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VARYING THE S IN YOUR S-STEP GMRES∗

DAVID IMBERTI† AND JOCELYNE ERHEL†

Abstract. Krylov subspace methods are commonly used iterative methods for solving large sparse linear systems.
However, they suffer from communication bottlenecks on parallel computers. Therefore, s-step methods have been
developed, where the Krylov subspace is built block by block so that s matrix-vector multiplications can be done
before orthonormalizing the block. Then Communication-Avoiding algorithms can be used for both kernels. This
paper introduces a new variation on the s-step GMRES method in order to reduce the number of iterations necessary
to ensure convergence with a small overhead in the number of communications. Namely, we develop an s-step
GMRES algorithm, where the block size is variable and increases gradually. Our numerical experiments show a good
agreement with our analysis of condition numbers and demonstrate the efficiency of our variable s-step approach.
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1. Introduction. Many computational problems need to solve a large linear system
Ax = b. Because linear solvers can be quite time consuming, they require efficient imple-
mentation on supercomputers. An important class of methods is based on Krylov subspace
methods like GMRES [35]. In this paper, we aim to improve the parallelization of such
methods for general sparse matrices. Parallel GMRES algorithms have been studied by several
authors, for example [1, 5, 8, 11, 13, 18, 24, 27, 31].

In Figure 1.1, we plot a tree, each branch of which describes a further subset of GMRES
algorithms. In the course of this paper, we will briefly describe each branch and the one we
eventually take by discussing each level of this tree from the root node down (a breadth-first
traversal through GMRES).
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FIG. 1.1. Variants of restarted GMRES(m).

Some parallelism can be found in the Arnoldi process of the usual restarted GMRES(m)
algorithm, wherem is the restarting parameter [4, 9, 32, 36]. However, global communications
prevent good performance with many processors. Another way to build an orthonormal basis
is to first compute a Krylov basis of size m, where m matrix-vector multiplications can be
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done in parallel, and to orthogonalize afterwards. We denote this algorithm as an m-step
GMRES algorithm [1, 5, 8, 11, 13, 24, 27]. These two variants of the restarted GMRES(m)
method, using either Arnoldi or a Krylov basis orthogonalized afterwards, are represented
by the first level of the tree in Figure 1.1. However, if m is large, then the Krylov basis may
become ill-conditioned [2, 18, 30]. Therefore, restarted s-steps methods have been defined,
where the Krylov basis is built block by block, with m/s blocks of size s, allowing s parallel
matrix-vector multiplications and a better-conditioned Krylov basis [18].

We propose a new variation of m-step and s-step GMRES algorithms, which avoids
solving a triangular system. We denote the approach with the inverse of a triangular matrix as
the ’Traditional’ approach in Figure 1.1, while we propose a new ’Non-Traditional’ branch.
Both methods are mathematically equivalent and seem to have similar numerical behaviour as
illustrated in our numerical experiments. One key motivation to develop this ’Non-Traditional’
branch is simplicity. From the ’Non-Traditional’ fixed s-step version, we easily derive a new
algorithm where the block size s is allowed to vary. It could be noted that a variable method
could also be derived from the ’Traditional’ branch, but we did not explore this potential
branch for the sake of simplicity (therefore we use a dashed line in Figure 1.1). Indeed, it is
much easier to vary the block size when there is no triangular system to solve. It can also
be noted that variable s-step methods have been designed independently for other Krylov
subspace methods, in particular the Conjugate Gradient method [6, 7].

The main novelty of this paper is thus the variable s-step GMRES algorithm using a
’Non-Traditional’ version of the subspace condition. We use dotted lines in Figure 1.1 to
show the two algorithms described in this paper: ’Non-Traditional’ fixed and variable s-step
GMRES. Since convergence is related to the condition numbers of the blocks used to build
the Krylov basis, we prove lower bounds for these condition numbers, which can be seen as
the best possible case. Here we generalize the results for a symmetric matrix [2] to the case
of a nonsymmetric matrix with at least two different eigenvalues. In view of these bounds,
we suggest to use an increasing block size, which could be adaptively defined. Since global
communication occurs at each step, it is desirable to get a small number of steps, balancing the
convergence rate and the communications overhead. We investigate a non-adaptive sequence
based on Fibonacci numbers, which results in a rapidly increasing block size and a number of
steps of the same order as for a fixed block size when the restarting parameter is large.

The paper is organized by discussing each level of the tree in Figure 1.1. In Section 2, we
give a brief background on the restarted GMRES method with Arnoldi and the Traditional
m-step GMRES (level 1) method. Then we introduce the Non-Traditional variant and compare
both approaches for the m-step GMRES (level 2). In Section 3, we define the Non-Traditional
fixed s-step GMRES algorithm and derive our variable s-step algorithm (level 3). Then we
compare in Section 4 the convergence and parallelism issues of both algorithms. Our numerical
experiments in Section 5 demonstrate the efficiency of a variable block size compared to a
fixed block size. We observe a faster convergence, which is closely related to the condition
numbers of the blocks. Finally, we conclude in Section 6. Throughout the paper, we use the
Euclidean norm.

2. Traditional and Non-Traditional m-step GMRES methods.

2.1. Restarted GMRES. We first recall the GMRES algorithm to build upon and re-
call the m-step GMRES method. Let Ax = b be a linear system with A a large sparse
nonsymmetric nonsingular matrix of size n. We introduce the Krylov subspace

Km = span{r0, Ar0, A2r0, · · · , Am−1r0}

with the residual vector defined as r0 = b−Ax0 for some chosen initial vector x0. We also
introduce v1 = r0/β, where β = ‖r0‖. It is known that performing the Arnoldi process on A
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and r0 generates an orthonormal basis,

Vm+1 = {v1, . . . , vm+1}

of the Krylov subspace Km+1 and an upper Hessenberg matrix Hm of size (m+ 1)×m that
satisfy the Arnoldi relation

(2.1) AVm = Vm+1Hm.

The GMRES algorithm is based on the subspace condition xm ∈ x0 + Km, which can be
written as

xm = x0 + Vmy.

Using the Arnoldi relation (2.1), we can say that rm = r0 − AVmy = Vm+1(βe1 −Hmy),
where e1 is the first column of the identity matrix.

The residual in the GMRES method satisfies the Galerkin condition minx∈x0+Km
‖b−Ax‖,

which is equivalent to the linear least-squares problem

min
y

∥∥βe1 −Hmy
∥∥ .

