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INCREMENTAL COMPUTATION OF BLOCK TRIANGULAR MATRIX
EXPONENTIALS WITH APPLICATION TO OPTION PRICING∗

DANIEL KRESSNER†, ROBERT LUCE†, AND FRANCESCO STATTI†

Abstract. We study the problem of computing the matrix exponential of a block triangular matrix in a peculiar
way: block column by block column, from left to right. The need for such an evaluation scheme arises naturally in the
context of option pricing in polynomial diffusion models. In this setting, a discretization process produces a sequence
of nested block triangular matrices, and their exponentials are to be computed at each stage until a dynamically
evaluated criterion allows to stop. Our algorithm is based on scaling and squaring. By carefully reusing certain
intermediate quantities from one step to the next, we can efficiently compute such a sequence of matrix exponentials.
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1. Introduction. We study the problem of computing the matrix exponential for a se-
quence of nested block triangular matrices. In order to give a precise problem formulation,
consider a sequence of block upper triangular matrices G0, G1, G2, . . . of the form

(1.1) Gn =


G0,0 G0,1 · · · G0,n

G1,1 · · · G1,n

. . .
...

Gn,n

 ∈ Rdn×dn ,

where all diagonal blocks Gn,n are square. In other words, the matrix Gi arises from Gi−1
by appending a block column (and adjusting the size). We aim at computing the sequence of
matrix exponentials

(1.2) exp(G0), exp(G1), exp(G2), . . . .

One could, of course, simply compute each of the exponentials (1.2) individually using
standard techniques; see [11] for an overview. However, the sequence of matrix exponen-
tials (1.2) inherits the nested structure from the matrices Gn in (1.1), i.e., exp(Gn−1) is a
leading principle submatrix of exp(Gn). In effect only the last block column of exp(Gn)
needs to be computed, and the goal of this paper is to explain how this can be achieved in a
numerically safe manner.

In the special case where the spectra of the diagonal blocks Gn,n are separated, Parlett’s
method [13] yields—in principle—an efficient computational scheme: compute the exponen-
tials F0,0 := exp(G0,0) and F1,1 := exp(G1,1) separately, then the missing (1,2) block of
exp(G1) is given as the unique solution X to the Sylvester equation

G0,0X −XG1,1 = F0,0G0,1 −G0,1F1,1.

Continuing in this manner, all the off-diagonal blocks required to compute (1.2) could be
obtained from solving Sylvester equations. However, it is well known (see [8, Chapter 9]) that
Parlett’s method is numerically safe only when the spectra of the diagonal blocks are well
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separated in the sense that all involved Sylvester equations are well-conditioned. Since we
consider the block structure as fixed, imposing such a condition would severely limit the scope
of applications; it is certainly not met by the application we discuss below.

A general class of applications for the described incremental computation of exponentials
arises from the matrix representations of a linear operator G : V → V restricted to a sequence
of nested, finite-dimensional subspaces of a given infinite-dimensional vector space V . More
precisely, one starts with a finite-dimensional subspace V0 of V with a basis B0. Successively,
the vector space V0 is extended to V1 ⊆ V2 ⊆ · · · ⊆ V by generating a sequence of nested
bases B0 ⊆ B1 ⊆ B2 ⊆ · · · . Assume that GVn ⊆ Vn for all n = 0, 1, . . . , and consider the
sequence of matrix representations Gn of G with respect to Bn. Due to the nestedness of the
bases, Gn is constructed from Gn−1 by adding the columns representing the action of G to
Bn \ Bn−1. As a result, we obtain a sequence of matrices structured as in (1.1).

A specific example for the scenario outlined above arises in computational finance, when
pricing options are based on polynomial diffusion models; see [6]. As we explain in more
detail in Section 3, in this setting G is the generator of a stochastic differential equation (SDE),
and then Vn are nested subspaces of multivariate polynomials. Some pricing techniques
require the computation of certain conditional moments that can be extracted from the matrix
exponentials (1.2). While increasing n allows for a better approximation of the option price,
the value of n required to attain a desired accuracy is usually not known a priori. Algorithms
that choose n adaptively can be expected to rely on the incremental computation of the whole
sequence (1.2).

Exponentials of block triangular matrices have also been studied in other contexts. For
two-by-two block triangular matrices, Dieci and Papini study conditioning issues in [4] and
discuss the choice of scaling parameters for using Padé approximants to exponential function
in [3]. In the case where the matrix is also block-Toeplitz, a fast exponentiation algorithm is
developed in [2].

The rest of this paper is organized as follows. In Section 2 we give a detailed description
of our algorithm for incrementally computing exponentials of block triangular matrices as
in (1.1). In Section 3 we discuss polynomial diffusion models and some pricing techniques
which necessitate the use of such an incremental algorithm. Finally, numerical results are
presented in Section 4.

2. Incremental scaling and squaring. Since the set of conformally partitioned block
triangular matrices forms an algebra and exp(Gn) is a polynomial in Gn, the matrix exp(Gn)
has the same block upper triangular structure as Gn, that is,

exp(Gn) =


exp(G0,0) ∗ · · · ∗

exp(G1,1)
. . .

...
. . . ∗

exp(Gn,n)

 ∈ Rdn×dn .

