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Abstract. We present weighted Golub-Kahan-Lanczos algorithms. We demonstrate their applications to the
eigenvalue problem of a product of two symmetric positive definite matrices and an eigenvalue problem for the linear
response problem. A convergence analysis is provided and numerical test results are reported. As another application
we make a connection between the proposed algorithms and the preconditioned conjugate gradient (PCG) method.
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1. Introduction. The Golub-Kahan bidiagonalization factorization is fundamental for
the QR-like singular value decomposition (SVD) method [7]. Based on this factorization, a
Krylov subspace type method, called Golub-Kahan-Lanczos (GKL) algorithm, was developed
in [11]. The Golub-Kahan-Lanczos algorithm provides a powerful tool for solving large-scale
singular value and related eigenvalue problems, as well as least-squares and saddle-point
problems [11, 12]. Recently, a generalized Golub-Kahan-Lanczos (gGKL) algorithm was
introduced for solving generalized least-squares and saddle-point problems [1, 4].

In this paper we propose certain types of weighted Golub-Kahan-Lanczos bidiagonaliza-
tion (WGKL) algorithms. The algorithms are based on the fact that for given symmetric positive
definite matrices K and M, there exist a K -orthogonal matrix Y and an M -orthogonal matrix
X such that KY = XB and MX = Y B”, where B is either upper or lower bidiagonal.
Two algorithms will be presented depending on whether B is upper or lower bidiagonal. The
above relations are equivalent to KM X = XBB” and MKY = Y BT B. Since both BBT
and BT B are symmetric tridiagonal, the wGKL algorithms are mathematically equivalent to
the weighted Lanczos algorithm applied to the matrices K M and M K or the preconditioned
Lanczos algorithms if K or M is the inverse of a matrix. However, in practice there is an
important difference. The weighted Lanczos algorithm computes the columns of either X or
Y and a leading principal submatrix of either BB” or BT B. The wGKL algorithms, on the
other hand, compute both the columns of X and Y and a leading principal submatrix of B. In
fact, as shown in the next section, the proposed algorithms can be viewed as a generalization
of GKL [11] and also as a special case of gGKL [1]. Another feature of the wGKL algorithms
is that they treat the matrices KX and M equally.

The wGKL algorithms can be employed to compute the extreme eigenvalues and associ-
ated eigenvectors of the matrix products KM and MK (= (KM)T). The generalized eigen-
value problem AA — M with symmetric positive definite matrices A and M is one example,
which is equivalent to the eigenvalue problem of K M with K = A~!. Another application
of the wGKL algorithms is the eigenvalue problem for matrices such as H = 2, ]\(ﬂ
with symmetric positive definite ' and M. Such an eigenvalue problem arises from the
linear response problem in the time-dependent density functional theory and in the excitation
energies of physical systems in the study of the collective motion of many-particle systems,
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which has applications in silicon nanoparticles and nanoscale materials and in the analysis of
interstellar clouds [5, 9, 10, 14].

For a positive definite linear system, it is well known that the conjugate gradient (CG)
method is equivalent to the standard Lanczos method, e.g., [15, Section 6.7] and [8]. As
another application, we demonstrate that in the case when K or M is the identity matrix, the
Krylov subspace linear system solver based on a wGKL algorithm provides a simpler and
more direct connection to the CG method. In its original version (when neither K nor M is
the identity matrix), such a solver is mathematically equivalent to a preconditioned CG (PCG)
method.

The paper is organized as follows. In Section 2 we present the basic iteration schemes of
the wGKL algorithms. In Section 3, we describe how to apply the wGKL algorithms to the
eigenvalue problems with matrices K M or H. A convergence analysis is provided as well.
In Section 4, numerical examples for the eigenvalue problems are reported. In Section 5, the
relation between wGKL and PCG is discussed, and Section 6 contains concluding remarks.

Throughout the paper, R is the real field, R”**" is the set of m x n real matrices, R" is the
n-dimensional real vector space, Iy, is the n X n identity matrix, and e; is its jth column. The
notation A > 0 (> 0) means that the matrix A is symmetric positive definite (semidefinite).
For a given matrix A € R™*™ and a vector b € R", the kth Krylov subspace of A with b, i.e.,
the subspace spanned by the set of k vectors {b, Ab, ..., A¥~1b}, is denoted by K (A, b). | - |
is the spectral norm for matrices and the 2-norm for vectors. For a given n X n symmetric
positive definite matrix A, we introduce the weighted inner product (z,y) 4 = 27 Ay in R™.
The corresponding weighted norm, called A-norm, is defined by |z|4 = +/ (2, z) 4. A matrix
X is A-orthonormal if X7 AX = I (and it is A-orthogonal if X is a square matrix). A set of
vectors {x1, ..., 2k} is also called A-orthonormal if X = [xl - mk] is A-orthonormal
and A-orthogonal if (2;,2;) a4 = 0 for ¢ # j. For any matrix A, omax(A) and omin (A) are the
largest and the smallest singular values of A, respectively, and k2(A) = omax(A4)/Omin(A)
(when opyin (4) > 0) is the condition number of A in the spectral norm.

In the paper we restrict ourselves to the real case. All the results can be easily extended to
the complex case.

2. Weighted Golub-Kahan-Lanczos bidiagonalization (WGKL) algorithms. The pro-
posed wGKL algorithms are based on the following factorizations.

LEMMA 2.1. Suppose that 0 < K and M € R™*"™. Then there exist an M-orthogonal
matrix X € R™*™ and a K-orthogonal matrix Y € R™*™ such that

2.1) KY = XB, MX =YB7T,

where B is either upper bidiagonal or lower bidiagonal.
Proof. In [7], it is shown that for any matrix A, there exist real orthogonal matrices U, V'
such that

(2.2) AV = UB, ATU = vBT,
where B is either upper or lower bidiagonal. Since both K, M > 0, one has the factorizations
(2.3) K=1LL", M = RRT,
where both L and R are invertible. Take A = RT L in (2.2), and set
X =RTy, Y =L"TV.
Then (2.2) becomes
RTLLTY = RTXB, LTRRTX = LY BT,
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By eliminating R” in the first equation and L7 in the second equation, one has (2.1). Clearly
XTMX =UTU=TandYTKY =VTV =1, |

The proof shows that (2.1) is a generalization of (2.2) by replacing the orthogonal matrices
by weighted orthogonal matrices.

In [1] it is shown that for any matrix A, there exist an M -orthogonal matrix X and a
K -orthogonal matrix Y such that

AY = MXB, ATX = Ky BT.

By setting A = MK, we have again (2.1). Following these connections, the proposed
wGKL algorithms can be considered a generalized version of GKL [11] and a special case of
gGKL [1].

