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Abstract. We present weighted Golub-Kahan-Lanczos algorithms. We demonstrate their applications to the
eigenvalue problem of a product of two symmetric positive definite matrices and an eigenvalue problem for the linear
response problem. A convergence analysis is provided and numerical test results are reported. As another application
we make a connection between the proposed algorithms and the preconditioned conjugate gradient (PCG) method.
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1. Introduction. The Golub-Kahan bidiagonalization factorization is fundamental for
the QR-like singular value decomposition (SVD) method [7]. Based on this factorization, a
Krylov subspace type method, called Golub-Kahan-Lanczos (GKL) algorithm, was developed
in [11]. The Golub-Kahan-Lanczos algorithm provides a powerful tool for solving large-scale
singular value and related eigenvalue problems, as well as least-squares and saddle-point
problems [11, 12]. Recently, a generalized Golub-Kahan-Lanczos (gGKL) algorithm was
introduced for solving generalized least-squares and saddle-point problems [1, 4].

In this paper we propose certain types of weighted Golub-Kahan-Lanczos bidiagonaliza-
tion (wGKL) algorithms. The algorithms are based on the fact that for given symmetric positive
definite matrices K and M , there exist a K-orthogonal matrix Y and an M -orthogonal matrix
X such that KY = XB and MX = Y BT , where B is either upper or lower bidiagonal.
Two algorithms will be presented depending on whether B is upper or lower bidiagonal. The
above relations are equivalent to KMX = XBBT and MKY = Y BTB. Since both BBT

and BTB are symmetric tridiagonal, the wGKL algorithms are mathematically equivalent to
the weighted Lanczos algorithm applied to the matrices KM and MK or the preconditioned
Lanczos algorithms if K or M is the inverse of a matrix. However, in practice there is an
important difference. The weighted Lanczos algorithm computes the columns of either X or
Y and a leading principal submatrix of either BBT or BTB. The wGKL algorithms, on the
other hand, compute both the columns of X and Y and a leading principal submatrix of B. In
fact, as shown in the next section, the proposed algorithms can be viewed as a generalization
of GKL [11] and also as a special case of gGKL [1]. Another feature of the wGKL algorithms
is that they treat the matrices K and M equally.

The wGKL algorithms can be employed to compute the extreme eigenvalues and associ-
ated eigenvectors of the matrix products KM and MK (= (KM)T ). The generalized eigen-
value problem λA−M with symmetric positive definite matrices A and M is one example,
which is equivalent to the eigenvalue problem of KM with K = A−1. Another application

of the wGKL algorithms is the eigenvalue problem for matrices such as H =

[
0 M
K 0

]
with symmetric positive definite K and M . Such an eigenvalue problem arises from the
linear response problem in the time-dependent density functional theory and in the excitation
energies of physical systems in the study of the collective motion of many-particle systems,
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which has applications in silicon nanoparticles and nanoscale materials and in the analysis of
interstellar clouds [5, 9, 10, 14].

For a positive definite linear system, it is well known that the conjugate gradient (CG)
method is equivalent to the standard Lanczos method, e.g., [15, Section 6.7] and [8]. As
another application, we demonstrate that in the case when K or M is the identity matrix, the
Krylov subspace linear system solver based on a wGKL algorithm provides a simpler and
more direct connection to the CG method. In its original version (when neither K nor M is
the identity matrix), such a solver is mathematically equivalent to a preconditioned CG (PCG)
method.

The paper is organized as follows. In Section 2 we present the basic iteration schemes of
the wGKL algorithms. In Section 3, we describe how to apply the wGKL algorithms to the
eigenvalue problems with matrices KM or H. A convergence analysis is provided as well.
In Section 4, numerical examples for the eigenvalue problems are reported. In Section 5, the
relation between wGKL and PCG is discussed, and Section 6 contains concluding remarks.

Throughout the paper, R is the real field, Rm×n is the set ofm×n real matrices, Rn is the
n-dimensional real vector space, In is the n× n identity matrix, and ej is its jth column. The
notation A > 0 (≥ 0) means that the matrix A is symmetric positive definite (semidefinite).
For a given matrix A ∈ Rn×n and a vector b ∈ Rn, the kth Krylov subspace of A with b, i.e.,
the subspace spanned by the set of k vectors {b, Ab, . . . , Ak−1b}, is denoted by Kk(A, b). || · ||
is the spectral norm for matrices and the 2-norm for vectors. For a given n × n symmetric
positive definite matrix A, we introduce the weighted inner product (x, y)A = xTAy in Rn.
The corresponding weighted norm, called A-norm, is defined by ||x||A =

√
(x, x)A. A matrix

X is A-orthonormal if XTAX = I (and it is A-orthogonal if X is a square matrix). A set of
vectors {x1, . . . , xk} is also called A-orthonormal if X =

[
x1 . . . xk

]
is A-orthonormal

and A-orthogonal if (xi, xj)A = 0 for i 6= j. For any matrix A, σmax(A) and σmin(A) are the
largest and the smallest singular values of A, respectively, and κ2(A) = σmax(A)/σmin(A)
(when σmin(A) > 0) is the condition number of A in the spectral norm.

In the paper we restrict ourselves to the real case. All the results can be easily extended to
the complex case.

2. Weighted Golub-Kahan-Lanczos bidiagonalization (wGKL) algorithms. The pro-
posed wGKL algorithms are based on the following factorizations.

LEMMA 2.1. Suppose that 0 < K and M ∈ Rn×n. Then there exist an M -orthogonal
matrix X ∈ Rn×n and a K-orthogonal matrix Y ∈ Rn×n such that

(2.1) KY = XB, MX = Y BT ,

where B is either upper bidiagonal or lower bidiagonal.
Proof. In [7], it is shown that for any matrix A, there exist real orthogonal matrices U, V

such that

(2.2) AV = UB, ATU = V BT ,

where B is either upper or lower bidiagonal. Since both K,M > 0, one has the factorizations

(2.3) K = LLT , M = RRT ,

where both L and R are invertible. Take A = RTL in (2.2), and set

X = R−TU, Y = L−TV.

Then (2.2) becomes

RTLLTY = RTXB, LTRRTX = LTY BT .
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By eliminating RT in the first equation and LT in the second equation, one has (2.1). Clearly
XTMX = UTU = I and Y TKY = V TV = I .

The proof shows that (2.1) is a generalization of (2.2) by replacing the orthogonal matrices
by weighted orthogonal matrices.

In [1] it is shown that for any matrix A, there exist an M -orthogonal matrix X and a
K-orthogonal matrix Y such that

AY = MXB, ATX = KY BT .

By setting A = MK, we have again (2.1). Following these connections, the proposed
wGKL algorithms can be considered a generalized version of GKL [11] and a special case of
gGKL [1].

Based on the relations in (2.1) and the orthogonality of X and Y , we now construct
two Lanczos-type iteration procedures corresponding to B being upper and lower bidiagonal,
respectively. We first consider the upper bidiagonal case, and we call the procedure the upper
bidiagonal version of the weighted Golub-Kahan-Lanczos algorithm (wGKLu). Denote

X =
[
x1 · · · xn

]
, Y =

[
y1 · · · yn

]
,

and

B =


α1 β1

α2
. . .
. . . βn−1

αn

 .
By comparing the columns of the relations in (2.1), one has

Ky1 = α1x1, Mx1 = α1y1 + β1y2,

Ky2 = β1x1 + α2x2, Mx2 = α2y2 + β2y3,

...
...

Kyk = βk−1xk−1 + αkxk, Mxk = αkyk + βkyk+1,

...
...

Kyn = βn−1xn−1 + αnxn, Mxn = αnyn.

