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ON ACCELERATING THE REGULARIZED ALTERNATING LEAST-SQUARES
ALGORITHM FOR TENSORS∗

XIAOFEI WANG†, CARMELIZA NAVASCA‡, AND STEFAN KINDERMANN§

Abstract. In this paper, we discuss the acceleration of the regularized alternating least-squares (RALS) algorithm
for tensor approximations. We propose a fast iterative method using an Aitken-Stefensen-like update for the regularized
algorithm. Through numerical experiments, a faster convergence rate for the accelerated version is demonstrated in
comparison to both the standard and regularized alternating least-squares algorithms. In addition, we analyze global
convergence based on the Kurdyka-Łojasiewicz inequality, and we show that the RALS algorithm has a linear local
convergence rate.
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1. Introduction. Given a third-order tensor T ∈ RI×J×K , we want to find the best
approximation of T with r rank-one components. This tensor approximation can be posed as
an optimization problem:

minimize
1

2
‖T −

r∑
s=1

as ◦ bs ◦ cs‖2F

subject to as ∈ RI ,bs ∈ RJ , cs ∈ RK , s = 1, · · · , r,

where as ◦bs ◦ cs is a rank-one tensor generated by taking the outer products of three vectors,
as,bs, and cs; see below. A global minimizer of the objective functional may not exist due
to the ill-posedness [9, 18] of a low-rank approximation, but developing algorithms to detect
local minimizers or critical points of the objective functional is important for both theoretical
research and practical application of tensor computations [14].

The conventional method for solving this problem, the alternating least-squares (ALS)
algorithm [6, 11], which was proposed 45 years ago, remains the workhorse for computing
tensor approximations and decompositions. It is based on iteratively solving least-squares
subproblems of the original nonlinear objective functional using a Gauss-Seidel updating
scheme. The subproblems are obtained through matricizing the given tensor and the rank-
one tensor components. Under an assumption on the Hessian of the objective functional, it
was shown in [26] that the ALS algorithm has a linear local convergence rate. Despite the
success of the ALS algorithm, it has some shortcomings [8, 24]. The non-uniqueness of the
solution within the inner iterations of the ALS can substantially slow down convergence. This
non-uniqueness can be avoided by introducing a Tikhonov-regularized term to the objective
functional [18, 24]. However, this new update mechanism with such a term included cannot
guarantee that the local minimizer is also a fixed-point of the ALS update operator. Another
regularization [20, 16] was proposed to handle the ALS algorithm by introducing a proximal

∗Received July 21, 2017. Accepted December 11, 2017. Published online on February 16, 2018. Recommended
by L. Reichel. This work was supported by National Natural Science Foundation of China (Grants No. 11401092),
China Scholarship Council (Grants No.201406625025)
†Key Laboratory for Applied Statistics of MOE, School of Mathematics and Statistics, Northeast Normal

University, Renmin Street 5268, Changchun, China (wangxf341@nenu.edu.cn).
‡Department of Mathematics, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham,

AL, USA (cnavasca@uab.edu).
§Industrial Mathematics Institute, Johannes Kepler Universitat Linz, Altenbergerstrasse 69, A-4040 Linz, Austria

(kindermann@indmath.uni-linz.ac.at).

1

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

2 X. WANG, C. NAVASCA, AND S. KINDERMANN

term into every subproblem instead of directly into the objective functional. This regularized
version of the ALS algorithm is called the regularized alternating least-squares (RALS)
algorithm. It was shown in [16] that any limit point of every convergent subsequence from the
RALS algorithm is a critical point of the objective functional.

Both the ALS and RALS algorithms update one block of variables at each iteration while
fixing other blocks. Thus, these two algorithms can be considered within the framework of
several alternating block minimization techniques [2, 3, 27]. The Kurdyka-Łojasiewicz (KL)
inequality [19] is the essential tool to show global convergence of the ALS method. Attouch
et al. [2, 3] study the convergence properties of alternating proximal minimization algorithms
for nonconvex structured functions. In [27], Xu and Yin develop the block coordinate de-
scent method with the Gauss-Seidel updating sweep for block multi-convex functions with
applications to nonnegative tensor factorization and tensor completion. Instead of updating
all the blocks in each loop as in [2, 3, 27], an alternative approach is the maximum block
improvement (MBI) method [7], which only updates the maximally improving block per loop.
In [17], MBI was shown to handle tensor optimization models with spherical constraints.
Under some mild assumptions, Li et al. [17] show that MBI achieves global convergence and
a linear local convergent rate. Here we consider the convergence properties of the regularized
alternating least-squares (RALS) method in case the regularization parameter is static. We
show global convergence of the RALS algorithm within the framework of proximal alternating
minimization [2, 3]. The rate of this global convergence depends on the exponent in the
Kurdyka-Łojasiewicz inequality. We prove that the global convergence rate is either linear
or sublinear, but to further discern between these cases relies on a priori knowledge of the
exponent of the KL inequality. In the appendix, we discuss the local convergence theory of
RALS, namely, we prove that if the sequence is close enough to a local minimizer, then the
RALS algorithm has a linear local convergence rate.

