), as it accounts for the propagation of the errors. Indeed the relative error in the
solution of (3.2) is bounded by

cond(Jk)

η cos θ

times the relative perturbation in r(µk), where η = ‖Jk‖·‖s‖
‖Jks‖ ∈ [1, cond(Jk)] and

θ = arccos
‖Jks‖
‖r(µk)‖

∈
[
0,
π

2

]
is the angle between the right-hand side r(µk) and its projection Jks on the range of Jk [25,
Theorem 18.1].
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It is well known that the minimization of (3.1) is an extremely ill-conditioned problem.
In particular, it has been observed in [6, Figure 2] that the Jacobian matrix J of r, expressed
as a function of the conductivity vector σ, has a large condition number for any value of σ in
the solution domain. We will investigate the behaviour of the condition number with respect
to the variation of the permeability µ in Section 4.

A common remedy to face ill-conditioning consists of replacing the least squares prob-
lem (3.2) by a nearby problem, whose solution is less sensitive to the error present in the data.
This replacement is known as regularization.

A regularization method which particularly suits our problem, given the size of the
matrices involved, is the truncated singular value decomposition (TSVD) [9]. The best rank `
approximation (` ≤ p = rank(Jk)) to the Jacobian matrix, according to the spectral norm,
can be obtained in terms of the SVD decomposition (3.5). This factorization allows us to
replace the ill-conditioned Jacobian Jk by a well-conditioned low-rank matrix A`, such that

‖Jk −A`‖ = min
rank(A)=`

‖Jk −A‖.

The matrix A` can be easily obtained by setting A` = U`Γ`V
T
` , with

Γ` = diag(γ1, . . . , γ`), U` = [u1, . . . ,u`], V` = [v1, . . . ,v`].

Then, the regularized solution to (3.2) can be expressed as

s(`) = −A†`r = −
∑̀
i=1

uTi r

γi
vi,

where r = r(µk) and ` = 1, ..., p is the regularization parameter.
When some kind of a priori information on the problem is available, e.g., the solution

is a smooth function, it is sometimes useful to introduce a regularization matrix L ∈ Rt×n
(t ≤ n), whose kernel approximately contains the sought solution [9]. Under the assumption
N (Jk) ∩N (L) = {0}, problem (3.2) is replaced by

min
s∈S
‖Ls‖, S = {s ∈ Rn : JTk Jks = −JTk r(µk)}.

Very common choices for L are the discretization of the first and second derivative operators,
which we denote by D1 and D2, respectively.

The generalized singular value decomposition (GSVD) of the matrix pair (Jk, L) is the
factorization

(3.6) Jk = ŨΣJZ
−1, L = Ṽ ΣLZ

−1,

where ΣJ and ΣL are diagonal matrices with nonnegative entries, Ũ and Ṽ are matrices with
orthonormal columns, and Z is nonsingular. By the simultaneous factorization (3.6) it is
possible to define a truncated GSVD (TGSVD) solution s`; see [9] for details.

Our algorithm for the regularized solution of (3.1) applies either TSVD or TGSVD to
each step of the damped Gauss–Newton method (3.4). For a fixed value of the regularization
parameter `, we substitute the truncated SVD or GSVD solution of (3.2) s(`) to the step size
sk in (3.4), obtaining the following iterative method

(3.7) µ
(`)
k+1 = µ

(`)
k + αks

(`)
k .

We denote by µ(`) the solution at convergence.
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The choice of the regularization parameter ` is crucial in order to obtain a good approx-
imation µ(`) of µ. In real applications, experimental data are affected by noise, so the data
vector in the residual function (3.1) must be expressed as b = b̂ + e, where b̂ contains the
exact data and e is the noise vector. If the noise is Gaussian and an accurate estimate of ‖e‖ is
available, then the discrepancy principle [9] determines ` as the smallest index such that

(3.8) ‖b−M(µ(`))‖ ≤ κ‖e‖,

where κ > 1 is a user-specified constant independent of ‖e‖.
In the absence of a trustworthy estimate of the noise level, many heuristic methods have

been introduced to approximate a regularization parameter; see [21] for a review of methods
and [11], where the parameter is estimated by comparing the solutions obtained by Tikhonov
regularization and TSVD.