As outlined in the introduction, we aim at computing exp(Gn) block column by block column,
from left to right. Our algorithm is based on the scaling and squaring methodology, which we
briefly summarize next.

2.1. Summary of the scaling and squaring method. The scaling and squaring method
uses a rational function to approximate the exponential function and typically involves three
steps. Denote by rk,m(z) =

pk,m(z)
qk,m(z) the (k,m)-Padé approximant to the exponential function,

meaning that the numerator is a polynomial of degree k and the denominator is a polynomial
of degree m. These Padé approximants are very accurate close to the origin, and in a first step
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the input matrix G is therefore scaled by a power of two, so that ‖2−sG‖ is small enough to
guarantee an accurate approximation rk,m(2−sG) ≈ exp(2−sG).

The second step consists of evaluating the rational approximation rk,m(2−sG), and,
finally, an approximation to exp(G) is obtained in a third step by repeatedly squaring the
result, i.e.,

exp(G) ≈ rk,m(2−sG)2
s

.

Different choices of the scaling parameter s and of the approximation degrees k and m
yield methods of different characteristics. The choice of these parameters is critical for the
approximation quality and for the computational efficiency; see [8, Chapter 10].

In what follows we describe techniques that allow for an incremental evaluation of the
matrix exponential of the block triangular matrix (1.1) using scaling and squaring. These
techniques can be used with any choice for the actual underlying scaling and squaring method,
defined through the parameters s, k, and m.

2.2. Tools for the incremental computation of exponentials. Before explaining the
algorithm, we first introduce some notation that is used throughout. The matrix Gn from (1.1)
can be written as

(2.1) Gn =


G0,0 · · · G0,n−1 G0,n

. . .
...

...
Gn−1,n−1 Gn−1,n

Gn,n

 =:

[
Gn−1 gn

0 Gn,n

]
,

where Gn−1 ∈ Rdn−1×dn−1 , Gn,n ∈ Rbn×bn , so that gn ∈ Rdn−1×bn . Let s be the scaling
parameter and r = p

q the rational function used in the approximation (for simplicity we will
often omit the indices k and m). We denote the scaled matrix by G̃n := 2−sGn, and we
partition it as in (2.1).

The starting point of the algorithm consists in computing the Padé approximant of the
exponential exp(G0) = exp(G0,0) using a scaling and squaring method. Then, the sequence
of matrix exponentials (1.2) is incrementally computed by reusing at each step previously
obtained quantities. So more generally, assume that exp(Gn−1) has been approximated using
a scaling and squaring method. The three main computational steps for obtaining the Padé
approximant of exp(Gn) are

1. evaluating the polynomials p
(
G̃n

)
, q
(
G̃n

)
,

2. evaluating p
(
G̃n

)−1
q(G̃n), and

3. repeatedly squaring it.
We now discuss each of these steps separately noting the quantities to keep at every iteration.

2.2.1. Evaluating p
(
G̃n

)
, q
(
G̃n

)
from p

(
G̃n−1

)
, q
(
G̃n−1

)
. Similarly to (2.1),

we start by writing Pn := p
(
G̃n

)
and Qn := q

(
G̃n

)
as

Pn =

[
Pn−1 pn

0 Pn,n

]
, Qn =

[
Qn−1 qn

0 Qn,n

]
.

In order to evaluate Pn, we first need to compute monomials of G̃n that can be written as

G̃ln =

[
G̃ln−1

∑l−1
j=0 G̃

j
n−1g̃nG̃

l−j−1
n,n

G̃ln,n

]
, for l = 1, . . . , k.
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Denote by Xl :=
∑l−1
j=0 G̃

j
n−1g̃nG̃

l−j−1
n,n the upper off-diagonal block of G̃ln, then we have

the relation

Xl = G̃n−1Xl−1 + g̃nG̃
l−1
n,n , for l = 2, · · · , k,

with X1 := g̃n so that all the monomials G̃ln, l = 1, . . . , k, can be computed in
O(b3n + dn−1b

2
n + d2n−1bn). Let p(z) =

∑k
l=0 αlz

l be the numerator polynomial of r, then
we have that

(2.2) Pn =

[
Pn−1

∑k
l=0 αlXl

p(G̃n,n)

]
,

which can be assembled in O(b2n + dn−1bn) since only the last block column needs to be
computed. The complete evaluation of Pn is summarized in Algorithm 1.

Algorithm 1 Evaluation of Pn, using Pn−1.
Input: Gn−1, Gn,n, gn, Pn−1, Padé coefficients αl, l = 0, · · · , k.
Output: Pn.

1: g̃n ← 2−sgn, G̃n,n ← 2−sGn,n, G̃n−1 ← 2−sGn−1
2: X1 ← g̃n
3: for l = 2, 3, · · · , k do
4: Compute G̃ln,n
5: Xl = G̃n−1Xl−1 + g̃nG̃

l−1
n,n

6: end for
7: X0 ← 0dn−1×bn
8: Compute off diagonal block of Pn:

∑k
l=0 αlXl

9: Compute p(G̃n,n) =
∑k
l=0 αlG̃

l
n,n

10: Assemble Pn as in (2.2)

Similarly, one computes Qn from Qn−1, using again the matrices Xl.