Moreover, in this paper, we propose a new acceleration version of RALS by extending
the Aitken-Stefensen acceleration formula to matrix form. The corresponding numerical
simulation results illustrate the effectiveness of our acceleration method. In addition, the new
fast method outperforms Nesterov-accelerated [21] ALS and RALS.

This paper is organized as follows. In Section 2, we introduce some notations and
terminologies for the RALS algorithm for tensor approximation. In Section 3 we propose
an accelerated version of the algorithm. A simulation experiment is presented in Section 4.
In Section 5, we discuss global convergence rates of the algorithm. Finally, in Section 6 we
summarize our conclusions and indicate some remaining problems.

2. The RALS algorithm for tensor approximation. We focus on third-order tensors
T = (tijk) ∈ RI×J×K with three indices 1 ≤ i ≤ I, 1 ≤ j ≤ J , and 1 ≤ k ≤ K, but all the
methods proposed here can be applied to tensors of arbitrary d-th order. A third-order tensor T
has column, row, and tube fibers, which are defined by fixing every index but one and denoted
by t:jk, ti:k, and tij:, respectively. Correspondingly, we obtain three matricizations of T :

T(1) = [t:11, · · · , t:J1, t:12, · · · , t:J2, · · · , t:1K , · · · , t:JK ], T(1) ∈ RI×JK ,
T(2) = [t1:1, · · · , tI:1, t1:2, · · · , tI:2, · · · , t1:K , · · · , tI:K ], T(2) ∈ RJ×IK ,
T(3) = [t11:, · · · , tI1:, t12:, · · · , tI2:, · · · , t1J:, · · · , tIJ:], T(3) ∈ RK×IJ .

The outer product a ◦ b ◦ c ∈ RI×J×K of three nonzero vectors a ∈ RI ,b ∈ RJ , and
c ∈ RK is called a rank-one tensor and is defined by (a ◦ b ◦ c)i,j,k = aibjck for all the
indices i, j, k in their corresponding index ranges. A canonical polyadic (CP) decomposition

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ACCELERATING RALS FOR TENSORS 3

of T ∈ RI×J×K expresses T as a sum of rank-one outer products:

(2.1) T =

r∑
s=1

as ◦ bs ◦ cs,

where as ∈ RI ,bs ∈ RJ , cs ∈ RK , for 1 ≤ s ≤ r. Every outer product as ◦ bs ◦ cs is a
rank-one component. The positive integer r is the number of rank-one tensor components
of T .

The Khatri-Rao product of two matrices A ∈ RI×r and B ∈ RJ×r is defined as

A�B = (a1 ⊗ b1, · · · ,aR ⊗ bR) ∈ RIJ×r,

where the symbol “⊗" denotes the Kronecker product:

a⊗ b = (a1b1, · · · , a1bJ , · · · , aIb1, · · · , aIbJ)T .

Using this Khatri-Rao product, the CP decomposition (2.1) can be equivalently expressed by
one of the three matricization forms of the tensor T :

T(1) = A(C�B)T , T(2) = B(C�A)T , T(3) = C(B�A)T ,

where A = (a1, · · ·,ar) ∈ RI×r,B = (b1, · · ·,br) ∈ RJ×r, and C = (c1, · · ·, cr) ∈ RK×r
are called the factor matrices of the tensor T .