4. The Jacobian matrix of r(µ). As we saw in the previous section, being able to
compute or approximate the Jacobian matrix J(µ) of r(µ) is crucial for the implementation
of an effective inversion algorithm.

In this section we give the explicit (i.e., analytical) expression of the Jacobian matrix. We
will show numerically that the complexity of this computation is smaller than that required by
a finite difference approximation. The following lemma is one of the main contributions of
this work. In its statement we omit, for clarity, the variable λ.

LEMMA 4.1. The derivatives Y ′kj =
∂Yk
∂µj

, k, j = 1, . . . , n, of the surface admit-

tances (2.3) can be obtained starting from

(4.1) Y ′nn =
σn

2µnun
− Nn
µn

, Y ′nj = 0, j = 1, . . . , n− 1,

and proceeding recursively for k = n− 1, n− 2, . . . , 1 by

(4.2)

Y ′kj = N2
k bkY

′
k+1,j , j = n, n− 1, . . . , k + 1,

Y ′kk =
ak − bkNkYk+1

µ2
kω

(
uk −

σk
2Nk

)
i +

bkdkσk
2µk

(N2
k − Y 2

k+1),

Y ′kj = 0, j = k − 1, k − 2, . . . , 1,

where

(4.3) ak =
Yk+1 +Nk tanh(dkuk)

Nk + Yk+1 tanh(dkuk)
, bk =

1

[Nk + Yk+1 tanh(dkuk)]2 cosh2(dkuk)
.

Proof. From the definition of uk(λ) (2.1) and Nk(λ) (2.2), we obtain

(4.4)

∂uk
∂µj

=
∂

∂µj

√
λ2 + iσkµkω =

1

2Nk

σk
µk
δkj ,

∂Nk
∂µj

=
∂

∂µj

uk
iµkω

=
uk − σk

2Nk

µ2
kω

iδkj ,

where δkj is the Kronecker delta, that is, 1 if k = j and 0 otherwise. The recursion initializa-
tion (4.1) follows from Yn = Nn; see Section 2. We have

Y ′kj =
∂Nk
∂µj

ak +Nk ·
∂Yk+1

∂µj
+ ∂Nk

∂µj
tanh(dkuk) +Nk

∂ tanh(dkuk)
∂µj

Nk + Yk+1 tanh(dkuk)

−Nkak ·
∂Nk

∂µj
+ ∂Yk+1

∂µj
tanh(dkuk) + Yk+1

∂ tanh(dkuk)
∂µj

Nk + Yk+1 tanh(dkuk)
,
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with ak defined as in (4.3). If j 6= k, then
∂Nk
∂µj

=
∂uk
∂µj

= 0, and we obtain

Y ′kj = N2
k

∂Yk+1

∂µj

(
1− tanh2(dkuk)

)
[Nk + Yk+1 tanh(dkuk)]2

= N2
k bkY

′
k+1,j .

The last formula with bk given by (4.3) avoids the cancellation in 1− tanh2(dkuk).
If j = k, after some straightforward simplifications, we get

Y ′kk =
∂Nk
∂µk

ak +
Nk

Nk + Yk+1 tanh(dkuk)

[
Y ′k+1,k(1− ak tanh(dkuk))

+
∂Nk
∂µk

(tanh(dkuk)− ak) +
dk
2

σk
µk

(
1− ak

Yk+1

Nk

)
(1− tanh2(dkuk))

]
.

This formula, using (4.3) and (4.4), leads to

Y ′kk =
∂Nk
∂µk

(ak − bkNkYk+1) + bk
dk
2

σk
µk

[
N2
k − Y 2

k+1

]
.

