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ON GENERALIZED ITERATED TIKHONOV REGULARIZATION
WITH OPERATOR-DEPENDENT SEMINORMS∗

DAVIDE BIANCHI† AND MARCO DONATELLI†

Abstract. We investigate the recently introduced Tikhonov regularization filters with penalty terms having
seminorms that depend on the operator itself. Exploiting the singular value decomposition of the operator, we provide
optimal order conditions, smoothing properties, and a general condition (with a minor condition of the seminorm) for
the saturation level. Moreover, we introduce and analyze both stationary and nonstationary iterative counterparts of
the generalized Tikhonov method with operator-dependent seminorms. We establish their convergence rate under
conditions affecting only the iteration parameters, proving that they overcome the saturation result. Finally, some
selected numerical results confirm the effectiveness of the proposed regularization filters.
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1. Introduction. We consider an equation of the form

(1.1) Kx = y ,

where K : X → Y is a compact linear operator between generic Hilbert spaces X and Y over
R or C. Let Rg(K) be the range of K. We assume y ∈ Rg(K), i.e., that the problem (1.1)
has a solution x† = K†y of minimal norm. Here K† denotes the (Moore-Penrose) pseudo
inverse operator of K, which is unbounded when K is compact with infinite-dimensional
range. Hence problem (1.1) is ill-posed and has to be regularized in order to compute a
numerical solution [12].

We want to approximate the solution x† of equation (1.1) when only an approximation yδ

of y is available with

(1.2) yδ = y + η and ‖η‖ ≤ δ,

where η is called the noise vector and δ is called the noise level. Since K†yδ is not necessarily
close to x†, we approximate x† by xδα := Rαy

δ, where {Rα} is a family of continuous
operators depending on a parameter α [7]. In that sense, a class of such regularizers are the
so-called filter-based methods that exploit the singular value expansion (s.v.e.) of the operator
K by acting on its spectrum in order to diminish the effect of the noise on the reconstructed
solution. Indeed, if we indicate by (σm; vm, um)m∈N the s.v.e of K, then we can express Rα
in the following way:

Rαy =

+∞∑
m=1

Fα(σm)σ−1
m 〈y, um〉vm,

for every y that belongs to the domain of K† and where {Fα}α∈R+ is a family of functions
(filters) that, under suitable conditions, compensate the decay to zero of the sequence of
singular values {σm} of the compact operator K; see, e.g., [20]. Namely, we can write

(1.3) xδα = Rαy
δ = x† − ea + en,
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where

ea =
∑

m:σm>0

(1− Fα(σm))σ−1
m 〈y, um〉vm

is the approximation error and

en =
∑

m:σm>0

Fα(σm)σ−1
m 〈η, um〉vm

is the noise error. The role of the filter function Fα is then to mediate between the approxima-
tion error and the noise error.

A classical example is Tikhonov regularization with the filter Fα(σ) = σ2

σ2+α . It
is well known that the Tikhonov filter is affected by a couple of undesirable properties
such as an oversmoothing effect on the regularized solution xδα and a saturation of the
convergence rate. Indeed, if we consider for example the compact embedding operator
Js : Hs([0, 2π]) ↪→ L2([0, 2π]) of the fractional Sobolev space Hs([0, 2π]) onto L2([0, 2π])
with s > 0, then the regularized solution xδα belongs to the fractional Sobolev space H2s, i.e.,
xδα lies in a more regular space than the true solution. Furthermore, Tikhonov regularization
under suitable a-priori assumptions and an a-priori choice rule, α = α(δ) ∼ c · δ2/3, is of
optimal order, and the best possible convergence rate obtainable is

‖xδα − x†‖ = O(δ
2
3 ).

On the other hand, let Q be the orthogonal projector onto Rg(K). If

sup
{
‖xδα − x†‖ : ‖Q(y − yδ)‖ ≤ δ

}
= o(δ

2
3 ),

then x† = 0 as long as Rg(K) is not closed. This shows that Tikhonov regularization for an
ill-posed problem with a compact operator never yields a convergence rate that is faster than
O(δ

2
3 ) because the method saturates at this rate; see [10, 7].
In the last years, new types of Tikhonov-based regularization methods were studied

in [18] and [15] under the name of Fractional or Weighted Tikhonov and in [17, 19] in order
to dampen the oversmoothing effect on the regularized solution of classic Tikhonov and to
exploit the information carried by the spectrum of the operator. Special attention was devoted
to Fractional Tikhonov regularization studied and extended in [9, 1, 15], while for Hermitian
problems, the fractional approach was combined with Lavrentiev regularization; see [21, 14].

In this paper we present a generalization of the filters in [15, 17]. We show that the
aforementioned methods can be seen as a generalized Tikhonov method of the form

(1.4) Rα,fy := argminx∈X

{
‖Kx− y‖2 + α‖x‖2√

f(K∗K)

}
,

or equivalently,

(1.5) Rα,fy = (K∗K + αf (K∗K))
−1
K∗y,

where f : [0, σ1]→ R is a bounded measurable function and the associated filter function has
the structure

(1.6) Fα,f (σ) =
σ2

σ2 + αf(σ2)
.
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We investigate the regularization and convergence properties of the filter, and we study condi-
tions under which the regularization of the embedding operator js : Hs([0, 2π]) ↪→ L2([0, 2π])
recovers the regularized solution in Ht with t ≤ 2s, i.e., such that the oversmoothing effect of
the Tikhonov filter is reduced and more features of the true solution can be recovered. More-
over, a saturation result for the regularization method (1.4) is proposed. To overcome such
saturation, we apply the iterative approach as it was done for the classical iterated Tikhonov
method [12]. Employing the techniques in [1], we introduce the iterative nonstationary variant
for the regularization method (1.4) with the function f defined according to the proposal
in [17] and give sufficient conditions for convergence and stability. Nonstationary versions of
Tikhonov methods can provide better restorations, see, e.g., [16], as also confirmed by our
numerical results, and in particular let us avoid the nontrivial problem of finding the optimal
parameter α.

Iterated Tikhonov with a general penalty term has recently been investigated in [4], where
both convergence and regularization properties are proved. Here, we consider general penalty
terms that are particular functions of the operator, and we prove stronger results. For instance,
we provide the convergence rate in the noise-free case and the regularization property in the
noisy case under a weaker condition. Moreover, this paper is to be considered an evolution
and integration of [1], providing new results and a generalization of some of the techniques
introduced in that paper.

The paper is organized as follow. In Section 2 we set the basic notations and preliminaries.
In Section 3 we introduce the filter functions which we study and provide order optimality
results. In Sections 4 and 5 we investigate the smoothing properties of these methods and
their saturation levels, respectively. In Section 6 we present their iterated versions and provide
convergence results. In Section 7 we give selected examples which confirm the theoretical
analysis, while Section 8 is devoted to concluding remarks.

2. Preliminaries. In this section we recall some classical results on regularization meth-
ods that will be used in our subsequent analysis. The main concern is to prescribe sufficient
conditions for which a family of approximate solutions converges uniformly to the exact true
solution with respect to the noise level and with the best possible upper bound on the rate of
convergence. All the propositions and theorems that are not new will include a reference to the
paper where they first appeared. For a detailed description of the following results, see [7, 20].

DEFINITION 2.1 (Generalized Inverse). We define the generalized inverse of a compact
linear operator K : X → Y as K† : Dom(K†) ⊆ Y → X ,

K†y =
∑

m:σm>0

σ−1
m 〈y, um〉vm, y ∈ Dom(K†),

where

Dom(K†) =

{
y ∈ Y :

∑
m:σm>0

σ−2
m |〈y, um〉|2 <∞

}
.

As discussed in the introduction, we consider the problem (1.1) where only an approx-
imation yδ of y satisfying (1.2) is available. Therefore, x† = K†y with y ∈ Dom(K†)
cannot be approximated by K†yδ due to the unboundedness of K†, and hence, in practice
the problem (1.1) is approximated by a family {Rα} of neighboring well-posed problems [7],
where Rα should be continuous for every α and Rα → K† pointwise for α → 0. These
properties are formalized in the next definition.
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DEFINITION 2.2. By a regularization method for K† we mean any family of operators

{Rα}α∈(0,α0) : Y → X , α0 ∈ (0,+∞],

with the following properties:
(i) Rα : Y → X is a bounded operator for every α.