Let X = RI×r × RJ×r × RK×r, where r is any given positive integer, and let the
elements of X be denoted by x = (A,B,C), where A ∈ RI×r,B ∈ RJ×r,C ∈ RK×r.
Note that x can also be viewed as a vector in Rr(I+J+K). Given a tensor T ∈ RI×J×K , we

consider its approximation by using the sum of r rank-one components
r∑
s=1

as ◦ bs ◦ cs, and

define a residual functional f : X → R by

f(x) = f(A,B,C)→ 1

2
‖T −

r∑
s=1

as ◦ bs ◦ cs‖2F ,

where the vectors as,bs, cs are columns of A,B, and C, respectively, and ‖ · ‖F is the tensor
Frobenius norm. There may exist a local minimizer x∗ = (A∗,B∗,C∗) of f(A,B,C),
which is hence also a critical point of f(x) such that ∇f(x∗) = 0 since f is a polynomial

function. Denote
r∑
s=1

a∗s⊗b∗s⊗c∗s an optimal approximation of the tensor T with rank at most

r, where the vectors a∗s,b
∗
s, c
∗
s are columns of some matrices A∗,B∗, and C∗, respectively.

The approximation of a given tensor is implemented by the alternating least-squares (ALS)
algorithm. Given a starting point x(0) = (A(0),B(0),C(0)), we solve three subproblems
iteratively:

A(n+1) = arg min
A∈RI×r

f(A,B(n),C(n)) = arg min
A∈RI×r

1

2
‖T(1) −A(C(n) �B(n)T )‖2F ,

B(n+1) = arg min
B∈RJ×r

f(A(n+1),B,C(n)) = arg min
B∈RJ×r

1

2
‖T(2) −B(C(n) �A(n+1)T )‖2F ,

C(n+1) = arg min
C∈RK×r

f(A(n+1),B(n+1),C) = arg min
C∈RK×r

1

2
‖T(3) −C(B(n+1) �A(n+1)T )‖2F .

(2.2)
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If every optimization problem possesses a unique solution, then one loop of (2.2) defines
an operator SALS(·) [26] via

(2.3) (A(n+1),B(n+1),C(n+1)) = x(n+1) = SALS(x(n)) = SALS(A(n),B(n),C(n)),

where the three matrices

A(n+1) =
(
T(1)(C

(n) �B(n))
)(

(C(n) �B(n))T (C(n) �B(n))
)−1

,

B(n+1) =
(
T(2)(C

(n) �A(n+1))
)(

(C(n) �A(n+1))T (C(n) �A(n+1))
)−1

,

C(n+1) =
(
T(3)(B

(n+1) �A(n+1))
)(

(B(n+1) �A(n+1))T (B(n+1) �A(n+1))
)−1

(2.4)

are the least-squares solutions of (2.2). Note that the inversion in (2.4) may not exist due to
collinearity of the columns in the factor matrices, thus, we consider the generalized Moore-
Penrose inverse in this case.

Since the computations in steps (2.2) may not give a unique solution, an extra regularized
term [3, 16, 20] is added in every step to eliminate such a non-uniqueness. This regularized
ALS algorithm (RALS) is defined as follows:

A(n+1) = arg min
A∈RI×r

f(A,B(n),C(n)) +
1

2
λ‖A−A(n)‖2F ,

B(n+1) = arg min
B∈RJ×r

f(A(n+1),B,C(n)) +
1

2
λ‖B−B(n)‖2F ,(2.5)

C(n+1) = arg min
C∈RK×r

f(A(n+1),B(n+1),C) +
1

2
λ‖C−C(n)‖2F ,

where λ > 0 is a regularization parameter. Our work is based on this RALS model and
addresses the case when the regularization parameter λ is static. It is easy to verify that every
subproblem in (2.5) must have a unique solution because of strict convexity. We express the
update of (2.5) for A,B,C by using the operator S(·):

(2.6) (A(n+1),B(n+1),C(n+1)) = x(n+1) = S(x(n)) = S(A(n),B(n),C(n)),

where the three matrices

A(n+1) =
(
T(1)(C

(n) �B(n))+λA(n)
)(

(C(n) �B(n))T (C(n) �B(n))+λI
)−1

,

B(n+1) =
(
T(2)(C

(n) �A(n+1))+λB(n)
)(

(C(n) �A(n+1))T (C(n) �A(n+1))+λI
)−1

,

C(n+1) =
(
T(3)(B

(n+1) �A(n+1))+λC(n)
)(

(B(n+1) �A(n+1))T (B(n+1) �A(n+1))+λI
)−1

(2.7)

are the least-squares solutions of (2.5).
The RALS algorithm can be viewed as a proximal regularization of a three-block Gauss-

Seidel method for minimizing f(A,B,C). In Section 5, we show global convergence of the
RALS algorithm within the framework of proximal alternating minimization [2, 5].