Based on the relations in (2.1) and the orthogonality of X and Y, we now construct
two Lanczos-type iteration procedures corresponding to B being upper and lower bidiagonal,
respectively. We first consider the upper bidiagonal case, and we call the procedure the upper
bidiagonal version of the weighted Golub-Kahan-Lanczos algorithm (wGKL,,). Denote

X:[xl l‘n], Y:[yl yn]>
and
ay B
B= a2
577,71
an

By comparing the columns of the relations in (2.1), one has

Ky = aqmy, Mz = ayy1 + Brye,
Kys = f1o1 + azxa, Mzy = azy2 + Bays,
Ky = Br_17p—1 + g, Mz, = aryr + Bryr+1,
Kyn = Bn—lxn—l + anTn, Mz, = AnpYn-

Choosing an initial vector y; satisfying 47 Ky; = 1 and using the orthogonality relation
zfMz; = yI' Ky; = 6;;, where §;; is 0if i # j and 1if i = j, the columns of X and Y as
well as the entries of B can be computed by the following iterations:

o; = |Ky; — Bj—1xj-1]ar,
zj = (Ky; — Bj—1zj-1)/ay,
B = IMz; — oy k.,
yi+r = (Mzj —a;y;)/B;,
withzg =0and 5y = 1,forj =1,2,...
We provide a concrete computational procedure that reduces the number of matrix-vector

multiplications. Computing «; requires the vector f; := M (Ky; — 8;_1x;_1), which equals
ojMx;. The vector Mx; appears in Mx; — «;%y; in the computation of 3; and y;1, which
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can now be obtained using f;/c;. In this way, we save one matrix-vector multiplication.
Similarly, computing 3; needs the vector g, 11 := K (Mz; — a;y;) = 8;Ky;j+1. The vector
Ky;1 isinvolved in the formulas for ;1 and x4 and can thus be computed in the next
iteration using g;4+1/3;. Hence, another matrix-vector multiplication can be saved. The
algorithm is detailed below.
ALGORITHM 1 (WGKL,,).
Choose y; satisfying ||y1||x = 1, and set By = 1, 2o = 0. Compute g; = Ky;.
Forj=1,2,--.
sj = 9;/Bi-1 = Bi-1%j1
fi = Ms;

_ (4T 1
Bj = (tj+19j+1)2
Yi+1 = tj+1/B;
End
In each iteration, this algorithm requires two matrix-vector multiplications, and it needs
five vectors fi, Xx—1, Tk, Yk, Yk+1 to store the data (x, Y11, fr may overwrite s, t;4+1 and

Gk+1-)
Suppose Algorithm 1 is run for £ iterations. We then have x4, ..., 2k, y1, ..., Yr+1, and
aj,Bjforj=1,...,k Forany j > 0, define

a1 B

Bi-1

@
Then we have the relations
@4 KYi=XuBy,  MXy=YiBl +Buriiel =Vier [Br Brer]”
and
XFMX, =1, = V' KY;.
Algorithm 1 may break down, but this happens only when ;, = 0 for some k. To see

this, if Hf;ll a;f; # 0but o, = 0, then one still has K'Y}, = X, B, with the last column

of X, being zero. Since K > 0 and Y} has full column rank, rank K'Yy, = k. On the other
hand, rank X, By < k, resulting in a contradiction. When k = n, ,, must be zero and (2.4)
becomes (2.1).

From (2.4), one has

MKY), = Y3, B By, + arBryrr1et s

2.5)
KMX, = Xk(BkB]Z + b’zekeg) + ak+1ﬁk$k+1€£.

Since BB} + Biexer and B{ By are symmetric tridiagonal, it is obvious that wGKL,,
is equivalent to a weighted Lanczos algorithm applied to the matrices MK and (M K)7,
respectively. So we have

(26) rangeYk:]Ck(MKayl)7 rangeXk:Kk(KM7Ky1):K’Ck(MK7y1)a
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where we use the fact that x; is parallel to Ky in the second relation.

When the matrix B in (2.1) is lower bidiagonal, a corresponding lower bidiagonal version
of the weighted Golub-Kahan-Lanczos bidiagonalization algorithm (wGKL;) can be derived
in the same way. wGKL,; is actually identical to wGKL,, if we interchange the roles of K and
M and X and Y in (2.1). In order to avoid confusion we use X,Y, Binstead of X ,Y, Bin
(2.1), and we have

and the wGKL; method is described by the following algorithm.
ALGORITHM 2 (WwGKL;). ~
Choose 74 satisfying ||Z1]|as = 1, and set 8y = 1, §o = 0. Compute g; = M Z.
Forj=1,2,--- ~
sj=9j/Bi-1 = Bi-10j—1
fj = KSj )
a; = (s] f;)?
Yj = si/a;
tivr = fj/d; — a;T;
gj+1 = Mtj, )
B = (tg‘T+19j+})§
Tjt1=tj+1/B;
End
Similarly, by defining

o
o ~ o i 5 | A
XJ - I:xl x]] ) Yj - [yl yj] ) B] - . 9
Bj—l d]
one has
- - . - B - -
KYy = XiBy, + BrZryref = Xt [BkgT:| ) MX, =Y, B}
k

and

XIMX, =1=Y'KY}.

Also,
2.8) KMX:’“ - {Z’“?’“sz * a"ﬂ KPhiick,

MEKYy = Yi(B{ By, + Biexer,) + any1Brir i€ ,
and

range X, = Kip(KM, Zy), range Yj, = Ki(MK,Mz,) = MKp(KM, Z7).

Algorithm 2 breaks down only when B) = 0 for some k.
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3. Application to eigenvalue problems. In this section we discuss how to apply wGKL,,

and wGKL,; to solve the eigenvalue problem for KM, MK, and H = [ ]O( ]\(ﬂ .

3.1. The eigenvalue problem for KM and M K. The relations in (2.5) and (2.8)
show that Algorithms 1 and 2 can be employed to compute the eigenvalues of the matrices
MK and KM. Note that KM = (MK)T. So in the following, the discussion is mainly
focused on the case for the matrix M K.

We first consider the approximations based on the first relation of (2.5) produced by
wGKL,,. Suppose that By has an SVD

By = @5, U], D=1 ... o,
Uy, = I:d)l 1/%} ’ Yk :diag(gl7"'70k)7

with o1 > 09 > ... > o} > 0. Then, from the first relation in (2.5) for each j € {1,... k},
we may take O'JQ» as a Ritz value of M K and Y%, as a corresponding right Ritz vector. Since
Y} is K-orthonormal and Wy, is real orthogonal, Y11, ..., Y31y are K-orthonormal. Also,

we have the residual formula

3.1)

(MK — o3 1)Yithj = o Biutlinli+1,

where 15, is the kth component of v;, for j = 1,..., k. Similarly, from the second relation
in (2.5), for each j € {1,...,k}, we may take X ¢, as a corresponding left Ritz vector of
M K corresponding to the Ritz value 0‘?. Note that Xy 1, ..., Xt ¢r are M-orthonormal, and
from the first relation in (2.4),

(3.2) Xi¢j = 0; ' XpBrip; = 05 'K Yy, j=1,...,k.

Also, based on the second relation in (2.5) and the first relation in (2.4), one has the following
residual formula (transposed)

(KM — U?I)Xk(bj = Brojk(Brxr + art12Zr+1) = Prdje K Y1,

for j =1,...,k, where ¢;, is the kth component of ¢;. In practice, we may use the residual
norms

(MK — o31)Yithj |k = aBrltjl,

3.3)
(KM — 021 Xg5lar = Brldsnly/B7 + afyy

to design a stopping criterion for wGKL,,.

The convergence properties can be readily established by employing the convergence
theory of the standard Lanczos algorithm [8, 13, 16]. We need the following properties of the
eigenvalue and eigenvectors of M K.

PROPOSITION 3.1. The matrix MK has n positive eigenvalues \3 > \3 > ... > \2
with A\; > 0(j = 1,...,n). The corresponding right eigenvectors &1, . .., &, can be cho-
sen K-orthonormal, and the corresponding left eigenvectors 1y, ... ,n, can be chosen M-
orthonormal. In particular, for given {&;}, one can choose n; = A;lej,forj =1,2,...,n,
and for given {n;}, {; = A;anj,forj =1,2,...,n

Proof. Using the factorization K = LLT MK is similar to LT ML > 0. Let

LML = Qdiag(A\2,...,22)QT,
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where @ is real orthogonal. Then A%, ..., A2 are the eigenvalues of M K, and £; = L= Qe;,
for j = 1,...,n, are the corresponding right eigenvectors. Clearly, &, ...,&, are K-
orthonormal.

