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AN OPTIMAL Q-OR KRYLOV SUBSPACE METHOD
FOR SOLVING LINEAR SYSTEMS∗

GÉRARD MEURANT†

Abstract. Today the most popular iterative methods for solving nonsymmetric linear systems are Krylov methods.
In this paper we show how to construct a non-orthogonal basis of the Krylov subspace such that the quasi-orthogonal
residual (Q-OR) Krylov method using this basis yields the same residual norms as GMRES up to the final stagnation
phase, provided GMRES is not stagnating. In many examples this new Krylov method gives a better maximum
attainable accuracy than GMRES with a modified Gram-Schmidt (MGS) implementation. Even though the number of
floating point operations per iteration is larger than for GMRES, the optimal Q-OR method offers more potential for
parallelism than GMRES with MGS.
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1. Introduction. We consider the problem of solving linear systems Ax = b, where
A is a square nonsingular matrix of order n with real entries and b is a real vector of
length n. Today the most popular iterative methods for solving such nonsymmetric lin-
ear systems are Krylov methods. Assuming the initial guess is zero, they use Krylov subspaces
Kk(A, b) ≡ span{b, Ab,A2b, . . . , Ak−1b}, k = 1, 2, . . . , of growing dimension that are de-
fined by repeated multiplication of the right-hand side bwith the matrixA. The approximations
xk to the solution of the linear system are extracted from these subspaces.

Two well-known Krylov methods are FOM (Full Orthogonalization Method) [17] and
GMRES (Generalized Minimum RESidual method) [18]. These two methods use an orthonor-
mal basis of the Krylov subspace that is computed by the Arnoldi process [1]. GMRES
minimizes the `2-norm of the residual vector at each iteration and is, in this sense, an opti-
mal method among those using only one matrix-vector product per iteration. In FOM, the
residual vectors are orthogonal but the residual norms are larger than or equal to the GMRES
residual norms. In [4] it is shown that many Krylov methods can be described as so-called
quasi-orthogonal (Q-OR) or quasi-minimum (Q-MR) residual methods. Well-known examples
are FOM/GMRES, BiCG/QMR [5, 6], and Hessenberg/CMRH [10, 19]. Here we use a dash
in Q-OR and Q-MR for the general methods that use any basis of the Krylov subspace to
distinguish them from the QMR method proposed in [6]. All these pairs of methods differ
mainly by the basis of the Krylov subspace that is used. FOM/GMRES use an orthogonal
basis, BiCG/QMR use a biorthogonal basis, and Hessenberg/CMRH use a basis originating
from the LU factorization with pivoting of the Krylov matrix. However, one can use any basis
of the Krylov subspace in the Q-OR/Q-MR methods.

The main goal of this paper is to show that one can construct a non-orthogonal basis
of the Krylov subspace such that the corresponding Q-OR method yields the same residual
norms as GMRES when they are started from the same initial vector (except in case of
GMRES stagnation); that is, one can construct what can be considered an optimal Q-OR
method. Moreover, we show that this non-orthogonal basis has many interesting mathematical
properties.

The content of the paper is as follows. In Section 2 we recall the construction and the
properties of general Q-OR methods using any basis of the Krylov subspace. Section 3 is
devoted to the construction of a basis for which Q-OR will deliver the same residual norms
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as GMRES provided GMRES is not stagnating. In the first subsection it is shown that this
goal can be reached, but the corresponding algorithm is not practical since it relies on matrices
which are numerically badly conditioned. The second subsection establishes some technical
results that will be needed to solve a minimization problem related to the construction of
the basis. The third subsection shows how to reliably construct the optimal basis and the
upper Hessenberg matrix from which the approximate solution is computed. In Section 4
we study the mathematical properties of the optimal basis. Remarkably, the angles between
the basis vectors can be explicitly written as functions of the residual norms. Moreover, a
lower bound on the smallest singular value of the matrix whose columns are the basis vectors
can be obtained. Some of these properties are also helpful to simplify the implementation
of the method. Section 5 provides an implementation of the method. In Section 6 we report
some numerical experiments showing that the method delivers the same residual norms as
GMRES-MGS, that is, GMRES implemented with the modified Gram-Schmidt algorithm,
but, in many cases, with a better maximum attainable accuracy. In Section 7 we propose a
simple technique to handle the breakdowns that could occur in the Q-OR optimal method
when GMRES is stagnating. Finally, we give some conclusions and perspectives.

2. Q-OR Krylov methods. For simplicity we assume that all the matrices have full rank
(except Hk defined below), but the results are also valid when there is an early termination. In
particular, the Krylov matrix defined as

K =
[
b Ab A2b · · · An−1b

]
.

is a nonsingular matrix. Without loss of generality we will also assume that ‖b‖ = 1 and that
the first iterate is x0 = 0.

We first consider abstract Q-OR methods regardless of the basis that is used. Let us
assume that we have an ascending basis vk, k = 1, . . . , n, of unit norm vectors for Kn(A, b)
with v1 = b. This means that {v1, . . . , vk} is a basis of Kk(A, b) for all k ≤ n. The unit norm
basis vectors are not necessarily orthonormal to each other, but, of course, they are linearly
independent. Let V be the matrix whose columns are the basis vectors vk, k = 1, . . . , n. The
matrix V is nonsingular, and there exists a nonsingular upper triangular matrix U (which is
the matrix representing the change of basis) such that

(2.1) K = V U.

LetC be the companion matrix associated with the characteristic polynomial ofA denoted
by

(2.2) C =

0 · · · 0 −α0

In−1
...

−αn−1

 ,
where In−1 is the identity matrix of order n − 1. The roots of the monic polynomial with
coefficients αn−1, . . . , α0, where α0 is the constant coefficient, are the eigenvalues ofA. From
[3, Theorem 2.1] we know that H = UCU−1 is an unreduced upper Hessenberg matrix and
that AV = V H . This gives an Arnoldi-like relation that is called a Krylov decomposition
in [20]; see relation (2.3) below.

Let us now define the Krylov methods we are considering. We proceed as in [4]. Since,
without loss of generality, we have chosen a zero starting vector x0 = 0, we define the iterates
xk as

xk = Vky
(k),
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where Vk is the matrix of the k first columns of V . This means that we look for xk inKk(A, b).
We have the Arnoldi-like relation

(2.3) AVk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk,

where Hk is the principal submatrix of order k of H , Hk is the same matrix appended with
the k first entries of the (k + 1)st row of H , and ek is the last column of the identity matrix of
order k. Thus, the residual vector rk can be written as

(2.4) rk = b−Axk = Vke1 −AVky(k) = Vk(e1 −Hky
(k))− hk+1,ky

(k)
k vk+1,

where e1 is the first column of the identity matrix of order k.
The kth iterate xOk = Vky

(k) of a Q-OR method is defined (provided that Hk is nonsingu-
lar) by computing y(k) as the solution of the linear system

(2.5) Hky
(k) = e1.

This annihilates the first term in the rightmost expression of (2.4). Thus, the kth iterate of the
Q-OR method is xOk = VkH

−1
k e1. Moreover, the residual vector, which we denote as rOk , is

proportional to vk+1, and ‖rOk ‖ = |hk+1,ky
(k)
k |. In case Hk is singular and xOk is not defined,

we shall define the residual norm to be infinite, ‖rOk ‖ =∞. The vector y(k), i.e., the solution
of equation (2.5), is usually computed by transforming the subdiagonal entries of Hk to zero
using Givens rotations and then solving an upper triangular system. Note that if b is not of
unit norm or if x0 6= 0, we have to solve Hky

(k) = ‖rO0 ‖e1.
In a Q-MR method, the vector y(k) is computed as the solution of the minimization

problem

min
y
‖e1 −Hky‖.