Choosing an initial vector y1 satisfying yT1 Ky1 = 1 and using the orthogonality relation
xTi Mxj = yTi Kyj = δij , where δij is 0 if i 6= j and 1 if i = j, the columns of X and Y as
well as the entries of B can be computed by the following iterations:

αj = ||Kyj − βj−1xj−1||M ,
xj = (Kyj − βj−1xj−1)/αj ,

βj = ||Mxj − αjyj ||K ,
yj+1 = (Mxj − αjyj)/βj ,

with x0 = 0 and β0 = 1, for j = 1, 2, . . .
We provide a concrete computational procedure that reduces the number of matrix-vector

multiplications. Computing αj requires the vector fj := M(Kyj − βj−1xj−1), which equals
αjMxj . The vector Mxj appears in Mxj − αjyj in the computation of βj and yj+1, which
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can now be obtained using fj/αj . In this way, we save one matrix-vector multiplication.
Similarly, computing βj needs the vector gj+1 := K(Mxj − αjyj) = βjKyj+1. The vector
Kyj+1 is involved in the formulas for αj+1 and xj+1 and can thus be computed in the next
iteration using gj+1/βj . Hence, another matrix-vector multiplication can be saved. The
algorithm is detailed below.

ALGORITHM 1 (wGKLu).
Choose y1 satisfying ‖y1‖K = 1, and set β0 = 1, x0 = 0. Compute g1 = Ky1.
For j = 1, 2, · · ·
sj = gj/βj−1 − βj−1xj−1
fj = Msj
αj = (sTj fj)

1
2

xj = sj/αj
tj+1 = fj/αj − αjyj
gj+1 = Ktj+1

βj = (tTj+1gj+1)
1
2

yj+1 = tj+1/βj
End

In each iteration, this algorithm requires two matrix-vector multiplications, and it needs
five vectors fk, xk−1, xk, yk, yk+1 to store the data (xk, yk+1, fk may overwrite sk, tk+1 and
gk+1.)

Suppose Algorithm 1 is run for k iterations. We then have x1, . . . , xk, y1, . . . , yk+1, and
αj , βj for j = 1, . . . , k. For any j ≥ 0, define

Xj =
[
x1 . . . xj

]
, Yj =

[
y1 . . . yj

]
, Bj =


α1 β1

. . . . . .
. . . βj−1

αj

 .
Then we have the relations

(2.4) KYk = XkBk, MXk = YkB
T
k + βkyk+1e

T
k = Yk+1

[
Bk βkek

]T
,

and

XT
kMXk = Ik = Y Tk KYk.

Algorithm 1 may break down, but this happens only when βk = 0 for some k. To see
this, if

∏k−1
j=1 αjβj 6= 0 but αk = 0, then one still has KYk = XkBk with the last column

of Xk being zero. Since K > 0 and Yk has full column rank, rankKYk = k. On the other
hand, rankXkBk < k, resulting in a contradiction. When k = n, βn must be zero and (2.4)
becomes (2.1).

From (2.4), one has

MKYk = YkB
T
k Bk + αkβkyk+1e

T
k ,

KMXk = Xk(BkB
T
k + β2

keke
T
k ) + αk+1βkxk+1e

T
k .

(2.5)

Since BkBTk + β2
keke

T
k and BTk Bk are symmetric tridiagonal, it is obvious that wGKLu

is equivalent to a weighted Lanczos algorithm applied to the matrices MK and (MK)T ,
respectively. So we have

(2.6) rangeYk = Kk(MK, y1), rangeXk = Kk(KM,Ky1) = KKk(MK, y1),
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where we use the fact that x1 is parallel to Ky1 in the second relation.
When the matrix B in (2.1) is lower bidiagonal, a corresponding lower bidiagonal version

of the weighted Golub-Kahan-Lanczos bidiagonalization algorithm (wGKLl) can be derived
in the same way. wGKLl is actually identical to wGKLu if we interchange the roles of K and
M and X and Y in (2.1). In order to avoid confusion we use X̃ , Ỹ , B̃ instead of X,Y,B in
(2.1), and we have

(2.7) KỸ = X̃B̃, MX̃ = Ỹ B̃T with B̃ =


α̃1

β̃1
. . .
. . . . . .

β̃n−1 α̃n

 ,
and the wGKLl method is described by the following algorithm.

ALGORITHM 2 (wGKLl).
Choose x̃1 satisfying ‖x̃1‖M = 1, and set β̃0 = 1, ỹ0 = 0. Compute g1 = Mx̃1.
For j = 1, 2, · · ·
sj = gj/β̃j−1 − β̃j−1ỹj−1
fj = Ksj
α̃j = (sTj fj)

1
2

ỹj = sj/α̃j
tj+1 = fj/α̃j − α̃j x̃j
gj+1 = Mtj+1

β̃j = (tTj+1gj+1)
1
2

x̃j+1 = tj+1/β̃j
End

Similarly, by defining

X̃j =
[
x̃1 . . . x̃j

]
, Ỹj =

[
ỹ1 . . . ỹj

]
, B̃j =


α̃1

β̃1
. . .
. . . . . .

β̃j−1 α̃j

 ,
one has

KỸk = X̃kB̃k + β̃kx̃k+1e
T
k = X̃k+1

[
B̃k
β̃ke

T
k

]
, MX̃k = ỸkB̃

T
k

and

X̃T
kMX̃k = I = Ỹ Tk KỸk.

Also,

KMX̃k = X̃kB̃kB̃
T
k + α̃kβ̃kx̃k+1e

T
k ,

MKỸk = Ỹk(B̃Tk B̃k + β̃2
keke

T
k ) + α̃k+1β̃kỹk+1e

T
k ,

(2.8)

and

range X̃k = Kk(KM, x̃1), range Ỹk = Kk(MK,Mx̃1) = MKk(KM, x̃1).

Algorithm 2 breaks down only when β̃k = 0 for some k.
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3. Application to eigenvalue problems. In this section we discuss how to apply wGKLu

and wGKLl to solve the eigenvalue problem for KM , MK, and H =

[
0 M
K 0

]
.

3.1. The eigenvalue problem for KM and MK. The relations in (2.5) and (2.8)
show that Algorithms 1 and 2 can be employed to compute the eigenvalues of the matrices
MK and KM . Note that KM = (MK)T . So in the following, the discussion is mainly
focused on the case for the matrix MK.

We first consider the approximations based on the first relation of (2.5) produced by
wGKLu. Suppose that Bk has an SVD

Bk = ΦkΣkΨT
k , Φk =

[
φ1 . . . φk

]
,

Ψk =
[
ψ1 . . . ψk

]
, Σk = diag(σ1, . . . , σk),

(3.1)

with σ1 ≥ σ2 ≥ . . . ≥ σk > 0. Then, from the first relation in (2.5) for each j ∈ {1, . . . , k},
we may take σ2

j as a Ritz value of MK and Ykψj as a corresponding right Ritz vector. Since
Yk is K-orthonormal and Ψk is real orthogonal, Ykψ1, . . . , Ykψk are K-orthonormal. Also,
we have the residual formula

(MK − σ2
j I)Ykψj = αkβkψjkyk+1,

where ψjk is the kth component of ψj , for j = 1, . . . , k. Similarly, from the second relation
in (2.5), for each j ∈ {1, . . . , k}, we may take Xkφj as a corresponding left Ritz vector of
MK corresponding to the Ritz value σ2

j . Note that Xkφ1, . . . , Xkφk are M -orthonormal, and
from the first relation in (2.4),

(3.2) Xkφj = σ−1j XkBkψj = σ−1j KYkψj , j = 1, . . . , k.

Also, based on the second relation in (2.5) and the first relation in (2.4), one has the following
residual formula (transposed)

(KM − σ2
j I)Xkφj = βkφjk(βkxk + αk+1xk+1) = βkφjkKyk+1,

for j = 1, . . . , k, where φjk is the kth component of φj . In practice, we may use the residual
norms

||(MK − σ2
j I)Ykψj ||K = αkβk|ψjk|,

||(KM − σ2
j I)Xkφj ||M = βk|φjk|

√
β2
k + α2

k+1

(3.3)

to design a stopping criterion for wGKLu.
The convergence properties can be readily established by employing the convergence

theory of the standard Lanczos algorithm [8, 13, 16]. We need the following properties of the
eigenvalue and eigenvectors of MK.