2.2.2. Evaluating Q−1
n Pn. With the matrices Pn and Qn at hand, we now need to

compute the rational approximation Q−1n Pn. We assume that Qn is well-conditioned, in
particular, non-singular, which is ensured by the choice of the scaling parameter and of the
Padé approximation; see, e.g., [9]. We focus on the computational cost. For simplicity, we
introduce the notation

F̃n =

F̃0,0 · · · F̃0,n

. . .
...

F̃n,n

 := Q−1n Pn, Fn =

F0,0 · · · F0,n

. . .
...

Fn,n

 := F̃ 2s

n ,

and we see that

F̃n = Q−1n Pn =

[
Q−1n−1 −Q−1n−1qnQ−1n,n

0 Q−1n,n

] [
Pn−1 pn

0 Pn,n

]
=

[
F̃n−1 Q−1n−1(pn − qnQ−1n,nPn,n)

0 Q−1n,nPn,n

]
.

(2.3)

To solve the linear system Q−1n,nPn,n, we compute an LU decomposition with partial
pivoting for Qn,n, requiring O(b3n) operations. This LU decomposition is saved for future
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use, and hence we may assume that we have available the LU decompositions for all diagonal
blocks from previous computations:

(2.4) ΠlQl,l = LlUl, l = 0, . . . , n− 1.

Here, Πl ∈ Rbl×bl , l = 0, . . . , n−1, are permutation matrices, Ll ∈ Rbl×bl , l = 0, . . . , n−1,
are lower triangular matrices, and Ul ∈ Rbl×bl , l = 0, . . . , n−1, are upper triangular matrices.

Set Yn := pn − qnQ−1n,nPn,n ∈ Rdn−1×bn , and partition it as

Yn =

 Y0,n
...

Yn−1,n

 .
Then we compute Q−1n−1Yn by block backward substitution using the decompositions of the
diagonal blocks. Hence this computation requires O(d2n−1bn + dn−1b

2
n) operations, so that

the number of operations for computing F̃n is O(b3n + d2n−1bn + dn−1b
2
n). Algorithm 2

describes the complete procedure to compute F̃n.

Algorithm 2 Evaluation of F̃n = Q−1n Pn.
Input: Qn, Pn and quantities (2.4)
Output: F̃n = Q−1n Pn and LU decomposition of Qn,n.

1: Compute ΠnQn,n = LnUn and keep it for future use (2.4)
2: Compute F̃n,n := Q−1n,nPn,n
3: Yn = pn − qnQ−1n,nPn,n
4: F̃n−1,n = U−1n−1L

−1
n−1Πn−1Yn−1,n

5: for l = n− 2, n− 3, · · · , 0 do
6: F̃l,n = U−1l L−1l Πl(Yl,n −

∑n−1
j=l+1Ql,jF̃j,n)

7: end for
8: Assemble F̃n as in (2.3)

2.2.3. The squaring phase. Having computed F̃n, which we write as

F̃n =

[
F̃n−1 f̃n

F̃n,n

]
,

we now need to compute s repeated squares of that matrix, i.e.,

(2.5) F̃ 2l

n =

[
F̃ 2l

n−1
∑l−1
j=0 F̃

2l−1+j

n−1 f̃nF̃
2j

n,n

F̃ 2l

n,n

]
, l = 1, . . . , s,

so that Fn = F̃ 2s

n . Setting Zl :=
∑l−1
j=0 F̃

2l−1+j

n−1 f̃jF̃
2j

n,n, we have the recurrence

Zl = F̃ 2l−1

n−1 Zl−1 + Zl−1F̃
2l−1

n,n ,

with Z0 := f̃n. Hence, if we have stored the intermediate squares from the computation
of Fn−1, i.e.,

(2.6) F̃ 2l

n−1, l = 1, . . . , s,
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then we can compute all the quantities Zl, for l = 1, . . . , s, in a complexity of
O(d2n−1bn + dn−1b

2
n) operations so that the total cost for computing Fn (and the inter-

mediate squares of F̃n) is O(d2n−1bn + dn−1b
2
n + b3n). Again, we summarize the squaring

phase in the following algorithm.

Algorithm 3 Evaluation of Fn = F̃ 2s

n .

Input: F̃n−1, f̃n, F̃n,n, quantities (2.6).
Output: Fn and updated intermediates.

1: Z0 ← f̃n
2: for l = 1, 2, · · · , s do
3: Compute F̃ 2l

n,n

4: Zl = F̃ 2l−1

n−1 Zl−1 + Zl−1F̃
2l−1

n,n

5: Assemble F̃ 2l

n as in (2.5) and save it
6: end for
7: Fn ← F̃ 2s

n

2.3. Overall algorithm. Using the techniques from the previous section, we now give
a concise description of the overall algorithm. We assume that the quantities listed in equa-
tions (2.4) and (2.6) are stored in memory, with a space requirement of O(d2n−1).

In view of this, we assume that Fn−1 and the aforementioned intermediate quantities have
been computed. Algorithm 4 describes the overall procedure to compute Fn and to update the
intermediates; we continue to use the notation introduced in (2.1).