Restarted GMRES repeats this Arnoldi cycle for a new initial vector by setting x0 = xm
[19, 23, 26, 34, 35].

The GMRES algorithm may be modified to allow preconditioning, but this will not affect
our discussion. Indeed, let us consider a preconditioned system AM−1(Mx) = b, where M
is a nonsingular matrix. Then we can replace A by AM−1 everywhere, and the subspace
condition is written as xm = x0 + M−1Vmy. Thus, a matrix-vector product involves first
solving a system with M and then multiplying by A. We will discuss how to parallelize this
operation in Section 4.1. We will also assume throughout the paper that the Krylov subspace
Km is of dimension m so that the residual of minimal norm is unique.

In summary and to provide a comparison to the variable s-step GMRES method later,
the restarted GMRES method, denoted by GMRES(m), is outlined in Algorithm 1. It can be
noted that it is not necessary to compute xk at each step since the norm of the residual can be
estimated by ‖βe1 −Hkyk‖. We leave it there for the sake of clarity.

2.2. Traditional m-step GMRES. The purpose of the m-step GMRES method is to
improve the communication efficiency of Algorithm 1. Most of the computational time in
Algorithm 1 is spent inside of the Arnoldi loop. Indeed, the least-squares problem in step 9
of Algorithm 1 involves the small upper-Hessenberg matrix Hk, therefore it may quickly
be solved by a series of Givens rotations. The Arnoldi process contains two key kernels:
matrix-vector products and orthonormalization. To motivate the m-step GMRES algorithm,
we look at the problems involved in parallelizing these kernels.

The Arnoldi process builds an orthonormal basis of the Krylov subspace Km+1 with one
matrix-vector multiplication at a time and orthonormalizes it against the previous vectors as
soon as it is added. The specific method for orthonormalization may vary. Regardless, all
such methods lead to communication issues due to the global communication necessary in the
dot product operation. A classical Gram-Schmidt orthonormalization reduces communication
compared to a modified Gram-Schmidt process, but then this procedure must be performed
twice to ensure numerical stability [14]. Another possibility is to use Householder transforma-
tions, but this is more computationally intensive [38]. Parallelism in Gram-Schmidt process
can be added by using a block Householder or QR method instead [20].
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Algorithm 1 GMRES(m)
1: while not converged do
2: r0 = b−Ax0
3: β = ‖r0‖
4: v1 = r0/β
5: V1 = {v1}
6: for k=1,m do
7: wk = Avk
8: Arnoldi process: orthogonalize wk against Vk and normalize
9: Arnoldi relation: AVk = Vk+1Hk

10: solve the least-squares problem yk = arg miny ‖βe1 −Hky‖
11: compute xk = x0 + Vkyk
12: test convergence
13: end for
14: if not converged then
15: x0 = xm
16: end if
17: end while

A Krylov basis can be built before orthonormalizing. This computation involves merely a
succession of m matrix-vector products (thus the name m-step GMRES) and is followed by
an orthonormalization process. These two steps provide more parallelism by avoiding global
communications; see Section 4.2 for more details. However, convergence issues can arise with
the choice of the Krylov basis; see Section 4.1.

To detail the m-step GMRES procedure further, we introduce a basis Wm+1 of the Krylov
subspace Km+1. We further assume a relation

(2.2) AWm = Wm+1Tm+1,

where Tm+1 is an (m + 1) × m matrix. For instance, the matrix Tm+1 associated to the
monomial basis has a diagonal of 1 below the main diagonal and 0 elsewhere. We compute an
orthonormal basis of Km+1 with a QR factorization:

Wm+1 = Vm+1Rm+1.

The diagonal elements of the upper triangular matrix Rm+1 are forced to be real positive so
that the QR factorization is unique [15]. Then we get

AWm = Vm+1Rm+1Tm+1,

AVm = Vm+1H̃m,
(2.3)

where H̃m = Rm+1Tm+1R
−1
m . Thus the subspace condition of the GMRES method can still

be written as xm = x0 + Vmy, and the Galerkin condition ends up with the least-squares
problem

min
y

∥∥∥βe1 − H̃my
∥∥∥ .

If the Krylov subspace Km+1 is of dimension m+ 1, then the residual rm is uniquely de-
fined by the Galerkin condition, and we can conclude that them-step GMRES and GMRES(m)
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Algorithm 2 Traditional m-step GMRES
1: while not converged do
2: r0 = b−Ax0
3: β = ‖r0‖
4: v1 = r0/β
5: Wm+1 basis of Km+1 such as AWm = Wm+1Tm+1

6: QR factorization Wm+1 = Vm+1Rm+1

7: H̃m = Rm+1Tm+1R
−1
m .

8: solve the least-squares problem ỹm = arg miny ‖βe1 − H̃my‖
9: compute xm = x0 + Vmỹm

10: test convergence
11: if not converged then
12: x0 = xm
13: end if
14: end while

algorithm are mathematically equivalent. We summarize these steps in Algorithm 2, which we
call m-step GMRES.

In practice, Algorithm 2 may overwrite W with V in order to save memory. It contains
three main steps: the matrix-vector products in the computation of W , its QR factorization,
and the multiplication by the R−1m factor. We now turn to this R−1m step.

2.3. Non-Traditional m-step GMRES. We design a new version of them-step GMRES
method without this R−1m factor, comparable with the treatment in [38]. We denote as ’Tradi-
tional’ the Algorithm 2 that uses thisR−1m factor, and we propose a ’Non-Traditional’ algorithm
without R−1m .

Let Wm be a basis of the Krylov subspace Km for which we do not assume the rela-
tion (2.2). The subspace condition can be equivalently written as

xm = x0 +Wmy.

We still compute an orthonormal basis of Km+1 with a QR factorization:

(2.4) [v1, AWm] = Vm+1Rm+1 = Vm+1[e1, Hm]

so that we get AWm = Vm+1Hm, where Hm is the Hessenberg matrix obtained by removing
the first column of Rm+1. The Galerkin condition is then equivalent to solving the least-
squares problem

min
y
‖βe1 −Hmy‖ .