PROPOSITION 3.1. The matrix MK has n positive eigenvalues λ21 ≥ λ22 ≥ . . . ≥ λ2n
with λj > 0 (j = 1, . . . , n). The corresponding right eigenvectors ξ1, . . . , ξn can be cho-
sen K-orthonormal, and the corresponding left eigenvectors η1, . . . , ηn can be chosen M -
orthonormal. In particular, for given {ξj}, one can choose ηj = λ−1j Kξj , for j = 1, 2, . . . , n,
and for given {ηj}, ξj = λ−1j Mηj , for j = 1, 2, . . . , n.

Proof. Using the factorization K = LLT , MK is similar to LTML > 0. Let

LTML = Qdiag(λ21, . . . , λ
2
n)QT ,
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where Q is real orthogonal. Then λ21, . . . , λ
2
n are the eigenvalues of MK, and ξj = L−TQej ,

for j = 1, . . . , n, are the corresponding right eigenvectors. Clearly, ξ1, . . . , ξn are K-
orthonormal.

For each ηj = λ−1j Kξj , by premultiplying λ−1j K to MKξj = λ2jξj , one has the relation
KMηj = λ2jηj or, equivalently, ηTj MK = λ2jη

T
j . So η1, . . . , ηn are the corresponding left

eigenvectors of MK. The M -orthonormality can be obtained from

ηTi Mηj = λ−1i λ−1j ξTi KMKξj =
λj
λi
ξTi Kξj .

Thus, ηTi Mηj equals 1 if i = j and 0 if i 6= j.
In the same way, we can show that ξj = λ−1j Mηj , for j = 1, 2, . . . , n, areK-orthonormal

right eigenvectors if {ηj} is a set of M -orthonormal left eigenvectors.
We need the following definitions. For two vectors 0 6= x, y ∈ Rn and 0 < A ∈ Rn×n,

we define the angles

θ(x, y) = arccos
|xT y|
||x||||y||

, θA(x, y) = arccos
|(x, y)A|
||x||A||y||A

·

We also denote by Cj(x) the degree-j Chebyshev polynomial of the first kind.
The following convergence results are based on the theory given in [16].
THEOREM 3.2. Let λ21 ≥ λ22 ≥ . . . ≥ λ2n > 0 be the eigenvalues of MK with

λj > 0, for j = 1, . . . , n. Let ξ1, . . . , ξn be the corresponding K-orthonormal right
eigenvectors, and following Proposition 3.1, let ηj := λ−1j Kξj , j = 1, . . . , n, be the
corresponding M -orthonormal left eigenvectors. Suppose that Bk has an SVD (3.1) with
σ1 ≥ σ2 ≥ . . . ≥ σk > 0. Consider the Ritz values σ2

1 , . . . , σ
2
k, the corresponding K-ortho-

normal right Ritz vectors Ykψ1, . . . , Ykψk, and theM -orthonormal left Ritz vectors associated
with MK, Xkφ1, . . . , Xkφk. Let

γj =
λ2j − λ2j+1

λ2j+1 − λ2n
, γ̃j =

λ2n−k+j−1 − λ2n−k+j
λ21 − λ2n−k+j−1

, 1 ≤ j ≤ k,

and y1 be the initial vector in Algorithm 1. Then, for j = 1, . . . , k,

(3.4) 0 ≤ λ2j − σ2
j ≤ (λ21 − λ2n)

(
πj,k tan θK(y1, ξj)

Ck−j(1 + 2γj)

)2

with

π1,k = 1, πj,k =

j−1∏
i=1

σ2
i − λ2n
σ2
i − λ2j

, j > 1,

and

(3.5) 0 ≤ σ2
j − λ2n−k+j ≤ (λ21 − λ2n)

(
π̃j,k tan θK(y1, ξn−k+j)

Cj−1(1 + 2γ̃j)

)2

with

π̃k,k = 1, π̃j,k =

k∏
i=j+1

σ2
i − λ21

σ2
i − λ2n−k+j

, j < k.
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The corresponding Ritz vectors have the following bounds:√(
σj
λj

)2

sin2 θM (Xkφj , ηj) + 1−
(
σj
λj

)2

= sin θK(Ykψj , ξj) ≤
πj
√

1 + (αkβk)2/δ2j

Ck−j(1 + 2γj)
sin θK(y1, ξj)

(3.6)

with δj = mini 6=j |λ2j − σ2
i | and

π1 = 1, πj =

j−1∏
i=1

λ2i − λ2n
λ2i − λ2j

, j > 1,

and √(
σj

λn−k+j

)2

sin θM (Xkφj , ηn−k+j) + 1−
(

σj
λn−k+j

)2

= sin θK(Ykψj , ξn−k+j) ≤
π̃j

√
1 + (αkβk)2/δ̃2j

Cj−1(1 + 2γ̃j)
sin θK(y1, ξn−k+j)

(3.7)

with δ̃j = mini 6=j |λ2n−k+j − σ2
i | and

π̃k = 1, π̃j =

n∏
i=n−k+j+1

λ2i − λ21
λ2i − λ2n−k+j

, j < k.

Proof. We first prove (3.4) and (3.6). As shown in the proof of Proposition 3.1, for any
j, the vector LT ξj is a unit eigenvector of LTML corresponding to the eigenvalue λ2j , and
LT ξ1, . . . , L

T ξn are orthonormal. The first equation of (2.5) can be transformed to

(3.8) LTMLVk = VkB
T
k Bk + αkβkvk+1e

T
k ,

where Vk = LTYk, vk+1 = LT yk+1, and Vk+1 is orthonormal, which can be considered as
the relation derived by applying the standard Lanczos algorithm to LTML. Hence, σ2

1 , . . . , σ
2
k

are the Ritz values of LTML, and Vkψ1, . . . , Vkψk are the corresponding orthonormal right
(left) Ritz vectors. Applying the standard Lanczos convergence results in [16, Section 6.6]
to (3.8), one has

0 ≤ λ2j − σ2
j ≤ (λ21 − λ2n)

(
πj,k tan θ(LT y1, L

T ξj)

Ck−j(1 + 2γj)

)2

,

sin θ(Vkψj , L
T ξj) ≤

πj
√

1 + (αkβk)2/δ2j

Ck−j(1 + γj)
sin θ(LT y1, L

T ξj),

where πj,k, πj , δj , γj are defined in the theorem. The bounds (3.4) and (3.6) can be derived
simply by using the identities

θ(LT y1, L
T ξj) = θK(y1, ξj), θ(Vkψj , L

T ξj) = θ(LTYkψj , L
T ξj) = θK(Ykψj , ξj).
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We still need to prove equality in (3.6). By (3.2),

cos θM (ηj , Xkφj) = cos θM (Kξj/λj ,KYkψj/σj) =
|ψTj Y Tk KMKξj |

σjλj

=
λj
σj
|ψTj Y Tk Kξj | =

λj
σj

cos θK(Ykψj , ξj).

(3.9)

Hence

(3.10) cos θK(Ykψj , ξj) =
σj
λj

cos θM (Xkφj , ηj),

from which one obtains

sin θK(Ykψj , ξj) =

√(
σj
λj

)2

sin2 θM (Xkφj , ηj) + 1−
(
σj
λj

)2

.

The bounds (3.5) and (3.7) can be proved by applying these results to the matrix (−MK).
The equality in (3.7) can be established from the identity

(3.11) cos θK(Ykψj , ξn−k+j) =
σj

λn−k+j
cos θM (Xkφj , ηn−k+j),

which can be derived in the same way as (3.10).
Clearly, the second relation in (2.5) can also be used to approximate the eigenvalues and

eigenvectors of MK by using the SVD

(3.12)
[
Bk βkek

] [
ω1 . . . ωk+1

]
=
[
ζ1 . . . ζk

] ρ1 0 0
. . . . . .

0 ρk 0

 .
In this situation, ρ21, . . . , ρ

2
k are the Ritz values and Xkζ1, . . . , Xkζk are the corresponding

M -orthonormal left (right) Ritz vectors of MK (KM ). The residual formula transposed
yields

(KM − ρ2jI)Xkζj = αk+1βkζjkxk+1,

where ζjk is the kth component of ζj . From the first equation of (2.5) with k replaced by
k + 1,

MKYk+1 = Yk+1

[
Bk βkek

]T [
Bk βkek

]
+ αk+1(αk+1yk+1 + βk+1yk+2)eTk+1

= Yk+1

[
Bk βkek

]T [
Bk βkek

]
+ αk+1Mxk+1e

T
k+1.