Algorithm 4 Computation of Fn ≈ exp(Gn), using Fn−1.
Input: Block column gn, diagonal block Gn,n, quantities (2.4), and (2.6).
Output: Fn, and updated intermediates.

1: Extend Pn−1 to Pn using Algorithm 1, and form analogously Qn
2: Compute F̃n using Algorithm 2
3: Evaluate Fn = F̃ 2s

n using Algorithm 3

As explained in the previous section, the number of operations for each step in Algorithm 4
is O(d2n−1bn + dn−1b

2
n + b3n), using the notation introduced at the beginning of Section 2.2.

If Fn were simply computed from scratch, without the use of the intermediates, the number of
operations for scaling and squaring would be O((dn−1 + bn)3). In the typical situation where
dn−1 � bn, the dominant term in the latter complexity bound is d3n−1, which is absent from
the complexity bound of Algorithm 4.

In order to solve our original problem, i.e., the computation of the sequence exp(G0),
exp(G1), exp(G2), . . . , we use Algorithm 4 repeatedly; the resulting procedure is shown in
Algorithm 5.

We now derive a complexity bound for the number of operations spent in Algorithm 5.
For simplicity of notation we consider the case where all diagonal blocks are of equal size,
i.e., bk ≡ b ∈ N so that dk = (k + 1)b. At iteration k the number of operations spent within
Algorithm 4 is thus O(k2b3). Assume that the termination criterion used in Algorithm 5
effects to stop the procedure after the computation of Fn. The overall complexity bound for
the number of operations until termination is O(

∑n
k=0 k

2b3) = O(n3b3), which matches the
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Algorithm 5 Approximation of exp(G0), exp(G1), . . .

Input: Padé approximation parameters k, m, and s
Output: F0 ≈ exp(G0), F1 ≈ exp(G1), . . .

1: Compute F0 using scaling and squaring, store intermediates for Algorithm 4
2: for n = 1, 2, . . . do
3: Compute Fn from Fn−1 using Algorithm 4
4: if termination criterion is satisfied then
5: return
6: end if
7: end for

complexity bound of applying scaling and squaring only to Gn ∈ R(n+1)b×(n+1)b, which is
also O((nb)3).

In summary the number of operations needed to compute Fn by Algorithm 5 is asymptot-
ically the same as applying the same scaling and squaring setting only to compute exp(Gn),
while Algorithm 5 incrementally reveals all exponentials exp(G0), . . . , exp(Gn) in the course
of the iteration, satisfying our requirements outlined in the introduction.

2.4. Adaptive scaling. In Algorithms 4 and 5 we have assumed that the scaling power s
is given as input parameter and that it is fixed throughout the computation of the exponentials
exp(G0), . . . , exp(Gn). This is in contrast to what is usually intended in the scaling and
squaring method; see Section 2.1. On the one hand s must be sufficiently large so that
rk,m(2−sGl) ≈ exp(2−sGl), for 0 ≤ l ≤ n. If, on the other hand, s is chosen too large, then
the evaluation of rk,m(2−sGl) may become inaccurate due to overscaling. So if s is fixed
and the norms ‖Gl‖ grow with increasing l, as one would normally expect, then an accurate
approximation cannot be guaranteed for all l.

Most scaling and squaring designs hence choose s in dependence of the norm of the input
matrix [11, 7, 9]. For example, in the algorithm by Higham described in [9], it is the smallest
integer satisfying

(2.7) ‖2−sGl‖1 ≤ θ ≈ 5.37 . . . .

In order to combine our incremental evaluation techniques with this scaling and squaring
design, the scaling power s must thus be chosen dynamically in the course of the evaluation.
Assume that s satisfies the criterion (2.7) at step l− 1 but not at step l. We then simply discard
all accumulated data structures from Algorithm 4, increase s to match the bound (2.7) for Gl,
and start Algorithm 5 anew with the repartitioned input matrix

(2.8) Gn =



G0,0 · · · G0,l G0,l+1 · · · G0,n

. . .
...

...
...

Gl,l Gl,l+1 · · · Gl,n
Gl+1,l+1 · · · Gl+1,n

. . .
...

Gn,n


=


Ĝ0,0 Ĝ0,1 · · · Ĝ0,n−l

Ĝ1,1 · · · Ĝ1,n−l
. . .

...
Ĝn−l,n−l


︸ ︷︷ ︸

=:Ĝn−l

.

The procedure is summarized in Algorithm 6.
It turns out that the computational overhead induced by this restarting procedure is

quite modest. In the notation introduced for the complexity discussion in Section 2.3, the
number of operations for computing exp(Gn) by Higham’s scaling and squaring method is
O(log(‖Gn‖1)(nb)3). Since there are at most log(‖Gn‖1) restarts in Algorithm 6, the total
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Algorithm 6 Approximation of exp(G0), exp(G1), . . . with adaptive scaling.
Input: Padé approximation parameters k, m, norm bound θ.
Output: F0 ≈ exp(G0), F1 ≈ exp(G1), . . .