(ii) For every y ∈ Dom(K†) there exists a mapping α : R+ × Y → (0, α0) ∈ R, (i.e., a
choice rule) with α = α(δ, yδ), such that

lim
δ→0

sup
{
α(δ, yδ) : yδ ∈ Y, ‖y − yδ‖ ≤ δ

}
= 0,

and

lim
δ→0

sup
{
‖Rα(δ,yδ)y

δ −K†y‖ : yδ ∈ Y, ‖y − yδ‖ ≤ δ
}

= 0.

Throughout this paper, c is a constant which can change from one instance to the next.
For the sake of clarity, if more than one constant will appear in the same line or equation, we
distinguish them by means of a subscript.

The special regularization methods which we are interested in are filtering-based methods
largely investigated in [20].

PROPOSITION 2.3 ([20]). Let K : X → Y be a compact linear operator. Let σ(K) be
the closure of

⋃∞
m=1{σm}, and let K† be its generalized inverse. Let Rα : Y → X be a

family of operators defined for every α ∈ (0, α0) as

(2.1) Rαy :=
∑

m:σm>0

Fα(σm)σ−1
m 〈y, um〉vm,

where Fα : [0, σ1] ⊃ σ(K)→ R is a Borel function such that

sup
m:σm>0

|Fα(σm)σ−1
m | = c(α) <∞,(2.2a)

|Fα(σm)| ≤ c <∞, where c does not depend on (α,m),(2.2b)
lim
α→0

Fα(σm) = 1 pointwise in σm.(2.2c)

Then Rα is a regularization method with ‖Rα‖ = c(α), and it is called a filter-based regular-
ization method, while Fα is a filter function.

For ease of notation we introduce the following notations

xα := Rαy, y ∈ Dom(K†),(2.3)

xδα := Rαy
δ, yδ ∈ Y.(2.4)

A choice rule α(δ, yδ) that depends only on the noise level δ, i.e., α(δ, yδ) = α(δ), is
called a-priori choice rule. Since there can be no uniform convergence for any regularization
method if Rg(K) is not closed, see [7, Proposition 3.11], convergence rates can only be proven
on subsets of X , namely under a-priori assumptions in terms of the exact solution.

We thus report hereafter the definition of optimal order under a-priori assumptions.
DEFINITION 2.4 (Optimal order under an a-priori assumption). For every given ν, ρ > 0,

let

Xν,ρ :=
{
x ∈ X : ∃ω ∈ X , ‖ω‖ ≤ ρ, x = (K∗K)

ν
2 ω
}
⊂ X .
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A regularization method Rα is called of optimal order under the a-priori assumption x†∈Xν,ρ
if

(2.5) ∆(δ,Xν,ρ, Rα) ≤ c · δ
ν
ν+1 ρ

1
ν+1 ,

where for any general set M ⊆ X , δ > 0, and for a regularization method Rα, we define

∆(δ,M,Rα) := sup
{
‖x† − xδα‖ : x† ∈M, ‖y − yδ‖ ≤ δ

}
.

If ρ is not known, as it will be usually the case, then we relax the definition by introducing the
set

Xν :=
⋃
ρ>0

Xν,ρ,

and we say that a regularization method Rα is of optimal order under the a-priori assumption
x† ∈ Xν if

∆(δ,Xν , Rα) ≤ c · δ
ν
ν+1 .

Roughly speaking, depending on the space X , Xν,ρ describes the regularity of the exact
solution x† in terms of subdomains of X .

Finally, we are ready to state the main result of this section and one of the most important
tools that we use for the study of the upcoming new filter methods. The next theorem provides
sufficient conditions for a regularization method to be of optimal order under an a-priori
assumption, i.e., it provides sufficient conditions in order to achieve the best upper bound on
the convergence rate with respect to the noise level.

THEOREM 2.5 ([20]). Let K : X → Y be a compact linear operator, ν and ρ > 0, and
let Rα : Y → X be a filter-based regularization method. If there exists a fixed β > 0 such
that

sup
0<σ≤σ1

|Fα(σ)σ−1| ≤ c · α−β ,(2.6a)

sup
0≤σ≤σ1

|(1− Fα(σ))σν | ≤ cν · αβν ,(2.6b)

then Rα is of optimal order under the a-priori assumption x† ∈ Xν,ρ with the choice rule

α = α(δ, ρ) = ĉ ·
(
δ

ρ

) 1
β(ν+1)

, 0 < ĉ =

(
c

νcν

) 1
β(ν+1)

.

3. Two generalized Tikhonov methods and a mixing approach. In this section we
discuss two recent types of regularization methods which generalize the classical Tikhonov
method and which were first introduced and studied in [18] and [17], plus a mixing method
with the intent to merge the features of both the preceding methods. We use the notation Fα,·
to indicate the new filters, where · will be replaced by the extra parameter introduced by the
respective method. Every method is studied separately to avoid confusion and misunderstand-
ings.

DEFINITION 3.1 ([15]). We define the weighted-I Tikhonov method as the filter-based
method

Rα,ry :=
∑

m:σm>0

Fα,r(σm)σ−1
m 〈y, um〉vm,
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where the filter function is

(3.1) Fα,r(σ) =
σr+1

σr+1 + α
=

σ2

σ2 + ασ1−r ,

for α > 0 and r ≥ 0. For r = 1 the classic Tikhonov filter is recovered.
According to (2.3) and (2.4), we fix the following notation

xα,r := Rα,ry, y ∈ Dom(K†),

xδα,r := Rα,ry
δ, yδ ∈ Y.

DEFINITION 3.2 ([17]). We define the weighted-II Tikhonov method as the filter-based
method

Rα,jy :=
∑

m:σm>0

Fα,j(σm)σ−1
m 〈y, um〉vm,

where the filter function is

(3.2) Fα,j(σ) =
σ2

σ2 + α

[
1−

(
σ
σ1

)2
]j ,

for α > 0 and j ∈ N. For j = 0 the classic Tikhonov filter is recovered.
REMARK 3.3. With reference to (1.3), let us observe that for large j, the weighted-II

filter Fα,j(σ) is almost 1 when σ belongs to the signal subspace and is almost the standard
Tikhonov filter Fα(σ) = σ2

σ2+α when σ belongs to the noise subspace. The idea is that in the
signal subspace, i.e., when σ ∼ σ1, where the noise error norm is controlled, the regularization
is minimal, avoiding as much as possible the approximation error, while the action of the
filter function is focused on the noise subspace, i.e., when σ ∼ 0. Roughly speaking, the
weighted-II filter acts like a switch for the regularization to take place. Like above, we fix the
following notation

xα,j := Rα,jy, y ∈ Dom(K†),

xδα,j := Rα,jy
δ, yδ ∈ Y.

Given an operator W on any Hilbert space, if we consider the seminorm ‖ · ‖W induced by W ,
i.e., ‖x‖2W := 〈Wx,Wx〉, then the weighted-I Tikhonov method can also be defined as the
unique minimizer of the functional

(3.3) Rα,ry := argminx∈X
{
‖Kx− y‖2 + α‖x‖2W

}
,

where the seminorm ‖ · ‖W is induced by the operator W := (K∗K)
1−r
4 : X → X . For

r > 1, W has to be interpreted as the Moore-Penrose pseudo inverse . Looking for a stationary
point in equation (3.3), we have that

0 = ∇
(
‖Kx− y‖2 + α‖x‖2W

)
= ∇

(
〈Kx,Kx〉 − 2〈Kx, y〉+ 〈y, y〉+ α〈(K∗K)

1−r
4 x, (K∗K)

1−r
4 x〉

)
= ∇

(
〈x,K∗Kx〉 − 2〈x,K∗y〉+ α〈x, (K∗K)

1−r
2 x〉

)
= 2K∗Kx− 2K∗y + 2α (K∗K)

1−r
2 x,
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from which we deduce the following expression for the operator Rα,r,

Rα,ry =
[
K∗K + α (K∗K)

1−r
2

]−1

K∗y.

In the same way, the weighted-II Tikhonov method can be defined as the unique minimizer
of the functional

Rα,jy := argminx∈X
{
‖Kx− y‖2 + α‖x‖2B

}
,

where B :=
(
I − K∗K

‖K∗K‖

)j/2
: X → X , and by similar calculations as above, we can deduce

that

Rα,jy =

[
K∗K + α

(
I − K∗K

‖K∗K‖

)j]−1

K∗y.