So for each j ∈ {1, . . . , k},

(MK − ρ2jI)Yk+1ωj = αk+1ωj,k+1Mxk+1 = αk+1ωj,k+1(αk+1yk+1 + βk+1yk+2),

where ωj,k+1 is the (k + 1)st component of ωj . Hence Yk+1ω1, . . . , Yk+1ωk can be taken as
the right Ritz vectors of MK, and we have the following residual norm formulas

||(KM − ρ2jI)Xkζj ||M = αk+1βk|ζjk|,

||(MK − ρ2jI)Yk+1ωj ||K = αk+1|ωj,k+1|
√
α2
k+1 + β2

k+1.
(3.13)
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Note that by post-multiplying the second equation in (2.4) with ωj , one has

(3.14) Yk+1ωj = ρ−1j Yk+1

[
Bk βkek

]T
ζj = ρ−1j MXkζj , j = 1, . . . , k.

The same type of convergence theory can be established.
THEOREM 3.3. Let λ21 ≥ λ22 ≥ . . . ≥ λ2n > 0 be the eigenvalues of MK with λj > 0,

for j = 1, . . . , n. Let η1, . . . , ηn be the corresponding M -orthonormal left eigenvectors
associated with MK, and following Proposition 3.1, let ξj = λ−1j Mηj , j = 1, . . . , n, be
the corresponding K-orthonormal right eigenvectors. Suppose that ρ1 ≥ . . . ≥ ρk are
the singular values of

[
Bk βkek

]
, ζ1, . . . , ζk the corresponding orthonormal left singular

vectors, and ω1, . . . , ωk the corresponding orthonormal right singular vectors as defined in
(3.12). Let γj , γ̃j , πj , and π̃j be defined in Theorem 3.2 and x1 = Ky1/||Ky1||M be generated
by Algorithm 1. Then, for j = 1, . . . , k,

0 ≤ λ2j − ρ2j ≤ (λ21 − λ2n)

(
κj,k tan θM (x1, ηj)

Ck−j(1 + 2γj)

)2

with

κ1,k = 1, κj,k =

j−1∏
i=1

ρ2i − λ2n
ρ2i − λ2j

, j > 1,

and

0 ≤ ρ2j − λ2n−k+j ≤ (λ21 − λ2n)

(
κ̃j,k tan θM (x1, ηn−k+j)

Cj−1(1 + 2γ̃j)

)2

with

κ̃k,k = 1, κ̃j,k =

k∏
i=j+1

ρ2i − λ21
ρ2i − λ2n−k+j

, j < k.

The corresponding Ritz vectors of MK have the following bounds:√(
ρj
λj

)2

sin2 θK(Yk+1ωj , ξj) + 1−
(
ρj
λj

)2

= sin θM (Xkζj , ηj) ≤
πj
√

1 + (αk+1βk)2/ε2j

Ck−j(1 + 2γj)
sin θM (x1, ηj),

(3.15)

with εj = mini 6=j |λ2j − ρ2i |, and√(
ρj

λn−k+j

)2

sin2 θK(Yk+1ωj , ξn−k+j) + 1−
(

ρj
λn−k+j

)2

= sin θM (Xkζj , ηn−k+j) ≤
π̃j
√

1 + (αk+1βk)2/ε̃2j

Cj−1(1 + 2γ̃j)
sin θM (x1, ηn−k+j),

(3.16)

with ε̃j = mini 6=j |λ2n−k+j − ρ2i |.
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Proof. The bounds can be established by applying the standard Lanczos convergence
results to

RTKRUk = Uk(BkB
T
k + β2

keke
T
k ) + αk+1βkuk+1e

T
k ,

which is obtained from the second relation of (2.5) with M = RRT , Uk = RTXk, and
uk+1 = RTxk+1.

By (3.14),

cos θK(ξj , Yk+1ωj) = |λ−1j ρ−1j ηTj MKMXkζj |

=
λj
ρj
|ηTj MXkζj | =

λj
ρj

cos θM (Xkζj , ηj),

from which equality in (3.15) can be derived.
Similarly, one has

cos θK(ξn−k+j , Yk+1ωj) =
λn−k+j
ρj

cos θM (Xkζj , ηn−k+j),

which yields equality in (3.16).
REMARK 3.4. Since σ1, . . . , σk are the singular values of Bk and ρ1, . . . , ρk are the

singular values of
[
Bk βkek

]
, from the interlacing properties [8, Corollary 8.6.3], one has

ρ1 ≥ σ1 ≥ ρ2 ≥ σ2 ≥ . . . ≥ ρk ≥ σk.

From Theorems 3.2 and 3.3, for approximating a large eigenvalue λ2j of MK, ρ2j will be more
accurate than σ2

j since ρ2j is closer to λ2j . Similarly, for approximating a small eigenvalue λ2j ,
σ2
j will be more accurate than ρ2j . For instance, if we need to approximate λ21, ρ21 is more

precise than σ2
1 , and for λ2n, σ2

k is preferable over ρ2k.
REMARK 3.5. Theorems 3.2 and 3.3 provide convergence results for both the left and

right eigenvectors of MK as well as KM = (MK)T . The values of sin θK(y1, ξj) and
sin θM (x1, ηj) represent the influence of the initial vectors y1 and x1 to the approximated
eigenvectors (and also the approximated eigenvalues). In general, the angles θK(y1, ξj) and
θM (x1, ηj) are different, but they are related. Recall that, x1 = Ky1/||Ky1||M , ηj = λ−1j Kξj ,
and MKξj = λ2jξj . So

cos θM (x1, ηj) = |xT1Mηj | =
|yT1 KMKξj |
λj ||Ky1||M

=
λj

||Ky1||M
|yT1 Kξj | =

λj
||Ky1||M

cos θK(y1, ξj).

Because

||Ky1||2M = yT1 KMKy1 = (LT y1)T (LTML)(LT y1), (LT y1)T (LT y1) = yT1 Ky1 = 1,

and λ21, . . . , λ
2
n are the eigenvalues of LTML, one has

λn ≤ ||Ky1||M ≤ λ1.

Therefore

λj
λ1

cos θK(y1, ξj) ≤ cos θM (x1, ηj) ≤
λj
λn

cos θK(y1, ξj).
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REMARK 3.6. The convergence results established in Theorems 3.2 and 3.3 are similar
to the ones given in [16] for the standard Lanczos algorithm applied to the symmetric matrix
LTML orRTKR, whereK = LLT andM = RRT . The results indicate that the Ritz values
and Ritz vectors corresponding to the extreme eigenvalues λ21 and λ2n converge faster than the
rest. Unlike the standard results, where the left and right Ritz vectors corresponding to the
same Ritz value can be the same, for each j, the angles between left and right Ritz vectors and
the corresponding eigenvectors are different, cf., (3.10) and (3.11). On the other hand, these
relations show that the two angles are essentially the same when the Ritz value is close to the
corresponding eigenvalue.

REMARK 3.7. From the first relation in (2.5), Algorithm 1 (wGKLu) is mathematically
equivalent to a weighted Lanczos algorithm applied to MK (by forcing Y Tk KYk = I).
Algorithm 1 needs two additional scalar-vector multiplications per iteration and additional
storage for saving the vectors x1, . . . , xk. On the other hand, with Algorithm 1 we are able to
provide both left and right Ritz vectors simultaneously. Another advantage of Algorithm 1 is
that the eigenvalues of MK can be approximated by using the singular values of

[
Bk βkek

]
,

which may yield more accurate approximations for the large eigenvalues of MK. If we

use the singular values and vectors of B̃k and
[
B̃k
β̃ke

T
k

]
, which are generated by wGKLl, to

approximate the eigenvalues and eigenvectors of MK and KM , a convergence theory as in
the Theorems 3.2, 3.3 can be established in the same way.