Again, this algorithm is mathematically equivalent to GMRES(m) since it satisfies the
subspace and Galerkin conditions. Using a relation (2.2), this approach may also overwrite
W with V in order to save memory. Indeed, W can be replaced by V during the QR
factorization (2.4), and W , thus x, can be expressed with V using (2.2) in the same way as
before. We summarize this new version of the m-step GMRES procedure in Algorithm 3.

We now compare Traditional and Non-Traditional approaches. On the one hand, there
is an inversion step with R−1m , and on the other hand there is a multiplication step with
Wm (assuming that one uses an orthonormalization technique that is careful to preserve
orthonormality [17]). It seems that numerical instabilities in the algorithm might simply
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Algorithm 3 Non-Traditional m-step GMRES
1: while not converged do
2: r0 = b−Ax0
3: β = ‖r0‖
4: v1 = r0/β
5: build a basis Wm of Km
6: QR factorization [v1, AWm] = Vm+1Rm+1

7: Hm = Rm+1 without the first column.
8: solve the least-squares problem ym = arg miny ‖βe1 −Hmy‖
9: compute xm = x0 +Wmym

10: test convergence
11: if not converged then
12: x0 = xm
13: end if
14: end while

swap places from the inversion of Rm to the matrix multiplication by Wm. In some sense,
both methods inherit the conditioning of the matrix Rm. Here, we do not argue a priori that
one method is more stable than the other. Therefore, we base our choice between the two
algorithms on the ease of implementation. It will be more apparent as we generalize to a s-step
GMRES formulation below that our Non-Traditional approach is easier to implement. Indeed,
we will not need to discuss the details of calculating and determining the R−1m blocks and the
additional indexing challenges that occur as a result of that. We now turn to such a s-step
method using both bases W and V in our Non-Traditional way.

3. Fixed and variable Non-Traditional s-step GMRES.

3.1. Fixed s-step GMRES. In the m-step GMRES method, the size of the Krylov basis
Wm is equal to the restarting parameter m. However, the condition number of AWm and thus
of Hm increases with m, limiting the restarting parameter to small values. But quite often
convergence could stall if the restarting parameter is too small [27].

Therefore, another approach can be taken where the Krylov orthonormal basis Vm+1 is
built by successively computing blocks Bj of size s ≤ m [18]. Each restarting cycle will
then be composed of several steps j, where a block Bj is added to the basis W and ABj is
orthonormalized, adding a new block to the orthonormal basis V . This should allow taking
s sufficiently small for limiting the condition numbers and m sufficiently large for avoiding
stagnation. If s is large enough, then parallelism can occur by decoupling the matrix-vector
multiplications from the orthonormalization. The optimal value of s depends on the linear
system considered and on the computer architecture.

For the sake of simplicity, we assume thatm is a multiple of s so thatm = sJ . We use the
Non-Traditional way as described above as opposed to the Traditional approach characterized
by [18]. Let B1 be a basis of the Krylov subspace Ks, and let Ws = B1. We perform a QR
factorization as in equation (2.3):

(3.1) [v1, AWs] = Vs+1Rs+1.

The last vector vs+1 of the orthonormal system Vs+1 will serve as the initial vector of the
next block B2. We may inductively give a more general definition of W , the orthonormal
system V , and the triangular matrix R. At step j, with 2 ≤ j ≤ J , we assume that we
have built Ws(j−1) of size s(j − 1) and Vs(j−1)+1 of size s(j − 1) + 1 with the last vector
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u = vs(j−1)+1. The block Bj of size s is then a basis of the Krylov subspace Ks(u), where
Ks(u) = span{u,Au,A2u, · · · , As−1u}.

We can now describe a recursive relation for Wsj :

(3.2) Wsj = [Ws(j−1), Bj ] = [B1, B2, . . . , Bj ].

Now, we show by induction how to perform a QR factorization of [v1, AWsj ]. Let us assume
that

[v1, AWs(j−1)] = Vs(j−1)+1Rs(j−1)+1,

which is true for j = 2. We orthogonalize the vectors ABj against the basis Vs(j−1)+1 to get
new s vectors and s columns:

ABj = Vsj+1

[
Sj
Sj

]
,

where Sj is an upper triangular matrix of size s. We get

(3.3) [v1, AWsj ] = Vsj+1Rsj+1,

where

Rsj+1 =

[
Rs(j−1)+1 Sj

0 Sj

]
.

We define the upper Hessenberg matrix Hsj as Rsj+1 without the first column e1 so that

(3.4) AWsj = Vsj+1Hsj .

Before deriving the s-step method, we prove that the systems Wsj and Vsj span Krylov
subspaces.

THEOREM 3.1. We assume that the dimension of Km+1 is equal to m + 1. Let Wsj

defined by (3.2) and Vsj+1 defined by (3.3). Then Wsj is a basis of Ksj , and Vsj+1 is an
orthonormal basis of Ksj+1.

Proof. The proof uses induction. For j = 1, Ws is a basis of Ks, and also [v1, AWs] is a
basis of Ks+1, and by (3.1), Vs+1 is an orthonormal basis of Ks+1.

Now, we assume that Ws(j−1) is a basis of Ks(j−1) and that Vs(j−1)+1 is a basis of
Ks(j−1)+1. Thus u = vs(j−1)+1 ∈ Ks(j−1)+1 \ Ks(j−1), and by construction Bj ∈ Ksj .
Thanks to relation (3.2) and to the induction assumption, we conclude that Wsj ∈ Ksj .
Moreover, u /∈ Ks(j−1), thus the block Bj is linearly independent from the system Ws(j−1),
and Wsj is a basis of Ksj which is of dimension sj. Also, [v1, AWsj ] is a basis of Ksj+1 and
by (3.3), Vsj+1 is an orthonormal basis of Ksj+1. This completes the inductive step.

Therefore, the subspace condition at each step j can be written for the Krylov subspace
Ksj as

(3.5) x = x0 +Wsjy.

And, with the Hessenberg matrix Hsj from equation (3.3), the Galerkin condition is again a
least-squares problem

(3.6) min
y
‖βe1 −Hsjy‖ .
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Algorithm 4 Non-Traditional Fixed s-step SGMRES(m,s)
1: while not converged do
2: r0 = b−Ax0
3: β = ‖r0‖
4: v1 = r0/β
5: W0 = ∅ and V1 = [v1]
6: J = m/s
7: for j = 1, J do
8: u = vs(j−1)+1

9: Bj a basis of Ks(u)
10: Wsj = [Ws(j−1), Bj ]
11: orthonormalize ABj against Vs(j−1)+1 to obtain the last s vectors

[vs(j−1)+2, . . . , vsj+1] and the last s columns of Rsj+1

12: Hsj = Rsj+1 without the first column
13: solve the least-squares problem yF = arg miny ‖βe1 −Hsjy‖
14: compute xsj = x0 +WsjyF
15: test convergence
16: end for
17: if not converged then
18: x0 = xm
19: end if
20: end while

We summarize this fixed s-step GMRES method, which we call SGMRES(m,s), in Algo-
rithm 4.