Both these methods can be classified in the more general context of weighted generalized
inverse methods, namely as

(3.4) Rαy := argminx∈X
{
‖Kx− y‖2 + α‖x‖2Λ

}
,

or

(3.5) Rαy = [K∗K + αΛ∗Λ]
−1
K∗y,

where Λ is a suitable operator. We do not go into details; for references, see [7, Chapter 8].
We just observe that if Λ∗Λ and K∗K commute, then, indicating by (λn; vn, un)n∈N the s.v.e.
of Λ, the operator (3.5) can be expressed as

(3.6) Rαy :=
∑

m:σm>0

Fα(σm, λm)σ−1
m 〈y, um〉vm, with Fα(σ, λ) =

σ2

σ2 + αλ2
.

Now, let f : [0, σ1] → [0,∞) be a Borel-measurable function and consider the operator
f(K∗K), which commutes with K∗K. From equations (3.6), (3.1), and (3.2), it is clear that
both the weighted-I and weighted-II filter methods are of the form (3.4) with Λ =

√
f(K∗K)

and where

f(σ2) = σ1−r and f(σ2) =

(
1−

(
σ

σ1

)2
)j

,

respectively. This is the reason that motivated us to rename the original method of Hochsten-
bach and Reichel, which appeared in [15], into weighted-I Tikhonov method and subsequently
to rename the method of Huckle and Sedlacek appearing in [17] into weighted-II Tikhonov
method. In this way it is easier to distinguish them from the fractional Tikhonov method of
Klann and Ramlau in [18].

We can now introduce a new mixed method that makes use of both of the weighted-I and
weighted-II methods by combining their filter functions.

DEFINITION 3.4. Fixing Fα,r,j such that

Fα,r,j(σ) :=
σ2

σ2 + αf(σ2)
=

σ2

σ2 + αf1(σ2)f2(σ2)
,
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where

f1(σ2) = σ1−r, f2(σ2) =

[
1−

(
σ

σ1

)2
]j
,

we define the mixed method as the filter-based method

Rα,r,jy :=
∑

m:σm>0

Fα,r,j(σm)σ−1
m 〈y, um〉vm.

Let us notice that for r = 1 and j = 0 we recover the standard Tikhonov method.
As above, we use the notation

xα,r,j := Rα,r,jy, y ∈ Dom(K†),

xδα,r,j := Rα,r,jy
δ, yδ ∈ Y.

The idea behind this method is to exploit the features of the weighted-II filter function, as
observed in Remark 3.3, and use it as a switch for the regularization. Roughly speaking,

Fα,r,j(σ) ∼ 1 when σ ∼ σ1, Fα,r,j(σ) ∼ Fα,r(σ) when σ ∼ 0.

This regularization method satisfies all the nice properties of the weighted-I method that we
are going to present soon after (see Propositions 3.5, 4.1, and 5.1): it is of optimal order, it
saturates at the rate of O

(
δ
r+1
r+2

)
, it undersmooths the reconstructed solution for 0 < r < 1,

and it oversmooths the reconstructed solution for r ≥ 1. For brevity, we skip most of the
details of the proofs of statements regarding the mixed method. Indeed they can be easily
recovered adapting and combining the techniques used in Propositions 3.5, 3.6, 4.2, and 5.1.

Proceeding further with the analysis, the optimal order of the weighted-I Tikhonov regu-
larization was proved in [9]. The following proposition summarizes this result, highlighting
the dependence on r of ν, and provides a converse result.

PROPOSITION 3.5 ([15]). Let K be a compact linear operator with infinite-dimensional
range. For every given r ≥ 0, the weighted-I Tikhonov methodRα,r is a regularization method
of optimal order under the a-priori assumption x† ∈ Xν,ρ with 0 < ν ≤ r + 1. The best
possible rate of convergence with respect to δ is ‖x† − xδα,r‖ = O(δ

r+1
r+2 ), which is obtained

for α =
(
δ
ρ

) r+1
ν+1

with ν = r+ 1. On the other hand, if ‖x†−xα,r‖ = O(α), then x† ∈ Xr+1.
The next proposition provides a proof for the optimal order of the weighted-II Tikhonov

regularization, which instead fails to have a converse result, namely it is not possible to infer
any regularity of x† from the convergence rate of ‖x† − xα,r‖.

PROPOSITION 3.6. Let K be a compact linear operator with infinite-dimensional range.
For every given integer j ≥ 0, the weighted-II Tikhonov method Rα,j is a regularization
method of optimal order under the a-priori assumption x† ∈ Xν,ρ with 0 < ν ≤ 2. The best

possible rate of convergence with respect to δ is ‖x† − xδα,j‖ = O
(
δ

2
3

)
, which is obtained

for α =
(
δ
ρ

) 2
ν+1

with ν = 2.
Proof. The validity of (2.2a), (2.2b), and (2.2c) are trivial to verify, having as a con-

sequence that the weighted-II Tikhonov is a regularization filter method. Without loss of
generality, we suppose that σ1 = 1. The left-hand side of condition (2.6b) takes the form

sup
0≤σ≤1

∣∣∣∣∣ α
(
1− σ2

)j
σν

σ2 + α (1− σ2)
j

∣∣∣∣∣ ,
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FIGURE 3.1. Graphic solution for σ∗.

which is bounded from above by

sup
0≤σ≤1

|αg(σ)| , g(σ) =
σν

σ2 + α (1− σ2)
j
.

Let us study the function g(σ). By taking the derivative, we observe that σ∗ is a maximal
point of g if and only if ν ∈ [0, 2] and σ∗ satisfies the equation

(1− σ2)j−1 =
(2− ν)σ2

α [2jσ2 + ν (1− σ2)]
.

It is not difficult to see that there exists only one such σ∗ ∈ [0, 1]; see Figure 3.1. Indeed, the
functions

ψ1(σ) = (1− σ2)j−1, ψ2(σ) =
(2− ν)σ2

α [2jσ2 + ν (1− σ2)]

are such that ψ′1 ≤ 0 and ψ′2 > 0 on (0, 1). Therefore, if we define

φ(σ) = ψ2(σ)− ψ1(σ),

and fixing α0 < 2/(2− ν) in the case j = 1, it holds that

φ(0) = −1, 0 < φ(1) =

{
2−ν
2α − 1 if j = 1

2−ν
2jα if j > 1

, φ′ > 0 on (0, 1).

By standard calculus arguments, there exists only one σ∗ with φ(σ∗) = 0, namely, the value
σ∗ =

√
αh(σ), where

h(σ) =

{
(1− σ2)j−1

[
2jσ2 + ν

(
1− σ2

)]
2− ν

}1/2

.

If we let α ∈ (0, α0) with α0 <∞, then necessarily σ∗ ∈ (0, λα0,j), where λα0,j < 1. Since
h(σ∗) = 0 if and only if σ∗ = 1, h(σ∗) is uniformly bounded away from 0, i.e., h(σ∗) ∈ [ĉ, 1]
with ĉ = ĉ(α0, j, ν) > 0 and independent of α. Henceforth, we can write

σ∗ = cα0,j,ν

√
α = c

√
α
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with 0 < c ∈ [ĉ, 1], and then we have

sup
0≤σ≤1

|(1− Fα,j(σ))σν | = sup
0≤σ≤1

∣∣∣∣∣ α
(
1− σ2

)j
σν

σ2 + α (1− σ2)
j

∣∣∣∣∣
≤ sup

0≤σ≤1
|αg(σ)| = αg(σ∗) = αg(c

√
α) =

cναν/2

c2 + (1− c2α)j
≤ cν−2αν/2,

(3.7)

which is (2.6b) with β = 1/2. The validity of (2.6a) is shown again by studying the function
g with fixed ν = 1. Therefore, from Theorem 2.5, as long as 0 < ν ≤ 2, if x† ∈ Xν,ρ, the
method achieves order optimality (2.5), and the best possible rate of convergence obtainable
with respect to δ is O(δ

ν
ν+1 ) for ν = 2.

REMARK 3.7. Observe that the optimal order for the weighted-II Tikhonov is independent
of the auxiliary parameter j.

COROLLARY 3.8. Let K be a compact linear operator with infinite-dimensional range.
For every given r ≥ 0, j ∈ N, the mixed method Rα,r,j is a regularization method of optimal
order under the a-priori assumption x† ∈ Xν,ρ with 0 < ν ≤ r + 1. The best possible rate of

convergence with respect to δ is ‖x†−xδα,r,j‖ = O(δ
r+1
r+2 ), which is obtained for α =

(
δ
ρ

) r+1
ν+1

with ν = r + 1. On the other hand, if ‖x† − xα,r,j‖ = O(α), then x† ∈ Xr+1.
Proof. Exploiting the structure of Fα,r,j(σ) = σ2

σ2+αf1(σ2)f2(σ2) with f1 and f2 as in
Definition 3.4, the proof can be adapted without difficulties combining the techniques used in
the proofs of Proposition 3.6 and [1, Proposition 10].