For the rest of this section we discuss the relations between the two algorithms wGKLu
and wGKLl. Denote U = RTX , V = LTY , Ũ = RT X̃ , Ṽ = LT Ỹ , where the matrices are
those from (2.1), (2.3), and (2.7). All of them are orthogonal matrices. Note that from (2.2)
with A = RTL, one finds

RTL = UBV T = Ũ B̃Ṽ T .

Thus,

ŨTUB = B̃Ṽ TV.

If we choose y1 and set x̃1 = x1 = Ky1/||Ky1||M , then the first columns of Ũ and U are
identical or the first column of ŨTU is e1. Since ŨTUBBT (ŨTU)T = B̃B̃T is a tridiagonal
reduction of BBT , if all βj , αj , β̃j , α̃j are positive, then by the implicit-Q Theorem [8],
ŨTU = I , i.e., U = Ũ , or equivalently, X = X̃ . Then B̃ = BQ with Q = V T Ṽ is an
RQ factorization of the lower bidiagonal matrix B̃. Hence, when wGKLu starts with y1 and
wGKLl starts with x̃1 = Ky1/||Ky1||M , if both algorithms can be run for n iterations, then
the generated matrices satisfy X̃ = X , Ỹ = Y Q. Since

B̃T B̃ = QTBTBQ,

it is not difficult to see that Q is just the orthogonal matrix generated by applying one QR
iteration from BTB to B̃T B̃ with zero shift [8].

Clearly, one has

BBT = B̃B̃T .

For any integer 1 ≤ k ≤ n, by comparing the leading k × k principal submatrices of BBT

and B̃B̃T , one has

(3.17)
[
Bk βkek

] [
Bk βkek

]T
= B̃kB̃

T
k .
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So the singular values of B̃k and
[
Bk βkek

]
are identical.

Now we have four matrices[
B̃k
β̃ke

T
k

]
, B̃k,

[
Bk βkek

]
, Bk,

and the singular values of each matrix can be used for eigenvalue approximations. Following

the same arguments given in Remark 3.4, the squares of the large singular values of
[
B̃k
β̃ke

T
k

]
are closer to the large eigenvalues of MK than those of B̃k. So they are also closer than those
of
[
Bk βkek

]
and Bk. Similarly, the squares of the small singular values of Bk are closest

to the small eigenvalues of MK among those of the above four matrices. We illustrate this
feature by a numerical example in the next section.

Similarly, when wGKLl starts with x̃1 and wGKLu starts with y1 = ỹ1 = Mx̃1/||Mx̃1||K ,
we have Ỹ = Y and X̃ = XQ̃ with the orthogonal matrix Q̃ satisfying B = Q̃B̃. This has
the interpretation that Q̃ is obtained by performing one QR iteration on B̃B̃T with zero shift.
In this case, among the above four matrices

[
Bk βkek

]
will provide the best approximations

to the large eigenvalues of MK, and B̃k will provide the best approximations to the small
eigenvalues of MK.

3.2. The linear response eigenvalue problem. In this section we apply the algorithms
wGKLu and wGKLl to solve the eigenvalue problem for the matrix

H =

[
0 M
K 0

]
, 0 < K,M ∈ Rn×n.

Such an eigenvalue problem arises in the linear response problem [2, 3, 5, 9, 10, 14]. We
only consider wGKLu since the results about wGKLl can be established in the same way. Let
Xk, Yk, Bk be generated by Algorithm 1 after k iterations. Define

Xj =

[
Yj 0
0 Xj

]
, Bj =

[
0 BTj
Bj 0

]
.

Then from (2.4),

(3.18) HXk = XkBk + βk

[
yk+1

0

]
eT2k.

Let

P̃k =
[
e1 ek+1 e2 ek+2 . . . ek e2k

]
.

One has

(3.19) H(XkP̃k) = (XkP̃k)(P̃TkBkP̃k) + βk

[
yk+1

0

]
eT2k,

where P̃TkBkP̃k is a symmetric tridiagonal matrix with zero diagonal entries and

XkP̃k =

[
y1 0 y2 0 . . . yk−1 0 yk 0
0 x1 0 x2 . . . 0 xk−1 0 xk

]
.

Using (2.6), one has

rangeXk = rangeXkP̃k = K2k

(
H,

[
y1
0

])
.
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So, running k iterations of wGKLu is just the same as running 2k iterations of a weighted
Lanczos algorithm with H and an initial vector of the special form

[
yT1 0

]T
.

Define

K =

[
K 0
0 M

]
, M =

[
M 0
0 K

]
.

Suppose Bk has an SVD (3.1) with σ1 ≥ σ2 ≥ . . . ≥ σk > 0. From (3.18), we may take
±σ1, . . . ,±σk as Ritz values of H and

v±j =
1√
2

[
Ykψj
±Xkφj

]
, j = 1, . . . , k,

as the corresponding K-orthonormal right Ritz vectors, and from

(3.20) HT =

[
0 In
In 0

]
H

[
0 In
In 0

]
,

one may take

u±j =
1√
2

[
±Xkφj
Ykψj

]
, j = 1, . . . , k,

as the corresponding M-orthonormal left Ritz vectors.
From (3.18), for any j ∈ {1, . . . , k},

Hv±j = ±σjv±j ±
βkφjk√

2

[
yk+1

0

]
, HTu±j = ±σju±j ±

βkφjk√
2

[
0

yk+1

]
,

where φjk is the kth component of φj . In practice, we may use the residual norm

(3.21) ||Hv+
j − σjv

+
j ||K = ||HTu+

j − σju
+
j ||M =

1√
2
||MXkφj − σjYkψj ||K =

βk|φjk|√
2

to design a stopping criterion. When βk = 0 for some k, all ±σj are eigenvalues of H and
u±j and v±j are the corresponding left and right eigenvectors for j = 1, . . . , k.

REMARK 3.8. In general, based on (3.19), if (θj , gj), j = 1, . . . , 2k, are the eigen-
pairs of P̃TkBkP̃k, i.e., P̃TkBkP̃kgj = θjgj with g1, . . . , g2k orthonormal, then (θi, qi), for
i = 1, . . . , 2k, are the approximate eigenpairs of H, where qi = XkP̃kgi and

(3.22) ‖Hqi − θiqi‖K =

∥∥∥∥βk [yk+1

0

]
eT2kgi

∥∥∥∥
K

= βk|gi,2k|,

where gi,2k is the 2kth component of gi.
REMARK 3.9. Although it is quite natural to use the weighted norms in (3.21) and (3.22)

to measure the residual errors, in the numerical examples given below, we will use the 1-norm
instead to keep the computations simple.

A basic algorithm for solving the linear response eigenvalue problem reads as follows.
ALGORITHM 3 (wGKLu-LREP).

1. Run k steps of Algorithm 1 with an initial y1 and an appropriate integer k to generate
Bk, Yk, and Xk.

2. Compute an SVD of Bk as in (3.1), select l(≤ k) wanted singular value σj , and the
associated left and right singular vector φj and ψj , j = 1, . . . , l.
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3. Form ±σj , v±j = 1√
2

[
Ykψj
±Xkφj

]
, and u±j = 1√

2

[
±Xkφj
Ykψj

]
, for j = 1, . . . , l.

For a convergence analysis we need some basic properties about the eigenvalues and
eigenvectors of H. From (2.1) and the fact that X is M -orthogonal and Y is K-orthogonal,

for X =

[
Y 0
0 X

]
, one has

HX = XB, B =

[
0 BT

B 0

]
, XTKX = I2n.

Thus, H is similar to the symmetric matrix B with a K-orthogonal transformation matrix X.
Moreover, suppose B = ΦΛΨT is an SVD of B. Define the symmetric orthogonal matrix

P = 1√
2

[
In In
In −In

]
. Then,

H

[
YΨ 0
0 XΦ

]
P =

[
YΨ 0
0 XΦ

]
P

[
Λ 0
0 −Λ

]
.