One should note that if s = 1, one obtains the restarted GMRES method (Algorithm 1),
and if s = m, one obtains the m-step GMRES method (Algorithm 3). Thus, Algorithm 4
represents a generalization of the GMRES algorithms. It is noteworthy to recall that a
Traditional fixed s-step approach is possible [18] but requires intensive care in the appropriate
block indices in order to generate and treat the R−1 factors.

3.2. Variable s-step GMRES. The fixed s-step GMRES method aims at improving
the condition number of the basis W compared with m-step GMRES at the price of less
parallelism. Nevertheless, if s is chosen too large, then W could be ill-conditioned, and
convergence might stagnate as illustrated in the numerical experiments of Section 5.

To help balancing these two concerns, we propose a new method, where the block size s
is not fixed but variable. It is not easy to choose an optimal value of s between 1 and m. The
idea behind a variable approach is to adaptively select the block size to cope with conditioning
and parallelism issues as it was done for deflation in [27] and for CG in [7].

In this variable approach, at each step j, we define a new block size sj and build a system
Wlj of size lj , where l0 = 0 and lj = lj−1 + sj , j ≥ 1. We assume that m = lJ for some
integer J .

In the algorithm SGMRES(m,s), we simply have sj = s and lj = sj, whereas the
variable block size sj could be chosen adaptively by using some criterion of convergence.
Because we do take a Non-Traditional approach, we may easily describe this variable approach.
As such, all we need to do is to replace sj with lj appropriately in Algorithm 4 in order to
properly describe a variable s-step method. We detail this more formally below.

As before, we give a recursive definition of W , the orthonormal system V , and the
triangular matrix R. Let W0 = ∅ and V1 = [v1]. At step j, with 1 ≤ j ≤ J , we assume
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the existence of Wlj−1
, Vlj−1+1, and we define the block Bj as a basis of Ksj (u), where

u = vlj−1+1 is the last vector of the orthonormal system Vlj−1+1. We define the system Wlj

recursively:

(3.7) Wlj = [Wlj−1
, Bj ] = [B1, B2, . . . , Bj ],

then perform a QR factorization by orthogonalizing the last block ABj , and get

(3.8) [v1, AWlj ] = Vlj+1Rlj+1.

Introducing the upper Hessenberg matrix Hlj as Rlj+1 without the first column e1, we get

(3.9) AWlj = Vlj+1Hlj .

We can reiterate the proof of Theorem 3.1 to obtain a very similar theorem.
THEOREM 3.2. We assume that the dimension of Km+1 is equal to m + 1. Let Wlj

defined by (3.7) and Vlj+1 defined by (3.8). Then Wlj is a basis of Klj , and Vlj+1 is a basis
of Klj+1.

Therefore, the subspace condition at each step j can be written for the Krylov subspace
Klj as

(3.10) x = x0 +Wljy,

and the Galerkin condition is again a least-squares problem

(3.11) min
y

∥∥βe1 −Hljy
∥∥ .

We summarize this variable s-step GMRES method, which we call VGMRES(m,s), in Algo-
rithm 5. The parameter s is the maximal block size. Algorithm 5 is thus a generalization of
Algorithm 4, where sj = s.

4. Convergence and communication issues.

4.1. Analysis of the condition numbers. In both Algorithms 4 and 5, the numerical
behaviour is directly related to the condition number κ(H) for solving the least-squares
problem and to the condition number κ(W ) for computing the approximate solution [17].
Since AW = V H , we get κ(H) = κ(AW ). Although the algorithms are equivalent in exact
arithmetic, they can behave differently in finite-precision arithmetic. We observe and assume
that large condition numbers κ(Hlj ) can slow down the convergence rate. When the matrix is
symmetric, the condition number of a monomial basis Bj has an exponential growth with the
block size s [2]. Other bases can be used to reduce the condition number ([30] and references
herein), such as a Newton basis [1, 13, 27] or a Chebyshev basis [21, 22].

Here, we consider a nonsingular matrix A with complex eigenvalues such that
|λ1| > |λ2| ≥ . . . ≥ |λn| > 0. We get lower bounds for the condition numbers, which,
in some sense, indicate the best case we can expect. Although we do not provide upper bounds,
this result can highlight a potential loss of convergence. We start by an easy but useful result.

LEMMA 4.1. Let W = [B1, · · · , Bj ], then κ(W ) ≥ max1≤i≤j κ(Bi).
Proof. Note that the singular values σk(W ) are the square roots of the eigenvalues

λk(WTW ) and that κ(W ) = σ1(W )/σn(W ). Since BTi Bi, 1 ≤ i ≤ j, is a principal
submatrix of WTW , by Cauchy’s interlacing theorem, we get for all i [39]

σ1(W )2 = λ1(WTW ) ≥ λ1(BTi Bi) = σ1(Bi)
2,

σn(W )2 = λn(WTW ) ≤ λn(BTi Bi) = σn(Bi)
2.
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Algorithm 5 Non-Traditional Variable s-step VGMRES(m,s)
1: while not converged do
2: r0 = b−Ax0
3: β = ‖r0‖
4: v1 = r0/β
5: W0 = ∅ and V1 = [v1]
6: l0 = 0
7: for j = 1, . . . UNTIL lj ≥ m do
8: choose sj ≤ s
9: lj = lj−1 + sj

10: u = vlj−1+1

11: Bj a basis of Ksj (u)
12: Wlj = [Wlj−1

, Bj ]
13: orthonormalize ABj against Vlj−1+1 to obtain [vlj−1+2, . . . , vlj+1] and the last

columns of Rlj+1

14: Hlj = Rlj+1 without the first column
15: solve the least-squares problem yV = arg miny ‖βe1 −Hljy‖
16: compute xlj = x0 +WljyV
17: test convergence
18: end for
19: if not converged then
20: x0 = xlj
21: end if
22: end while

Thus, for all i, 1 ≤ i ≤ j, κ(W ) ≥ κ(Bi), and after taking the maximum over i we obtain the
wanted result.