3. Acceleration of the RALS algorithm. In this section, we suggest an acceleration
technique for the RALS algorithm. Our acceleration method is loosely based on the Aitken-
Stefensen formula [13], which is a conventional acceleration technique for numerical com-
putations. In the scalar case, for a given convergent sequence {x(n)}n∈N, a new sequence
{y(n)}n∈N is generated by

(3.1) y(n) = x(n) − (4x(n))2

42x(n)
,
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where 4x(n) = x(n+1) − x(n) and 42x(n) = x(n+2) − 2x(n+1) + x(n). For fixed-point
iterations, the Aitken-Steffensen acceleration (3.1) can achieve a quadratic convergent rate [13]
without the use of derivative terms.

The generalization of the Aitken-Stefensen process to a k-dimensional sequence requires
the following iterative formula:

(3.2) y(n) = x(n) −4X(n)(42X(n))−14x(n),

where

4x(n) = x(n+1) − x(n),

4X(n) = (x(n+1) − x(n), · · · ,x(n+k) − x(n+k−1)), and

42X(n) = (x(n+2) − 2x(n+1) + xn, · · · ,x(n+k+1) − 2x(n+k) + x(n+k−1)).

The formula (3.2) for {y(n)}n∈N also has a quadratic convergence rate under five basic assump-
tions [22]. Although the Aitken-Stefensen process for k-dimensional sequences theoretically
has a fast convergent rate, it has two main drawbacks in the practical implementation. One is
that in order to compute y(n), an a priori set of sequences is needed, namely, x(1) to x(n+k+1).
In case the dimension k of the vectorspace is large, the practical implementation will be
time-consuming especially when facing a complicated updating map. The other is that this
iterative process may be invalid if the original sequence {x(n)}n∈N converges fast and the
dimension k is large enough such that x(n+k+1) − 2x(n+k) + x(n+k−1) is close to zero and
42X(n) is (almost) singular. So although the Aitken-Stefensen method can be directly applied
to the acceleration of the r(I + J +K)-dimensional sequence {x(n)}n∈N generated by the
RALS algorithm, it does not work well, especially when I, J,K, r are large. For example, if
I = J = K = 20 and r = 10, then the dimension of k is 600. To compute the initial vector of
y(0) from x(0), we need to know 601 vectors from x(1) to x(601). But the original sequence
{x(n)}n∈N from RALS may have already converged before n = 601.

To obviate these drawbacks of the recursive formula (3.2) of vectors, we utilize the
matrix format of the update (2.7) for the RALS algorithm and propose a matrix-based Aitken-
Stefensen acceleration formula. We denote the (I+J+K)×rmatrix (A(n)T ,B(n)T ,C(n)T )T

by X(n), and define the update by

(3.3) X
(n+1)
∗ = X(n) − Z(n),

where Z(n) is a solution of the linear system

(3.4) Z(n)
(
S(S(X(n)))− 2S(X(n)) + X(n)

)T
= (S(X(n))−X(n))(S(X(n))−X(n))T .

Here the matrix Z(n) can be understood as a small perturbation of X(n) towards X(n+1)
∗ since

‖S(X(n))−X(n)‖2F is small when X(n) is close to a fixed-point of S (as defined by (2.6)).
Note that S(X(n)) is based on RALS, and we express the new update (3.3) from X(n) to
X

(n+1)
∗ by an operator T :

X
(n+1)
∗ = T (X(n)).

It can be verified that a fixed-point of the operator T is also a fixed-point of the operator S.
Notice that besides one extra update from S(X(n)) to (S(S(X(n))), the formula (3.3)

involves solving a large linear system (3.4) with the matrix (S(S(X(n)))−2S(X(n))+X(n))T
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of size r × (I + J + K). If (3.3) is computed in each step of the algorithm, then the
whole computational cost of the practical implementation will be huge. So in the following
Algorithm 1, we employ the update formula (3.3) not at every step n, but only after a fixed
(specified) number of iterations and if the residual is small enough. From another perspective,
the formula allows the outer iteration of the (R)ALS algorithm to jump out from the linear
convergent regions. The residual gap of these perturbations are quickly eliminated. Several
numerical experiments are presented in the next section.