Hence, ±λ1, . . . ,±λn are the eigenvalues of H. Define

ξj = YΨej , ηj = XΦej ,

for j = 1, 2, . . . , n. Then ξ1, . . . , ξn are K-orthonormal, and η1, . . . , ηn are M -orthonormal,
and by defining[
x+
1 , . . . ,x

+
n ,x

−
1 , . . .x

−
n

]
:=

[
Y Ψ̃ 0

0 XΦ̃

]
Pn =

1√
2

[
ξ1 . . . ξ1 ξ1 . . . ξn
η1 . . . ηn −η1 . . . −ηn

]
,

the vectors x±j , j = 1, . . . , n, are the corresponding K-orthonormal right eigenvectors of H.

By (3.20), y±j :=

[
±ηj
ξj

]
are the corresponding M-orthonormal left eigenvectors of H. Note

that the reason for using the same notation for ξj and ηj here as in Proposition 3.1 is that
they are indeed the right and left eigenvectors of MK corresponding to the eigenvalue λ2j as
described in Proposition 3.1. This can be easily verified by using (2.1) and the SVD of B.

The following convergence results can be deduced from Theorem 3.2.
THEOREM 3.10. Let γj , γ̃j , πj , π̃j , πj,k, π̃j,k, δj , and δ̃j be defined as in Theorem 3.2.

Then, for j = 1, . . . , k,

0 ≤ λj − σj = (−σj)− (−λj) ≤
λ21 − λ2n
λj + σj

(
πj,k tan θK(y1, ξj)

Ck−j(1 + 2γj)

)2

,

0 ≤ σj − λn−k+j = (−λn−k+j)− (−σj) ≤
λ21 − λ2n

λn−k+j + σj

(
π̃j,k tan θK(y1, ξn−k+j)

Cj−1(1 + 2γ̃j)

)2

,

and for the Ritz vectors one has the bounds,

sin θK
(
v±j , ,x

±
j

)
= sin θM

(
u±j ,y

±
j

)
≤ 1

cos %j

√
π2
j (1 + (αkβk)2/δ2j )

C2
k−j(1 + 2γj)

sin2 θK(y1, ξj)− sin2 %j

sin θK

(
v±j ,x

±
n−k+j

)
= sin θM

(
u±j ,y

±
n−k+j

)
≤

√√√√sin2 %̃j + cos2 %̃j
π̃2
j (1 + (αkβk)2/δ̃2j )

C2
j−1(1 + 2γ̃j)

sin2 θK(y1, ξn−k+j),
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where

%j = arccos
2σj

λj + σj
, %̃j = arccos

σj + λn−k+j
2σj

·

Proof. The first two bounds are obtained easily from (3.4) and (3.5). For the last two
relations, the equalities are trivial. So we only need to prove the upper bounds.

Following (3.10) and the fact that ξTj KYkψj and ηTj MXkφj have the same sign, which
is a consequence of (3.9),

cos θK
(
v±j ,x

±
j

)
=

1

2
|ξTj KYkψj + ηTj MXkφj |

=
1

2
(cos θK(Ykψj , ξj) + cos θM (Xkφj , ηj)) =

λj + σj
2σj

cos θK(Ykψj , ξj).

Since 0 ≤ 2σj/(λj + σj) ≤ 1, cos %j =
2σj

λj+σj
is well defined. Then, from

cos θK(Ykψj , ξj) = cos %j cos θK
(
v±j ,x

±
j

)
,

one has

sin2 θK(Ykψj , ξj) = 1− cos2 %j cos2 θK
(
v±j ,x

±
j

)
= sin2 %j + cos2 %j sin2 θK

(
v±j ,x

±
j

)
.

Hence,

sin θK
(
v±j ,x

±
j

)
=

1

cos %j

√
sin2 θK(Ykψj , ξj)− sin2 %j .

The bound for sin θK
(
v±j ,x

±
j

)
then follows from (3.6). The last bound can be proved in the

same way by using the relation (3.11).
REMARK 3.11. With the factorizations in (2.3), it is straightforward to show that (3.19)

is equivalent to[
0 (RTL)T

RTL 0

]
(ZkP̃k) = (ZkP̃k)(P̃TkBkP̃k) + βk

[
vk+1

0

]
eT2k, Zk =

[
Vk 0
0 Uk

]
with Vk = LTYk, Uk = RTXk, vk+1 = LT yk+1, and ZTkZk = I2k. This is an identity
resulting in the standard symmetric Lanczos algorithm with the initial vector

[
vT1 0

]T
,

v1 = LT y1. So we can establish the following convergence results directly: for j = 1, . . . , k,

0 ≤ λj − σj = (−σj)− (−λj) ≤ 2λ1

(
π̂j,k tan θK(y1, ξj)

C2k−j(1 + 2γ̂j)

)2

sin θK
(
v±j ,x

±
j

)
≤
π̂j

√
1 + (αkβk)2/δ̂2j

C2k−j(1 + γ̂j)
sin θK(y1, ξj),

where

γ̂j =
λj − λj+1

λj+1 + λ1
, π̂1,k = π̂1 = 1,

π̂j,k =

j−1∏
i=1

σi + λ1
σi − λj

, π̂j =

j−1∏
i=1

λi + λ1
λi − λj

, δ̂j = min
i 6=j
|λj − σi|.
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However, it seems nontrivial to derive a bound for σj − λn−k+j since the small positive
eigenvalues of H are the interior eigenvalues.

In [17], another type of Lanczos algorithms was proposed for solving the eigenvalue
problem of H. The algorithms are based on the factorizations

KU = V T, MV = UD, UTV = In

with the assumption that M > 0, where T is symmetric tridiagonal and D is diagonal, so that

H

[
U 0
0 V

]
=

[
U 0
0 V

] [
0 D
T 0

]
.

The first Lanczos-type algorithm in [17] computes the columns of U , V and the entries of D
and T by enforcing the columns of V to be unit vectors. By running k iterations with the first
column of V as an initial vector, the leading principal k × k submatrices Dk and Tk of D and

T , respectively, are computed. Then the eigenvalues of
[

0 Dk

Tk 0

]
are used to approximate

the eigenvalues of H. This algorithm works even when K is indefinite. On the other hand,
when K > 0, Algorithms 1 and 2 exploit the symmetry of the problem and treat K and M
equally, which seem more natural.

4. Numerical examples. In this section, three examples are presented to illustrate our
algorithms. All the numerical results are computed by using Matlab 8.4 (R2014b) on a laptop
with an Intel Core i5-4590M @ 3.3GHz CPU and 4GB memory.

Example 1. In this example, we investigate the singular values of the following four
matrices [

B̃k
β̃ke

T
k

]
, B̃k,

[
Bk βkek

]
, Bk.

The latter two blocks are generated by Algorithm 1 (wGKLu) with an initial vector y1
satisfying ||y1||K = 1, which is a normalized random vector generated by the Matlab command
randn. The former two blocks are generated by Algorithm 2 (wGKLl) with the initial vector
x̃1 = y1/||Ky1||M with the same y1 used in Algorithm 1. The singular values of all four
matrices can be used for eigenvalue approximations of the matrices MK and H. We test,
which one can provide the best approximations.

The tested positive definite matrices K and M of order n = 1862 are from a problem
in [17] related to the sodium dimer Na2. Only the largest and the smallest eigenvalues of
MK are computed. Assuming σj is the jth singular value of each of the above four matrices,

we report the relative errors for the largest Ritz value σ2
1 of MK: e(σ2

1) :=
|λ2

1−σ
2
1 |

λ2
1

, and the

smallest Ritz value σ2
k of MK: e(σ2

k) :=
|λ2

n−σ
2
k|

λ2
n

, respectively. The “exact" eigenvalues
λ21 ≈ 1.25× 102 and λ2n ≈ 0.41 of MK are computed by using the MATLAB command eig.

We set k = 1, . . . , 15 for the largest eigenvalue case and k = 1, . . . , 150 for the smallest
eigenvalue case. The numerical results are reported in Figure 4.1. From the figures we can
see, as discussed in the last part of Section 3.1, that the square of the largest singular value of[
B̃k
β̃ke

T
k

]
is closer to the largest eigenvalue of MK than that of B̃k. Thus, they are also closer

than those of
[
Bk βkek

]
and Bk. The square of the smallest singular value of Bk is the

closest to the smallest eigenvalue of MK among those of the above four matrices. We can
also see from the figures, because of equation (3.17), that the extreme singular values of B̃k
and

[
Bk βkek

]
coincide.
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FIG. 4.1. Relative errors of the extreme eigenvalues of MK in Example 1.