Now we consider a block containing two vectors Ak−1u, Aku for some vector u and
some integer k. A monomial basis Bj typically satisfies this property. The following theorem
is comparable to similar Krylov subspace results [3]. In the same spirit as for the power
method [15], the two vectors Aku and Ak−1u tend to be in the direction of the dominant
eigenvector of A for a large number k. We analyze their impact on the condition number of a
block which contains them.

THEOREM 4.2. Let λi be the complex eigenvalues of a nonsingular matrix A ∈ Rn×n
such that |λ1| > |λ2| ≥ . . . ≥ |λn| > 0. We assume that A is diagonalizable. Let

D =
{
D1, A

k−1u,Aku
}

for some integer k, some block D1 with any given number of vectors, and some vector u such
that Au 6= λ1u.

Then there exists a constant c which depends on the matrix A and the vector u such that

κ(D) ≥ c
∣∣∣∣λ1λ2

∣∣∣∣k−1 .
Proof. Let

(4.1) E =
{

0, 0, λ1A
k−1u−Aku

}
,

then E 6= 0 and D + E is singular so that

κ(D) ≥ ‖D‖
‖E‖

.
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First, we note that ‖D‖ ≥
∥∥Aku∥∥. We consider the complex Schur factorization

A = QTQ∗ with Q unitary and T upper triangular with the eigenvalues of A on the di-
agonal. We assume that the eigenvalues are ordered such that λ1 is the last entry in the
diagonal of T .

Let δ = Q∗u so that u = Qδ andAu = QTδ. ThenAku = QT kδ and
∥∥Aku∥∥ =

∥∥T kδ∥∥.
Since T is upper triangular with λ1 in the bottom-right corner, we get (T kδ)n = λk1δn, thus

‖D‖ ≥
∣∣λk1δn∣∣ .

Second, ‖E‖ =
∥∥λ1Ak−1u−Aku∥∥ . Let X = (xi) be a basis of eigenvectors of A such that

A = X∆X−1, where ∆ is the diagonal matrix of the eigenvalues. Let α = X−1u so that
‖α‖ ≤

∥∥X−1∥∥ ‖u‖. Then

λ1A
k−1u−Aku = X∆k−1(λ1α−∆α).

Therefore,

‖E‖ ≤ 2 |λ1| |λ2|k−1 κ(X) ‖u‖ ,

where κ(X) = ‖X‖
∥∥X−1∥∥ . Finally,

κ(D) ≥ c
∣∣∣∣λ1λ2

∣∣∣∣k−1 , where c =
|δn|

2κ(X) ‖u‖
.

If we choose a monomial basis for each block Bj , then we get a lower bound for the
condition number of H .

COROLLARY 4.3. Let Wlj be the Krylov basis defined by a variable s-step method, where
each block Bi is a monomial basis of Ksi(u). Under the assumptions of Theorem 4.2, there
exists constants ci such that

κ(Hlj ) ≥ max
1≤i≤j

ci

∣∣∣∣λ1λ2
∣∣∣∣si−1 .

Proof. Since AWlj = [AB1, AB2, . . . , ABj ] and ABi = [Au, . . . , Asi−1u,Asiu],
where u depends on i, we can apply Theorems 4.1 and 4.2 with k = si.

These results show that in the case of a fixed s-step method with a monomial basis,

∀j ≥ 1, κ(Hsj) ≥ c
∣∣∣∣λ1λ2

∣∣∣∣s−1 .
In the case of a variable s-step method with a monomial basis, if the first block size is
s1 = s, then we get the same result. We recall that sj should be as large as possible to avoid
communication. Therefore, we advocate the use of a variable sequence with an increasing
block size. Then the lower bound in Corollary 4.3 will increase gradually with j, and hopefully
the condition number will behave similarly. The parameter sj could be chosen adaptively by
estimating the condition number of Bj with the constraint sj−1 ≤ sj ≤ s. In the numerical
experiments of this paper, we do not introduce this adaptivity but choose an increasing
sequence a priori. The choice is based mainly on communication issues.
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4.2. Communication analysis. One last question remains. While we have studied
the condition numbers in Algorithm 5, we have yet to show that the parallel costs are not
prohibitive. The two main kernels in a fixed or variable s-step method are the sequence of
matrix-vector multiplications to compute the block Bj and the orthonormalization of ABj
to compute the new basis vectors of V and the new columns of H . The first operation
can be done efficiently in parallel by using parallelism in each matrix-vector multiplication,
including a parallel preconditioning step based on domain decomposition [27]. When sub-
domains are allocated to different processes, communications occur only between neighbouring
processes thus avoiding global communications. Without preconditioning, the block Bj of a
monomial basis is efficiently computed thanks to a matrix power kernel, avoiding also global
communication [25]. Preconditioning based on incomplete factorization has been recently
included in such a kernel [16], but it is still an issue to deal with general preconditioning and
matrix power kernel. The orthogonalization of ABj can be done by using various parallel
algorithms [37] such as RODDEC [27] or CA-QR [12].

These communication-avoiding kernels significantly improve the parallel performance.
Nevertheless, solving the least-squares problem and testing for convergence requires a global
communication at each step of a restarting cycle. We are thus interested in reducing the number
of steps in a restarting cycle, which is m/s in a fixed s-step method and some J in a variable
s-step method such that lJ = m. We assume that the variable sequence sj is increasing and is
capped at s. Let J1 be the step where the variable sequence is capped and J2 the number of
remaining steps after this cap so that J = J1 + J2. Then m = lJ = lJ1 + sJ2 and

J = J1 + (m− lJ1)/s.

The objective is to use a small number J1 with lJ1 << m so that the number of steps J is of
the same order as m/s and that most of the steps deal with a block size s.

4.3. Variable Fibonacci sequence. We now introduce a variable block size based on a
Fibonacci sequence. We choose this sequence because it increases very fast and fulfills the
objective above. Any other increasing sequence could be used provided that most of the blocks
are of size s.