Algorithm 1 Acceleration of RALS (RALS-A)
Input: A third order tensor T ∈ RI×J×K , the number r of rank-one components, an interval

positive integer q, and a upper bound α ∈ R;
Output: Three matrices A ∈ RI×r,B ∈ RJ×r,C ∈ RK×r;

1: Give initial matrices (A(0),B(0),C(0)) and let X(0) = (A(0)T ,B(0)T ,C(0)T )T and set
the error square as err = α.

2: Update step:
3: for n = 1, · · · do
4: if err < α and n mod q = 0 do
5: Compute the matrices S(S(X(n))) and S(X(n)) from X(n).
6: Compute the matrix X

(n+1)
∗ by using (3.3).

7: X(n+1) = X
(n+1)
∗ .

8: else do
9: Compute the matrix S(X(n)) from X(n).

10: X(n+1) = S(X(n)).
11: end if
12: err = ‖X(n+1) −X(n)‖2F .
13: end for
14: A = A(n), B = B(n), C = C(n).
15: return Three matrices A,B, and C.

4. Numerical experiments. In this section we demonstrate the simulation experiments
of the ALS, RALS algorithms and their accelerated versions. The experiments are done with
Matlab and implemented on a desktop computer with an Intel i5 CPU 3.3GHz CPU and 8G
memory. All of these algorithms use a tolerance error of 1× 10−12 as a stopping criterion for
the update

‖X(n) −X(n−1)‖2F = ‖A(n) −A(n−1)‖2F + ‖B(n) −B(n−1)‖2F + ‖C(n) −C(n−1)‖2F

between two subsequent iterates. One may use a relative error-based stopping criterion [27]
to address the issue of a scale dependence of the input tensor. Algorithm 1 is an accelerated
version of the RALS algorithm, and we denote it RALS-A. We can similarly obtain an
acceleration of the ALS algorithm called ALS-A. More specifically, ALS-A is realized by
replacing the update operator S in Algorithm 1 by the operator SALS in (2.3). The upper
bound α is an input parameter for judging whether the original sequence is already in a linear
convergent region. As long as err < α, we employ the acceleration update after a fixed number
q of iterations. In the simulation experiments, we choose α = 1× 10−6 and q = 100. Besides
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TABLE 4.1
Time costs of ALS, ALS-A, RALS,RALS-A, RALS-L, and RALS-AL.

Algorithm ALS ALS-Nes ALS-A RALS RALS-Nes RALS-A RALS-L RALS-AL

I = 10 0.59 2.41 0.38 0.89 1.77 0.51 0.59 0.36
I = 20 0.47 1.20 0.33 0.55 1.17 0.37 0.50 0.31
I = 50 2.31 7.25 1.64 2.57 6.73 1.86 2.55 1.86

our acceleration method, we also consider the Nesterov-type acceleration (RALS-Nes):

x(n+1) = S(x
(n)
∗ ),

x
(n+1)
∗ = (1− γn)x(n+1) + γnx

(n)

where γn = 1−µn
µn+1

, µn =
1+
√

1+4µ2
n−1

2 , µ0 = 0. We can similarly obtain a Nesterov-type
acceleration of the ALS algorithm (ALS-Nes) by replacing the update operator S by SALS .

At first, we consider the time costs of the ALS, ALS-A, ALS-Nes, RALS, RALS-L,
RALS-A, and RALS-AL algorithms, where RALS-L and RALS-AL denotes two modified
versions of RALS and RALS-A with a monotonically decreasing regularization parameter
λ that converges to zero as the iteration number n→∞. The rank-one component number
r is set to 10 and the dimensions I = J = K. For each I = 10, 20, 50, we perform 100
numerical experiments for these seven algorithms and record the corresponding seven medians
of the time costs in seconds. As shown in Table 4.1, the accelerated versions ALS-A and
RALS-A perform much better than the original ALS and RALS algorithms. The RALS-L
method with decreasing λ has a higher speed than RALS, and RALS-AL is the fasted among
all the algorithms based on RALS. The ALS-Nes scheme requires more times than other
algorithms. The reason may lie in the fact that the Nesterov-type acceleration is designed
for convex optimization [4, 21]. The main objective functional of the RALS is, however, a
nonconvex function while only the subproblems are convex.