4. Smoothing effect. In this section we deal with the oversmoothing property that affects
the classical Tikhonov regularization method. Indeed, it was observed that the approximate
solution is smoother than the true solution, i.e., it lives in a space of higher regularity. We
will see that the weighted-I and fractional filters can overcome the oversmoothing effect by
a proper choice of their extra regularization parameters. In order to understand this kind
of behavior easily, we are going to restrict our study to the fractional Sobolev spaces Hs of
one-dimensional functions.

Let Ω = [0, 2π] and let Js : Hs(Ω) ↪→ L2(Ω) be the embedding operator of the Hilbert
space Hs(Ω) with s ∈ (0,∞). Js is compact with s.v.e. given by

vm(t) =
(
1 +m2

)−s/2
eimt, um = eimt, σm =

(
1 +m2

)−s/2
.

Let us consider the following equation

(4.1) Jsx = y.

Since Js is compact and therefore ill-conditioned, we regularize the above problem by intro-
ducing a family of filter functions,

xδα(t) =
∑
m>0

Fα (σm)σ−1
m 〈·, um〉vm(t).

The true solution x†, i.e., Jsx† = y, belongs to Hs. We consider the regularity of the approx-
imate solution xδα when dealing with general inexact data yδ ∈ L2. The next propositions
clarify the Hp spaces in which the approximate solutions live according to the filter method.

PROPOSITION 4.1 ([15]). For data yδ ∈ L2(Ω), the approximate solution xδα,r of the
weighted-I Tikhonov filter for equation (4.1) belongs to Hs(r+1)(Ω).

PROPOSITION 4.2. For data yδ ∈ L2(Ω), the approximate solution xδα,j of the weighted-
II Tikhonov filter for the problem (4.1) belongs to H2s(Ω) for any j ∈ N.
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Proof. We have that

xδα,j(t) =
∑
m>0

(
σ2
m

σ2
m + α [1− σ2

m]
j

)
σ−1
m 〈yδ, um〉vm(t)

=
∑
m>0

 (1 +m2)−s

(1 +m2)−s + α
[
1−

(
1+m2

2

)−s]j
 〈yδ, um〉eimt.

Then, the Fourier coefficients of xδα,j are given by

(
xδα,j

)
m

=

 (1 +m2)−s

(1 +m2)−s + α
[
1−

(
1+m2

2

)−s]j
 〈yδ, um〉,

from which we can calculate the Hp-norm,

‖xδα,j‖2Hp =
∑
m>0

(
1 +m2

)p (1 +m2)−s

(1 +m2)−s + α
[
1−

(
1+m2

2

)−s]j


2 ∣∣〈yδ, um〉∣∣2

=
∑
m>0

(
1 +m2

)p−2s

 1

(1 +m2)−s + α
[
1−

(
1+m2

2

)−s]j


2 ∣∣〈yδ, um〉∣∣2 .

Setting w := (1 +m2)−s ∈ (0, 2−s], it is not difficult to prove that the function

φ(w) =
(
w + α(1− 2sw)j

)−1

is bounded and

min{2−s;α−1} ≤ φ(w) ≤


α−1 if 0 < α ≤ (2sj)

−1
,

1[
1−(2sjα)

− 1
j−1

]
2−s+α(2sjα)

− j
j−1

if α > (2sj)
−1
.

Therefore, since
1

(1 +m2)−s + α
[
1−

(
1+m2

2

)−s]j ≤ max
w∈[0,2−s]

φ(w),

we can conclude that

‖xδα,j‖2Hp ≤ cα,j,s
∑
m>0

(
1 +m2

)p−2s ∣∣〈yδ, um〉∣∣2 .
The right hand-side of the above inequality is bounded for every data yδ ∈ L2(Ω) if p ≤ 2s.

In Proposition 4.1, for r = 1, we recover the classical Tikhonov filter and its oversmooth-
ing property, i.e., if the true solution x† ∈ Hs, then the approximate solution xδα ∈ H2s.
Therefore, compared to the standard Tikhonov filter, the weighted-I Tikhonov filter smoothes
the approximate solution less for every 0 < r < 1. We say that it undersmooths the approxi-
mate solution. The weighted-II Tikhonov instead does not provide any undersmoothing effect
for any j ∈ N.
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5. Saturation results. The following proposition deals with a saturation property similar
to a well-known result for classical Tikhonov, cf. [7, Proposition 5.3]. We extend it to
generalized Tikhonov methods of the form (1.4) with the penalty term being measured by the
operator-dependent seminorm

√
f(K∗K), where f : [0, σ1]→ [0,∞) is a Borel-measurable

function such that the corresponding filter function (1.6) satisfies the properties in (2.2).
Again, we fix the following notation

xα,f := Rα,fy, y ∈ Dom(K†),

xδα,f := Rα,fy
δ, yδ ∈ Y.

PROPOSITION 5.1 (Saturation for weighted Tikhonov regularization). Let K : X →Y be
a compact linear operator with infinite-dimensional range, and let Rα,f be the corresponding
family of regularization operators as in equation (1.5). Let α = α(δ, yδ) be any parameter
choice rule, and let

(5.1)
σ2

f(σ2)
∼ cσs as σ → 0,

with c, s > 0. If

(5.2) sup
{
‖xδα,f − x†‖ : ‖Q(y − yδ)‖ ≤ δ

}
= o(δ

s
s+1 ),

then x† = 0, where Q is the orthogonal projector onto R(K).
Proof. Define

δm := σs+1
m , yδm := y + δmum so that ‖y − yδm‖ ≤ δm,

αm := α(δm, y
δ
m), xm := xαm,f , xδm := xδmαm,f .

By the assumption that K has infinite-dimensional range, it follows that limm→∞ σm = 0.
According to the expression of Rα,f in (1.5), we have

xδm − x† = Rαm,fy
δ
m − x† = Rαm,fy + δmRαm,fum − x†

= xm − x† + δmFαm,f (σm)σ−1
m vm.

Hence by (3.1), it holds that

‖xδm−x†‖2 = ‖xm−x†‖2 + 2
δmσm

σ2
m + αmf(σ2

m)
Re〈xm−x†, vm〉+

(
δmσm

σ2
m + αmf(σ2

m)

)2

.

Since Fα,f satisfies (2.2a), we can deduce that f cannot be identically zero in any interval of
the form [0, λ], and therefore it is possible to divide by f(σ2

m) if we take a suitable subsequence
{σmn} ⊆ {σm}. Without loss of generality, we assume {σm} = {σmn}. Then, we have that[(

δmσm
f(σ2

m)

)− 1
2

‖xδm − x†‖

]2

≥ 2
σ2
m

f(σ2
m) + αm

Re〈xm − x†, vm〉+
δmσmf(σ2

m)

[σ2
m + αmf(σ2

m)]
2

=

 2f(σ2
m)

σ2
m

1 + αm
f(σ2

m)
σ2
m

Re〈xm − x†, vm〉+
δmσ

−3
m f(σ2

m)[
1 + αm

f(σ2
m)

σ2
m

]2 ,
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and passing to the lim sup, recalling assumption (5.1) and that δm = σs+1
m , we get

lim sup
m→∞

(
δ
− s
s+1

m ‖xδm − x†‖
)2

≥ c

{
lim sup
σm→∞

[
2δ
− s
s+1

m

1 + αmδ
− s
s+1

m

]
Re〈xm − x†, vm〉

+ lim inf
m→∞

1[
1 + αmδ

− s
s+1

m

]2
 ,

(5.3)

where c is a positive constant.
Thanks to equation (1.5), we have

(K∗K + αmf (K∗K)) (x† − xδm) = K∗Kx† + αmf (K∗K)x† −K∗yδm
= αmf (K∗K)x† − δmK∗um,

thus,

αmx
† = δm [f(K∗K)]

−1
K∗um +

(
[f(K∗K)]

−1
K∗K + αmI

)
(x† − xδm)

=
δmσm
f(σ2

m)
vm +

(
[f(K∗K)]

−1
K∗K + αmI

)
(x† − xδm).