The initialization (4.1) implies that Y ′kj = 0 for any j < k. In particular Y ′k+1,k = 0 and,
since Nk/uk is constant, one obtains the expression of Y ′kk given in (4.2). This completes the
proof.

THEOREM 4.2. The partial derivatives of the residual function r(µ) are given by

∂rνij(µ)

∂µk
=


ρ3H0

[
λe−2hiλ

∂Rωj,0
(λ)

∂µk

]
(ρ), ν = 1,

ρ2H1

[
e−2hiλ

∂Rωj,0
(λ)

∂µk

]
(ρ), ν = 2,

for i = 1, . . . ,mh, j = 1, . . . ,mω , and k = 1, . . . , n. HereHν (ν = 1, 2) denotes the Hankel
transform (2.7), ρ is the inter-coil distance, ∂Rω,0(λ)

∂µk
is the kth component of the gradient of

the function (2.5), that is,

∂Rω,0(λ)

∂µk
=

−2λiµ0ω

(λ+ iµ0ωY1(λ))2
· ∂Y1(λ)

∂µk
,

and the partial derivatives ∂Y1(λ)
∂µk

are given by Lemma 4.1.
Proof. The proof follows easily from Lemma 4.1 and from equations (2.4), (2.5), (2.6),

and (3.1).

5. Numerical experiments. The inversion algorithm described in the previous sections
has been implemented in the Matlab programming language. The numerical experiments
shown in this section were performed on a dual Xeon CPU E5-2620 system (12 cores), running
the Debian GNU/Linux operating system and Matlab 9.1.

In the first experiment, we investigate the ill-conditioning of the problem. We as-
sume the loop-loop device is in the vertical orientation with a constant operating frequency
f = 14600Hz and an inter-coil distance ρ = 1m; these features are typical of one of the most
widely used devices, the Geonics EM38. We let n = mh = 10, 20, 30, 40, that is, we simulate
a dataset with measurements detected at heights hi, i = 1, . . . ,mh, starting from the ground
level up to 1.9m, and we consider a discretization below the surface with the same number
n of layers until the depth of 3m. For each choice of n, we evaluate the Jacobian matrix J
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at 100 random vectors in Rn, with entries distributed in the interval [µ0, µrµ0], for a chosen
value of µr. For each example, we record the singular values of J , as computed by the svd
function of Matlab. The scaling parameter µr represents the maximum value allowed for the
relative permeability (µr = µ/µ0), and it is initially set to 100. The conductivity of the layers
is fixed at a constant value.

0 10 20 30 40
10

-20

10
-10

10
0

n=10

n=20

n=30

n=40

0 5 10 15 20
10

-20

10
-10

10
0

FIG. 5.1. Average of the singular values of the Jacobian J(µ) computed on 100 random points in Rn, for
mh = n = 10, 20, 30, 40 (left-hand side); each component of µ is in [µ0, 100µ0]. The right-hand side graph
shows the average singular values for n = 20 together with their maximum and minimum value across the random
tests.

The left-hand side graph in Figure 5.1 displays the average of the singular values for each
choice of n; the dashed line marks the value of the product between the largest singular value
and the machine epsilon 2.2 · 10−16. It is immediate to observe that the singular values decay
exponentially. The deviation from the initial decay rate, observed for n > 20, is likely to be
due to the error propagation caused by ill-conditioning, so it is reasonable to conjecture that
the condition number increases with the size of the problem. The right-hand side graph in
Figure 5.1 shows the average of the singular values for n = 20 together with their maximum
and minimum value across the 100 performed random tests. The graph shows that the variance
from the average is small so that the Jacobian is uniformly ill-conditioned for permeabilities
in [µ0, µrµ0] when µr = 100.