The Q-MR iterates are always defined contrary to the Q-OR iterates. An optimal Q-MR
method is clearly GMRES since it minimizes the residual norm because, in this case, the
matrices Vj , j = 1, . . . , n, are orthonormal. However, in this paper we concentrate on Q-OR
methods for which we have the following result.

THEOREM 2.1 ([3]). Let
[
ν1,1 ν1,2 · · · ν1,n

]
with ν1,1 = 1 be the first row of U−1,

the matrix U being defined by relation (2.1). The entries ν1,k+1, k = 0, . . . , n− 1, satisfy

|ν1,k+1| =
1

‖rOk ‖
,

where rOk are the Q-OR residual vectors obtained with the basis V .
In other words, whatever is the chosen basis, the norms of the residual vectors of the

Q-OR method can be read from the first row of the inverse of the upper triangular matrix
U that describes the relation between the natural basis and the basis we are using. In the
next section we will use this result to construct a basis for which Q-OR will deliver the same
residual norms as GMRES. Note that when ‖rO0 ‖ 6= 1, we have |ν1,k+1| = ‖rO0 ‖/‖rOk ‖.

3. An optimal basis for Q-OR. Obviously, from Theorem 2.1, it would be nice to
construct the basis in such a way that we have the largest possible values of |ν1,j |, j = 2, . . . ,
in the first row of U−1. However, we have the constraint that the basis vectors vj must be of
unit norm. We first construct the basis using the matrix U−1 because it is not too difficult to
show that, if there is no breakdown, this basis is optimal in the sense that we obtain the same
residual norms as GMRES. We do this informally because we will see that, numerically, this
is far from being practical and efficient, and we will then look for a more reliable equivalent
algorithm.
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3.1. Construction of the basis using U−1. We may directly compute the basis of
Kn(A, b) from the relation V = KU−1 obtained from (2.1). In this way we obtain the vectors
vj straightforwardly, but, as we said above, the columns of V have to be of unit norm for
the result of Theorem 2.1 to be valid. We denoted by νi,j the entries of U−1. Let νk be the
vector of components νi,k, i = 1, . . . , k, the k first components of the kth column of U−1,
and let Kk be the matrix of the first k columns of the Krylov matrix K. Using the relation
V = KU−1, we define

ṽk = ν1,kb+ ν2,kA
2b+ · · ·+ νk,kA

k−1b = Kkνk.

We would like to have ‖ṽk‖ = 1 and |ν1,k| as large as possible. Then, we can define the basis
vector as vk = ṽk. This means that we have the constraint ‖Kkνk‖ = 1, which corresponds to

νTk K
T
k Kkνk = νTkMkνk = 1.

Since the matrixMk = KT
k Kk is symmetric and positive definite, this is the equation of an

(hyper) ellipsoid in �k centered at the origin. All the points (that is, vectors) on the surface of
the ellipsoid satisfy the constraint. To maximize |ν1,k| we have to find a point on the surface
of this ellipsoid attaining a maximum of the absolute value of the first coordinate.

For simplicity, let us consider the case k = 3. A way to solve the problem is to use
projective geometry and the fact that an ellipsoid is a transformation of a sphere. A sphere of
radius 1 centered at the origin is represented by a matrix S of order 4,

S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
A point p is defined as p =

[
x y z 1

]T
, and the equation of the unit sphere is pTSp = 0.

We apply a transformation T from the sphere to the ellipsoid and obtain

(T−1p)TS(T−1p) = pTT−TST−1p = 0.

Hence, the equation of the ellipsoid is pTWp = 0 with W = T−TST−1. Now, we are
looking for a plane tangent to the ellipsoid and orthogonal to the x-axis. In our coordinate
system, a plane is represented by a vector u such that uT p = 0. We recognize that for a point
p on the ellipsoid, the plane defined by uT = pTW touches the ellipsoid at p since

uT p = pTWp = 0.

It can be shown that this is the only intersection point. The tangent plane is characterized by

uTW−1u = pTWW−1Wp = pTWp = 0.

In this system of coordinates, the equation of our ellipsoid is

pT
[
M3 0

0 −1

]
p = 0.

Hence,

W−1 =

[
M−13 0

0 −1

]
.
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A plane orthogonal to the x-axis is defined by uT =
[
1 0 0 −x

]
. Therefore, we must

have

[
1 0 0 −x

] [M−13 0
0 −1

]
1
0
0
−x

 = 0.

This yields

[
1 0 0 −x

] 
(M−13 )1,1
(M−13 )2,1
(M−13 )3,1

x

 = (M−13 )1,1 − x2 = 0.

Finally, we obtain the first component of the solution by x = ±
√

(M−13 )1,1. Note that
M3 = KT

3 K3 is positive definite, and thus the diagonal entries of its inverse are positive.
However, this does not give the other components of the solution, that is, the other

components of a column of U−1 which are necessary to compute the columns of H . But, we
can compute them using the tangent plane. Let us write the matrixM3 as

M3 =

1 α̂ γ̂

α̂ β̂ δ̂

γ̂ δ̂ ω̂

 .
The gradient at (x, y, z) is

g = 2

 x+ α̂y + γ̂z

α̂x+ β̂y + δ̂z

γ̂x+ δ̂y + ω̂z

 .
We obtain the equations

(x+ α̂y + γ̂z)x = 1,

α̂x+ β̂y + δ̂z = 0,

γ̂x+ δ̂y + ω̂z = 0.

But, we already know the first component x. The other components are found by solving the
linear system [

β̂ δ̂

δ̂ ω̂

] [
y
z

]
= −x

[
α̂
γ̂

]
.

Note that the matrix of this system is the trailing principal submatrix ofM3, and the vector on
the right-hand side is constructed from the last two entries of the first column. The matrix is
nonsingular, but it may happen that the right-hand side is zero, in which case the matrix that
we denoted by “U−1” will be singular!

This construction can be straightforwardly generalized to any dimension. Choosing

the positive solution, we obtain x =
√

(M−1k )1,1, and the other components are computed
by solving a linear system of order k − 1 whose matrix and right-hand side are M2:k,2:k
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and −xM2:k,1. In theory, when we have a nonsingular upper triangular matrix U−1, we
can compute the basis vectors using V = KU−1. The upper Hessenberg matrix H can
be computed from U using a result proved in [3]. The submatrices of H can be written as
Hk = UkC

(k)U−1k , where Uk is the principal submatrix of U and C(k) is a companion matrix
whose last column is U−1k U1:k,k+1. Hence, Hk is nonsingular if U−1k is nonsingular, that is,
all the diagonal entries are nonzero. But, even though we can compute all the columns of U−1,
we have no guarantee that the matrix “U−1” is numerically nonsingular; if it is (close to be)
singular we have a (near) breakdown of the algorithm.

Unfortunately, this breakdown situation occurs if there is stagnation in GMRES. The
real matrices leading to GMRES stagnation have been characterized in [14]. They can be
written as A = ZQRZT , where Z is an orthonormal matrix, R is upper triangular, and Q is
an orthonormal matrix such that parts of some columns and of some rows are zero, depending
at which iterations the stagnation of the residual norms happens. The right-hand side giving
stagnation is b = Ze1. Let us consider, for instance, an initial stagnation of the GMRES
residual norms, ‖rG0 ‖ = ‖rG1 ‖ = 1. Then, the first column of the matrix Q is zero except for
the second component, which is equal to 1, that is, Qe1 = e2; see [14]. Then, we have

K2 =
[
Ze1 AZe1

]
= Z

[
e1 QRe1

]
= Z

[
e1 δQe1

]
,

with δ = (R)1,1. Therefore, we obtain

M2 = KT
2 K2 =

[
1 δeT1Qe1

δeT1Q
T e1 δ2

]
=

[
1 0
0 δ2

]
.