We also used the same matrices M and K to verify the residual formulas in (3.3) and
(3.13) for the extreme eigenvalues. The actual residuals

rR1,j := ||(MK − σ2
j I)Ykψj ||K , rL1,j := ||(KM − σ2

j I)Xkφj ||M ,
rR2,j := ||(MK − ρ2jI)Yk+1ωj ||K , rL2,j := ||(KM − ρ2jI)Xkζj ||M ,

and the corresponding quantities

qR1,j := αkβk|ψjk|, qL1,j := βk|φjk|
√
β2
k + α2

k+1,

qR2,j := αk+1|ωj,k+1|
√
α2
k+1 + β2

k+1, qL2,j := αk+1βk|ζjk|,

for j = 1, k with various values of k, are depicted Figure 4.2. The results show that the
quantities are close to the actual residuals.

Example 2. In this example, we compare Algorithm 1 (wGKLu) with the weighted
Lanczos algorithm for the eigenvalues of MK. The weighted Lanczos algorithm is based on
the relations given in (2.5). The singular values of both Bk and

[
Bk βkek

]
generated by

wGKLu are used to approximate the eigenvalues of MK. The numerical results computed by
wGKLu are labeled with Alg-1 and those computed by the weighted Lanczos algorithm with
Alg-WL.

We performed a comparison with four pairs of matrices K and M :
1. K andM are of order n = 1000 withK = QDQT andM = QD̂QT , whereQ is or-

thogonal generated from the QR factorization of a random matrix,
D = diag(d1, . . . , dn), with di = 10i−7 for i = 1, . . . , 6, and the rest of the
diagonal elements generated by the Matlab command rand. D̂ is another diagonal
matrix formed by reversing the order of the diagonal elements of D. The extreme
eigenvalues of MK are λ1 ≈ 0.98 and λn ≈ 5.14× 10−7.

2. K and M are of order n = 2000 with K constructed in exactly the same way
as before and M = In. The extreme eigenvalues of MK are λ1 ≈ 0.9999 and
λn = 10−6.

3. K = In and M is the matrix K in the matrix pair of item 2. Note that for such a pair,
since K = I , the weighted Lanczos algorithm is just the standard Lanczos algorithm.

4. K and M are of order n = 1000 with K = QDQT and M = Q̂D̂Q̂T , where both
Q and Q̂ are orthogonal, Q is generated from the QR factorization of a random
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FIG. 4.2. Residual norms of the extreme eigenvalues of MK in Example 1.

matrix, Q̂ is generated from the QR factorization ofQ∗(I+10−10E) withE being a
random matrix, D = diag(d1, . . . , dn), and D̂ = diag(d̂1, . . . , d̂n) with all diagonal
elements generated by the Matlab command rand but dn/2 = 10−7, dn/2+1 = 10−8,
d̂1 = 10−7, and d̂n = 10−8. The “exact" extreme eigenvalues of MK are λ1 ≈ 0.93
and λn ≈ 1.93× 10−9 computed with the Matlab command eig.

For each pair we run k steps of both algorithms to compute the extreme Ritz values. A
scaled randomly generated vector y1 satisfying yT1 Ky1 = 1 serves as the initial vector for
both of the algorithms. The extreme Ritz values computed by wGKLu are denoted by σ2

1 and
σ2
k, where σ1 and σk are the extreme singular values of either Bk or

[
Bk βkek

]
, and those

by the weighted Lanczos algorithm are denoted by ν1 and νk. We measure the accuracy by
the absolute errors e(λ̂1) = |λ̂1 − λ1| and e(λ̂k) = |λ̂k − λn|, where λ̂1 is either σ2

1 or ν1 and
λ̂k is either σ2

k or νk. The Figures 4.3–4.6 display the absolute errors for the pairs in the items
1–4 for various values of k.

The numerical results show that both algorithms behave essentially the same in practice.
The only place where wGKLu does slightly better is in approximating the smallest eigenvalue
of MK from the pair in item 4. wGKLu converges eventually while the weighted Lanczos
algorithm stagnates. In all the cases, for the largest eigenvalue of MK, the largest singular
value of

[
Bk βkek

]
gives a slightly better approximation than the rest. For the smallest

eigenvalue of MK, the smallest singular value of
[
Bk βkek

]
gives the worst approximation.

We ran the tests with many other pairs of M and K. No significant difference between
the two algorithms was observed.

Example 3. In this example, we test Algorithm 3 (wGKLu-LREP) for solving the
eigenvalue problem of a matrix H given in [17]. The matrices K and M in H are extracted
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FIG. 4.3. Absolute errors of the extreme eigenvalues of MK for pair 1 in Example 2.
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FIG. 4.4. Absolute errors of the extreme eigenvalues of MK for pair 2 in Example 2.
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FIG. 4.5. Absolute errors of the extreme eigenvalues of MK for pair 3 in Example 2.

from the University of Florida sparse matrix collection [6]: K is fv1 with n = 9604, and M
is the n× n leading principal submatrix of finan512. Both K and M are symmetric positive
definite. The two smallest eigenvalues of H are approximately 1.15, 1.17, and the two largest
ones are approximately 9.80, 9.75.
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FIG. 4.6. Absolute errors of the extreme eigenvalues of MK for pair 4 in Example 2.

The initial vector y1 for wGKLu-LREP is randomly selected satisfying ||y1||K = 1. The
numerical results are labeled with Alg-3. For comparison, we also test the first algorithm
presented in [17] with the initial vector y1/||y1||. The numerical results are labeled with
Alg-TL. We also run the weighted Lanczos algorithm based on the relation (3.19) with H
being treated as a full matrix and Xk being a K-orthonormal matrix. The initial vector is[
yT1 0

]T
. The numerical results are labeled with Alg-Full. We only compute the two largest

and two smallest positive eigenvalues of H. For the two largest positive eigenvalues we run
m = 50 iterations with Alg-3 and Alg-TL and 2m = 100 iterations with Alg-Full. For the two
smallest positive eigenvalues we run m = 200 for the former two algorithms and 2m = 400
iterations with the latter. (Recall that two iterations of Alg-Full are equivalent to one iteration
of Alg-3 and Alg-TL.)

We report the relative eigenvalue error and the magnitude of the normalized residuals in
the 1-norm for each of the 4 Ritz pair (σj ,v

+
j ):

e(σj) :=

{ |λj−σj |
λj

, j = 1, 2,
|λn+j−k−σj |
λn+j−k

, j = k − 1, k,

r(σj) :=
||Hv+

j − σjv
+
j ||1

(‖H‖1 + σj)‖v+
j ‖1

, j = 1, 2, k − 1, k,

for each of the iterations k = 1, 2, . . . ,m of Alg 3 and Alg-TL (and k is supposed to be 2k for
Alg-Full). The “exact" eigenvalues λj are computed by the MATLAB command eig.

The testing results associated with the two smallest positive eigenvalues are shown in
Figure 4.7, and the results associated with the two largest eigenvalues are shown in Figure 4.8.
For the two smallest positive eigenvalues, Alg-3 runs for about 4.515 seconds, Alg-Full about
4.556 seconds, and Alg-TL about 15.314 seconds. For the two largest eigenvalues the runtime
is about 0.313, 0.344, 0.469 seconds, respectively. Alg-TL needs to compute the eigenvalues

of
[

0 Dk

Tk 0

]
, which is treated as a general nonsymmetric matrix. This is the part that slows

down Alg-TL. On the other hand, Alg-Full gives less accurate numerical results than the other
two algorithms. This example shows that Alg-3 works well. It takes less time than Alg-TL to
obtain almost the same numerical results.
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FIG. 4.7. Errors and residuals of the two smallest positive eigenvalues in Example 3.
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FIG. 4.8. Errors and residuals of the two largest eigenvalues in Example 3.