1: s← max{0, log(‖G0‖1)}
2: Compute F0 using scaling and squaring, store intermediates for Algorithm 4
3: for l = 1, 2, . . . do
4: if ‖Gl‖1 > θ then
5: Repartition Gn = Ĝn−l as in (2.8)
6: Restart algorithm with Ĝn−l
7: end if
8: Compute Fl from Fl−1 using Algorithm 4
9: if termination criterion is satisfied then

10: return
11: end if
12: end for

number of operations for incrementally computing all exponentials exp(G0), . . . , exp(Gn)
can be bounded by a function in O(log(‖Gn‖1)2(nb)3). We assess the actual performance of
Algorithm 6 in Section 4.

In our application from option pricing it turns out that the norms of the matrices Gl do
not grow dramatically (see Sections 3.2 and 3.3), and quite accurate approximations to all the
matrix exponentials can be computed even if the scaling factor is fixed (see Section 4.2).

3. Option pricing in polynomial models. The main purpose of this section is to explain
how certain option pricing techniques require the sequential computation of matrix exponen-
tials for block triangular matrices. The description will necessarily be rather brief; we refer,
e.g., to the textbook [5] for more details.

Because we are evaluating at initial time t = 0, the price of a certain option expiring at
time τ > 0 consists of computing an expression of the form

(3.1) e−rτE[f(Xτ )],

where (X)0≤t≤τ is a d-dimensional stochastic process modeling the price of financial assets
over the time interval [0, τ ], f : Rd → R is the so-called payoff function, and r represents a
fixed interest rate. In the following, we consider stochastic processes described by an SDE of
the form

dXt = b(Xt)dt+ Σ(Xt)dWt,(3.2)

where W denotes a d-dimensional Brownian motion, b : Rd 7→ Rd, and Σ : Rd 7→ Rd×d.

3.1. Polynomial diffusion models. During the last years, polynomial diffusion models
have become a versatile tool in financial applications, including option pricing. In the following,
we provide a short summary and refer to the paper by Filipović and Larsson [6] for the
mathematical foundations.

For a polynomial diffusion process, one assumes that the coefficients of the vector b
in (3.2) and the matrix A := ΣΣT satisfy

(3.3) Aij ∈ Pol2(Rd), bi ∈ Pol1(Rd) for i, j = 1, . . . , d.
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Here, Poln(Rd) represents the set of d-variate polynomials of total degree at most n, that is,

Poln(Rd) :=

 ∑
0≤|k|≤n

αkx
k |x ∈ Rd, αk ∈ R

 ,

where we use multi-index notation: k = (k1, . . . , kd) ∈ Nd0, |k| := k1 + · · · + kd, and
xk := xk11 . . . xkdd . In the following, Pol(Rd) represents the set of all multivariate polynomials
on Rd.

Associated with A and b we define the partial differential operator G by

(3.4) Gf =
1

2
Tr(A∇2f) + bT∇f,

which represents the so called generator for (3.2); see [12]. It can be directly verified that (3.3)
implies that Poln(Rd) is invariant under G for any n ∈ N, that is,

(3.5) GPoln(Rd) ⊆ Poln(Rd).

REMARK 3.1. In many applications, one is interested in solutions to (3.2) that lie on a
state space E ⊆ Rd to incorporate, for example, nonnegativity. This problem is largely studied
in [6], where existence and uniqueness of solutions to (3.2) on several types of state spaces
E ⊆ Rd and for large classes of A and b is shown. Let us now fix a basis of polynomials
Hn = {h1, . . . , hN} for Poln(Rd), where N = dim Poln(Rd) =

(
n+d
n

)
, and write

Hn(x) = (h1(x), . . . , hN (x))T .

Let Gn denote the matrix representation with respect toH of the linear operator G restricted
to Poln(Rd). By definition,

Gp(x) = Hn(x)TGn~p

for any p ∈ Poln(Rd) with coordinate vector ~p ∈ RN with respect toHn. By [6, Theorem 3.1],
the corresponding polynomial moment can be computed from

(3.6) E[p(Xτ )] = Hn(X0)T eτGn~p.

The setting discussed above corresponds to the scenario described in the introduction. We
have a sequence of subspaces

Pol0(Rd) ⊆ Pol1(Rd) ⊆ Pol2(Rd) ⊆ · · · ⊆ Pol(Rd),

and the polynomial preserving property (3.5) implies that the matrix representation Gn is
block upper triangular with n+ 1 square diagonal blocks of size

1, d,

(
1 + d

2

)
, . . . ,

(
n+ d− 1

n

)
.

In the rest of this section we introduce two different pricing techniques that require the
incremental computation of polynomial moments of the form (3.6).
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3.2. Moment-based option pricing for Jacobi models. The Jacobi stochastic volatility
model is a special case of a polynomial diffusion model and it is characterized by the SDE

dYt = (r − Vt/2)dt+ ρ
√
Q(Vt)dW1t +

√
Vt − ρ2Q(Vt)dW2t,

dVt = κ(θ − Vt)dt+ σ
√
Q(Vt)dW1t,

where

Q(v) =
(v − vmin)(vmax − v)

(
√
vmax −

√
vmin)2

,

for some 0 ≤ vmin < vmax. Here, W1t and W2t are independent standard Brownian motions
and the model parameters satisfy the conditions κ ≥ 0, θ ∈ [vmin, vmax], σ > 0, r ≥ 0,
ρ ∈ [−1, 1]. In their paper, Ackerer et al. [1] use this model in the context of option pricing
where the price of the asset is specified by St := eYt and Vt represents the squared stochastic
volatility. In the following, we briefly introduce the pricing technique they propose and explain
how it involves the incremental computation of polynomial moments.