By hypothesis, limσ→0 σ
2/f(σ2) = limσ→0 cσ

s = 0, and by item (ii) in Definition 2.2, it
holds that

αm ≤ sup
{
α(δm, y

δm) : yδm ∈ Y, ‖y − yδm‖ ≤ δm
}
−→ 0 as δm → 0,

i.e., {αm} is uniformly bounded. Henceforth,

‖ [f(K∗K)]
−1
K∗K + αmI‖ ≤ c, for every m ∈ N,

and then

(5.4) αm‖x†‖ = O

(
δmσm
f(σ2

m)
+ ‖x† − xδm‖

)
.

Since δm = σs+1
m and, again from limm→∞ σ2

m/f(σ2
m) = limm→∞ cσsm, it follows from

(5.4) that

αm‖x†‖ ≤ c
(
δ

2s
s+1
m + ‖x† − xδm‖

)
.

Then, if x† 6= 0,

(5.5) lim
m→∞

αmδ
− s
s+1

m = 0

because by assumption, ‖x† − xδm‖ = o
(
δ

s
s+1
m

)
.

Hence, the second term on the right-hand side of (5.3) tends to 1. Since by assumption
the left-hand side of (5.3) tends to 0, we obtain

0 ≥ c

{
lim sup
m→∞

2

1 + δ
− s
s+1

m αm
δ
− s
s+1

m Re〈xm − x†, vm〉+ 1

}
.
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Now, from (5.2) we have that ‖xm − x†‖ = o
(
δ

s
s+1
)

as well, so that if x† 6= 0, we obtain
from (5.5) applied to the preceding inequality the contradiction 0 ≥ c > 0. Hence, x† = 0.

Note that for f(σ2) ≡ 1 (classical Tikhonov) the previous proposition gives exactly
Proposition 5.3 in [7] with s = 2.

For f(σ2) = σ1−r and f(σ2) =

[
1−

(
σ
σ1

)2
]j

, we recover saturation results for the

weighted-I and weighted-II regularization methods, respectively. Indeed,

σ2

σ1−r ∼ σ
r+1,

σ2(
1−

(
σ
σ1

)2
)j ∼ σ2 for σ → 0.

We can state the following corollaries.
COROLLARY 5.2 ([1]). With the same notation of Proposition 5.1, let Rα,r be the family

of regularization operators as in Definition 3.1. If

sup
{
‖xδα,r − x†‖ : ‖Q(y − yδ)‖ ≤ δ

}
= o

(
δ
r+1
r+2

)
,

then x† = 0.
Observe that by taking a large value of r, it is possible to overcome the saturation result

of classical Tikhonov and obtain a convergence rate arbitrarily close to O(δ).
COROLLARY 5.3. With the same notation of Proposition 5.1, let Rα,j be the family of

regularization operators as in Definition 3.2. If

sup
{
‖xδα,j − x†‖ : ‖Q(y − yδ)‖ ≤ δ

}
= o

(
δ

2
3

)
,

then x† = 0.
In this case instead, weighted-II Tikhonov saturates at the same level as classical Tikhonov,

independently of the choice of the parameter j.
COROLLARY 5.4. With the same notation of Proposition 5.1, let Rα,r,j be the family of

regularization operators as in Definition 3.4. If

sup
{
‖xδα,r,j − x†‖ : ‖Q(y − yδ)‖ ≤ δ

}
= o

(
δ
r+1
r+2

)
,

then x† = 0.
Proof. This follows immediately from

σ2

σ1−r
(

1−
(
σ
σ1

)2
)j ∼ σr+1.

6. Iterated weighted-II Tikhonov regularization. To bypass the saturation property
observed in the previous Section 5, we now propose an iterated regularization method based
on the weighted-II Tikhonov filter, see Proposition 6.3, following the same approach adopted
in [1]. We first investigate the stationary case, and then we study its nonstationary version in
order to avoid the crucial and not easy choice of the regularization parameter. Note that the
iterated version of the weighted-I Tikhonov was already studied in [1].
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6.1. Stationary iterated weighted-II Tikhonov. We start by stating a general definition
of stationary iterated Tikhonov methods with operator-dependent norms.

DEFINITION 6.1. Let f : [0, σ1] → [0,∞) be a Borel-measurable function such that
Fα(σ) = σ2

σ2+αf(σ2) satisfies conditions (2.2a), (2.2b), and (2.2c). We define the stationary
iterated general weighted Tikhonov method as

(6.1)

{
x0
α0,f

:= 0,

[K∗K + αf (K∗K)]xnα,f := K∗y + αf (K∗K)xn−1
α,f ,

or equivalently,x
0
α0,f

:= 0,

xnα,f := argminx∈X

{
‖Kx− y‖2 + α‖x− xn−1

α,f ‖2√f(K∗K)

}
.

We define xn,δα,f as the n-th iteration of (6.4) whenever y is replaced by yδ .

Then, by applying the above definition to the special case f(σ2) =

(
1−

(
σ
σ1

)2
)j

, we

have the following new definition.
DEFINITION 6.2 (SIWT-II). We define the stationary iterated weighted-II Tikhonov

method (SIWT-II) as a stationary iterated general weighted Tikhonov method with the function

f(σ2) =

(
1−

(
σ
σ1

)2
)j

, namely,

(6.2)


x0
α,j := 0;(
K∗K + α

[
I − K∗K

‖K∗K‖

]j)
xnα,j := K∗y + α

[
I − K∗K

‖K∗K‖

]j
xn−1
α,j ,

with α > 0 and j ∈ N, or equivalently,x
0
α,j := 0

xnα,j := argminx∈X

{
‖Kx− y‖2 + α‖x− xn−1

α,j ‖2√(f(K∗K))

}
.

We define xn,δα,j as the n-th iteration of (6.2) whenever y is replaced by yδ .
PROPOSITION 6.3. For any given n, j ∈ N, the SIWT-II in (6.2) is a filter-based

regularization method with filter function

F
(n)
α,j (σ) =

(
σ2 + α

[
1−

(
σ
σ1

)2
]j)n

−

(
α

[
1−

(
σ
σ1

)2
]j)n

(
σ2 + α

[
1−

(
σ
σ1

)2
]j)n = 1− (1− Fα,j(σ))

n
.

Moreover, the method is of optimal order under the a-priori assumption x† ∈ Xν,ρ, for j ∈ N
and 0 < ν ≤ 2n, with the best convergence rate ‖x† − xn,δα,j‖ = O(δ

2n
1+2n ), which is obtained

for α =
(
δ
ρ

) 2n
1+ν

with ν = 2n.
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REMARK 6.4. Let us observe that for n = 1 we recover the convergence rate of O
(
δ

2
3

)
in Proposition 3.6.

Proof. Multiplying both sides of (6.1) by (K∗K + αf (K∗K))
n−1 and iterating the

process and since f(K∗K) and K∗K commute, see [23, Section 12.24, p. 326], we get

(K∗K + αf (K∗K))
n
xnα,f =

{
n−1∑
k=0

[αf (K∗K)]
k

(K∗K + αf (K∗K))
n−1−k

}
K∗y

= [(K∗K + αf (K∗K))
n − (αf (K∗K))

n
] (K∗K)−1K∗y,

where we have used the well-known formula (Bn −An) = (B −A)
(∑n−1

k=1 A
kBn−1−k

)
.

Therefore, the filter function in (2.1) is equal to

F
(n)
α,f (σ) =

(
σ2 + αf

(
σ2
))n − (αf (σ2

))n
(σ2 + αf (σ2))

n .

Setting

f
(
σ2
)

=

[
1−

(
σ

σ1

)2
]j
,

we obtain the filter function for the SIWT-II, i.e.,

F
(n)
α,j (σ) =

(
σ2 + α

[
1−

(
σ
σ1

)2
]j)n

−

(
α

[
1−

(
σ
σ1

)2
]j)n

(
σ2 + α

[
1−

(
σ
σ1

)2
]j)n = 1− (1− Fα,j(σ))

n
.

Again, condition (2.2c) is straightforward to verify. Moreover, we recover the following
relation

F
(n)
α,f (σ) =

(
σ2 + αf

(
σ2
))n − (αf (σ2

))n
(σ2 + αf (σ2))

n = 1− (1− Fα,f (σ))
n

= Fα,f (σ)
1− (1− Fα,f (σ))

n

1− (1− Fα,f (σ))
= Fα,f (σ)

n−1∑
k=0

(1− Fα,f (σ))
k
,

from which it follows that

Fα,f (σ) ≤ F (n)
α,f (σ) ≤ nFα,f (σ).