5. Connection with weighted conjugate gradient methods. Consider the system of
linear equations

(5.1) Mz = b, M > 0.

Let z0 be an initial guess of the solution ze = M−1b and r0 = b −Mz0 = M(ze − z0) be
the corresponding residual. Assume that Xk, Yk, and Bk are computed by wGKLu with M
and another matrix K > 0 and y1 = r0/||r0||K . Then they satisfy (2.4) and (2.6).

We approximate the solution ze by a vector zk ∈ z0 + KKk(MK, y1) for some k ∈
{1, . . . , n}. From (2.6), we may express

zk = z0 +Xkwk

for some wk ∈ Rk. We take the approximation zk (or equivalently wk) as the solution of the
minimization problem

min
wk

J(wk), J(wk) = εTkMεk, εk = ze − zk = ε0 −Xkwk.

Since

J(wk) = wTkX
T
kMXkwk − 2wTkX

T
kMε0 + εT0Mε0

= wTkX
T
kMXkwk − 2wTkX

T
k r0 + εT0Mε0,
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the functional J(wk) is minimized when wk satisfies

XT
kMXkwk = XT

k r0.

Using r0 = ||r0||Ky1, XT
kMXk = Ik, Y Tk KYk = Ik, and the first relation of (2.4), one has

XT
k r0 = ||r0||K(KYkB

−1
k )T y1 = ||r0||KB−Tk Y Tk Ky1 = ||r0||KB−Tk e1.

Hence the minimizer is

zk = z0 +Xkwk, with wk = ||r0||KB−Tk e1.

The vector wk can be computed in an iterative way along with the iterations of wGKLu. Note
that

BTk =


α1

β1 α2

. . . . . .
βk−1 αk

 =

[
BTk−1 0

βk−1e
T
k−1 αk

]
.

So

B−Tk =

[
B−Tk−1 0

−βk−1

αk
eTk−1B

−T
k−1 α−1k

]
,

and by denoting wk =
[
ϕ1 . . . ϕk

]T
, one has

wk = ||r0||KB−Tk e1 = ||r0||K

[
B−Tk−1e1

−βk−1

αk
eTk−1B

−T
k−1e1

]
=

[
wk−1
ϕk

]
,

where ϕk follows the iteration

(5.2) ϕk = −βk−1
αk

eTk−1wk−1 = −βk−1
αk

ϕk−1, k ≥ 1, β0 = 1, ϕ0 = −||r0||K .

Therefore,

zk = z0 +Xkwk = zk−1 + ϕkxk, k ≥ 1,

and using BTk wk = ||r0||Ke1 and the second relation in (2.4), the corresponding residual is

rk = b−Mzk = r0 −MXkwk = r0 − (YkB
T
k + βkyk+1e

T
k )wk

= r0 − ||r0||KYke1 − βkϕkyk+1 = −βkϕkyk+1, k ≥ 0.

Hence, we have the following algorithm for solving (5.1).
ALGORITHM 4 (wGKLu-Lin).
Choose z0 and compute r0 = b−Mz0, ϕ0 = −||r0||K , and y1 = r0/||r0||K . Set β0 = 1,

x0 = 0. Compute g1 = Ky1.
For j = 1, 2, · · ·
sj = gj/βj−1 − βj−1xj−1
fj = Msj
αj = (sTj fj)

1
2
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xj = sj/αj
ϕj = −βj−1ϕj−1/αj
zj = zj−1 + ϕjxj
tj+1 = fj/αj − αjyj
gj+1 = Ktj+1

βj = (tTj+1gj+1)
1
2

yj+1 = tj+1/βj
rj = −ϕjtj+1

End

We show that Algorithm 4 is equivalent to a weighted conjugate gradient (CG) method.
By introducing the vectors pk−1 = α2

kϕkxk, for k ≥ 1, with

p0 = α2
1ϕ1x1 = α1ϕ1Ky1 = ||r0||KKy1 = Kr0,

one has

pTk−1Mpk−1 = α4
kϕ

2
kx

T
kMxk = α4

kϕ
2
k.

Since rk = −βkϕkyk+1, using (5.2), one has

rTkKrk = β2
kϕ

2
ky
T
k+1Kyk+1 = β2

kϕ
2
k = α2

k+1ϕ
2
k+1.

We then have

α2
k+1 =

α4
k+1ϕ

2
k+1

α2
k+1ϕ

2
k+1

=
pTkMpk
rTkKrk

.

Now,

zk = zk−1 + ϕkxk = zk−1 + α−2k pk−1 = zk−1 + γk−1pk−1,

γk−1 = α−2k =
rTk−1Krk−1

pTk−1Mpk−1
,

and

rk = b−Mzk = rk−1 − γk−1Mpk−1.

By multiplying the equation

Kyk+1 = βkxk + αk+1xk+1,

with αk+1ϕk+1 and using (5.2), one has

pk = α2
k+1ϕk+1xk+1 = −αk+1βkϕk+1xk + αk+1ϕk+1Kyk+1

= β2
kϕkxk − βkϕkKyk+1 =

β2
k

α2
k

pk−1 +Krk.

Since

ϑk−1 :=
β2
k

α2
k

=
β2
kϕ

2
k

α2
kϕ

2
k

=
rTkKrk

rTk−1Krk−1
,
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we have

pk = Krk + ϑk−1pk−1, ϑk−1 =
rTkKrk

rTk−1Krk−1
.

As a consequence, by using rk and pk instead of yk and xk, we have the following simplified
algorithm.

ALGORITHM 5.
Choose z0 and compute r0 = b−Mz0 and p0 = Kr0.
For j = 0, 1, 2, · · ·
γj = rTj Krj/p

T
j Mpj

zj+1 = zj + γjpj
rj+1 = rj − γjMpj
ϑj = rTj+1Krj+1/r

T
j Krj

pj+1 = Krj+1 + ϑjpj
End

Algorithm 5 is a weighted CG algorithm, which is alike the standard CG but with the
residuals rj being forced to be K-orthogonal. It is just the preconditioned CG (PCG) if K is a
matrix inverse. In particular, it is the standard CG if K = I . On the other hand, based on PCG
theory, the vector sequences {rj} and {pj} produced by Algorithm 5 areK andM -orthogonal,
respectively. By normalizing the vectors, we obtain {yj} and {xj}, and by replacing {rj} and
{pj} in Algorithm 5 with {yi} and {xj}, we recover Algorithm 4. Therefore, Algorithms 4
and 5 are equivalent.

This equivalence provides another way to connect the PCG to Krylov subspace methods.
Commonly, a connection is made for PCG and the preconditioned Lanczos algorithm [15],
where the Cholesky factorization of the computed symmetric tridiagonal matrix is involved.
Since Algorithm 4 computes the Cholesky factor directly (even when K = I), the new
connection is more direct and compact.

Finally, we point out that wGKLl can be employed to solve (5.1) as well.

6. Conclusions. We have proposed two weighted Golub-Kahan-Lanczos bidiagonaliza-
tion algorithms wGKLu and wGKLl associated with two symmetric positive definite matrices
K and M . We have shown that the algorithms can be implemented naturally to solve the

large-scale eigenvalue problems of MK and the matrix H =

[
0 M
K 0

]
. For these eigenvalue

solvers, convergence results have been established. Besides the eigenproblems, the algorithms
can also be implemented to solve linear equations with a positive definite coefficient matrix,
yielding a method that is equivalent to PCG. Several numerical examples have been given to
illustrate the effectiveness of our algorithms.

The proposed algorithms are still in basic form. In order to develop more practical
algorithms, additional techniques need to be employed. There are well-developed techniques
for Krylov subspace methods, many of which can be incorporated into the proposed algorithms.
For instance, in order to compute the smallest eigenvalues of H, one may apply the wGKL
algorithms to the pair (K−1,M−1), following the shift-and-invert idea. There are also some
open questions concerning the proposed algorithms. For instance, it is not clear whether the
use of the weighted norm will affect the numerical efficiency and stability of the algorithms.
All these require further investigations.
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