For each n; = A;lK &;, by premultiplying A;lK to MK¢; = /\35 7, one has the relation
K Mn; = X3n; or, equivalently, nf MK = XnT. Son,...,n, are the corresponding left
eigenvectors of M K. The M-orthonormality can be obtained from

i Aj
nf Mn; = AT KMES = ffiTKfj~

Thus, 7] Mn; equals 1if i = j and 0 if i # j.
In the same way, we can show that {; = A;lM n;,forj =1,2,...,n, are K-orthonormal
right eigenvectors if {n; } is a set of M-orthonormal left eigenvectors. O
We need the following definitions. For two vectors 0 # x,y € R and 0 < A € R™"*",
we define the angles
|27y
lz vl

(@, y)al

0(x,y) = arccos
’ |z alyla

O4(x,y) = arccos

We also denote by C;(x) the degree-j Chebyshev polynomial of the first kind.

The following convergence results are based on the theory given in [16].

THEOREM 3.2. Let A\ > A3 > ... > A2 > 0 be the eigenvalues of MK with
Aj >0, forj = 1,...,n. Let&,...,& be the corresponding K-orthonormal right
eigenvectors, and following Proposition 3.1, let n; = A;lKﬁj, 7 = 1,...,n, be the
corresponding M -orthonormal left eigenvectors. Suppose that By, has an SVD (3.1) with
o1 > 09 > ... > 0 > 0. Consider the Ritz values 0’%, e U%, the corresponding K-ortho-
normal right Ritz vectors Yyi1, . . ., Yk, and the M -orthonormal left Ritz vectors associated
with M K, Xk¢1, ce ,ngf)k. Let

2 2 2 2
i = )‘j - /\j+1 A = )‘n—k+j—1 — )‘n—k+j 1<j<k
J ’ J i =J =M
MG — A2 A — )‘ngkJrjfl

and yi be the initial vector in Algorithm 1. Then, for j = 1,... k,

G4 0</\2,g2,<()\2AQ)(Wj’ktaneK(ylvﬁj)f
. — Y J = 1 n Ck7](1 T 2’73)
with
j=1 o 2
of — A
Tk =1 Tk = ) 5 7 >1,
i=1 g; ~ )\j
and
s tan O (1, i)
3.5 0< 02— )\2 < (22— )2 ( Tk y En—k+j
( ) >0 n—k+j = ( 1 77,) ijl(l n 2’%)
with
k 2 2
7 ~ o — A .
Tk =1, Tk = ]___[ 22 Jj<k.

i=j+1 i n—k+j
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The corresponding Ritz vectors have the following bounds:

\/(Kj> sin® Ony (Xihj,my) +1 — (ij)
T 1+ (akﬁk)Q/ajz
=sin g (Yitp;,&5) <

Cr—j (14 2;)

(3.6)

sin Ok (y1,&5)

with §; = min;z; |\? — 07| and

i=l 4o 2
AF— A

m=1 m=]][%—5 Ji>L
1‘:1)‘1_)‘1

and

5 2
\/<)\ J ) SlneM(Xk(ﬁjann—k-i-j) +1- ()\ - )
kg n—k+j
| 701+ (i By)2 /82
= sin OK(kajvgn*k‘Fj) <

Ci-1(1+2%5)

(3.7)

sin 0 (Y1, En—k+j)

P . 2 2
with 0; = min;; |)‘n_k+j —oj|and

n )\2 _ )\%
T = 1, T = H W, 1< k.
i=n—k+j+1 "% n—k+j

Proof. We first prove (3.4) and (3.6). As shown in the proof of Proposition 3.1, for any
j, the vector LT¢; is a unit eigenvector of LT M L corresponding to the eigenvalue A2, and
LT¢,, ..., LT¢, are orthonormal. The first equation of (2.5) can be transformed to

(3.8) LTMLV}, = Vi, Bf By, + axBrvrsier

where Vi = LTY%, viy1 = LT yxp41, and V1 is orthonormal, which can be considered as
the relation derived by applying the standard Lanczos algorithm to L M L. Hence, 0%, ..., 02
are the Ritz values of L M L, and V41, . .., Vi4y, are the corresponding orthonormal right
(left) Ritz vectors. Applying the standard Lanczos convergence results in [16, Section 6.6]

to (3.8), one has

2
7Tj7k tan G(LTyh LT§])>
Cr—j(1427;) ’

i/ 1+ (Otkﬂk)Q/(;]z
sinf(Vity;, LT¢;) < = sin (L y1, LTE)),

Cr—j(1+7;5)

0< - fg(A%—Ai)(

where 7; ;, 75,65, v; are defined in the theorem. The bounds (3.4) and (3.6) can be derived
simply by using the identities

O(LTy1, LT€) = 0k (v1,&5),  O(Viaby, LT€;) = 0(LTYViab;, LTE) = 0k (Yath;, &)
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We still need to prove equality in (3.6). By (3.2),

] VI KMEE;|

COSH]\/[(Uj,Xk(ﬁj) = COSH]w(Kfj//\j,KYk’L/)j/O'j) = —/\

(3.9) \ \ Tiri
= Ll VIKE | = = cos Ok (Yihs, &)
O'j O'j
Hence
(3.10) cos i (Yisy, &) = L cos 0ar (X y).
J

from which one obtains

N 2 N 2
sin O (Yitj,&5) = \/(ij) sin® Oar (Xij,m;) +1— <ij) .
7 J

The bounds (3.5) and (3.7) can be proved by applying these results to the matrix (—M K).
The equality in (3.7) can be established from the identity

(3.11) cos Ok (Y, En—ktj) = cos O (Xk@j, n—k+j)s

An—ktj
which can be derived in the same way as (3.10). 0

Clearly, the second relation in (2.5) can also be used to approximate the eigenvalues and
eigenvectors of M K by using the SVD

p1 0 0
(3.12) [Bk ﬂkek] [wl warﬂ = [Cl Ck] .
0 Pk 0
In this situation, p?,.. ., pi are the Ritz values and X;(y, ..., X;(x are the corresponding

M-orthonormal left (right) Ritz vectors of M K (K M). The residual formula transposed
yields

(KM — p?1) X3Cj = 01 BrCinThs1s

where (i, is the kth component of (;. From the first equation of (2.5) with k replaced by
kE+1,

MKYji1 = Ypq1 By ﬂkek]T [
=Yin [Bk ﬂkek]

Soforeachj € {1,...,k},

Bi Brex] + appi(@ri1ybi1 + Bra1trro)el
T
[Be  Brex] + w1 Mapyief .

2
(MK — pi1)Yy11w; = ap1wj i1 Mog 11 = 1w e (Qr1Yer1 + Brer1Ver2),
J

where w; ;41 is the (k + 1)st component of w;. Hence Yi w1, ..., Yiq1wy can be taken as
the right Ritz vectors of M K, and we have the following residual norm formulas

[(KM — p3D) Xyl = 1 BrlGnl,

(.13)
(MK — p2D)Yiwjl i = arprlwjrrily/af o + By
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Note that by post-multiplying the second equation in (2.4) with w;, one has

_ T _ .
(3.14) Yigrw; = p; Yepr [Bre Brer] G =p; 'MXi(,  j=1,... .k

The same type of convergence theory can be established.