TABLE 4.1
Capped Fibonacci s-step sequence.

j 1 2 3 4 J1 J1 + 1 . . . J1 + J2 = J

sj 1 2 3 5 ≤ s s . . . s
lj 1 3 6 11 lJ1 lJ1 + s . . . m

We denote by FibGMRES(m,s) the special case of Algorithm 5 where the sequence of
block sizes sj is given by Fibonacci numbers until the block size is capped at s as shown in
Table 4.1. Thanks to the properties of the Fibonacci numbers, we can estimate J1.

THEOREM 4.4. Let J1 be the step where the variable Fibonacci sequence is capped. If s
is small compared to m, then J1 = O(logφ(s)), where φ = 1+

√
5

2 .
Proof. Assuming that we start here with s1 = 1, s2 = 2 as in Table 4.1, the block size sj

is the (j + 1)th Fibonacci number. Using the properties of the Fibonacci sequence [33], we
get lJ1 = fib(J1 + 2)− 2, where fib(J1 + 2) is the (J1 + 2)nd Fibonacci number.

For j ≤ J1, we have sj = φj+1−φ−(j+1)

√
5

and sj ≤ s so that

φJ1+1 =
√

5sJ1 + φ−(J1+1), J1 ≤ logφ(
√

5(s+ 1))− 1,

φJ1+1 ≤
√

5(s+ 1), J1 = O(logφ(s)).
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Therefore, the number of steps, thus of global communications, is of the same order
O(m/s) regardless of using SGMRES or FibGMRES due to the rapid growth of the sj block
size in FibGMRES. It should also be noted here the important payoff between convergence
and communication issues. If s is kept too small, then this increases m/s and thus the number
of global communications. However, in the previous section we showed that letting s too large
introduces a loss of convergence. Also, performance could get worse for very large values
of s. This implies that there is a balance that must be struck between the number of iterations
and the number of communications. We now show some numerical experiments confirming
this interplay as well as the convergence properties of FibGMRES.

5. Numerical results. We run numerical experiments with various matrices with a fixed
or variable block size. In all our tests, the block Bj is a monomial basis of the Krylov subspace
Klj (u). We are aware that other choices would lead to better-conditioned Krylov bases, but
we reckon that these experiments highlight the impact of the block size and the differences
between a fixed and a variable block size.

In the first part, we consider the number of iterations of Traditional and Non-Traditional
Algorithms 2 and 3, respectively. Namely, in our tests, the difference in convergence of these
two methods is marginal so that we prefer the simplicity of implementation of Algorithm 3. In
the second part, we analyze the impact of the block size s on the convergence rate in the fixed
s-step method. We compare SGMRES(m,s) with 1 < s ≤ m to GMRES(m). We observe
that the condition number of AWsj does not depend on j but increases with s and affects
convergence as we expect from Corollary 4.3.

After this we focus on the heart of this paper, which is the convergence rate of variable
s-step GMRES methods, in particular the Fibonacci s-step FibGMRES(m,s) method, where
the variable block size sj follows a Fibonacci pattern. We compare the three algorithms
FibGMRES(m,s), SGMRES(m,s), and GMRES(m) by looking at the convergence rate and
at the condition number κ(AWlj ). Our tests corroborate the result of Corollary 4.3. We
run experiments with a block size up to 32 in order to measure convergence and condition
numbers. In practice, such a large value would probably require to replace the monomial basis
by another one as in [26].

We developed some code in Octave and performed all experiments on a computer with an
x86 architecture. In all our tests, the initial guess x0 as well as the right-hand side b are vectors
whose components are uniform random numbers between 0 and 1. The relative residual at
iteration k is defined by ‖rk‖ / ‖r0‖. We do not use a convergence test but run two or three
restarting cycles.

5.1. Experiments with m-step GMRES. The first question is whether the use of V
or W as a Krylov basis impacts the convergence of m-step methods. To get some insight
into this question, we rely on a series of tests done with samples of sparse matrices of type
A+ 2I , where the matrix A is random and I is the identity matrix. These matrices are of size
n = 1000 with 10000 nonzeros. They are scaled and preconditioned by the Jacobi procedure.

We compare the two versions of the m-step GMRES algorithms with a block size equal
to the restarting parameter, where the basis is either V or W . In Figure 5.1, we plot the mean
absolute error

∥∥xm − (A+ 2I)−1b
∥∥ after each restarting cycle for three values of m. The

errors of the two versions, using either V (Algorithm 2) or W (Algorithm 3), are very similar.
Instabilities seem to occur either in the inversion of Rm or in the matrix multiplication by Wm.
For these 100 matrices, our comparison ends up with a similar numerical behaviour. Therefore,
we choose the basis W for the sake of simplicity. From now on, we use Algorithms 4 and 5 in
all our experiments.
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FIG. 5.1. Comparison of Traditional and Non-Traditional variants of m-step GMRES(m). Mean error curves
with a sample of 100 random matrices using m = 8, 16, 32.

It should be noted that with the addition of better preconditioners or with a well-
conditioned matrix, what would change is essentially the rate of convergence. A similar
situation would occur with the addition of a Newton basis, which could improve the condition
numbers of Wm and Rm. With classical restarted GMRES(m), convergence is quite often
faster by increasing the restarting parameter m [35]. Thus, on one hand, a large value of m is
sometimes necessary to ensure convergence of the restarted GMRES method, and on the other
hand a small value of m is often required to ensure a well-conditioned Krylov basis. The idea
behind s-step methods with the block size s smaller than the restarting parameter m is to find
a trade-off between convergence and parallelism issues. It can be noted that convergence can
also be improved through deflation; see [27] for example.

5.2. Experiments with fixed s-step SGMRES(m,s). Here, we analyze the conver-
gence and the condition numbers of the fixed s-step method, denoted by SGMRES(m,s). We
use the matrix fv2 from the University of Florida matrix collection, which is of size n = 9801
with nz = 87025 nonzero elements [10]. This matrix is symmetric and well-conditioned so
that the restarted GMRES(m) method converges quickly without preconditioning and with a
relatively small value of m.

We first analyze the impact of the block size s on the convergence and the condition num-
bers for a given restarting parameter m = 48. Figure 5.2 displays the relative residual during
two cycles. The primary feature to notice is the bounding behaviour by standard GMRES(m)
and SGMRES(m,m), which correspond respectively to the bounding values s = 1 and s = m
of the block size. As expected, GMRES(m) is the best, whereas SGMRES(m,m) is the worst
in general.