Under the Jacobi model with the discounted payoff function f of an European claim, the
option price (3.1) at initial time t = 0 can be expressed as

(3.7)
∑
n≥0

fnln,

where {fn, n ≥ 0} are the Fourier coefficients of f and {ln, n ≥ 0} are Hermite moments. As
explained in [1], the Fourier coefficients can be conveniently computed in a recursive manner.
The Hermite moments are computed using (3.6). Specifically, consider the monomial basis of
Poln(R2):

(3.8) Hn(y, v) := (1, y, v, y2, yv, v2, . . . , yn, yn−1v, . . . , vn)T .

Then

(3.9) ln = Hn(Y0, V0)T eτGn~hn,

where ~hn contains the coordinates with respect to (3.8) of

1√
n!
hn

(
y − µw
σw

)
,

with real parameters σw, µw and the nth Hermite polynomial hn.
Truncating the sum (3.7) after a finite number of terms allows us to obtain an approxima-

tion of the option price. Algorithm 7 describes a heuristic to selecting the truncation based on
the absolute value of the summands using Algorithm 5 for computing the required moments
incrementally.

As discussed in Section 2, a norm estimate for Gn is instrumental for choosing a priori
the scaling parameter in the scaling and squaring method. The following lemma provides such
an estimate for the model under consideration.

LEMMA 3.2. Let Gn be the matrix representation of the operator G defined in (3.4) with
respect to the basis (3.8) of Poln(R2). Define

α :=
σ(1 + vminvmax + vmax + vmin)

2(
√
vmax −

√
vmin)2

.
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Algorithm 7 Option pricing for the European call option under the Jacobi stochastic volatility
model.
Input: Model and payoff parameters, tolerance ε
Output: Approximate option price

1: n = 0
2: Compute l0, f0; set Price = l0f0.
3: while |lnfn| > ε · Price do
4: n = n+ 1
5: Compute exp(τGn) using Algorithm 4.
6: Compute Hermite moment ln using (3.9).
7: Compute Fourier coefficient fn as described in [1].
8: Price = Price + lnfn;
9: end while

Then the matrix 1-norm of Gn is bounded by

n(r + κ+ κθ − σα) +
1

2
n2(1 + |ρ|α+ 2σα).

Proof. The operator G in the Jacobi model takes the form

Gf(y, v) =
1

2
Tr(A(v)∇2f(y, v)) + b(v)>∇f(y, v),

where

b(v) =

[
r − v/2
κ(θ − v)

]
, A(v) =

[
v ρσQ(v)

ρσQ(v) σ2Q(v)

]
.

Setting S := (
√
vmax−

√
vmin)2, we consider the action of the generator G on a basis element

ypvq:

Gypvq =yp−2vq+1p
p− 1

2
− yp−1vq+1p

(1

2
+
qρσ

S

)
+ yp−1vqp

(
r + qρσ

vmax + vmin

S

)
− yp−1vq−1 pqρσvmaxvmin

S
− ypvqq

(
κ+

q − 1

2

σ2

S

)
− ypvq−2q q − 1

2

σ2vmaxvmin

S
+ ypvq−1q

(
κθ +

q − 1

2
σ2 vmax + vmin

S

)
.

For the matrix 1-norm of Gn, one needs to determine the values (p, q) ∈M, where we define
M := {(p, q) ∈ N0×N0|p+q ≤ n}, for which the 1-norm of the coordinate vector of Gypvq
becomes maximal. Taking into account the nonnegativity of the involved model parameters
and replacing ρ by |ρ|, we obtain an upper bound as follows:

p
p− 1

2
+ p
(1

2
+
q|ρ|σ
S

)
+ p
(
r + q|ρ|σvmax + vmin

S

)
+
pq|ρ|σvmaxvmin

S

+ q
(
κ+

q − 1

2

σ2

S

)
+ q

q − 1

2

σ2vmaxvmin

S
+ q
(
κθ +

q − 1

2
σ2 vmax + vmin

S

)
= pr + qκ(θ + 1) +

1

2
p2 + 2pq|ρ|α+ q(q − 1)σα

≤ n(r + κ+ κθ) +
1

2
n2 + 2pq|ρ|α+ n(n− 1)σα.

This completes the proof, noting that the maximum of pq onM is bounded by n2/4 overM.
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The result of Lemma 3.2 predicts that the norm of Gn grows, in general, quadratically.
This prediction is confirmed numerically for parameter settings of practical relevance.

3.3. Moment-based option pricing for Heston models. The Heston model is another
special case of a polynomial diffusion model characterized by the SDE

dYt = (r − Vt/2)dt + ρ
√
VtdW1t +

√
Vt
√

1− ρ2dW2t,

dVt = κ(θ − Vt)dt+ σ
√
VtdW1t,

with model parameters satisfying the conditions κ ≥ 0, θ ≥ 0, σ > 0, r ≥ 0, ρ ∈ [−1, 1]. As
before, the asset price is modeled via St := eYt , while Vt represents the squared stochastic
volatility.