THEOREM 3.3. Let A > A3 > ... > A2 > 0 be the eigenvalues of M K with \; > 0,
forj = 1,....,n. Letn,...,n, be the corresponding M -orthonormal left eigenvectors
associated with M K, and following Proposition 3.1, let §; = A;anj, j=1,....n, be
the corresponding K -orthonormal right eigenvectors. Suppose that p1 > ... > py are
the singular values of [Bk Bkek], (1, -, C the corresponding orthonormal left singular
vectors, and w1, . . . ,wy, the corresponding orthonormal right singular vectors as defined in
(3.12). Let ~y;, #;, 75, and 7; be defined in Theorem 3.2 and x1 = Ky1 /| Ky1| v be generated
by Algorithm 1. Then, for j =1,...,k,

0</\2»—p2<(A2—A2)(ﬁj’ktanaM(xl’nj)>2
B ey

with
71 o2 o
K1k =1, Kjk = H p; )\72‘, j>1,
i P T
and
_ 2
2 \2 2 oy [ Ry tan O (21, Mn—ptj)
020~ Niow, < OF - (M ET
with
k 2 2
_ . pi — A .
Rek = 1, Kjk = H = j<k.

i=j+1 Py An—k-‘rj

The corresponding Ritz vectors of M K have the following bounds:

2 2
\/(;0]) Sin2 GK(Yk-i-leagj) + 1-— (pj)
Aj Aj

j \/1 + (ary1Bk)?/ €
Cr—j(1+27;)

(3.15)

= sinfnr (X (5, ;) < sin s (z1,n;),

, and

2 2
(pj) sin® O (Yis1w;, Enepry) + 1 — <pj>
Anfkwkj )\nfk+j

’ﬁj\/l + (OékJrlBk)z/g?
Cj-1(1+2%;)

with €; = ming; A3 — p7

(3.16)

= sin O (XeCjs Mn—ktg) < sin Ops (21, Pn—k4j),

. ~ s 2 2
with €; = ming4; [A; ., — pil-
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Proof. The bounds can be established by applying the standard Lanczos convergence
results to

RTKRUy, = Uy(By B + Biexel) + a1 Bruriiel

which is obtained from the second relation of (2.5) with M = RRT, U, = RT X}, and
Uk41 = RTJ?IH-L
By (3.14),

cos O (&5, Yiraw;) = | A oy i MK M Xyl

Aj Aj
= Znf MXy(5| = = cos O (XG5 1),
Pj Pj
from which equality in (3.15) can be derived.
Similarly, one has

An—ktj

€08 O (§n—totj, Vir1wy) = €08 O (X Gj, n—rk+5)

Pj
which yields equality in (3.16). 0
REMARK 3.4. Since o1, ..., 0} are the singular values of By and p1, ..., p; are the
singular values of [Bk ﬂkek] , from the interlacing properties [8, Corollary 8.6.3], one has

pPL>012>p2>022>...2 pp > Ok.

From Theorems 3.2 and 3.3, for approximating a large eigenvalue )\5 of MK, p? will be more
accurate than 032- since p? is closer to )\?. Similarly, for approximating a small eigenvalue )\?,
o will be more accurate than p?. For instance, if we need to approximate Af, p{ is more
precise than o7, and for A2, o7 is preferable over p3.

REMARK 3.5. Theorems 3.2 and 3.3 provide convergence results for both the left and
right eigenvectors of MK as well as KM = (MK)T. The values of sinx (y1,¢;) and
sin a7 (z1,n;) represent the influence of the initial vectors y; and z to the approximated
eigenvectors (and also the approximated eigenvalues). In general, the angles 0 (y1,£;) and
One (21, 7;) are different, but they are related. Recall that, z1 = Ky1 /| Kyi |, nj = A;lng,
and MK¢; = ,\fgj. So

|yTKMK£|
cos O (z1,m;) = |af M| = w
j
)\j T Aj
=2 yTKe | = —20 cosOr(yr, &)
HKy1HM| 1 K1 | Kyl )

Because
|Kyilir =yl KMKyy = (LTy) " (L"ML)(LTy1),  (L7y)" (L) = yi Kyn = 1,
and A2, ..., \2 are the eigenvalues of LT M L, one has
An S Kyilar < A

Therefore

i by
L cos Ok (y1,&5) < cosOnr(z1,n;) < 2

N < )\—nCOSGK(yl,Sj).
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REMARK 3.6. The convergence results established in Theorems 3.2 and 3.3 are similar
to the ones given in [16] for the standard Lanczos algorithm applied to the symmetric matrix
LTMLor RTKR, where K = LLT and M = RRT. The results indicate that the Ritz values
and Ritz vectors corresponding to the extreme eigenvalues A\? and \2 converge faster than the
rest. Unlike the standard results, where the left and right Ritz vectors corresponding to the
same Ritz value can be the same, for each j, the angles between left and right Ritz vectors and
the corresponding eigenvectors are different, cf., (3.10) and (3.11). On the other hand, these
relations show that the two angles are essentially the same when the Ritz value is close to the
corresponding eigenvalue.

REMARK 3.7. From the first relation in (2.5), Algorithm 1 (wGKL,,) is mathematically
equivalent to a weighted Lanczos algorithm applied to M K (by forcing YkTK Y., = I).
Algorithm 1 needs two additional scalar-vector multiplications per iteration and additional
storage for saving the vectors 1, .. ., . On the other hand, with Algorithm 1 we are able to
provide both left and right Ritz vectors simultaneously. Another advantage of Algorithm 1 is
that the eigenvalues of M K can be approximated by using the singular values of [Bk Bk ek] ,
which may yield more accurate approximations for the large eigenvalues of M K. If we

. ~ B
use the singular values and vectors of B and [ Gre k ] which are generated by wGKL,, to
k€
approximate the eigenvalues and eigenvectors of M K and K M, a convergence theory as in

the Theorems 3.2, 3.3 can be established in the same way.

For the rest of this section we discuss the relations between the two algorithms wGKL,,
and wGKL;. Denote U = RTX,V = LTY,U = RT X,V = LTY, where the matrices are
those from (2.1), (2.3), and (2.7). All of them are orthogonal matrices. Note that from (2.2)
with A = RT L, one finds

R'L=UBVT =UBVT.
Thus,
UTUB = BVTV.

If we choose y; and set 1 = x; = Ky1/|Kyi |, then the first columns of U and U are
identical or the first column of UT'U is e;. Since UTUBBT(UTU)T = BB7 is a tridiagonal
reduction of BB, if all Bj, oy, ﬁj,aj are posmve then by the implicit-Q Theorem [8],
UTU = I,ie., U = U, or equivalently, X = X. Then B = BQ with Q = V7V is an
RQ factorization of the lower bidiagonal matrix B. Hence, when wGKL,, starts with y1 and
wGKL,; starts with &1 = Ky /| Ky1| a, if both algorithms can be run for n iterations, then
the generated matrices satisfy X =X,Y =YQ. Since

B"B = Q"B BQ,

it is not difficult to see that () is just the orthogonal matrix generated by applying one QR
iteration from BT B to BT B with zero shift [8].
Clearly, one has

BBT = BBT.

For any integer 1 < k < n, by comparing the leading & X k principal submatrices of BBT
and BBT, one has

(3.17) (B Brex) [Bu Bkek]T = ByBY.
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So the singular values of By, and [Br  Brer) are identical.
Now we have four matrices

By, -
[Bkeﬂ ; By, [Br  Brek] By,

and the singular values of each matrix can be used for eigenvalue approximations. Following

Brei. J

are closer to the large eigenvalues of M K than those of By.. So they are also closer than those
of [B;C Bkek] and By. Similarly, the squares of the small singular values of By, are closest
to the small eigenvalues of M K among those of the above four matrices. We illustrate this
feature by a numerical example in the next section.