The matrixM2 is diagonal as well as its inverse. Using this, the first two components of the
second column of “U−1” that we are looking for are 1 and 0, and the upper triangular matrix
we are constructing is singular. This reminds of the relations between FOM and GMRES:
when GMRES stagnates, the FOM iterates are not defined. More generally, we obtain zero or
small entries on the diagonal of the columns corresponding to the iterations where the GMRES
residual norm is (almost) equal to the norm of the previous iteration.

Of course, even when there is no breakdown, this algorithm is not practical since we
need to know the moment matricesMk = KT

k Kk, and it is well known that, numerically, the
column vectors of Kk may loose their linear independence. Moreover, if we are in a case for
which we have fast convergence of the Q-OR method, the matricesMk tend to become almost
singular, and this yields numerical problems in the computation of (M−1k )1,1 and in solving
for the other components. Nevertheless, if U−1 is nonsingular, Hk is nonsingular for all k,
and if we apply the Q-OR method with this basis, we obtain residual vectors whose norms are
such that

‖rOk ‖2 =
1

(M−1k+1)1,1
,

withMk+1 = KT
k+1Kk+1. It is known (see [15] and the references therein) that these values

of the residual norms are those that are obtained from GMRES. Hence, maximizing |ν1,k|
yields the GMRES residual norms. This result was also obvious from Theorem 2.1. Therefore,
these residual norms are the best ones that we can get with the given Krylov subspace with
only one matrix-vector per iteration. In a sense, the construction that we have done before
defines an optimal Q-OR method. We have (loosely) proved the following result.

THEOREM 3.1. Given a matrix A and a starting vector b. If there is no breakdown in the
algorithm described in this section, we obtain a basis for the Krylov subspace Kn(A, b) such
that the Q-OR method constructed with this basis yields the same residual norms as GMRES
applied to A and b.
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Since constructing U−1 is not practical, we would like to try build up the matrix H
directly without using the matrix U or its inverse.

3.2. Some technical results. Before constructing the optimal basis using H , we need
some technical results.

LEMMA 3.2. Let A be a square real symmetric positive definite matrix of order n
with a spectral factorization A = QΛQT with Λ = diag(λj), λj , j = 1, . . . , n, being the
eigenvalues of A and QTQ = I . Let c ∈ �n be not orthogonal to any of the eigenvectors
of A and γ be a real positive number. Then, the eigenvalues µj , j = 1, . . . , n, of the matrix
A− γccT are given by the solutions of the secular equation

(3.1) f(µ) ≡ 1− γ
n∑
j=1

(zj)
2

λj − µ
= 0,

with z = QT c.
Proof. See [7, 9]. We are looking for an eigenpair (µ, y) such that

(A− γccT )y = µy.

This yields cT y = γcT (A − µI)−1ccT y. But cT y 6= 0 since otherwise y would be an
eigenvector of A and c would be orthogonal to such an eigenvector. Therefore, µ must satisfy
the equation

1− γcT (A− µI)−1c = 0.

Using the spectral factorization of A and z = QT c, we obtain the secular equation (3.1).
COROLLARY 3.3. Using the hypotheses and notation of Lemma 3.2, let

γopt =
1∑n

j=1
(zj)2

λj

=
1

cTA−1c
·

Then A − γccT is positive definite if 0 ≤ γ < γopt, positive semi-definite if γ = γopt. and
indefinite if γ > γopt.

Proof. Obviously the matrix is positive definite if γ = 0. So, let us assume γ > 0. The
function f defined in (3.1) has poles at the eigenvalues λj of A, which are positive. The
function f is decreasing in between the poles. Hence, since γ > 0, there is a strict interlacing
between the eigenvalues of A and the eigenvalues of A− γccT . Only the smallest eigenvalue
µ1 of A − γccT can eventually be negative. The function f tends to 1 from below when
µ→ −∞. From (3.1) we have

f(0) = 1− γ
n∑
j=1

(zj)
2

λj
·

This value is positive when γ < γopt, and A− γccT is singular when γ = γopt.
PROPOSITION 3.4. Let B be an n× k real matrix with n > k and d ∈ �n, d 6= 0, such

that the matrix Bd = (B,−d) is of full rank k + 1. We also assume that BT d 6= 0. Let ν 6= 0
be a given vector in �k such that the vector ν appended with a zero at the bottom is not
orthogonal to any eigenvector of BTd Bd. Let

(3.2) γopt = min
y∈�k,νT y 6=0

‖d−By‖2

(νT y)2
·
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Then,

(3.3) γopt =
α

ανT (BTB)−1ν + ω2
,

with α = dT d − dTB(BTB)−1BT d and ω = dTB(BTB)−1ν. Moreover, if ω 6= 0, a
solution yopt of the minimization problem (3.2) is given by

(3.4) yopt = (BTB)−1BT d+
α

ω
(BTB)−1ν.

Proof. Note that γopt ≥ 0, but, by our hypothesis, d is not in the range of B, and there is
no vector y such that ‖d−By‖ = 0. Hence, γopt > 0.

We use the same technique as in [16] and [11]. We consider the problem

(3.5) sup
γ
γ, such that ‖d−By‖2 ≥ γ(νT y)2 for all y ∈ �k, νT y 6= 0.

From [11, Theorem 2] we know that this yields the solution of the minimization problem (3.2).
We have

‖d−By‖2 = dT d− yTBT d− dTBy + yTBTBy, (νT y)2 = yT ννT y.

Therefore, the constraint in (3.5) can be written in matrix form as

(3.6)
[
yT 1

]
C(γ)

[
y
1

]
≥ 0, C(γ) =

[
BTB − γννT −BT d
−dTB dT d

]
.

We note that the matrix C(γ) can be expressed as

C(γ) = BTd Bd − γ
[
ν
0

] [
νT 0

]
, Bd ≡

[
B −d

]
.

Hence, by our hypothesis, C(γ) is a rank-one perturbation of a symmetric positive definite
matrix. We are in a position to apply the results of Corollary 3.3. There is a unique value
γ = γopt for which the matrix C(γ) is singular. If 0 ≤ γ < γopt, then the matrix C(γ) is
positive definite. Therefore, γopt is the largest value for which the relation (3.6) is true for all
vectors y. Since the last component of the vector in the rank-one modification is zero, from
Corollary 3.3, to compute the denominator of γopt, we need the value of

[
νT 0

]
(BTd Bd)

−1
[
ν
0

]
,

and therefore we have to find the first principal block of the inverse of C(0). It is given by the
inverse of the Schur complement (which is positive definite) and

γopt =
1

νT
(
BTB − 1

dT d
BT ddTB

)−1
ν
·

We use the Sherman-Morrison formula (see [8]) to obtain

γopt =
1

νT
[
(BTB)−1 + (BTB)−1 BT ddTB

dT d−dTB(BTB)−1BT d
(BTB)−1

]
ν
·
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With α = dT d− dTB(BTB)−1BT d and ω = dTB(BTB)−1ν, we obtain the relation (3.3).
The value γopt is the minimum of (3.2) that we were looking for.

From our hypotheses there exists a vector yopt 6= 0 such that

γopt =
‖d−Byopt‖2

(νT yopt)2
·

It can be computed in the following way. When γ = γopt, the matrix C(γ) has a zero
eigenvalue. Therefore, we solve

(3.7) (BTB − γoptννT )yopt = BT d.