A ’hockey-stick’ pattern occurs for all s values during each restarting cycle, where just
before restarting the residual norm has a mild plateau in the case of s = 12 but can even begin
to increase slightly for s = 16 and s = 24. In this last case, the residual becomes even larger
than for s = m. Meanwhile, this behaviour is well corroborated by Figure 5.3, which shows
the condition number of AWsj during the first cycle. This one is quite large already for the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

220 D. IMBERTI AND J. ERHEL

FIG. 5.2. Impact of block size s in SGMRES(m,s). Convergence curves with the matrix fv2 using m = 48 and
s = 12, 16, 24, 48.

FIG. 5.3. Impact of block size s in SGMRES(m,s). Condition number of AWsj with the matrix fv2 using
m = 48 and s = 12, 16, 24.

first block AWs and then plateaus for other blocks AWsj . Moreover, the value at the plateau
increases rapidly with s. This behaviour corresponds to our comments in Section 4.1.

In Figure 5.4, we have plotted the condition number of the first block AWs as a function
of s with s = 1, 4, 8, 16, 32, and m = 96. We see that it follows an exponential growth as
expected in the symmetric case [2]. Therefore, due to large condition numbers, increasing s
past a certain point is a waste of computational time. In a sense, ’The damage has already been
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FIG. 5.4. Condition number of AWs as a function of s. Results with the matrix fv2 using m = 96.

TABLE 5.1
Variable increasing block size in FibGMRES(m,s) for m = 48 and s = 16.

j 1 2 3 4 5 6 7
sj 1 2 3 5 8 13 16
lj 1 3 6 11 19 32 48

done.’ Due to this effect, we conclude that a large fixed block size can destroy convergence
right after the first block.

5.3. Variable s-step FibGMRES(m,s) with symmetric matrices. Due to this princi-
ple of damage from a large s being done quickly when introduced early on in the computation,
we advocate a variable block size, where the block size increases gradually. This allows us to
properly balance the considerations of the parallel computations that an s-step affords with the
conditioning enhancements brought by a small block size. This approach could be combined
with adaptive techniques, where the block size would be chosen according to some indicator.
Here we use the Fibonacci sequence described in Section 4.2.

5.3.1. The fv2 matrix with m = 48. We run experiments again with the matrix fv2,
m = 48 and s = 16. We aim to compare the extreme cases s = 1 and s = m = 48 to the
fixed case SGMRES(m,s) with s = 16 and to the variable case FibGMRES(m,s) defined in
Table 5.1. Here, we gradually increase the block size following a Fibonacci sequence capped
at s = 16, and we recall that each new block Bj is of size sj and that the Krylov size lj is

TABLE 5.2
Variable decreasing block size in Reverse FibGMRES(m,s) for m = 48 and s = 16.

j 1 2 3 4 5 6 7
sj 16 13 8 5 3 2 1
lj 16 29 37 42 45 47 48
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FIG. 5.5. Comparison of fixed and variable s-step GMRES. Convergence curves with the matrix fv2 using
m = 48 and s = 16.

FIG. 5.6. Comparison of fixed and variable s-step GMRES. Condition numbers of AWlj with the matrix fv2
using m = 48 and s = 16.

given by lj = lj−1 + sj . For the sake of comparison, we also gradually decrease the block size
from s = 16 to s = 1 using the Fibonacci sequence in reverse order as defined in Table 5.2.
We call this algorithm Reverse FibGMRES(m,s).

In Figure 5.5, the convergence of FibGMRES(m,s) is much better than the convergence of
SGMRES(m,s) and Reverse FibGMRES(m,s). Indeed, we see that Reverse FibGMRES(m,s)
defined by Table 5.2 behaves like SGMRES(m,s) with a hockey-stick pattern. On the other
hand, the FibGMRES(m,s) convergence curve closely follows the optimal GMRES(m) curve.
As can be seen in Figure 5.6, the condition number of AWlj increases gradually with step j for
FibGMRES(m,s). On the other hand, at the first step j = 1, the condition number κ(AWl1)
is already large for SGMRES(m,s) and Reverse FibGMRES(m,s). This emphasizes that the
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TABLE 5.3
Variable increasing block size in FibGMRES(m,s) for m = 96 and s = 16.

j 1 2 3 4 5 6 7 8 9 10
sj 1 2 3 5 8 13 16 16 16 16
lj 1 3 6 11 19 32 48 64 80 96

TABLE 5.4
Variable increasing block size in FibGMRES(m,s) for m = 96 and s = 32.

j 1 2 3 4 5 6 7 8 9
sj 1 2 3 5 8 13 14 18 32
lj 1 3 6 11 19 32 46 64 96

faster convergence in FibGMRES(m,s) comes from the increasing sequence, confirming the
principle we introduced earlier that the damage can often already be done by the first step
of the algorithm. Condition numbers issues must be nipped in the bud early on before they
spread.

5.3.2. The Poisson matrix with m = 96. We now run experiments with a prototypical
test problem, where the matrix arises from a Poisson equation on a unit square, discretized
by a finite difference scheme using a 5-point stencil. A regular grid of size 150× 150 results
in a sparse matrix of order n = 22500. This Poisson matrix is symmetric but not as well-
conditioned as the fv2 matrix, so we can expect a slower convergence. We choose a larger
restarting parameter m = 96 and two maximal block sizes, namely s = 16 and s = 32. The
sequences of block sizes are defined in Tables 5.3 and 5.4. As an aside, we should note that
when s = 32, the truncated Fibonacci numbers do not neatly add up to m = 96. In order to
make a fair comparison with the fixed s-step GMRES method, we have chosen to modify the
Fibonacci sequence at step j = 8 in order to get lj = 96 at step j = 9. In practice, this is not
a concern because the user would choose the maximal block size s and the maximal number
of steps J in order to get lJ close to a chosen m value.

Convergence results are plotted in Figure 5.7. For s = 16, the methods SGMRES(m,s)
and FibGMRES(m,s) converge as quickly as GMRES(m). However, for the value s = 32,
SGMRES(m,s) shows an erratic convergence rate where the residual norms increase and are
no longer bounded by those of SGMRES(m,m). On the other hand, FibGMRES(m,s) is
still very efficient and converges almost as fast as GMRES(m). Again, these results can be
explained by the condition number κ(AWlj ). As can be seen in Figure 5.8, the condition
number of the first block (j = 1) is quite high with SGMRES(m,s) and then plateaus (j ≥ 2)
with a larger value for s = 32 than for s = 16. With FibGMRES(m,s), in both cases s = 16
and s = 32, the condition numbers κ(AWlj ) increase progressively with j. The exponential
growth of the condition number is in good agreement with the lower bound of Corollary 4.3.