Secondly, we consider the convergence of the ALS, ALS-A, RALS, and RALS-A algo-
rithms. Two experiments are presented in Figure 4.1 according to the appearance of swamps
in the ALS method or not. In each experiment, we set I = J = K = r = 10, and all of
those algorithms use the same tensor T ∈ R10×10×10 with same initial factor matrices. For
the RALS and RALS-A algorithms, the regularization parameter λ is fixed to 1. The plots
in Figure 4.1 display the squared error ‖X(n) −X(n−1)‖2F versus the number of iterations
n. As one can see, the convergence of the RALS algorithm is linear (see Appendix A), and
the acceleration version RALS-A has a higher convergent rate than RALS. This situation is
similar for the ALS and ALS-A algorithms. Notice that ALS without swamps performs much
better than RALS with a fixed λ. But as demonstrated in the experiments, the RALS algorithm
with a decreasing λ has the highest speed; see Table 4.1.

5. Global convergence of RALS. To discuss global convergence of the RALS algorithm,
we need the Kurdyka-Łojasiewicz inequality for real-analytic functions. As shown in [19], we
have the following proposition for the gradient inequality.

PROPOSITION 5.1 (The Kurdyka-Łojasiewicz inequality). Let f(x) be a real-analytic
function in a neighborhood of 0 ∈ Rn such that f(0) = 0. Then the following inequality
holds for some 0 < θ < 1

|f(x)|θ ≤ ‖∇f(x)‖

in a neighborhood of 0.
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FIG. 4.1. A comparison among ALS, ALS-A, RALS, and RALS-A.

Clearly, if f is a real-analytic function in a neighborhood of a ∈ Rn, then by shifting the
origin, we obtain that g(x) = f(a + x)− f(a) is a real-analytic function in a neighborhood
of 0 ∈ Rn and g(0) = 0. From this Proposition 5.1, we find that

|f(a + x)− f(a)|θ ≤ ‖∇f(a + x)‖

for any x in a neighborhood of 0. It also follows that |f(x)− f(a)|θ ≤ ‖∇f(x)‖ for any x
in a neighborhood of a. Thus, we find an equivalent formulation:

PROPOSITION 5.2. Let f(x) be a real-analytic function on Rn. For any a ∈ Rn, there
exists a real number 0 < θ < 1 and a neighborhood U of a such that

|f(x)− f(a)|θ ≤ ‖∇f(x)‖

for any x ∈ U .
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By using Proposition 5.2 and the finite subcover property of compact sets, we arrive at
the following statement [5, 10].

PROPOSITION 5.3. Let E be the set of critical points of f and Γ be a compact and
connected subset of E. If f is a real-analytic function on Rn and a ∈ Γ, then

1. for any b ∈ Γ, f(b) = f(a) , f , and
2. there is a neighborhood U of Γ and a real number 0 < θ < 1 such that

∀x ∈ U : |f(x)− f |θ ≤ ‖∇f(x)‖.

In the RALS algorithm, the residual functional f(x) = f(A,B,C) is a polynomial
function on X = RI×r ×RJ×r ×RK×r. So it is also a real-analytic function on X . Unlike
in the work of Li et al. [16], where it is shown that every limit point is a critical point, the
following theorem yields global convergence of the RALS algorithm. Its proof is based on the
Kurdyka-Łojasiewicz inequality and the proximal alternating minimum technique [2, 3, 5].

THEOREM 5.4. Let {x(n)}n∈N be the sequence generated by the RALS algorithm. If the
sequence {x(n)}n∈N is bounded, then this sequence converges to a critical point x∗ of f(x).

Proof. In the RALS algorithm, the residual functional

f(x) = f(A,B,C) =
1

2
‖T −

r∑
s=1

as ◦ bs ◦ cs‖2

is a polynomial function on X = RI×r × RJ×r × RK×r, where as,bs, cs are columns of
some matrices A,B, and C, respectively. From (2.5), we know that

(5.1) f(x(n))− f(x(n+1)) ≥ 1

2
λ‖x(n+1) − x(n)‖2

and

(5.2)

∇Af(A(n+1),B(n),C(n)) + λ(A(n+1) −A(n)) = 0,

∇Bf(A(n+1),B(n+1),C(n)) + λ(B(n+1) −B(n)) = 0,

∇Cf(A(n+1),B(n+1),C(n+1)) + λ(C(n+1) −C(n)) = 0.