It turns out that we also have dT d− dTByopt = 0 since

dT d− dTB(BTB − γoptννT )−1BT d = 0.

The vector yopt, the solution of (3.7), is obtained from the Sherman-Morrison formula.

yopt = (BTB − γoptννT )−1BT d,

= (BTB)−1BT d+ (BTB)−1
γoptνν

T

1− γoptνT (BTB)−1ν
(BTB)−1BT d,

= (BTB)−1BT d+
γopt[ν

T (BTB)−1BT d]

1− γoptνT (BTB)−1ν
(BTB)−1ν.

Now, νT (BTB)−1BT d = dTB(BTB)−1ν = ω. Let t = (BTB)−1ν. We have to consider
the factor

γoptω

1− γoptνT t
, with γopt =

α

ανT t+ ω2
·

Some algebra yields,

γoptω

1− γoptνT t
=
α

ω
,

and this proves the result (3.4) for yopt.
Let us remark that from Proposition 3.4, we see that in order to compute γopt and yopt,

we need to solve two linear systems

(BTB)t = ν, (BTB)s = BT d.

The vector s is the solution of the least-squares problem miny ‖d − By‖. The solution of
the problem in Proposition 3.4 is the solution of this least-squares problem plus a correction
depending on ν. We also remark that the coefficient α is a Schur complement in the matrix
C(0) which is symmetric positive definite. Therefore, α is positive.

Let us now consider the case BT d = 0. Then, γopt = 1/νT (BTB)−1ν, and
‖d−By‖2 = dT d+ yTBTBy. Therefore we have

yT (BTB − γoptνT ν)y = −dT d < 0.

The matrix within the parenthesis is positive semi-definite, and there is no vector y that could
satisfy this identity. Hence, there is no finite solution to the minimization problem (3.2).
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3.3. The construction of the basis using H . To construct the Q-OR optimal basis using
the relation AV = V H , that is, without using the inverse of U , we have to relate H to the first
row of U−1.

LEMMA 3.5. The entries ν1,j of the first row of the inverse of U are related to the entries
hi,j of H by

(3.8) ν1,k+1 = − 1

hk+1,k

k∑
j=1

ν1,jhj,k, k = 1, . . . , n− 1.

Proof. We have seen that H = UCU−1, where C is the companion matrix defined
in (2.2). Multiplying on the left by U−1, we have U−1H = CU−1. From the structure of C
and the fact that U−1 is upper triangular, the entries of the first row of CU−1 are zero except
for the last one in position (1, n). Writing the entry (1, k) of U−1H for k < n, we obtain

k+1∑
j=1

ν1,jhj,k = 0 ⇒ ν1,k+1 = − 1

hk+1,k

k∑
j=1

ν1,jhj,k.

Hence, we have a relation between the first row of U−1 and the kth column of H . Let us
assume that at step k of the algorithm we have already computed ν1,j , j = 1, . . . , k, and we
would like to find hj,k, j = 1, . . . , k + 1, to maximize the absolute value of ν1,k+1, knowing
that hk+1,k has to be chosen to obtain a vector vk+1 of unit norm. From the Arnoldi-like
relation (2.3), the subdiagonal entry hk+1,k is given by the norm of the vector

(3.9) ṽk = Avk −
k∑
j=1

hj,kvj ,

and the next basis vector is vk+1 = ṽk/hk+1,k with hk+1,k = ‖ṽk‖. Then, from Lemma 3.5,

|ν1,k+1| =
|νT y|
‖d−By‖

,

with

d = Avk, B = Vk =
[
v1 · · · vk

]
, y =

[
h1,k · · · hk,k

]T
, ν =

[
ν1,1 · · · ν1,k

]
.

We would like to maximize |ν1,k+1|2. Hence, we wish to solve

1

|ν1,k+1|2
= min
y∈�k,νT y 6=0

‖d−By‖2

(νT y)2
·

The minimizer of this problem was given in Proposition 3.4. When it exists, the solution yopt
is obtained by solving two linear systems with the matrix V Tk Vk. We outline in a moment
how to simplify the algorithm and to compute the solution efficiently. Let us first consider a
straightforward implementation of the algorithm (with x0 = 0):

ALGORITHM 0.
Initialization phase

v1 = b/‖b‖, vA1 = Av1,
ω = vT1 v

A
1 , α = (vA1 )T vA1 − ω2,

h1,1 = ω + α
ω ,

ṽ = vA1 − h1,1v1, h2,1 = ‖ṽ‖,
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v2 = 1
h2,1

ṽ, vA2 = Av2,

ν1,1 = 1, ν1,2 = −h1,1

h2,1
,

ν =
[
ν1,1 ν1,2

]T
.

End of initialization
For k = 2, . . .

1. solve of V Tk Vk t = ν,
2. vtAk = V Tk v

A
k ,

3. solve of V Tk Vk s = vtAk ,
4. ω = (vtAk )T t, α = (vAk )T vAk − (vtAk )T s,
5.

h1:k,k =

h1,k...
hk,k

 = s+
α

ω
t,

6.

ṽ = vAk − Vk h1:k,k, hk+1,k = ‖ṽ‖, ν1,k+1 = − 1

hk+1,k
νTh1:k,k,

ν =
[
ν1,1 · · · ν1,k+1

]T
,

7. vk+1 = 1
hk+1,k

ṽ and vAk+1 = Avk+1,
8. if needed, solve Hkyk = ‖b‖e1, xk = Vkyk.

End For k.

We will later discuss how to efficiently solve the linear systems in steps 1 and 3. This will
provide an improved implementation of the method.

4. Mathematical properties of the optimal basis. In this section we prove some prop-
erties of the basis that will help us simplify the implementations of the algorithm. We use the
same notation as in the previous section,

t = (V Tk Vk)−1ν, s = (V Tk Vk)−1V Tk Avk, ν =
[
ν1,1 · · · ν1,k

]T
,

ω = (V Tk Avk)T t, α = ‖Avk‖2 − (V Tk Avk)T s.

We assume that ν1,j 6= 0, j = 1, . . . , k, and that the absolute values of the ν1,j’s are strictly
increasing. That is, we assume that GMRES is not stagnating. First, we note that we could
expect the basis to be closer and closer to orthogonality as the method converges. More
precisely, the vector ṽk in (3.9) is

(4.1) ṽk = (I − Vk(V Tk Vk)−1V Tk )Avk −
α

ω
Vk(V Tk Vk)−1ν.

The first term on the right-hand side is in the orthogonal complement of the subspaceKk(A, b),
and the second one is in Kk(A, b). We remark that if we took α = 0 for every iteration, we
would construct an orthogonal basis. In a moment, we highlight the significance of the term
α/ω. Looking at the angles between the basis vectors, from (4.1), we have

(4.2) V Tk vk+1 =
1

hk+1,k
V Tk ṽk = − α

ωhk+1,k

ν1,1...
ν1,k

 .
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The next lemma shows how this expression can be simplified.
LEMMA 4.1. The basis vectors satisfy

(4.3) V Tk+1vk+1 =
1

ν1,k+1


ν1,1

...
ν1,k
ν1,k+1

 .
Proof. From relation (4.2) we have

V Tk+1vk+1 =
1

hk+1,k

[
V Tk
vTk+1

]
ṽk =

[
− α
ωhk+1,k

ν

1

]
.

We need to consider α/(ωhk+1,k). We first remark that ω = νT s because νT s = tTV Tk Avk.
Then, we compute h2k+1,k = ‖ṽk‖2 using (3.9),

h2k+1,k = ‖Avk‖2 − 2(Avk, Vkh1:k,k) + (V Tk Vkh1:k,k, h1:k,k),

and

Vkh1:k,k = Vk

(
s+

α

ω
t
)
, V Tk Vkh1:k,k = V Tk Avk +

α

ω
ν.