Figure 5.2 reports the average of the computed singular values when the maximum relative
permeability µr takes the values 10, 102, 103, 104. The conditioning of the problem increases
dramatically when the magnetic permeability is large, making it much harder to solve the
inversion problem. This typically happens in the presence of ferromagnetic materials in the
subsoil; consider that for iron µr ' 5·103. The fact that the problem is severely ill-conditioned
also for small values of µr is in agreement with [6, Figure 2], where µr = 1 and the values of
the conductivity are varied. Indeed, restoring ferromagnetic materials is a crucial issue in all
inverse scattering problems.

Let us consider the following approximation of the partial derivatives of the residual
components

(5.1)
∂ri(µ)

∂µj
' ri(µ + δj)− ri(µ)

δ
, i, j = 1, . . . , n,

where δj = δ ej = (0, . . . , 0, δ, 0, . . . , 0)T and δ is a fixed constant. Resorting to a finite
difference approximation of the Jacobian is a common approach in the solution of nonlinear
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FIG. 5.2. Average of the singular values of the Jacobian J(µ) computed on 100 random points in Rn, for
m = n = 20; each component of µ is in [µ0, µrµ0], with µr = 10, 102, 103, 104.
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FIG. 5.3. Efficiency in the evaluation of the Jacobian J of size n = 10, 20, . . . , 100, compared to a finite
difference approximation. The left-hand side graph displays the computing time in seconds for the two approaches; the
right-hand side graph reports the speedup factor, i.e., the ratio between the timings of finite difference approximation
and the analytically exact Jacobian.

problems; see, e.g., [10]. In [6] it was pointed out that the analytical computation of the
Jacobian of the residual r(σ), expressed as a function of the conductivity vector σ, has a
smaller computational complexity than its finite difference approximation. This was a relevant
observation since in many practical applications it is often assumed that the exact knowledge of
the Jacobian is not strictly required, as its approximation leads to an algorithm with equivalent
performance. The superiority in terms of complexity of the analytical evaluation of J is con-
firmed also when the residual vector is seen as a function of µ. Figure 5.3 shows how the two
approaches perform when the size of the problem increases. For mh = n = 10, 20, . . . , 100,
we compute J by the analytical formulas of Theorem 4.2 and by its finite difference approxi-
mation. The execution time is averaged over 100 repetitions of the computation. Figure 5.3
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reports the computing time for the two algorithms (left-hand side graph) together with the
speedup factor (on the right), which we define as the ratio between the two timings. It is
clear that the efficiency of the analytical computation increases with the size of the problem.
Indeed, for n = 100 the computation of the true Jacobian is almost 10 times faster than its
finite difference approximation.
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FIG. 5.4. The “spy plot” on the left shows the pattern of the nonzero elements for the Jacobian J of size
40× 20, as computed by the formulas in Section 4. The central graph displays the same information for J̃ , obtained
by the approximation (5.1). The right-hand side plot represents the relative error for the first two singular values with
respect to the variation of δ in (5.1).

The analytical representation of the Jacobian outperforms the finite difference approxima-
tion also from the point of view of accuracy, as the latter suffers from severe error propagation
due to numerical cancellation. We let µi ∈ [µ0, µrµ0], i = 1, . . . , n, with µr = 10, and
compare the Jacobian J(µ) of size 40× 20 to its approximation J̃(µ) obtained by (5.1) with
δ = 10−6. The two left-hand side graphs in Figure 5.4 display the pattern of the nonzero
elements of J and J̃ . The norm of the columns of J decays very quickly, leading to vanishing
entries starting from the 15th column because of underflow. When we approximate the Jaco-
bian by (5.1) for any δ ≤ 10−3, cancellation makes the elements drop to zero already from
the fourth columns; see the central graph in Figure 5.4. By computing the singular values of
the two matrices using the svd function of Matlab, we can see that σi(J) = 0 when i ≥ 12
for the analytical Jacobian, while only the first three singular values of its finite difference
approximation J̃ are different from zero, denoting a dramatic loss of information.