Similarly, when wGKL, starts with &; and WGKL,, starts withy; = 71 = M I, /| M1k,
we have Y = Y and X = X Q with the orthogonal matrix Q satisfying B = QB. This has
the interpretation that Q is obtained by performing one QR iteration on BB” with zero shift.
In this case, among the above four matrices [Bk Bk ek] will provide the best approximations
to the large eigenvalues of M K, and By, will provide the best approximations to the small
eigenvalues of M K.

the same arguments given in Remark 3.4, the squares of the large singular values of [

3.2. The linear response eigenvalue problem. In this section we apply the algorithms
wGKL,, and wGKL; to solve the eigenvalue problem for the matrix

_ O M nxn
H[K 0}, 0< K,M e R™™™,

Such an eigenvalue problem arises in the linear response problem [2, 3, 5, 9, 10, 14]. We
only consider wGKL,, since the results about wGKL, can be established in the same way. Let
Xk, Yy, By, be generated by Algorithm 1 after k iterations. Define

: T
x5 x) omels 4]

0 X B; 0
Then from (2.4),
(3.18) HX;, = X;Bj, + 6 [y’“o“] €3},
Let
].Sk = [61 €k+1 €2 €gyo ... €f €2k] .
One has
(3.19) H(X,P)) = (XuP)(PIBLP)) + 5 [ykgl} el

where P{B 1P, is a symmetric tridiagonal matrix with zero diagonal entries and

5 v 0 y2 0 ..oy O oy O
X Py = 0 =z 0 z9 ... 0 Tp—1 0 xpl|’

Using (2.6), one has

range X = range X, Py = Ko (H, [%ﬁ) .
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So, running k iterations of wGKL,, is just the same as running 2k iterations of a weighted
Lanczos algorithm with H and an initial vector of the special form [y{ 0] T
Define
K 0 M 0
ol O B i
Suppose By has an SVD (3.1) with o1 > 09 > ... > o3 > 0. From (3.18), we may take
+04,...,+0} as Ritz values of H and

1 .
vi_{y’“%}, j=1,...,k,

TV [ Xkd;
as the corresponding K-orthonormal right Ritz vectors, and from
r |0 I 0 I,
(3.20) H _[In 0 H I 0]

one may take

o L {iqusj
V2L Yy
as the corresponding M-orthonormal left Ritz vectors.
From (3.18), forany j € {1,...,k},

:|7 .j:1’"'7k’

Hv = :I:ij“‘—L + Brds {y’”l] , H ut = :l:()'ju:,t + B [ 0 } ,
J J V2 0 7 J V2 Yk

where ¢;}, is the kth component of ¢;. In practice, we may use the residual norm

1 Brl ¢l
GB21) |Hv] —o;vi|k = [H '} —ojul|m = \*@HMXW% — 0 Yl = \/é
to design a stopping criterion. When 3;, = 0 for some £, all +=0; are eigenvalues of H and

qu and vji are the corresponding left and right eigenvectors for j = 1,..., k.

REMARK 3.8. In general, based on (3.19), if (6;,g;), j = 1,...,2k, are the eigen-
pairs of f’ka.f’k, ie., f’gka’kgj = 0,g; with g1, ..., gor, orthonormal, then (6;, ¢;), for
t=1,...,2k, are the approximate eigenpairs of H, where ¢; = ka’kgi and

(3.22) IHg: — gl = |8 [y’i)“] €211

= Brlgi2k|s
K

where g; o, is the 2kth component of g;.

REMARK 3.9. Although it is quite natural to use the weighted norms in (3.21) and (3.22)
to measure the residual errors, in the numerical examples given below, we will use the 1-norm
instead to keep the computations simple.

A basic algorithm for solving the linear response eigenvalue problem reads as follows.

ALGORITHM 3 (WGKL,-LREP).

1. Run £ steps of Algorithm 1 with an initial y; and an appropriate integer k to generate
Bk, Yk, and Xk.

2. Compute an SVD of By, as in (3.1), select I(< k) wanted singular value o, and the
associated left and right singular vector ¢; and ¢, j = 1,..., L
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V2 :l:Xk:(bj J V2 kaj

For a convergence analysis we need some basic properties about the eigenvalues and
eigenvectors of H. From (2.1) and the fact that X is M-orthogonal and Y is K -orthogonal,

Y O
for X = [0 X]

3. Form:l:oj,v?E — 1 { Yit; ],andu.i =1 {iX’“Qﬁj}for]’ =1,...,1L

, one has

0 BT

HX = XB, B:[B 0

} , XTKX = I,.

Thus, H is similar to the symmetric matrix B with a K-orthogonal transformation matrix X.
Moreover, suppose B = ®A¥7T is an SVD of B. Define the symmetric orthogonal matrix

T, T
_ L n n
P = 7 [In IJ . Then,
YU 0 YU 0 A O
AL S A L
Hence, £, ..., )\, are the eigenvalues of H. Define
fj = Y‘Ilej, 77] = X<I>ej,

forj=1,2,...,n. Then &, ..., &, are K-orthonormal, and 71, . .., 7, are M -orthonormal,
and by defining
_ N YU 0 L[ ... & & ... ¢
+ + o _ 1 1 1 n
X, X XY, X, | = | Pp,=— ,
[xi ! ] [0 X@} \/5{771 B —
the vectors in, j =1,...,n, are the corresponding K-orthonormal right eigenvectors of H.

By (3.20), yji = F:g]j } are the corresponding M-orthonormal left eigenvectors of H. Note
J

that the reason for using the same notation for &; and 7; here as in Proposition 3.1 is that
they are indeed the right and left eigenvectors of M K corresponding to the eigenvalue /\5 as
described in Proposition 3.1. This can be easily verified by using (2.1) and the SVD of B.
The following convergence results can be deduced from Theorem 3.2.
THEOREM 3.10. Let vy}, ¥4, 75, Tj, Wik, Tjk» 05, and Sj be defined as in Theorem 3.2.
Then, forj =1,...,k,

0< A =05 =(=05) = (=4) <

A2 X2 (o ptan O (y1, &) \
- /\j+0'j ’

Cr—;i (14 2v;)
A2 - A2 (frm tanGK(y1,§n—k+j)>2
ijl(l +2’~7j) 7

0<0j—Aktj = (—An—ktj) — (—05) < ST

and for the Ritz vectors one has the bounds,

sin Ok (vf, 7x;-'t) = sin M (uji,yjt)

1| m (14 (owBe)?/07)
Clz—j(l + 2v;)

) )
sin“ 6 ,€;) —sin” g,
= cose; K (y1,&5) Qj

. + _+ o + o+
sin Ok (vj ,xn_k+j) = sin b (uj 7yn_k_s_j)

72(1+ (wfr)?/0?)
C7_1(1+27))

< .| sin? 0j + cos? p; sin? Ok (Y1, En—k+j),
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where
20 ; ~ Oi + Mkt
0; = arccos l 0; = arccos L4
)\j + oj 20'j

Proof. The first two bounds are obtained easily from (3.4) and (3.5). For the last two
relations, the equalities are trivial. So we only need to prove the upper bounds.

Following (3.10) and the fact that £] K'Y;.4; and ] M X;.¢; have the same sign, which
is a consequence of (3.9),

1
cos i (Vi x57) = 5[6] KYith; +nj MXy5]

ﬁcos@K(kaj,fj).

1 bV
= E(COS O (Yitpj, &) + cos On (Xidj,m5)) = ]2
0j

o

Since 0 < 20;/(A\j +0;) < 1,cosp; = /\27; is well defined. Then, from
J

it

cos O (Yi1pj,&5) = cos p; cos O (Vji,in) )

one has

sin® O (Yith;, &) = 1 — cos? o cos® Ok (V;E,in) = sin” g; + cos? g; sin® Ok (vj-[,xj[) .