Therefore, when we specialize the general function f in the above inequalities to that in
Definition 3.2, conditions (2.2a), (2.2b), and (2.6a) follow immediately for every j ∈ N thanks
to Proposition 3.6. Finally, condition (2.6b) becomes

sup
σ∈[0,σ1]

∣∣∣∣∣∣∣∣∣


α

[
1−

(
σ
σ1

)2
]j

σ2 + α

[
1−

(
σ
σ1

)2
]j

n

σν

∣∣∣∣∣∣∣∣∣ ≤ sup
σ∈[0,σ1]

∣∣∣∣∣∣∣∣∣

 α

σ2 + α

[
1−

(
σ
σ1

)2
]j

n

σν

∣∣∣∣∣∣∣∣∣
= sup
σ∈[0,σ1]

∣∣∣∣∣∣∣∣∣

 ασν/n

σ2 + α

[
1−

(
σ
σ1

)2
]j

n∣∣∣∣∣∣∣∣∣ ,
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and then by using the same approach as in (3.7), it is easy to verify that the last term in the
above inequality is bounded by αβν with β = 1/2 if and only if 0 < ν ≤ 2n. The remaining
assertions follow from an application of Theorem 2.5.

6.2. Nonstationary iterated weighted Tikhonov regularization. We introduce a non-
stationary version of the iteration (6.2). We study convergence, and we prove that the new
iteration is a regularization method.

DEFINITION 6.5. Let {αn}n∈N ⊂ R>0 be a sequence of positive real numbers,
and let fn : [0, σ1] → [0,∞) be a sequence of Borel-measurable functions such that
Fα,n(σ) = σ2

σ2+αfn(σ2) satisfies (2.2a), (2.2b), and (2.2c) for every n. We introduce the
following nonstationary generalized weighted Tikhonov method,

(6.3)

{
x0
α0,f0

:= 0,

[K∗K + αnfn (K∗K)]xnαn,fn := K∗y + αnfn (K∗K)xn−1
αn−1,fn−1

,

or equivalently,x
0
α0,f0

:= 0,

xnαn,fn := argminx∈X

{
‖Kx− y‖2 + αn‖x− xn−1

αn−1,fn−1
‖2√

fn(K∗K)

}
.

DEFINITION 6.6 (NSWIT-II). Let {αn}n∈N ⊂ R>0 and {jn}n∈N ⊂ N be sequences of
positive real numbers and integers, respectively. We define the nonstationary iterated weighted-
II Tikhonov method (NSIWT-II) as the nonstationary generalized weighted Tikhonov method

with fn(σ2) =
(

1− σ2

σ2
1

)jn
, namely,

(6.4)



x0
α0,j0 := 0,[
K∗K + αn

(
I − K∗K

‖K∗K‖

)jn]
xnαn,jn

:= K∗y + αn

(
I − K∗K

‖K∗K‖

)jn
xn−1
αn−1,jn−1

,

or equivalently,x
0
α0,j0

:= 0,

xnαn,jn := argminx∈X

{
‖Kx− y‖2 + αn‖x− xn−1

αn−1,jn−1
‖2√

fn(K∗K)

}
.

6.2.1. Convergence analysis. We are interested in conditions for the sequence {αn}
such that the iteration (6.4) converges.

Let {Eσ2}σ2∈σ(K∗K) be the spectral decomposition of the self-adjoint operatorK∗K, and
let σ(K∗K) denote its spectrum. Then from well-known facts from functional analysis [23],
we can write f(K∗K) :=

∫
f(σ2)dEσ2 , where f : σ(K∗K) ⊂ R→ C is a Borel-measurable

function and 〈Ex1, x2〉 is a regular complex Borel measure for every x1, x2 ∈ X . Hereafter,
without loss of generality, we assume σ1 = 1, i.e., ‖K‖ = 1.

THEOREM 6.7. For every x† ∈ X , the method (6.3) converges to x† as n → ∞ if and
only if

n∑
k=1

σ2

σ2 + αkfk(σ2)

diverges for every σ ∈ σ(K) \ {0}.
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Proof. Rewriting equation (6.3) using y = Kx†, we have

xnαn,fn = [K∗K + αnfn (K∗K)]
−1
K∗Kx†

+ αn [K∗K + αnfn (K∗K)]
−1
fn (K∗K)xn−1

αn−1,fn−1

=
{
I − αn [K∗K + αnfn (K∗K)]

−1
fn (K∗K)

}
x†

+ αn [K∗K + αnfn (K∗K)]
−1
fn (K∗K)xn−1

αn−1,fn−1
,

from which it follows that

x† − xnαn,fn = αn [K∗K + αnfn (K∗K)]
−1
fn (K∗K) (x† − xn−1

αn−1,fn−1
)

=

n∏
k=1

αk [K∗K + αkfk (K∗K)]
−1
fk (K∗K)x†,

(6.5)

where for convenience we set x0
α0,f0

:= 0. As a consequence, the method converges for
every x† if and only if

lim
n→∞

∥∥∥∥∥
n∏
k=1

αk [K∗K + αkfk (K∗K)]
−1
fk (K∗K)x†

∥∥∥∥∥ = 0

for every x† ∈ X , i.e., if and only if

lim
n→∞

∫
σ(K∗K)

∣∣∣∣∣
n∏
k=1

αkfk
(
σ2
)

σ2 + αkfk (σ2)

∣∣∣∣∣
2

d〈Eσ2x†, x†〉 = 0

for every Borel-measure 〈Ex†, x†〉 induced by x† ∈ X . Since∣∣∣∣∣
n∏
k=1

αkfk
(
σ2
)

σ2 + αkfk (σ2)

∣∣∣∣∣
2

≤ 1

for every n and since ∫
σ(K∗K)

d〈Eσ2x†, x†〉 = ‖x†‖2,

the theorem on dominated convergence implies the following equality

lim
n→∞

∫
σ(K∗K)

∣∣∣∣∣
n∏
k=1

αkfk
(
σ2
)

σ2 + αkfk (σ2)

∣∣∣∣∣
2

d〈Eσ2x†, x†〉

=

∫
σ(K∗K)

∣∣∣∣∣
∞∏
k=1

αkfk
(
σ2
)

σ2 + αkfk (σ2)

∣∣∣∣∣
2

d〈Eσ2x†, x†〉.

Hence, the method is convergent for every x† ∈ X if and only if

∞∏
k=1

αkfk
(
σ2
)

σ2 + αkfk (σ2)
=

∞∏
k=1

(
1− σ2

σ2 + αkfk (σ2)

)
= 0,
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for 〈Ex†, x†〉-a.e. σ2 and every induced Borel measure 〈Ex†, x†〉, i.e., for every σ∈σ(K)\{0}.
Now using the fact that

∞∏
k=1

(1− tk) = 0 if and only if
∞∑
k=1

tk =∞,

whenever {tk}k∈N is a sequence of positive real numbers such that 0 ≤ tk < 1 ([22]), the
assertion follows.

COROLLARY 6.8. For every x† ∈ X , the method (6.4) converges to x† as n→∞ if and
only if

n∑
k=1

σ2

σ2 + αk

[
1−

(
σ
σ1

)2
]jk

diverges for every σ ∈ σ(K) \ {0}.
COROLLARY 6.9. If

∑n
k=1 α

−1
k diverges, then the NSIWT-II method converges.

Proof. Let us observe that

∞∑
k=1

σ2

σ2 + αk
≤
∞∑
k=1

σ2

σ2 + αk

[
1−

(
σ
σ1

)2
]jk .

Then, if the left-hand side of the above inequality diverges for every σ ∈ σ(K) \ {0}, then the
result follows.

If
∑∞
k=1 α

−1
k =∞, we can possibly have three different cases:

lim
k→∞

αk ∈ [0,∞), @ lim
k→∞

αk, or lim
k→∞

αk =∞.

In the first two cases, σ2

σ2+αk
9 0 for every σ > 0, and then the corresponding series diverges.

In the latter case instead, α−1
k ∼ cσ

σ2

σ2+αk
for every σ > 0, and hence, the series

∑n
k=1 α

−1
k

and
∑n
k=1

σ2

σ2+αk
converge or diverge simultaneously by the asymptotic comparison test.