Lasserre et al. [10] developed a general option pricing technique based on moments and
semidefinite programming (SDP). In the following we briefly explain the main steps and in
which context an incremental computation of moments is needed. In doing so, we restrict
ourselves to the specific case of the Heston model and European call options.

Consider the payoff function f(y) := (ey − eK)+ for a certain log strike value K.
Let ν(dy) be the Yτ -marginal distribution of the joint distribution of the random variable
(Yτ , Vτ ). Define the restricted measures ν1 and ν2 as ν1 = ν|(−∞,K] and ν2 = ν|[K,∞). By
approximating the exponential in the payoff function with a Taylor series truncated after n
terms, the option price (3.1) can be written as a certain linear function L in the moments of ν1
and ν2, i.e.,

E[f(Yτ )] = L(n, ν01 , · · · , νn1 , ν02 , · · · , νn2 ),

where νmi represents the mth moment of the ith measure.
A lower / upper bound of the option price can then be computed by solving the optimiza-

tion problems

SDPn :=


min /max L(n, ν01 , · · · , νn1 , ν02 , · · · , νn2 )

subject to νj1 + νj2 = νj , j = 0, · · · , n
ν1 is a Borel measure on (−∞,K],
ν2 is a Borel measure on [K,∞).

(3.10)

Two SDPs arise when writing the last two conditions in (3.10) via moment and localizing
matrices corresponding to the so-called truncated Stieltjes moment problem.

Formula (3.6) is used in this setting to compute the moments νj . Increasing the relaxation
order n iteratively allows us to find sharper bounds (this is trivial because increasing n adds
more constraints). One stops as soon as the bounds are sufficiently close. Algorithm 8
summarizes the resulting pricing algorithm.

The following lemma extends the result of Lemma 3.2 to the Heston model.
LEMMA 3.3. Let Gn be the matrix representation of the operator G introduced above

with respect to the basis (3.8) of Poln(R2). Then the matrix 1-norm of Gn is bounded by

n(r + κ+ κθ − σ2

2
) +

1

2
n2(1 + |ρ|σ

2
+ σ2).

Proof. Similar to the proof of Lemma 3.2.

4. Numerical experiments. We have implemented the algorithms described in this
paper in MATLAB and compare them with Higham’s scaling and squaring method from [9],
which typically employs a diagonal Padé approximation of degree 13 and is referred to as
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Algorithm 8 Option pricing for European options based on SDP and moments relaxation.
Input: Model and payoff parameters, tolerance ε
Output: Approximate option price

1: n = 1, gap = 1
2: while gap > ε do
3: Compute exp(τGn) using Algorithm 4
4: Compute moments of order n using (3.6)
5: Solve corresponding SDPn to get LowerBound and UpperBound
6: gap = |UpperBound− LowerBound|
7: n = n+ 1
8: end while
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FIG. 4.1. Comparison of incexpm and expm for a random block triangular matrix. Left: Cumulative run
time for computing the leading portions. Right: Relative error of incexpm with respect to expm.

“expm” in the following. The implementations of our algorithms for block triangular matrices,
Algorithm 5 (fixed scaling parameter) and Algorithm 6 (adaptive scaling parameter), are based
on the same scaling and squaring design and are referred to as “incexpm’ in the following.
All experiments were run on a standard laptop (Intel Core i5, 2 cores, 256kB/4MB L2/L3
cache) using a single computational thread.

4.1. Random block triangular matrices. We first assess run time and accuracy on a
randomly generated block upper triangular matrix Gn ∈ R2491×2491. There are 46 diagonal
blocks of size varying between 20 and 80. The matrix is generated to have a spectrum
contained in the interval [−80,−0.5], and a well conditioned eigenbasis X (κ2(X) ≈ 100).

Figure 4.1 (left) shows the wall clock time for the incremental computation of all the
leading exponentials. Specifically each data point shows the time vs. dl = b0 + · · · + bl
needed for computing the l + 1 matrix exponentials exp(G0), exp(G1), . . . , exp(Gl), given
0 ≤ l ≤ n, when using

• expm (by simply applying it to each matrix separately),
• incexpm with the adaptive scaling strategy from Algorithm 6,
• incexpm with fixed scaling power 6 (scaling used by expm for G0),
• incexpm with fixed scaling power 12 (scaling used by expm for Gn).

As expected, incexpm is much faster than naively applying expm to each matrix separately;
the total times for l = n are also displayed in Table 4.1. For reference we remark that the
run time of MATLAB’s expm, which applies only the final matrix Gn, is 13.65s, which is
very close to the run time of incexpm with scaling parameter set to 12 (see Section 2.3 for
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TABLE 4.1
Run time and relative error attained by expm and incexpm on a random block triangular matrix of size 2491.

Algorithm Time (s) Rel. error
expm 163.60
incexpm (adaptive) 20.01 3.27e-15
incexpm (s = 6) 9.85 2.48e-13
incexpm (s = 12) 13.70 6.17e-14

a discussion of the asymptotic complexity). Indeed, a closer look at the runtime profile of
incexpm reveals that the computational overhead induced by the more complicated data
structures is largely compensated in the squaring phase by taking advantage of the block
triangular matrix structure, from which MATLAB’s expm does not profit automatically. It
is also interesting to note that the run time of the adaptive scaling strategy is roughly only
twice the run time for running the algorithm with a fixed scaling parameter 6, despite its worse
asymptotic complexity.