5.3.3. The large Poisson matrix with m = 400. We now look at a larger Poisson
matrix of size n = 100489 so that we may extend the Krylov size to m = 400 while keeping
the block size at s = 16. These tests are interesting because the number of steps is then
roughly equal to the quantity m/s as stated in Theorem 4.4. Thus we can expect similar
parallel performance with fixed and variable block sizes. In Figure 5.9, we see that the three
algorithms converge roughly at the same rate but that FibGMRES(m,s) is slightly faster than
SGMRES(m,s) at the end of the first cycle.

5.4. Experiments with variable FibGMRES(m,s) and nonsymmetric matrices. The
previous experiments were done with symmetric matrices to illustrate various convergence
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FIG. 5.7. Comparison of fixed and variable s-step GMRES. Convergence curves with the Poisson matrix using
m = 96 and s = 16, 32.

FIG. 5.8. Comparison of fixed and variable s-step GMRES. Condition numbers of AWlj with the Poisson
matrix using m = 96 and s = 16, 32.

behaviours. Nevertheless, GMRES is designed to solve nonsymmetric systems. Thus, we now
run experiments with nonsymmetric matrices.

5.4.1. The cage10 matrix with m = 48. The first matrix, called cage10, is from the
University of Florida matrix collection [10]. It is of size 11397 with 150645 nonzero elements.
Restarted GMRES converges quickly for this matrix without preconditioning.

We repeat the same tests as for the matrix fv2 and plot the results in Figure 5.10 and 5.11.
The conclusion is the same as for fv2: FibGMRES(m,s) converges faster than SGMRES(m,s)
and reverse FibGMRES(m,s). Also, the condition numbers κ(AWlj ) corroborate the theoreti-
cal results of Corollary 4.3.
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FIG. 5.9. Comparison of fixed and variable s-step GMRES. Convergence curves with the large Poisson matrix
using m = 400 and s = 16.

FIG. 5.10. Comparison of fixed and variable s-step GMRES. Convergence curves with the matrix cage10 using
m = 48 and s = 16.

5.4.2. The PR02R matrix with m = 96. The second matrix, PR02R, which is also
pulled from the University of Florida matrix collection, represents a turbulence problem
from the FLUOREM collection. It is of size 161070 with 8185136 nonzero elements. For
this matrix and similar matrices from the FLUOREM collection, iterative methods converge
very slowly or do not converge [28, 29]. Here, in order to get an easier problem with no
preconditioning, we have added the matrix 1000× I , where I is the identity matrix.

We repeat the same experiments as for the Poisson matrix and plot the results in Fig-
ures 5.12 and 5.13. We observe some stagnation in the second and third cycles of the restarted
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FIG. 5.11. Comparison of fixed and variable s-step GMRES. Condition numbers of AWlj with the matrix
cage10 using m = 48 and s = 16.

FIG. 5.12. Comparison of fixed and variable s-step GMRES. Convergence curves with the modified PR02R
matrix using m = 96 and s = 16, 32.

GMRES(m) method. Using s = 16, both FibGMRES(m,s) and SGMRES(m,s) converge like
GMRES(m) with the same stagnation. But using s = 32, FibGMRES(m,s) still converges
almost like GMRES(m), whereas SGMRES(m,s) is almost as slow as SGMRES(m,m). Also,
the condition numbers κ(AWlj ) increase gradually with j for FibGMRES(m,s), whereas the
first condition number κ(AWs) is quite large for SGMRES(m,s): as already mentioned, the
damage is done.

5.4.3. The PR02R matrix with m = 192. Next, we increase the restarting parameter
to m = 192 with the same block size s = 16 or s = 32. Here, the ratio m/s is large enough
to ensure similar parallel behaviours in the fixed and variable s-step methods. Again, using
s = 16, the convergence behaviour is similar for the restarted, fixed s-step and variable s-step
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FIG. 5.13. Comparison of fixed and variable s-step GMRES. Condition numbers of AWlj with the modified
PR02R matrix using m = 96 and s = 16, 32.

FIG. 5.14. Comparison of fixed and variable s-step GMRES. Convergence curves with the modified PR02R
matrix using m = 192 and s = 16, 32.

variants of GMRES. Stagnation still occurs at each restarting cycle except for the first one,
thus deflation might overcome this issue. Now, using s = 32, the convergence is damaged for
both SGMRES(m,s) and FibGMRES(m,s): the block size becomes too large before restarting.
Clearly, an adaptive selection of the block size might avoid this degradation.

6. Conclusion. Communication-Avoiding Krylov subspace methods are efficient to
increase the performance on parallel computers. Among them, the s-step restarted GMRES
method, called here SGMRES(m,s), builds an orthonormal basis of a Krylov subspace by
consecutive blocks of size s. In this paper, we described how to use two bases in order to
simplify the algorithm. Then, we proposed to vary the s and defined an original variable
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FIG. 5.15. Results with the condition of the modified PR02R matrix with m = 192 and s = 16, 32.

s-step GMRES algorithm. Our analysis of the condition numbers suggests to use an increasing
sequence sj of the block sizes.

In our numerical experiments, we use a Fibonacci sequence, capped at s, which avoids
communications by limiting the number of steps in the start-up phase. We observe that
FibGMRES(m,s) converges often as quickly as GMRES(m) and faster than SGMRES(m,s).

What we have shown, in essence, is a beneficial tradeoff. An additional cost occurs in the
first few steps of the start-up phase of FibGMRES(m,s) because communication overheads are
induced by the fan-in fan-out problems associated to small blocks. However, the reduction of
condition numbers resulting from FibGMRES(m,s) induces quite often a significant reduction
in the number of required iterations.

We could still reduce the number of iterations by introducing a criterion to select adaptively
the block size and by using another basis for each block, for example a Newton basis. In
the future, we plan to implement our method on parallel computers using an efficient matrix-
vector product and a communication-avoiding orthogonalization algorithm. Parallel domain
decomposition methods combined with deflation will be used for preconditioning the systems.
This parallel version will be tested with very large matrices arising from various computational
science problems.
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