This yields

h2k+1,k = ‖Avk‖2 − (Avk, Vks)−
α

ω
[(Avk, Vkt)− (ν, s)] +

(α
ω

)2
(ν, t).

But,

‖Avk‖2 − (Avk, Vks) = α, (Avk, Vkt)− (ν, s) = 0.

Therefore,

h2k+1,k = α+
(α
ω

)2
(ν, t).

Inserting ω into the first term of the right-hand side of this relation, we obtain

h2k+1,k =
α

ω

(
νT s+

α

ω
νT t
)
.

Therefore,

α

hk+1,kω
=

hk+1,k

νT s+ α
ων

T t
=

hk+1,k

νTh1:k,k
= − 1

ν1,k+1
·

This proves the relation (4.3).
From Lemma 4.1 we observe that the cosines of the angles between the basis vectors are

given by ratios of the residual norms since

|ν1,j |
|ν1,k+1|

=
‖rOk ‖
‖rOj−1‖

, j = 1, . . . , k + 1.
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The right-hand side of this identity becomes small when the method converges fast enough.
The matrix V Tk Vk is

(4.4) V Tk Vk =



1 1
ν1,2

1
ν1,3

· · · 1
ν1,k

1
ν1,2

1
ν1,2
ν1,3

· · · ν1,2
ν1,k

1
ν1,3

ν1,2
ν1,3

1 · · · ν1,3
ν1,k

...
...

. . .
...

1
ν1,k

ν1,2
ν1,k

· · · 1

 .

Below, we explore the inverse of this matrix in detail. The next lemma shows that, mathemati-
cally, the vector t is zero except for the last component.

LEMMA 4.2. The solution of V Tk Vkν = t is

(4.5) t = (V Tk Vk)−1ν =


0
...
0
ν1,k

 .
Proof. Using Lemma 4.1 we have

ν1,kV
T
k vk = ν.

Therefore,

ν = ν1,kV
T
k Vkek = V Tk Vk


0
...
0
ν1,k

 .
Next, let us prove that the basis is semi A-orthogonal (or conjugate), that is, vTi Avk = 0,

for i > k. Hence, our Q-OR optimal method is a right conjugate direction method (RCD). For
a left conjugate direction method (LCD), see [22].

LEMMA 4.3. The matrix V Tk AVk is upper triangular.
Proof. Let us consider vTi Avk, i > k. From the Arnoldi-like relation (2.3), we have

Avk = hk+1,kvk+1 + Vkh1:k,k.

This yields

vTi Avk =

k+1∑
j=1

hj,kv
T
i vj .

From relation (4.4), the i-th row of V TV is[
ν1,1
ν1,i

· · · ν1,i−1

ν1,i
1

ν1,i
ν1,i+1

· · · ν1,iν1,n

]
.

Then, with i > k and using the relation (3.8),

k+1∑
j=1

hj,kv
T
i vj =

k+1∑
j=1

hj,k
ν1,j
ν1,i

= hk+1,k
ν1,k+1

ν1,i
+

k∑
j=1

hj,k
ν1,j
ν1,i

,

=
1

ν1,i
[hk+1,kν1,k+1 − hk+1,kν1,k+1] = 0.
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It is interesting to remark that the inverse of the matrix V Tk Vk has a particular structure.
LEMMA 4.4. The inverse of the matrix V Tk Vk in (4.4) is tridiagonal.
Proof. This is readily seen from the structure of the matrix in relation (4.4); see [13]. But,

this can also be proved directly as follows. From relation (2.3) we have

V Tk AVk = V Tk VkHk + hk+1,kV
T
k vk+1e

T
k .

Let Rk = V Tk AVk − hk+1,kV
T
k vk+1e

T
k . By Lemma 4.3 the matrix Rk is upper triangular.

We have (V Tk Vk)−1 = HkR
−1
k . This shows that (V Tk Vk)−1 is upper Hessenberg. However, it

is a symmetric matrix, and therefore it is tridiagonal.
It turns out that one can find exact expressions for the diagonal and subdiagonal entries of

the inverse of the matrix V Tk Vk in (4.4). Let αj be the diagonal entries and βj the subdiagonal
entries. We have

α1 =
ν21,2

ν21,2 − 1
, β1 = − ν1,2

ν21,2 − 1
,

αi =
ν21,i−1

ν21,i − ν21,i−1
+

ν21,i+1

ν21,i+1 − ν21,i
, βi = − ν1,iν1,i+1

ν21,i+1 − ν21,i
, i = 2, . . . , k − 1,

αk =
ν21,k

ν21,k − ν21,k−1
·

This result helps us to obtain a lower bound for the singular values of Vk.
THEOREM 4.5. Assume |ν1,j+1| 6= |ν1,j |, j = 1, . . . , n − 1. Let µi, i = 1, . . . , k, be

defined as

µ1 =
|ν1,2|
ν21,2 − 1

, µi =
|ν1,i−1| |ν1,i|
ν21,i − ν21,i−1

+
|ν1,i| |ν1,i+1|
ν21,i+1 − ν21,i

, 1 < i < k, µk =
|ν1,k−1| |ν1,k|
ν21,k − ν21,k−1

·

The smallest singular value σk of Vk is bounded from below by

σk ≥
1

(maxi(αi + µi))
1
2

·

Proof. Using Gerschgorin circles, the eigenvalues of the tridiagonal matrix (V Tk Vk)−1

are located in the union of the intervals [αi − µi, αi + µi], i = 1, . . . , k, where µ1 = |β1|,
µi = |βi−1| + |βi|, i = 2, . . . , k − 1, and µk = |βk−1|. Hence, the smallest eigenvalue of
V Tk Vk is bounded from below by 1/maxi(αi + µi).

From Theorem 4.5 we have

α1 + µ1 =
1

1− 1
ν2
1,2

(
1 +

1

|ν1,2|

)
, αk + µk =

1

1− ν2
1,k−1

ν2
1,k

(
1 +
|ν1,k−1|
|ν1,k|

)
,

and

αi + µi =
1

ν2
1,i

ν2
1,i−1

− 1

(
1 +

|ν1,i|
|ν1,i−1|

)
+

1

1− ν2
1,i

ν2
1,i+1

(
1 +

|ν1,i|
|ν1,i+1|

)
, i = 2, . . . , k − 1.

Without stagnation, the values |ν1,i| must be strictly increasing since they are the inverses
of the GMRES residual norms. Hence, all the terms are positive. But, we see that if some
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consecutive values of |ν1,i| are close, then the maximum of αi + µi will be large, and the
lower bound of the smallest singular value will be small. On the contrary, if the sequence |ν1,i|
is increasing rapidly, then the lower bound is large, and the basis is well behaved.

Considering the other ends of the intervals we have

α1 − µ1 =
1

1− 1
ν2
1,2

(
1− 1

|ν1,2|

)
, αk − µk =

1

1− ν2
1,k−1

ν2
1,k

(
1− |ν1,k−1|

|ν1,k|

)
.

From |ν1,2| ≥ 1, |ν1,k| ≥ |ν1,k−1|, we obtain α1 − µ1 ≥ 0 and αk − µk ≥ 0, respectively.
For the other intervals from the Gerschgorin circles, we have

αi − µi =
1

ν2
1,i

ν2
1,i−1

− 1

(
1− |ν1,i|
|ν1,i−1|

)
+

1

1− ν2
1,i

ν2
1,i+1

(
1− |ν1,i|
|ν1,i+1|

)
, i = 2, . . . , k − 1.