Hence,

1
. + 4+ 2 02
sin Ok (vj ) X ) = o o \/sm Or (Yip;, &) —sin” g .
The bound for sin Ok (vj-[, in) then follows from (3.6). The last bound can be proved in the
same way by using the relation (3.11). a

REMARK 3.11. With the factorizations in (2.3), it is straightforward to show that (3.19)
is equivalent to

T7\T . N =
{Rg[, (R OL) } (ZxPr) = (Z1,Py)(PIBLP) + O [Uk(;_l} > Zr = ng [j')k]

with Vi, = LTY;, Up, = RT X4, Vgt1 = LTka, and Zng = I5. This is an identity
resulting in the standard symmetric Lanczos algorithm with the initial vector [vlT O}T,
v1 = LTy;. So we can establish the following convergence results directly: for j = 1,. .., k,

7k tan O (y1,&5) ) ?
Cor—5(1 + 2%;)

0<Aj =05 =(=05) = (=A) <2M (

i1+ (nBr)2 /62
sin Ok (v}i xi)g ! (oo k)/j

sin 0K(y17 fj)v

Y Car—j(1+ %)
where
)\g - )\j+1 ~ N
5 f— fr— ]~7

A1+ T,k = T1

j—1 j—1
N o + M . Ai + A1 2 .

= = 0; = N — o;l.

ﬂ-]k HO_Z_/\J’ ﬂ—] )\1_)\]” J IZI’II§1| J O—Z‘

i=1 i=1
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However, it seems nontrivial to derive a bound for o; — A, _;; since the small positive
eigenvalues of H are the interior eigenvalues.

In [17], another type of Lanczos algorithms was proposed for solving the eigenvalue
problem of H. The algorithms are based on the factorizations

KU =VT, MV =UD, vtv =1,
with the assumption that M/ > 0, where T is symmetric tridiagonal and D is diagonal, so that
H[U O}:[U O} [0 D]
0V 0O V| |T 0
The first Lanczos-type algorithm in [17] computes the columns of U, V' and the entries of D

and T by enforcing the columns of V' to be unit vectors. By running k iterations with the first
column of V' as an initial vector, the leading principal k£ x k submatrices Dy, and T}, of D and

T, respectively, are computed. Then the eigenvalues of are used to approximate

k
T, O
the eigenvalues of H. This algorithm works even when K is indefinite. On the other hand,
when K > 0, Algorithms | and 2 exploit the symmetry of the problem and treat K and M
equally, which seem more natural.

4. Numerical examples. In this section, three examples are presented to illustrate our
algorithms. All the numerical results are computed by using Matlab 8.4 (R2014b) on a laptop
with an Intel Core 15-4590M @ 3.3GHz CPU and 4GB memory.

Example 1. In this example, we investigate the singular values of the following four
matrices

B -
[Bk§{:| ; By, [Br  Brex], By.
The latter two blocks are generated by Algorithm 1 (wGKL,) with an initial vector y;
satisfying |y1 | x = 1, which is a normalized random vector generated by the Matlab command
randn. The former two blocks are generated by Algorithm 2 (wGKL;) with the initial vector
Z1 = y1/|Ky1| s with the same y; used in Algorithm 1. The singular values of all four
matrices can be used for eigenvalue approximations of the matrices M K and H. We test,
which one can provide the best approximations.

The tested positive definite matrices K and M of order n = 1862 are from a problem
in [17] related to the sodium dimer Na2. Only the largest and the smallest eigenvalues of
M K are computed. Assuming o is the jth singular value of each of the above four matrices,

2_ 2
we report the relative errors for the largest Ritz value 07 of M K: e(0?) = |A1/\2°1 | and the
1

2_ 2 . .
smallest Ritz value o7 of MK: e(0}) := ‘)‘"}\720"‘, respectively. The “exact" eigenvalues

A2 ~1.25 x 10? and A2 ~ 0.41 of M K are computed by using the MATLAB command eig.

Weset k =1,...,15 for the largest eigenvalue case and k = 1, ..., 150 for the smallest
eigenvalue case. The numerical results are reported in Figure 4.1. From the figures we can
see, as discussed in the last part of Section 3.1, that the square of the largest singular value of

{ BBkT:| is closer to the largest eigenvalue of M K than that of By,. Thus, they are also closer
k€L

than those of [Bk ﬂkek] and Bj. The square of the smallest singular value of By is the
closest to the smallest eigenvalue of M K among those of the above four matrices. We can
also see from the figures, because of equation (3.17), that the extreme singular values of By,
and [Bk Bkek] coincide.
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Relative eigenvalue errors Relative eigenvalue errors

—x—e¢(a?) by By 2) by By

—x—e(ot) by [BifSrer] I v 2) by [Bibrer]

—o—e(0}) by Bk 2) by By

—>—e(0?) by [Bf@kfk]T —b—ec(0}) by [Bzﬁkek.]T 4

5 10 15 0 50 100 150
iteration step k iteration step k

FIG. 4.1. Relative errors of the extreme eigenvalues of M K in Example 1.

We also used the same matrices M and K to verify the residual formulas in (3.3) and
(3.13) for the extreme eigenvalues. The actual residuals

rr1; = (MK — o7 1)Yi;| i1y o= (KM — o3 1) X,
rr2j = |[(MK — p31)Yip1wj|k, rro; = (KM — p31) XG5l ars

and the corresponding quantities

qr1j = axBr|Vjkl, qrj = Brldjrly/Br + aiyq,

qr2,j = kr1|wj k1l + Briys qr2,j = ak+1Pk|Ckl,

for j = 1, k with various values of k, are depicted Figure 4.2. The results show that the
quantities are close to the actual residuals.

Example 2. In this example, we compare Algorithm 1 (wGKL,,) with the weighted
Lanczos algorithm for the eigenvalues of M K. The weighted Lanczos algorithm is based on
the relations given in (2.5). The singular values of both By, and [B;C Bkek] generated by
wGKL,, are used to approximate the eigenvalues of M K. The numerical results computed by
wGKL,, are labeled with Alg-1 and those computed by the weighted Lanczos algorithm with
Alg-WL.
We performed a comparison with four pairs of matrices K and M:

1. K and M are of order n = 1000 with K = QDQ™ and M = QDQT, where Q is or-

thogonal generated from the QR factorization of a random matrix,
D = diag(dy,...,d,), with d; = 10°=7 fori = 1,...,6, and the rest of the
diagonal elements generated by the Matlab command rand. D is another diagonal
matrix formed by reversing the order of the diagonal elements of D. The extreme
eigenvalues of MK are \; ~ 0.98 and \,, ~ 5.14 x 1077,

K and M are of order n = 2000 with K constructed in exactly the same way
as before and M = I,,. The extreme eigenvalues of M K are A\; ~ 0.9999 and
An = 1075,

K = I, and M is the matrix K in the matrix pair of item 2. Note that for such a pair,
since K = I, the weighted Lanczos algorithm is just the standard Lanczos algorithm.
K and M are of order n = 1000 with K = QDQT and M = QDQT, where both
@ and @ are orthogonal, () is generated from the QR factorization of a random
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Residual norms Residual norms

—*—TRLk

—S—AqR1k

. .
A Y &N&& B =Tr1k
By MN =9 —qLLk

. §~$
ha . §§§

0 5 10 15 0 50 100 150
Number of iteration k Number of iteration k

Residual norms Residual norms

0 5 10 15 0 50 100 150
Number of iteration k Number of iteration k

FIG. 4.2. Residual norms of the extreme eigenvalues of M K in Example 1.

matrix, () is generated from the QR factorization of Q * (I +10~'°F) with E being a
random matrix, D = diag(dy, . . .,d,), and D = diag(dy, ..., d,,) with all diagonal
elements generated by the Matlab command rand but d,, ;o = 1077, d, /041 = 1075,
&1 =107, and cZn = 1078, The “exact” extreme eigenvalues of M K are \; ~ 0.93
and \,, ~ 1.93 x 1079 computed with the Matlab command eig.