From (5.1), we have that lim
n→∞

‖x(n+1) − x(n)‖ = 0 and {f(x(n))}n∈N is a monotonically

decreasing sequence. Let f = lim
n→∞

f(x(n)).

Due to the boundedness of {x(n)}n∈N, the first equality in (5.2), and the differentiability
of f(x), there exist constants λ1, λ2 > 0 and µ1 > 0 such that

‖∇Af(A(n+1),B(n+1),C(n+1))‖F
≤ ‖∇Af(A(n+1),B(n+1),C(n+1))−∇Af(A(n+1),B(n),C(n))‖F

+ ‖∇Af(A(n+1),B(n),C(n))‖F
≤ λ1‖B(n+1) −B(n)‖F + λ2‖C(n+1) −C(n)‖F + λ‖A(n+1) −A(n)‖F
≤ µ1‖x(n+1) − x(n)‖

for any n ∈ N. Similarly, there exist constants µ2, µ3 > 0 such that

‖∇Bf(A(n+1),B(n+1),C(n+1))‖F ≤ µ2‖x(n+1) − x(n)‖
‖∇Cf(A(n+1),B(n+1),C(n+1))‖F ≤ µ3‖x(n+1) − x(n)‖.
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It follows that there exists a constant d > 0 such that

(5.3) ‖∇xf(x(n+1))‖ ≤ d‖x(n+1) − x(n)‖

for any n ∈ N.
Denote the limit point set of {x(n)}n∈N by L. From the inequality (5.3), any point in

L is a critical point of f . It can also be verified that L is a compact and connected set since
{x(n)}n∈N is bounded and lim

n→∞
‖x(n+1) − x(n)‖ = 0. So, from Proposition 5.3, we have

f(x) = f for any x ∈ L, and there is a neighborhood U of L and a real number 0 < θ < 1

such that |f(x)− f |θ ≤ ‖∇f(x)‖ for any x ∈ U . Since L is the limit point set of {x(n)}n∈N,
it follows that x(n) ∈ U when n is large enough. So there exists a positive integer l such that
|f(x(n))− f |θ ≤ ‖∇f(x(n))‖ when n ≥ l.

The concavity of the function g(y) = (y − f)1−θ for some 0 < θ < 1 when y ≥ f
implies that

(f(x(n))− f)1−θ − (f(x(n+1))− f)1−θ

f(x(n))− f(x(n+1))
≥ (1− θ)(f(x(n))− f)−θ.

Since

f(x(n))− f(x(n+1)) ≥ 1

2
λ‖x(n+1) − x(n)‖2 and

(f(x(n))− f)θ ≤ ‖∇f(x(n))‖ ≤ d‖x(n) − x(n−1)‖,

we have that

2d((f(x(n))− f)1−θ − (f(x(n+1))− f)1−θ)

(1− θ)λ
≥ ‖x

(n+1) − x(n)‖2

‖x(n) − x(n−1)‖
.

Denote
2d((f(x(n))−f)1−θ−(f(x(m))−f)1−θ)

(1−θ)λ by en,m where m ≥ n. Then,

‖x(n+1) − x(n)‖2 ≤ ‖x(n) − x(n−1)‖en,n+1,

2‖x(n+1) − x(n)‖ ≤ ‖x(n) − x(n−1)‖+ en,n+1.

Thus,

2

k∑
n=l

‖x(n+1) − x(n)‖ ≤
k∑
n=l

‖x(n) − x(n−1)‖+

k∑
n=l

en,n+1

≤
k∑
n=l

‖x(n+1) − x(n)‖+ ‖x(l) − x(l−1)‖+

k∑
n=l

en,n+1

=

k∑
n=l

‖x(n+1) − x(n)‖+ ‖x(l) − x(l−1)‖+ el,k+1.

So,
k∑
n=l

‖x(n+1) − x(n)‖ ≤ ‖x(l) − x(l−1)‖ + el,k+1. Since lim
n→∞

‖x(n+1) − x(n)‖ = 0 and

el,k+1 is bounded for any k ≥ l, {x(n)}n∈N is a Cauchy sequence. Hence, lim
n→∞

x(n) = x∗

and ∇f(x∗) = 0.
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The proof here can also be shown by using the techniques in [1] since the RALS algorithm
satisfies the strong descent conditions of analytic cost functions. As shown in [2, 5], the global
convergence rate can be further discussed regarding the value of θ. In particular, θ ∈ (0, 1/2]
gives a linear global convergent rate while θ ∈ (1/2, 1) leads to a sublinear one. But there
is no further information on the specific value of θ for the residual functional of the RALS
algorithm. In Appendix A, we discuss the local convergence rate of RALS and show that when
the sequence is close enough to the local minimum point, the RALS algorithm has a linear
local convergence rate.