The first term on the right-hand side is negative, and the second one is positive. Hence, we do
not know if αi − µi is positive for i = 2, . . . , k − 1. A necessary and sufficient condition for
αi − µi to be positive is

|ν1,i| |ν21,i+1 − ν21,i−1| ≥ |ν1,i−1| |ν21,i+1 − ν21,i|+ |ν1,i+1| |ν21,i − ν21,i−1|.

When mini(αi − µi) > 0, we obtain an upper bound for σ1, the largest singular value of Vk.
Unfortunately, some of the mathematical properties of the basis vectors that we proved

above are not verified up to machine precision in floating point computations. We can only
use a few of them. For instance, the computation of the new unnormalized vector ṽk in (3.9)
can be simplified since from relation (4.5),

Vkh1:k,k = Vks+
α

ω
ν1,kvk.

But,

ω = tTV Tk Avk = ν1,kv
T
k Avk.

Assuming ν1,k 6= 0, yields

ṽk = Avk − Vks− βvk, β =
α

vTk Avk
·

Moreover, the k first entries of column k of H are given by

h1:k,k = s+ βek.

We observe that we have a breakdown of the algorithm only if vTk Avk = 0. This means that
this method cannot be used for skew-symmetric matrices.

The relations giving the inverse of V Tk Vk have to be used carefully to solve V Tk Vks = vtAk
at each iteration since this will gradually lead to a discrepancy with the values that can be
computed from the vectors vj . This is unfortunate since it would have given a big saving in
the number of dot products. However, these relations can be used if we restart the algorithm
and if the restart parameter m is not too large. This will be considered in a forthcoming paper.

Let us prove some more relations between the quantities involved in the algorithm. We
have

h2k+1,k = α+
(α
ω

)2
ν21,k = α+

α2

(vTk Avk)2
= α+ β2.
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We also have

h2k+1,k = α+ h2k+1,k

ν21,k
ν21,k+1

,

which yields

h2k+1,k = α
ν21,k+1

ν21,k+1 − ν21,k
·

From the Arnoldi-like relation (2.3), we have

V Tk ṽk = V Tk Avk − V Tk Vks− βV Tk vk,

which yields β = −vTk ṽk. Moreover, the normalization of ṽk gives us

V Tk vk+1 = − β

hk+1,k
V Tk vk.

Using the expression for V Tk+1vk+1, we obtain

ν1,k
ν1,k+1

= − β

hk+1,k
= − β√

α+ β2
·

Hence,

|ν1,k|
|ν1,k+1|

≤ 1.

We have seen that the residual vectors are proportional to the basis vectors since
rk = −hk+1,ky

(k)
k vk+1. Moreover, from the Arnoldi-like relation (2.3), we have

hk+1,k vk+1 = Avk − Vkh1:k,k.

This implies that the basis vectors are obtained by the application of a polynomial in A to the
initial residual vk+1 = qk(A)b, where qk is a polynomial of degree k. Hence, the residual
vectors are also given in polynomial form as rOk = pk(A)b, where the so-called residual
polynomial pk of order k is such that pk(0) = 1. The polynomials qk satisfy

q0(λ) ≡ 1, q1(λ) =
1

h2,1
(λ− h1,1),

qk(λ) =
1

hk+1,k

[
λqk−1(λ)−

k∑
i=1

hi,kqi−1(λ)

]
, k = 2, . . .

On the other hand, sinceHk is an upper Hessenberg matrix, it is well known that det(λI−Hk)
is a polynomial sk(λ) that satisfies s1(λ) = λ− h1,1 and the recurrence relation

sk(λ) = (λ− hk,k)sk−1(λ)−
k−1∑
i=1

hi,k

k∏
j=i+1

hj,j−1si−1(λ), k = 2, . . .
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It can be shown that the two polynomials qk and sk are equal up to a scaling factor, and
therefore they have the same roots. The roots of the residual polynomials are the eigenvalues
of Hk. These eigenvalues can be considered, when k increases, as approximations to the
eigenvalues of A. They are distinct from the Ritz values that are obtained from the Arnoldi
algorithm.

Let us assume that the data are real. Since K = V U , we have

V = KU−1 =⇒ vk+1 = KU−1ek+1 = ± rOk
‖rOk ‖

= ± 1

‖rOk ‖
pk(A)b.

Let pk(A)b = ξ
(k)
k Akb+ · · ·+ ξ

(k)
1 Ab+ b. By identification of the coefficients, we obtain

U−1ek+1 = ± 1

‖rOk ‖



1

ξ
(k)
1
...

ξ
(k)
k

0
...
0


.

We can also express U−1j = Û−1j D−1j , for j = 1, . . . , n− 1, by means of

Dj =


1
‖rO1 ‖

. . .
‖rOj−1‖

Sj , Û−1j =


1 1 · · · 1

ξ
(1)
1 · · · ξ

(j−1)
1

. . .
...

ξ
(j−1)
j−1

 ,

where Sj is a diagonal matrix with ±1 on the diagonal. The columns of the matrix Û−1j
contain the coefficients of the residual polynomials.

5. Implementation of the algorithm. Let us investigate how the computation in the
algorithm at step k can be organized. As said, we have to solve a linear system with the matrix
V Tk Vk. We would like to compute the Cholesky factorization of this matrix incrementally. Let
us assume that we know the lower triangular matrix Lk−1 such that Lk−1LTk−1 = V Tk−1Vk−1.
Then, denote

LkL
T
k =

[
V Tk−1Vk−1 zk

zTk 1

]
,

with zk = V Tk−1vk and

Lk =

[
Lk−1 0
`Tk `k,k

]
.

It is well known that by identification, we find that `k is obtained by solving the equation

Lk−1`k = zk = V Tk−1vk and `k,k =
√

1− `Tk `k.
If we use this Cholesky factorization, then there will occur triangular solves that can slow

down the computations. Therefore it seems more promising to construct the inverses of the
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matrices Lk incrementally. Doing so, we can replace the triangular solves by matrix-vector
products. We have,

L̃k = L−1k =

[
L−1k−1 0

− 1
`k,k

`Tk L
−1
k−1

1
`k,k

]
.

We note that

`Tk `k = vTk Vk−1L
−T
k−1L

−1
k−1V

T
k−1vk = vTk Vk−1(V Tk−1Vk−1)−1V Tk−1vk = vTk Pk−1vk,

where Pk−1 is the orthogonal projector onto the Krylov subspace of dimension k − 1. This
yields

`k,k = ‖(I − Pk−1)vk‖.

Note that `k,k = 0 if and only if vk = Pk−1vk, which means that vk ∈ Kk−1(A, b) and Vk is
not of full rank. We remark that

Pk−1vk = Vk−1L
−T
k−1L

−1
k−1V

T
k−1vk = Vk−1L

−T
k−1`k.

We can easily find (Pk−1vk)T = `Tk L
−1
k−1V

T
k−1 since `Tk L

−1
k−1 has to be computed to obtain

the last row of L−1k . The interest of computing `k,k in this way is that we are sure that `k,k ≥ 0.
The algorithm reads as follows(with x0 = 0):

ALGORITHM 1 (Q-OR-optinv).
Initialization phase

v1 = b/‖b‖, vA1 = Av1, L̃1 = 1,
ω = vT1 v

A
1 , α = (vA1 )T vA1 − ω2,

h1,1 = ω + α
ω ,

ṽ = vA1 − h1,1v1, h2,1 = ‖ṽ‖,
v2 = 1

h2,1
ṽ, vA2 = Av2,

ν1,1 = 1, ν1,2 = −h1,1

h2,1
,

ν =
[
ν1,1 ν1,2

]T
.