The accuracy of the approximations obtained by incexpm is shown on the right in
Figure 4.1. We assume expm as a reference, and measure the relative distance between these
two approximations, i.e.,

‖expm(Gl)− incexpm(Gl)‖F
‖expm(Gl)‖F

,

at each iteration l (quantities smaller than the machine precision are set to u in Figure 4.1 for
plotting purpose). One notes that the approximations of the adaptive strategy remain close to
expm throughout the sequence of computations. An observed drop of the error down to u for
this strategy corresponds to a restart in Algorithm 6; the approximation at this step is exactly
the same as the one of expm. Even for the fixed scaling parameters 6 and 12, the obtained
approximations are quite accurate.

4.2. Application to option pricing. We now show results for computing option prices
using Algorithm 7 for the set of parameters

v0 = 0.04, x0 = 0, σw = 0.5, µw = 0, κ = 0.5, θ = 0.04, σ = 0.15,

ρ = −0.5, vmin = 0.01, vmax = 1, r = 0, τ = 1/4, k = log(1.1).

We use the tolerance ε = 10−3 for stopping Algorithm 7.
We explore the use of different algorithms for the computation of the matrix exponentials

in line 5 of Algorithm 7: incexpm with adaptive scaling, incexpm with fixed scaling
parameter s = 7 (corresponding to the upper bound from Lemma 3.2 for n = 60), and expm.
Similar to Figure 4.1, the observed cumulative run times and errors are shown in Figure 4.2.
Again, incexpm is observed to be significantly faster than expm (except for small matrix
sizes) while delivering the same level of accuracy. Both incexpm run times are also close to
the run time of MATLAB’s expm applied only to the final matrix τGn (4.64s).

Table 4.2 displays the impact of the different algorithm on the overall Algorithm 7 in
terms of execution time and accuracy. Concerning accuracy, we computed the relative error
with respect to a reference option price computed by considering a truncation order n = 100.
It can be observed that there is no difference in accuracy for the three algorithms.

REMARK 4.1. The block triangular matrices Gn arising from the generator in the Jacobi
model actually exhibit additional structure. They are quite sparse and the diagonal blocks are
in fact permuted triangular matrices (this does not hold for polynomial diffusion models in
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FIG. 4.2. Comparison of incexpm and expm for the block upper triangular matrices arising in the context of
the Jacobi model in Algorithm 7. Left: Cumulative run time for computing the leading portions. Right: Relative error
of incexpm with respect to expm.

TABLE 4.2
Total run time and option price errors for the Jacobi model for n = 61.

Algorithm Time (s) Rel. price error
expm 42.97 1.840e-03
incexpm (adaptive) 5.84 1.840e-03
incexpm (s = 7) 5.60 1.840e-03

general, though). For example, for n = 2 the matrix G2 in the Jacobi model is explicitly given
by

G2 =



0 r κθ 0 −ρσvmaxvmin
S −σ

2vmaxvmin
S

0 0 2r κθ 0

− 1
2 −κ 1 r + ρσ(vmax+vmin)

S 2κθ + σ2(vmax+vmin)
S

0 0 0
−1 −κ 0

0 − 1
2 −

ρσ
S −2κ− σ2

S


,

for S := (
√
vmax −

√
vmin)2.

While the particular structure of the diagonal blocks is taken into account automatically
by expm and incexpm when computing the LU decompositions of the diagonal blocks, it
is not so easy to benefit from the sparsity. Starting from sparse matrix arithmetic, the matrix
quickly becomes denser during the evaluation of the initial rational approximation and in
particular during the squaring phase. In all our numerical experiments we used a dense matrix
representation throughout.

We repeated the experiments above for the Heston instead of the Jacobi model, that is,
we investigated the impact of using our algorithms for computing the matrix exponentials in
Algorithm 8. We found that the results for computing the matrix exponentials themselves
look very similar to those for the Jacobi model (Figure 4.2) both in terms of run time and
accuracy, so we refrain from giving further details here. There is, however, a notable difference.
The evaluation of the stopping criterion requires the solution of two SDPs, which quickly
becomes a computational challenge, eventually completely dominating the time needed for
the computation of the matrix exponentials.
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5. Summary and future work. We have presented techniques for scaling and squaring
algorithms that allow for the incremental computation of block triangular matrix exponentials.
We combined these techniques with an adaptive scaling strategy that allows for both fast and
accurate computation of each matrix exponential in this sequence (Algorithm 6). For our
application in polynomial diffusion models, the run time can be further reduced by using fixed
scaling parameter determined through the estimation techniques in Lemmas 3.2 and 3.3.

We observed in our numerical experiments that accurate approximations to these matrix
exponentials can be obtained even for quite small, fixed scaling parameters. For the case of
two-by-two block triangular matrices, the results of Dieci and Papini [3, 4] support this finding,
but an extension of these results to cover a more general setting would be appreciable.
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