The right-hand side graph in Figure 5.4 shows the relative differences

|σi(J)− σi(J̃)|
σi(J)

, i = 1, 2,

when δ in (5.1) takes the values 10−3, 10−4, . . . , 10−10. While the approximation error for
the first singular value decays monotonically, the error for the second one diverges when
δ < 10−8. The situation is even worse for the third singular value since σ3(J̃) grows from
1.2 · 10−12 to 1.3 · 10−5 when δ = 10−3, 10−4, . . . , 10−10, while σ3(J) = 2.0 · 10−20.

The accuracy of the finite difference approximation degrades in the presence of a larger
magnetic permeability, as for µi ∈ [µ0, µrµ0] with µr ≥ 102 only one column (and con-
sequently one singular value) of J̃(µ) is different from zero, while the analytical Jacobian
preserves a larger number of nonzero columns.
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In order to illustrate the performance of the new formulas for the Jacobian in the inversion
of EM data, we considered the following a priori model for the magnetic permeability as a
function of depth

µθ(z) = µ0(θe−(z−1.2)
2

+ 1),

where θ is a parameter to be chosen. The permeability takes values in [µ0, (θ + 1)µ0] and has
a maximum at z = 1.2m. The conductivity of the subsoil is assumed to be known in advance
and to be strongly correlated to the values of µθ(z); we represent it by the model function
σθ(z) = θe−(z−1.2)

2

with values in [0, θ].
A synthetic data set is constructed by applying the forward model described in Section 2

to the sampling of µθ(z) and σθ(z) at the depths zi = 3.5(i − 1)/(n − 1), i = 1, . . . , n.
We initially fix mh = 10, n = 40, and let the measurement heights be hi = 1.9i/mh,
i = 1, . . . ,mh. We assume one operating frequency f = 14600Hz for the instrument
(mω = 1) and both the horizontal and the vertical orientations. The data set is contaminated by
additive Gaussian white noise with mean value zero and standard deviation τ/

√
n. Since the

noise level is known, we can estimate the regularization parameter ` in (3.7) by the discrepancy
principle (3.8), where we set ‖e‖ = τ = 10−3 and κ = 1.5.
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FIG. 5.5. Regularized solution obtained by fixing θ = 2, mh = 10, mω = 1, n = 40, and τ = 10−3. On the
left, the result obtained by inverting the in-phase component of the data; on the right, the solution corresponding to
the quadrature component.

Figure 5.5 shows the model solution compared to the approximated solutions obtained
by applying our inversion algorithm either to the real part or to the imaginary part of the data
values. We fixed θ = 2 corresponding to a moderate variation of the magnetic permeability.
The solutions identified by the discrepancy principle lead both to a good global reconstruction
of the test function and a reasonably accurate localization of its maximum.

Figure 5.6 displays the data set and the measurement predicted by the model for both
the regularized solutions. A good match between the measured and the predicted data values
guarantees a small residual. This is, in general, an indication that the chosen initial solution
converged to an accurate local solution and that the algorithm was successful. Indeed, given
the nonlinearity of the problem, the presence of a unique global minimum is not guaranteed.
In these experiments we chose µ(0) = 2µ0u with u = (1, . . . , 1)T . Regarding the possible
lack of uniqueness for the solution, see also Remark 3.1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

14 G. P. DEIDDA, P. DÍAZ DE ALBA, AND G. RODRIGUEZ

0 5 10

-0.1

-0.05

0

0.05

0.1

0.15

0.2
vertical

0 5 10

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
horizontal

0 5 10

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
vertical

0 5 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
horizontal

FIG. 5.6. Measured (circles) and predicted (asterisks) data values for the two solutions displayed in Figure 5.5;
we display the data for both the vertical and the horizontal orientation of the device. The graphs on the left are
obtained by inverting the in-phase component of the measured signal; the graphs on the right correspond to the
quadrature component.
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FIG. 5.7. Regularized solution obtained by fixing θ = 20, mh = 20, mω = 1, n = 40, and τ = 10−3. On
the left, the result obtained by inverting the in-phase component of the data; on the right, the solution corresponding
to the quadrature component.