End of initialization
For k = 2, . . .

1. vVk = V Tk−1vk, vtAk = V Tk v
A
k ,

2. `k = L̃k−1v
V
k ,

3. yTk = `Tk L̃k−1,

4. if `Tk `k < 1, `k,k =
√

1− `Tk `k, else (pvk)T = yTk V
T
k−1, `k,k = ‖vk − pvk‖,

5.

L̃k =

[
L̃k−1 0
− 1
`k,k

yTk
1
`k,k

]
,

6. `A = L̃kv
tA
k , s = L̃Tk `A,

7. α = (vAk )T vAk − `TA`A, β = α
(vtAk )k

,
8.

h1:k,k =

h1,k...
hk,k

 = s+ βek,
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9.

ṽ = vAk − Vk h1:k,k, hk+1,k = ‖ṽ‖, ν1,k+1 = − 1

hk+1,k
νTh1:k,k,

ν =
[
ν1,1 · · · ν1,k+1

]T
,

10. vk+1 = 1
hk+1,k

ṽ and vAk+1 = Avk+1,

11. if needed, solve Hky
(k) = ‖b‖e1 using Givens rotations, xk = Vky

(k).
End For k.

Note that the modulus of ν1,k+1 gives the inverse of the (relative) norm of the Q-OR
residual at iteration k. Hence, we can compute the basis vectors, stop the iterations using
ν1,k+1, and then reduce the upper Hessenberg matrix to upper triangular form to compute the
final approximate solution.

Unfortunately, in step 1, we have to compute V Tk−1vk and V Tk v
A
k , that is, 2k − 1 dot

products while there are only k dot products in the Arnoldi process (but, of course, when
the basis is orthonormal, V Tk Vk = I). This is the price to pay for having a non-orthogonal
basis. The reader may wonder why we have derived an algorithm which delivers the same
residual norms as GMRES but with more floating point operations. However, the dot products
in Q-OR-optinv are all independent, and they can be computed in parallel contrary to the dot
products in the MGS implementation of GMRES.

As in the algorithm using the matrix U , there may also be breakdowns in the algorithm
using H . A problem occurs if there is an index k for which vTk Avk = 0. Hence, the smallness
of vTk Avk must be tested in step 7.

Of course, the previous algorithm can also be restarted every m iterations as it is done for
GMRES. Moreover, we can also easily use a preconditioner.

In one iteration of Q-OR-optinv, we have 2k dot products of length n. However, the dot
products V Tk−1vk and V Tk v

A
k in step 1 can be computed as one dense matrix-matrix product

V Tk [vk, Avk], where the first matrix is k × n and the second one is n × 2. There are two
triangular matrix-vector products of order k and two of order k− 1 as well as two dot products
of length k. The two other operations are the dense matrix-vector product Vkh1:k,k and a
(sparse) matrix-vector product Avk+1.

As we said above, even though we have more floating point operations in Q-OR-optinv
than in GMRES, this algorithm could be interesting for parallel computers since GMRES with
the modified Gram-Schmidt implementation is not fully parallel. It is not the topic of this
paper, but on a parallel computer, most of the operations can be replicated on every processing
unit. The global operations are the matrix-vector products V Tk−1vk and V Tk v

A
k in step 1, the dot

product (vAk )T vAk , and an addition of vectors vAk − Vk h1:k,k. The first two of these operations
can be done in parallel using optimized codes for dense matrix-matrix products. Depending
on the way Vk is stored, the last operation can be done without communications.

6. Numerical experiments with Q-OR-optinv. In this section we consider a few linear
systems with nonsymmetric matrices, and we compare Q-OR-optinv (Algorithm 1) with
GMRES. The acronym GMRES will refer to GMRES with modified Gram-Schmidt orthogo-
nalization. The matrices come from the Matrix Market1 or Tim Davis’ SuiteSparse Matrix
Collection2 at Texas A&M University (formerly known as University of Florida matrix collec-
tion).

1http://math.nist.gov/MatrixMarket/
2https://sparse.tamu.edu/
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Example 1. For the first problem, the matrix A is fs 680 1 of order 680 scaled by the
inverse of its diagonal. It has 2184 nonzero entries. The norm of A is 3.8168, and its condition
number is 8.6944 103, the smallest singular value being 4.3900 10−4. This matrix is non-
normal. Let e be the vector with all its components equal to 1. Then, the right-hand side is
b = Ae, and x0 = 0.

Figure 6.1 displays the difference of the true residual norms of GMRES and Q-OR-optinv
as a function of the iteration number. It is smaller than 10−13 except after the final stagnation.
Figure 6.2 shows the true residual norms of GMRES (plain curve) and Q-OR-optinv (dashed
curve). We see that they almost coincide except for the final stagnation. Q-OR-optinv yields a
better maximum attainable accuracy than GMRES by a factor of 9.
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FIG. 6.1. fs 680 1c: difference between the residual
norms of GMRES and Q-OR-optinv.
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FIG. 6.2. fs 680 1c: residual norms of GMRES
(plain) and Q-OR-optinv (dashed).

Table 6.1 shows the maximum attainable accuracies with variants of GMRES and Q-OR-
optinv. CGS refers to the classical Gram-Schmidt algorithm. We use it also with reorthogonal-
ization and double reorthogonalization. MGS denotes the modified Gram-Schmidt algorithm,
and GMRES-Householder is an implementation using Householder reflections to generate
the basis; see [21]. GMRES-CGS has a much larger maximum attainable accuracy than the
other methods. Both GMRES-CGS and GMRES-MGS need a reorthogonalization to have a
maximum attainable accuracy comparable to what is obtained with Q-OR-optinv. Note that
doing a double reorthogonalization improves the results and that GMRES-Householder is
worse than GMRES-MGS with reorthogonalization.

TABLE 6.1
fs 680 1c: true residual norms after 150 iterations.

Method ‖b−Ax150‖
GMRES-CGS 6.8377 10−11

GMRES-CGS with reorth. 2.79327 10−14

GMRES-CGS with double reorth. 1.75040 10−14

GMRES-MGS 2.36046 10−13

GMRES-MGS with reorth. 2.51184 10−14

GMRES-MGS with double reorth. 1.59114 10−14

GMRES-Householder 1.51153 10−13

Q-OR-optinv 2.59770 10−14
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Example 2. The second example is the matrix raefsky1 3242. This matrix is of order
3242 with 293409 nonzero entries. Its norm is 3.7095, and its condition number is 1.2885 104.
The smallest singular value is 2.8789 10−4. This matrix is non-normal. In Figure 6.3 we
observe that the difference of the residual norms of GMRES and Q-OR-optinv is almost less
than 10−16 for most of the iterations. We have the same conclusions as for the first example;
see Figure 6.4. There is a factor of 1.8 between the maximum attainable accuracies.
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FIG. 6.3. raefsky1 3242: difference between the
residual norms of GMRES and Q-OR-optinv.
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FIG. 6.4. raefsky1 3242: residual norms of GMRES
(plain) and Q-OR-optinv (dashed).

Table 6.2 shows the maximum attainable accuracies with variants of GMRES and Q-OR-
optinv. The best maximum attainable accuracy is obtained with Q-OR-optinv which is slightly
better than GMRES-CGS with reorthogonalization.

TABLE 6.2
raefsky1 3242: true residual norms after 350 iterations.