For each pair we run k£ steps of both algorithms to compute the extreme Ritz values. A
scaled randomly generated vector y; satisfying y7 Ky; = 1 serves as the initial vector for
both of the algorithms. The extreme Ritz values computed by wGKL,, are denoted by 7 and
a,%, where 01 and oy, are the extreme singular values of either By, or [Bk B ek] , and those
by the weighted Lanczos algorithm are denoted by v; and v;,. We measure the accuracy by
the absolute errors e(A;) = |A; — M| and e(\p) = |Ak — An|, where A, is either 62 or v and
;\k is either o} or 1. The Figures 4.3-4.6 display the absolute errors for the pairs in the items
1-4 for various values of k.

The numerical results show that both algorithms behave essentially the same in practice.
The only place where wGKL,, does slightly better is in approximating the smallest eigenvalue
of M K from the pair in item 4. wGKL,, converges eventually while the weighted Lanczos
algorithm stagnates. In all the cases, for the largest eigenvalue of M K, the largest singular
value of [Bk ﬁkek] gives a slightly better approximation than the rest. For the smallest
eigenvalue of M K, the smallest singular value of [Bk Bk ek} gives the worst approximation.

We ran the tests with many other pairs of M and K. No significant difference between
the two algorithms was observed.

Example 3. In this example, we test Algorithm 3 (wGKL,-LREP) for solving the
eigenvalue problem of a matrix H given in [17]. The matrices K and M in H are extracted
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5 Absolute eigenvalue errors 5 Absolute eigenvalue errors
10 10
—#—e(0}) of By, by Alg-1
102f 102 —s—c(0}) of [BiByer] by Alg-1
—e—e(vy,) by Alg-WL
1047 104 1
108 10® 1
108 10® 1
10710 10710 1
—%—ec(0?) of By by Alg-1
102l —s—e(07) of [Byfrer] by Alg-1 1012 1
—e—e(11) by Alg-WL
1071 1071
0 5 10 15 20 25 30 35 40 45 100 300 400 500 600 700 800 900
Number of iteration k Number of iteration k
FIG. 4.3. Absolute errors of the extreme eigenvalues of M K for pair 1 in Example 2.
b Absolute eigenvalue errors " Absolute eigenvalue errors
—x«—e(0?) of By, by Alg-1 —#—e(0?) of By by Alg-1
. —=—e(0}) of [BiBrex] by Alg-1 , +e(a£) of [BiSrer] by Alg-1
10 —e—e(1y) by Alg-WL 10 —o—e(v;) by Alg-WL
104 1 104 1
108 1 108 1
100 1 10° 1
107101 1 107101 1
10712 ~ 10712 -
0 50 100 150 200 250 0 50 100 150 200 250 300 350 400
Number of iteration k Number of iteration k
FIG. 4.4. Absolute errors of the extreme eigenvalues of M K for pair 2 in Example 2.
100 Absolute eigenvalue errors 100 Absolute eigenvalue errors
—x—e(0?) of By, by Alg-1 —x—e(o?) of By by Alg-1
w2l —s—c(0}) of [Byfrex] by Alg-1 . —s—c(0}) of [BiByex] by Alg-1
—o—e(11) by Alg-WL 10 —o—e(vy) by Alg-WL
104 1
104 1
106 1
108 1
108 1
108 1
10-\0 F 4
1072 1 10ty 1
1014 L L L L 1012 L L L L L L
0 50 100 150 200 250 0 50 100 150 200 250 300 350

Number of iteration k

Number of iteration k

FIG. 4.5. Absolute errors of the extreme eigenvalues of M K for pair 3 in Example 2.

from the University of Florida sparse matrix collection [6]: K is fvl with n = 9604, and M
is the n x n leading principal submatrix of finan512. Both K and M are symmetric positive
definite. The two smallest eigenvalues of H are approximately 1.15, 1.17, and the two largest
ones are approximately 9.80, 9.75.
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o Absolute eigenvalue errors o Absolute eigenvalue errors
10 ——c(0?) of By, by Alg-1 g —+—e(0?) of By by Alg-1
102 —s—e(0}) of [Brfyer] by Alg-1 —s—e(0}) of [ByByey] by Alg-1
—o—e(v1) by Alg-WL —o—e(vy;) by Alg-WL

10710

10 20 30 40 50 60 70 80 90 0 100 200 300 400 500 600 700 800 900 1000
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FIG. 4.6. Absolute errors of the extreme eigenvalues of M K for pair 4 in Example 2.

The initial vector y; for wGKL,,-LREP is randomly selected satisfying |y1|x = 1. The
numerical results are labeled with Alg-3. For comparison, we also test the first algorithm
presented in [17] with the initial vector y1/|y1|. The numerical results are labeled with
Alg-TL. We also run the weighted Lanczos algorithm based on the relation (3.19) with H
being treated as a full matrix and X, being a K-orthonormal matrix. The initial vector is

[yf 0] " The numerical results are labeled with Alg-Full. We only compute the two largest
and two smallest positive eigenvalues of H. For the two largest positive eigenvalues we run
m = 50 iterations with Alg-3 and Alg-TL and 2m = 100 iterations with Alg-Full. For the two
smallest positive eigenvalues we run m = 200 for the former two algorithms and 2m = 400
iterations with the latter. (Recall that two iterations of Alg-Full are equivalent to one iteration
of Alg-3 and Alg-TL.)

We report the relative eigenvalue error and the magnitude of the normalized residuals in

the 1-norm for each of the 4 Ritz pair (o, vj+):

Ni—ojl o
c(a) = { el
ntj—k—0j S
Antj—k y J = k lvkv
Hvi —o,vT
’I"(G'j) = " ! J JJ1 ) .7 = 1727k - 17k7
(IH + o)llv

for each of the iterations k = 1,2, ..., m of Alg 3 and Alg-TL (and k is supposed to be 2k for
Alg-Full). The “exact” eigenvalues \; are computed by the MATLAB command eig.

The testing results associated with the two smallest positive eigenvalues are shown in
Figure 4.7, and the results associated with the two largest eigenvalues are shown in Figure 4.8.
For the two smallest positive eigenvalues, Alg-3 runs for about 4.515 seconds, Alg-Full about
4.556 seconds, and Alg-TL about 15.314 seconds. For the two largest eigenvalues the runtime
is about 0.313, 0.344, 0.469 seconds, respectively. Alg-TL needs to compute the eigenvalues
of [79 Dok] , which is treated as a general nonsymmetric matrix. This is the part that slows

k
down Alg-TL. On the other hand, Alg-Full gives less accurate numerical results than the other
two algorithms. This example shows that Alg-3 works well. It takes less time than Alg-TL to
obtain almost the same numerical results.
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Relative eigenvalue errors

Residual 1-norms

102 107
10°
102
102 1
3 .
| e—elon) by Ale-TL O —e—1(oy) by Alg-TL
7 —o—e(0p1) by Alg-TL —e—1(0}_1) by Alg-TL
——e(oy) by Alg-3 . ——r1(oy,) by Alg-3
106 | —<—e(oj_1) by Alg-3 s 1o —x—1(0)-1) by Alg-3
—<—e(oy) by Alg-Full —a—r1(oy) by Alg.full og
. —p—e(op—1) by Alg-Full . —>—1(0y_1) by Alg-full
1o 0 20 40 60 80 100 120 140 160 180 200 1o 0 20 40 60 80 100 120 140 160 180 200
Number of iteration k Number of iteration k
FIG. 4.7. Errors and residuals of the two smallest positive eigenvalues in Example 3.
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8 -4
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FIG. 4.8. Errors and residuals of the two largest eigenvalues in Example 3.