The graphs in Figure 5.7 show the solutions obtained by fixing θ = 20, that is, assuming
a wider variation of the magnetic permeability. All the other parameters are unchanged except
mh = 20. The solutions displayed in the graphs are obtained by selecting the initial solution
which produces the most significant converged solution, that is, µ(0) = 8µ0u for the in-phase
component inversion and µ(0) = 10µ0u for the quadrature component inversion. Neither
experiment correctly reproduces the behaviour of the solution: despite the size of the data is
doubled, the algorithm is only able to detect the shape of the solution up to the depth of about
1 meter. We remark that the quality of the approximations does not improve by overestimating
the value of the regularization parameter indicated by the discrepancy principle.

Varying the instrument height, that is, considering many hi values, has been the standard
approach with first-generation devices, in order to obtain multiple data for each spatial point.
This redundant information is required whenever one pretends to reconstruct the distribu-
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FIG. 5.8. Regularized solution obtained by fixing θ = 20, mh = 1, mω = 6, n = 40, and τ = 10−3. On the
left, the result obtained by inverting the in-phase component of the data; on the right, the solution corresponding to
the quadrature component.

tion of the electromagnetic features of the subsoil with respect to depth. Last-generation
instruments, however, are either endowed with more than two coils, allowing for multi-
ple values of the inter-coil distance ρ, or are able to perform simultaneous measurements
with different angular frequencies ωj = 2πfj . The Geophex GEM-2 falls into the last
class of devices. It is endowed with two coils at a distance ρ = 1.66m, and it can be
configured to use up to 10 frequencies for each data acquisition. In the following exper-
iment we assume that each measurement is performed at 6 different frequencies, namely
f = 775Hz, 1175Hz, 3925Hz, 9825Hz, 21725Hz, 47025Hz, with the instrument at the height
of 1m and using both orientations. This means that we fix mh = 1, mω = 6, ν = 1, 2,
and apply the inversion algorithm with m = 12 data values. This approach is known as
“multi-frequency” (many frequencies) and “multi-view” (many receiving heights). The noise
level is the same as before, i.e., τ = 10−3, and the regularization parameter is chosen by the
discrepancy principle (3.8) with κ = 1.5.

We report in Figure 5.8 the results obtained by assuming the same strong variation of
the permeability (θ = 20) of the preceding experiment. The two graphs are computed by
inverting either the in-phase or the quadrature component of the signal. The accuracy of the
reconstructions demonstrates that varying the operating frequency of the device produces a
data set containing much richer information than varying its height and suggests that this
approach should be preferred in practical EM data inversion.

6. Conclusions and future developments. In this paper, we extend an inversion algo-
rithm developed in [6] in order to deal with multi-frequency data as well as with multi-height
data. We consider the problem of determining the magnetic permeability in the subsoil with
respect to depth, assuming the electrical conductivity to be known. Moreover, we give analyti-
cal formulas for the Jacobian of the forward model, where the partial derivatives are computed
with respect to the value of the permeability inside each ground layer.

The numerical experiments show that the analytically exact Jacobian is far more accurate
than the finite difference approximation and faster to compute. The computation of the
magnetic permeability appears to be harder than the evaluation of the conductivity, but the
multi-frequency approach leads to accurate approximations of the solution when the algorithm
is applied to noisy synthetic data; there are no significant differences when either the in-phase
or the quadrature component of the data is considered.
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The results obtained, as well as the argumentation stated in Remark 3.1, suggest that the
algorithm should be further developed in order to process both the real and imaginary parts of
the measured signal, determining simultaneously the electrical conductivity and the magnetic
permeability of the subsoil layers. The new computational procedure should be constructed
with care, given the nonlinearity and the severe ill-conditioning of the forward model, and its
performance should be tested on both synthetic ad experimental data sets. This work will be
the subject of a future paper.
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