Method ‖b−Ax350‖
GMRES-CGS 5.00382 10−11

GMRES-CGS with reorth. 1.72941 10−17

GMRES-CGS with double reorth. 1.83714 10−17

GMRES-MGS 2.55978 10−17

GMRES-MGS with reorth. 1.85462 10−17

GMRES-MGS with double reorth. 1.90070 10−17

GMRES-Householder 2.42497 10−17

Q-OR-optinv 1.32132 10−17

Example 3. The third example is the symmetric matrix Trefethen 500. This matrix is
of order 500 with 8478 nonzero entries. Its norm is 3.5712 103, and its condition number
is 3.1856 103. The smallest singular value is 1.1210. Figure 6.5 displays the difference of
the residual norms of GMRES and Q-OR-optinv as a function of the iteration number for
150 iterations. It is smaller than 10−14 except after the final stagnation. Figure 6.2 shows
the residual norms of GMRES (plain curve) and Q-OR-optinv (dashed curve). Q-OR-optinv
yields a better maximum attainable accuracy than GMRES by a factor of 11.77.

Table 6.3 displays the maximum attainable accuracies with variants of GMRES and
Q-OR-optinv. The best result is obtained with Q-OR-optinv which is an order of magnitude
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better than the other methods.
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FIG. 6.5. Trefethen 500: difference between the
residual norms of GMRES and Q-OR-optinv.
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FIG. 6.6. Trefethen 500: residual norms of GMRES
(plain) and Q-OR-optinv (dashed).

TABLE 6.3
Trefethen 500: true residual norms after 300 iterations.

Method ‖b−Ax300‖
GMRES-CGS 9.27328 10−12

GMRES-CGS with reorth. 3.39014 10−13

GMRES-CGS with double reorth. 2.93607 10−13

GMRES-MGS 5.80063 10−13

GMRES-MGS with reorth. 2.95675 10−13

GMRES-MGS with double reorth. 3.28948 10−13

GMRES-Householder 5.46732 10−13

Q-OR-optinv 4.92909 10−14

Example 4. The fourth example arises from using the SUPG scheme (Streamwise upwind
Galerkin) to discretize a convection-diffusion equation on a square with a mesh size of
1/41; see [12]. The diffusion coefficient is 0.01. The stabilization coefficient is computed
automatically. This matrix is of order 1600 and has 13924 nonzero entries. Its norm is
4.8716 10−2, and the condition number is 40.518. The smallest singular value is 9.8379 10−4.
This matrix is non-normal. Once again, the maximum attainable accuracy is slightly better
with Q-OR-optinv than with GMRES by a factor of 2.43; see Figures 6.7 and 6.8.

Table 6.4 displays the maximum attainable accuracies with variants of GMRES and
Q-OR-optinv. Again, Q-OR-optinv gives the best maximum attainable accuracy even though
GMRES-MGS with reorthogonalization is not too far away.

Example 5. The matrix bcsstk14 of order 1806 has 63454 nonzero entries. Its norm is
1.1923 1010 as well as its condition number. It is a symmetric matrix. The eigenvalues are
real with the smallest one being equal to 1. We use a left Gauss-Seidel preconditioner since,
otherwise, the methods converge too slowly. It makes the matrix nonsymmetric. This example
is quite interesting since if we continue iterating with GMRES, after reaching a minimum, the
norm of the true residual increases (which is not in accordance with the theoretical properties
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FIG. 6.7. Supg001 1600: difference between the
residual norms of GMRES and Q-OR-optinv.
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FIG. 6.8. Supg001 1600: residual norms of GMRES
(plain) and Q-OR-optinv (dashed).

TABLE 6.4
Supg001 1600: true residual norms after 200 iterations.

Method ‖b−Ax200‖
GMRES-CGS 1.54043 10−13

GMRES-CGS with reorth. 7.05585 10−15

GMRES-CGS with double reorth. 7.23790 10−15

GMRES-MGS 1.33776 10−14

GMRES-MGS with reorth. 6.70649 10−15

GMRES-MGS with double reorth. 6.70339 10−15

GMRES-Householder 1.03229 10−14

Q-OR-optinv 5.50626 10−15

of GMRES), whereas this is not the case with reorthogonalization or with Q-OR-optinv; see
Figures 6.9 and 6.10. It happens because the matrices whose columns are the Arnoldi basis
vectors are no longer orthonormal. Their smallest singular values become small after iteration
400.

Table 6.5 shows the maximum attainable accuracies with variants of GMRES and Q-OR-
optinv. The best maximum attainable accuracy is given by Q-OR-optinv, but the methods with
reorthogonalization give almost the same result.

TABLE 6.5
bcsstk14 1806: true residual norms after 600 iterations.

Method ‖b−Ax600‖
GMRES-CGS 2.77022 10−2

GMRES-CGS with reorth. 1.14254 10−11

GMRES-CGS with double reorth. 9.41352 10−12

GMRES-MGS 1.17811 10−6

GMRES-MGS with reorth. 1.15320 10−11

GMRES-MGS with double reorth. 1.20222 10−11

GMRES-Householder 9.34302 10−9

Q-OR-optinv 1.04931 10−11
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FIG. 6.9. Bcsstk14 1806: difference between the
residual norms of GMRES and Q-OR-optinv, Gauss-Seidel
preconditioning.
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FIG. 6.10. Bcsstk14 1806: residual norms of GM-
RES (plain) and Q-OR-optinv (dashed), Gauss-Seidel pre-
conditioning.

Other examples. Even though for most examples, Q-OR-optinv gives a maximum
attainable accuracy better than or equal to GMRES-MGS, there are some problems for which
it is the opposite case. One such problem is e05r0500 of order 236. With this matrix, GMRES
has a phase of quasi-stagnation for more than 150 iterations, and then the true residual norm
decreases rapidly. The residual norm after 250 iterations is 2.1615 10−11 for GMRES and
1.0196 10−8 for Q-OR-optinv. There are also examples with matrices in block Jordan form
for which the accuracy of Q-OR-optinv is worse than the accuracy of GMRES-MGS.

7. Handling of breakdowns. A stagnation of the residual norms in GMRES corresponds
to a small (or zero) value of vTk Avk in step 7 of the Q-OR-optinv algorithm. One possible way
to cure this breakdown is to allow the algorithm to be sub-optimal for the given iteration. This
can be achieved by testing vTk Avk and, if it is too small, modifying the previous components
of ν as (1− tj)νj , where tj is a random number in (0, 1) with a uniform distribution.

Let us consider an example of a linear system of order 10. The matrix and the right-hand
side are constructed using the results of [2] to obtain the following GMRES residual norms for
k = 0, 1, . . . , 9,

1, 0.9, 0.5, 0.1, 0.1, 0.1, 0.05, 0.01, 0.001, 0.0001.

In Figure 7.1 the plain curve shows the GMRES residual norms, the dashed curve displays
the Q-OR-optinv residual norms if we do not apply any remedy to the breakdowns; we see that
the breakdowns hamper convergence. The curve with stars is what we obtain when applying
the remedy described above. We have an increase of the residual norm for a while but then
we recover the GMRES convergence curve. However, this way of handling the possible
breakdowns requires further theoretical and numerical studies.

8. Conclusion. In this paper we have shown that it is possible to construct a non-
orthogonal basis for the Krylov subspace such that the Q-OR corresponding method yields
the same residual norms as GMRES. Even though there are more floating point operations
than in GMRES, this Q-OR optimal method gives in many cases a better maximum attainable
accuracy than GMRES-MGS. It also offers more opportunity for parallelization. It remains to
study the stability of the new method and to implement it on a parallel computer. Moreover,
we plan to investigate truncated versions of the Q-OR method as well as the possibility of
using the tridiagonal inverse of V Tk Vk when the method is used with restarts.
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FIG. 7.1. True residual norms, GMRES (plain), Q-OR-optinv (dashed), Q-OR-optinv with cure (stars).
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