5. Connection with weighted conjugate gradient methods. Consider the system of
linear equations

5.1 Mz=b, M>D0.

Let z be an initial guess of the solution z, = M ~*band rg = b — Mzy = M (2. — 29) be
the corresponding residual. Assume that Xy, Y, and By, are computed by wGKL,, with M
and another matrix K > 0 and y; = ro/|ro| k. Then they satisfy (2.4) and (2.6).

We approximate the solution z, by a vector z € 2o + KKp(MK,y;) for some k €
{1,...,n}. From (2.6), we may express

z2p = 2o + Xpwy

for some wy, € R¥. We take the approximation z;, (or equivalently wy,) as the solution of the
minimization problem

minJ(wk), J(wk) ZEgMeEk, Ek = Ze — 2k =€o—X;€’LUk.
W

Since
J(wy) = wi XFMXpwy, — 2wE X Meg + el Meg

T~T T~T T
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the functional J(wy,) is minimized when wy, satisfies
XFMXpwe = X ro.
Using 79 = |rol xy1, XE M Xy, = Iy, Y;' KY}, = I, and the first relation of (2.4), one has
Xiro = [rolx (KYi B, ) yy = Irol x By Y Kyy = |rol k By Ten.
Hence the minimizer is
2k = 2o + Xpwy, with wg = HTOHKBk_Tel.

The vector wy, can be computed in an iterative way along with the iterations of wGKL,,. Note
that

a
BT - B az _ Bg”_% 0]
.. : ﬂk—lek_l (675
Br—1 o
So
T
B/c_T = B Bl}_l T 0 1
k—1 - — ?
T Tan ep—1Br1 oy
and by denoting wy, = [¢1 ... @k]T, one has
BT el w
wy = |ro|x By Ter = |r k=177 = | k-1
k= lrolx By, " e1 = [ro|x [_ngleleleel o |
where ¢y, follows the iteration
Br-1 Br-1
52) o=~ eF_Wk—1 = — Ok—1, k>1, Bo=1, o= —|rolx.
Qe Qe
Therefore,
2p = 20 + XpWk = 2k—1 + QpTh, k>1,

and using B wy, = |ro| xe1 and the second relation in (2.4), the corresponding residual is
rr=b— Mz, =19 — MX,wy, =19 — (YkBg + ﬂkykJrlef)wk
=70 — |rolkYrer — Bruoryk+1 = —Brpryr+1, k= 0.

Hence, we have the following algorithm for solving (5.1).
ALGORITHM 4 (WGKL,,-Lin).

Choose zg and compute 7o = b — M zg, po = —|ro| k. and y1 = ro/|ro] k- Set Bo = 1,
zg = 0. Compute g; = Kyj.
Forj=1,2,---
sj = 9;/Bj-1 = Bj-1%j1
fj = Ms;

a; = (sTf;)2


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

176 H.-X. ZHONG AND H. XU

Tj = sj/a;
;= —Bj—1pj-1/qy
Zj = Zj-1 1 9;T;
tiv1 = fi/oy — a;y;
gj+1 = Ktj
Bi = (tF195+1)
Yi+1 =ti11/B;
Tj = —pitjt
End

Nl

We show that Algorithm 4 is equivalent to a weighted conjugate gradient (CG) method.
By introducing the vectors py_1 = aicpkxk, for k > 1, with

po = atprxy = arp1 Ky, = |ro|lx Kyi = Kro,

one has
T _ 4 2. T _ 42
Pr—1Mpr—1 = appiry Mz, = agpy.
Since r, = —PrYrYk+1, using (5.2), one has
T _ p2 2T _n2,2 2 2
T Kk = B0k 1 KYk+1 = Btk = Qhi1Phs1-
We then have
4 2 T
02— Yen1Pirr _ P Mpk
k+1 = 73 2 T :
Qi 1Phr1 T ETR
Now,
-2
2k = Zp—1 T PrTk = Zk—1 + ), "Pk—1 = Zk—1 + Vk—1DPk—1,
T
o1 = ai? = i1 K7Tr—1
-1 — k —_— T77
pk_lMpkfl
and

Tk =b— Mz =711 — V-1 Mpr_1.
By multiplying the equation
Kykt1 = Brwk + akp1Zk41,
with ag41¢k+1 and using (5.2), one has

P = aiﬂ%ﬂxkﬂ = — Qg1 Bk Pr12k + 10k +1 K Y1
_ 52 _ B

= Brrrr — BropKypt1 = a1t Kry.

k

Since

2 2 2 T
’L9k L= Pk _ ,Bk@k _ Tk K’f’k
1= "9 = "5 3 = T )
oy i3 T K1
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we have

r,{Krk
pr = Krg + Op—1pp—1, V-1 = T Koy
As a consequence, by using r; and py, instead of y; and x, we have the following simplified
algorithm.
ALGORITHM 5.
Choose 2y and compute g = b — Mz and pg = K.
Forj=0,1,2,---
v =17 Krj/pj Mp;
Zj+1 = 2 T 5P5
Tj+1 =15 — 7 Mp;
v = Tf+1KTj+1/TfKTj
pj+1 = Krjp1 +9;p;
End

Algorithm 5 is a weighted CG algorithm, which is alike the standard CG but with the
residuals r; being forced to be K-orthogonal. It is just the preconditioned CG (PCG) if K is a
matrix inverse. In particular, it is the standard CG if K = I. On the other hand, based on PCG
theory, the vector sequences {r; } and {p, } produced by Algorithm 5 are K and M -orthogonal,
respectively. By normalizing the vectors, we obtain {y;} and {x;}, and by replacing {r;} and
{p;} in Algorithm 5 with {y;} and {z;}, we recover Algorithm 4. Therefore, Algorithms 4
and 5 are equivalent.

This equivalence provides another way to connect the PCG to Krylov subspace methods.
Commonly, a connection is made for PCG and the preconditioned Lanczos algorithm [15],
where the Cholesky factorization of the computed symmetric tridiagonal matrix is involved.
Since Algorithm 4 computes the Cholesky factor directly (even when K = I), the new
connection is more direct and compact.

Finally, we point out that wGKL; can be employed to solve (5.1) as well.

6. Conclusions. We have proposed two weighted Golub-Kahan-Lanczos bidiagonaliza-
tion algorithms wGKL,, and wGKL,; associated with two symmetric positive definite matrices
K and M. We have shown that the algorithms can be implemented naturally to solve the
0
K 0
solvers, convergence results have been established. Besides the eigenproblems, the algorithms
can also be implemented to solve linear equations with a positive definite coefficient matrix,
yielding a method that is equivalent to PCG. Several numerical examples have been given to
illustrate the effectiveness of our algorithms.

The proposed algorithms are still in basic form. In order to develop more practical
algorithms, additional techniques need to be employed. There are well-developed techniques
for Krylov subspace methods, many of which can be incorporated into the proposed algorithms.
For instance, in order to compute the smallest eigenvalues of H, one may apply the wGKL
algorithms to the pair (K1, M ~1), following the shift-and-invert idea. There are also some
open questions concerning the proposed algorithms. For instance, it is not clear whether the
use of the weighted norm will affect the numerical efficiency and stability of the algorithms.
All these require further investigations.

large-scale eigenvalue problems of M K and the matrix H = . For these eigenvalue
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