Then, by
∑∞
k=1 α

−1
k = ∞, we deduce that

∑∞
k=1

σ2

σ2+αk
diverges for every σ > 0, and the

NSIWT-II method converges.
Now, we investigate the convergence rate of NSIWT-II.
THEOREM 6.10. Let {xnαn,fn}n∈N be a convergent sequence of the nonstationary gener-

alized weighted Tikhonov method (6.3) with x† ∈ Xν for some ν > 0, and let {ϑn}n∈N be a
divergent sequence of positive real numbers. If

(6.6a) lim
n→∞

ϑnσ
ν

n∏
k=1

(
1− σ2

σ2 + αkfk (σ2)

)
= 0 for every σ ∈ σ(K) \ {0},

(6.6b)

sup
σ∈σ(K)\{0}

{
ϑnσ

ν
n∏
k=1

(
1− σ2

σ2 + αkfk (σ2)

)}
≤ c <∞ uniformly with respect to n,

then

‖x† − xnαn,fn‖ = o(ϑ−1
n ).
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Proof. From equation (6.5), for x† ∈ Xν , we have

lim
n→∞

ϑn‖x† − xnαn,fn‖

= lim
n→∞

∫
σ(K∗K)

∣∣∣∣∣ϑnσν
n∏
k=1

(
1− σ2

σ2 + αkfk (σ2)

)∣∣∣∣∣
2

d〈Eσ2ω, ω〉

1/2

=

∫
σ(K∗K)

∣∣∣∣∣ lim
n→∞

ϑnσ
ν

n∏
k=1

(
1− σ2

σ2 + αkfk (σ2)

)∣∣∣∣∣
2

d〈Eσ2ω, ω〉

1/2

,

by (6.6b) and the dominated convergence theorem. Now the assertion follows from hypothe-
sis (6.6a).

For example, in the case of nonstationary iterated Tikhonov, i.e., for fk(σ2) ≡ 1, setting
βn =

∑n
k=1 (1 + αk)

−1, the conditions (6.6a) and (6.6b) are satisfied with ϑn = β
ν/2
n .

Anyway, this is not always the best convergence rate. Indeed, in practice a common choice for
{αk} is the geometric sequence αk = α0q

k with 0 < q < 1 and α0 fixed, which provides a
convergence rate of the form O (qn). We invite the interested reader to study more details in
the following papers: [2], [11] and [1, Corollary 27].

Contextualizing the above theorem to the case of NSIWT-II, we have the following
corollary.

COROLLARY 6.11. If conditions (6.6a) and (6.6b) are satisfied for

fk
(
σ2
)

=

[
1−

(
σ

σ1

)2
]jk

,

then we have

‖x† − xnαn,jn‖ = o(ϑ−1
n ).

6.2.2. Analysis of convergence for perturbed data. Now, we consider the convergence
of the NSIWT-I/II methods when the initial datum y is perturbed. Again, we initially prove
a more general statement involving the method (6.3) with initial datum yδ, and then the
convergence results for perturbed data in the NSIWT-I/II cases will follow as a corollary. We
use the notation xn,δαn,fn for the solution of the method (6.3) with perturbed initial datum yδ .

THEOREM 6.12. Under the assumptions of Theorem 6.7, let fk : [0, σ1] → R be such
that

(6.7) sup
σ∈[0,1]

∣∣∣∣ αk
σ2 + αkfk (σ2)

∣∣∣∣ ≤ γk.
If {δn} is a sequence convergent to 0 with δn ≥ 0 such that

(6.8) lim
n→∞

δn ·
n∑
k=1

α−1
k γk = 0,

then,

lim
n→∞

‖x† − xn,δnαn,fn
‖ = 0.
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Proof. From the definition of the method (6.3), for every given m ≤ n, we find that

xm,δnαm,fm
= [K∗K + αmfm (K∗K)]

−1
(
K∗yδn + αmfm (K∗K)xm−1,δn

αm−1,fm−1

)
=
{
I − αm [K∗K + αmfm (K∗K)]

−1
fm (K∗K)

}
x†

+αm [K∗K + αmfm (K∗K)]
−1
fm (K∗K)xm−1,δn

αm−1,fm−1

+ [K∗K + αmfm (K∗K)]
−1
K∗(yδn − y),

thus,

x† − xm,δnαm,fm
= αm [K∗K + αmfm (K∗K)]

−1
fm (K∗K) (x† − xm−1,δn

αm−1,fm−1
)

− [K∗K + αmfm (K∗K)]
−1
K∗(yδn − y).

Hence, by induction, setting gi(K∗K) = αi [K∗K + αifi (K∗K)]
−1
fi(K

∗K) for every
fixed n, we have

x† − xn,δnαn,fn

=

n∏
k=1

gk(K∗K)x† −
n∑
k=1

(
n∏

i=k+1

gi(K
∗K)

)
[K∗K + αkfk (K∗K)]

−1
K∗(yδn − y).

Since

‖gi(K∗K)‖ = sup
σ∈[0,1]

∣∣∣∣ αifi(K
∗K)

σ2 + αifi(K∗K)

∣∣∣∣ ≤ 1, ‖K∗‖ = 1,

and

‖αk [K∗K + αkfk (K∗K)]
−1 ‖ = sup

σ∈[0,1]

∣∣∣∣ αk
σ2 + αkfk (σ2)

∣∣∣∣ ≤ γk,
it follows that

‖x† − xn,δnαn,fn
‖

≤ ‖
n∏
k=1

gk(K∗K)x†‖

+

n∑
k=1

α−1
k

n∏
i=k+1

‖gi(K∗K)‖‖αk [K∗K + αkfk (K∗K)]
−1 ‖‖K∗‖‖yδn − y‖

≤ ‖x† − xnαn,fn‖+ δn

n∑
k=1

α−1
k γk.

Finally, by Theorem 6.7, ‖x† − xnαn,fn‖ → 0 as n → ∞, and therefore by equation (6.8),
‖x† − xn,δnαn,fn

‖ → 0 for n→∞.
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COROLLARY 6.13. Under the assumptions of Corollary 6.9, let {αk}, {jk} be such that
jk ≤ α−1

k . If {δn} is a sequence convergent to 0 with δn ≥ 0 such that

lim
n→∞

δn ·
n∑
k=1

α−1
k = 0,

then the NSIWT-II method with perturbed data is convergent, that is,

lim
n→∞

‖x† − xn,δnαn,jn
‖ = 0.

Proof. Applying Theorem 6.12 with

fk(σ2) =
(
1− σ2

)jk
,

we have that

sup
σ∈[0,1]

∣∣∣∣ αk
σ2 + αkfk(σ2)

∣∣∣∣ = sup
σ∈[0,1]

∣∣∣∣∣ αk

σ2 + αk (1− σ2)
jk

∣∣∣∣∣ .
Setting αk

σ2+αk(1−σ2)jk
= hk(σ), from jk ≤ α−1

k it follows that

h′k(σ) = −
2αkσ

[
1− αkjk

(
1− σ2

)jk−1
]

[
σ2 + αk (1− σ2)

jk
]2 ≤ 0 for every k ∈ N, σ ∈ [0, 1].

Therefore

sup
σ∈[0,1]

∣∣∣∣∣ αk

σ2 + αk (1− σ2)
jk

∣∣∣∣∣ ≤ 1,

and the hypothesis (6.7) is satisfied and the assertion follows at once.

6.3. Iterated mixed method. With the same idea in mind that led us to introduce the
filter method in Definition 3.4, we give the following definition of an iterated method which
combines both the iterated weighted-I and the iterated weighted-II methods.

DEFINITION 6.14 (NSM). Let {αn}n∈N, {rn}n∈N ⊂ R>0, and {jn}n∈N ⊂ N be se-
quences of positive real numbers and integers, respectively. We define the nonstationary iterated
mixed method (NSM) as a nonstationary generalized Tikhonov method (see Definition 6.5)
with

fn(σ2) =

(
1− σ2

σ2
1

)jn
σ1−rn .

We skip all the convergence analyses as they can be studied and recovered without great efforts
by adapting the proofs in Proposition 6.3, Corollaries 6.8, 6.9, 6.13, and Theorem 6.10.

7. Numerical examples. Here we present some numerical examples, in the direct and
iterated cases, spanning all the methods we discussed in the previous sections.

To produce our results we have used Matlab R2015a on a desktop PC provided with
an Intel iCore i5-4460 processor with 8 GB of RAM running Windows 8.1. We add the
“noise-vector” η to the noise-free right-hand side vector y, where η has normally distributed
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FIGURE 7.1. RRE vs α values for the Heat problem with κ = 3.

pseudorandom entries with mean zero in all examples and is normalized to correspond to a
chosen noise-level

ξ =
‖η‖
‖y‖

.

As a stopping criterion for the iterative methods, we use the discrepancy principle [12] that
terminates the iterative method at the iteration

k̂ = min
k

{
k : ‖yδ −Kxk‖ ≤ τξ

}
, τ = 1.01,

i.e., this criterion stops the iterations when the norm of the residual reaches the norm of the
noise so that the latter does not dominate the reconstructed solution. All the iterative methods
are initialized with the zero vector.

To compare the restorations with the different methods, we consider both the visual
representation and the relative restoration error (RRE), that is,

‖x† − x̂‖
‖x†‖

,

for the computed approximations x̂.

7.1. Example 1. The following test case is Heat from the toolbox Regularization Tools
by Hansen [13] with the parameter κ = 3 and using 300 points. We add a noise vector with
ξ = 0.05. The comparisons between direct methods have been made by choosing the best set
of parameters for each method.

In Table 7.1 we can observe that the mixed method gives the lowest relative restoration
error.

TABLE 7.1
Heat problem. Parameters and RRE for the direct methods.

Method α j r RRE
Tikhonov 1.3e− 03 0 1 0.0241
Weighted-I 3.42e− 04 0 1.48 0.0193
Weighted-II 3.1e− 03 32 1 0.0186
Mixed 6.32e− 04 32 1.48 0.0155
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(a) True signal and observed signal corrupted by 5% of noise.

(b) Graphical comparison between Tikhonov and mixed methods.

(c) Detail: the head of the signal.

(d) Detail: the tail of the signal.

(e) Graphical comparison between NSIT and NSM.

FIGURE 7.2. Heat problem. Comparison among some regularization methods, computed solutions and details.

Since the true signal x† is a smooth function, the best parameter r is larger than 1. This
is consistent with the theory: indeed according to Proposition 4.1, for r ≥ 1 the Weighted-I
method oversmooths the approximate solution more when compared to the standard Tikhonov
method. In Figure 7.1 we plot the α-values against the RRE for every method. We can detect
an empirical behavior for the Weighted-II method which was already observed in [17], i.e., its
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curve stays below the Tikhonov curve as well as below all the other ones. Indeed, the slope of
the curve for the Weighted-II method in a right neighborhood of its minimum is less than the
slopes of the curves for all the other methods calculated in a right neighborhood centered at
their minimums. This means that an overestimation of the best parameter α would affect the
RRE less.

Interestingly, it appears that the mixed method combines the best features of both the
Weighted-I and the Weighted-II, or more precisely, the Weighted-II method enhances the
Weighted-I method. This is clearly seen in both Figures 7.1 and 7.2. Figures 7.2(c)–(d)
highlight the differences between the standard Tikhonov method and the mixed method:
the head of the signal is reconstructed better by the mixed method, and at the same time
it dampens the rough oscillations that appear in the tail of the reconstructed signal by the
Tikhonov method.

Finally, we propose a comparison between the nonstationary iterative versions of the
preceding methods. We denote by NSIT the nonstationary iterated Tikhonov method and with
NSM the nonstationary iterated mixed method. In Table 7.2 we report the RRE values and the
corresponding sequences of parameters that we use for the methods. Even in this case, the
NSM method produces a better approximation, and in Figure 7.2(e) a comparison between the
approximate solutions derived from NSIT and from NSM is reported. We observe that the
behavior of the nonstationary iterative methods is not significantly affected by the choice of
α0 and q. In practice, in the iterative cases we did not have to make any particular choice on
the parameters. Of course, a lower RRE would be obtained by stopping the iterative method at
the best iteration corresponding to the minimum RRE. Nevertheless, despite a larger RRE, by
visual inspection of Figure 7.2, the peak is restored more accurately with NSM than with the
Tikhonov method.

TABLE 7.2
Heat problem. RRE values for the nonstationary iterative methods and iteration numbers between brackets.

Method αn = α0q
n jn rn RRE

NSIT α0 = 0.01, q = 0.7 0 1 0.0733(4)
NSWIT-I α0 = 0.01, q = 0.7 0 1.2 + n/100 0.0590(3)
NSWIT-II α0 = 0.01, q = 0.7 4n 1 0.0530(3)
NSM α0 = 0.01, q = 0.7 4n 1.2 + n/100 0.0485(3)

7.2. Example 2. For completeness and in order to give an overall view, here we report
a table that summarizes different test problems from the toolbox Regularization Tools by
Hansen [13]. We have studied two different cases, where for each test we add a noise vector
with ξ = 0.05 and ξ = 0.01, respectively. We compare only the direct methods, and the
comparisons have been made by choosing the best set of parameters for each method. In most
of the cases the mixed method provides the best RRE, and when it does not, it improves the
reconstructed solution compared to the cases that use the weighted-I or the weighted-II method
alone.

7.3. Example 3. The following test case is Foxgood from the toolbox Regularization
Tool by Hansen [13] with n = 300 points. We added to the observed data a noise vector with
ξ = 0.01.

In this example we are going to examine only the nonstationary iterative algorithms. As
in the previous example, we choose a geometric sequence for the αn in every iterated method,
while the jn and the rn are monotonically increasing sequences. The numerical results in
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TABLE 7.3
RRE values for different problems from the toolbox Regularization Tools. Here n = 300.

Problem Method RRE
ξ = 5% ξ = 1%

baart(n)

Tikhonov: α = 2.2e− 05 0.5560 0.1174
Weighted-I: α = 1.2e− 05, r = 0.85 0.4672 0.0870
Weighted-II: α = 2e− 06, j = 32 0.3390 0.0874
Mixed: α = 2e− 06, r = 0.85, j = 32 0.1804 0.0757

deriv2(n, 3)

Tikhonov: α = 2.2e− 05 0.1555 0.0491
Weighted-I: α = 6.2e− 05, r = 0.8 0.1425 0.0449
Weighted-II: α = 3.2e− 05, j = 16 0.1187 0.0477
Mixed: α = 7.2e− 05, r = 0.8, j = 16 0.1327 0.0430

gravity(n, 3)

Tikhonov: α = 5.6e− 02 0.1166 0.0858
Weighted-I: α = 6.8e− 02, r = 0.7 0.0968 0.0738
Weighted-II: α = 1.7e− 02, j = 32 0.1145 0.0779
Mixed: α = 4.6e− 02, r = 0.7, j = 32 0.0945 0.0752

phillips(n)

Tikhonov: α = 2.44e− 02 0.0645 0.0244
Weighted-I: α = 1.18e− 02, r = 1.2 0.0628 0.0182
Weighted-II: α = 1.35e− 02, j = 32 0.0765 0.0177
Mixed: α = 7.9e− 03, r = 1.2, j = 32 0.0623 0.0144

(a) True signal and observed signal

corrupted by 1% of noise.
(b) Graphical comparison between NSIT and NSM methods.

FIGURE 7.3. Foxgood problem. Computed solutions with NSIT and NSM methods.

Table 7.4 and the plots in Figure 7.3 show that the NSM method provides again the best
approximate solution.

TABLE 7.4
Foxgood problem. RRE values for the nonstationary iterative methods and iteration numbers between brackets.

Method αn = α0q
n jn rn RRE

NSIT α0 = 0.05, q = 0.8 0 1 0.0320(15)
NSWIT-I α0 = 0.05, q = 0.8 0 1.2 + n/100 0.0195(21)
NSWIT-II α0 = 0.05, q = 0.8 4n 1 0.0231(17)
NSM α0 = 0.05, q = 0.8 4n 1.2 + n/100 0.0188(24)

8. Conclusions. We have studied fundamental properties such as convergence, smooth-
ing effects, and saturation for both direct and iterative methods that arise when using general
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operator-dependent seminorms in the penalty term. In particular, we have seen that the
Weighted-II method performs well as a switch between different regularization effects, and it
can be used in combination with other suitable filters to enhance the reconstruction. Clearly,
the combination of more filters requires the estimation of more parameters, and techniques
like those proposed in [8] should be considered.

As future work, the filtering operators introduced in this paper could be applied also
to nonstationary preconditioned iterative methods like the approximated iterated Tikhonov
methods with a general penalty term proposed in [3], which extends the technique introduced
in [5] using a generalized Tikhonov method as preconditioner. Moreover, they could be applied
as smoothers in multilevel regularization methods like in [6].
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