6. Conclusions and future outlook. We discussed convergence and acceleration of the
regularized alternating least-squares (RALS) algorithm for tensor approximations. Under mild
conditions, the RALS algorithm achieves global convergence and a linear local convergence
rate (see Appendix A). As shown in the simulation experiments, the accelerated versions of
the (R)ALS algorithm provide a higher speed of convergence compared to the original ones.
Although the update map T for the acceleration keeps fixed-points invariant, it still lacks a
theoretical guarantee of the effectiveness of this acceleration. Moreover, we would like to
understand why a faster convergent rate can be obtained by letting the regularization parameter
decrease to zero. Furthermore, we are very interested in knowing if these convergence theories
have any connection in generating swamps for tensor approximations.

Acknowledgements. The authors are thankful to Hedy Attouch for some valuable sug-
gestions on some references.

Appendix A. Local convergence rate of RALS. First we introduce some basic properties
of the update operator S defined in (2.6).

THEOREM A.1. The operator S is smooth in the space X = RI×r × RJ×r × RK×r. If
x∗ = (A∗,B∗,C∗) is a local minimum point of f , then x∗ is a fixed-point of S.

Proof. From the update mechanism (2.5) and the expressions (2.7) for A(n+1),B(n+1),
and C(n+1), it follows that the update operator S is smooth in X = RI×r × RJ×r × RK×r.

If (A∗,B∗,C∗) is a local minimum point of f , then we have that A(n+1) = A∗ when
B(n) = B∗,C(n) = C∗. Since f(A,B∗,C∗) + 1

2λ‖A−A∗‖2 is a strict convex function in
A, it follows from the update mechanism shown in (2.5) that

f(A(n+1),B∗,C∗) +
1

2
λ‖A(n+1) −A∗‖2 < f(A∗,B∗,C∗)

if A(n+1) 6= A∗. Thus, f(A(n+1),B∗,C∗) < f(A∗,B∗,C∗). Since f is a convex function
in A when fixing B,C, we obtain that f(aA(n+1) + (1− a)A∗,B∗,C∗) < f(A∗,B∗,C∗)
for any a ∈ (0, 1), which contradicts the fact that (A∗,B∗,C∗) is a local minimum of f . So
if (A∗,B∗,C∗) is a local minimum point of f , we have that A(n+1) = A∗ when B(n) = B∗,
C(n) = C∗. Furthermore, it follows that (A∗,B∗,C∗) = S(A∗,B∗,C∗) from (2.5). Thus,
a local minimum point (A∗,B∗,C∗) of f is a fixed-point of S.

Next, we discuss the contractive property of the operator S within the framework of
iterative methods for nonlinear equations [23]. A similar approach [25, 26] has been applied for
the ALS algorithm as well as for the alternating linear scheme for the tensor train format [12].

Any point x = (A,B,C) ∈ RI×r × RJ×r × RK×r can be viewed as a vector
x = (xTA,x

T
B ,x

T
C)T , where xA ∈ RrI , xB ∈ RrJ , xC ∈ RrK are the vectorized form

(column stacked) of A,B,C, respectively. Define the vector value function,

gA(x,y) :=
∂f(xA,yB ,yC)

∂xA
+ λ(xA − yA),
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where y = (yTA,y
T
B ,y

T
C)T and yA ∈ RrI , yB ∈ RrJ , yC ∈ RrK , and similarly, define

gB(x,y) :=
∂f(xA,xB ,yC)

∂xB
+ λ(xB − yB)

gC(x,y) :=
∂f(xA,xB ,xC)

∂xC
+ λ(xC − yC).

Denote the vector value function
(
gTA(x,y), gTB(x,y), gTC(x,y)

)T
by G(x,y). From the

equations in (5.2), we know that G(x(n+1),x(n)) = 0.
Let x∗ be a local minimizer of the residual functional f . Since f is a twice continuously

differentiable function, the Hessian matrix H = ∂2f(x∗)
∂x∂x of f at x∗ is positive semidefinite

and has nine block matrices corresponding to A,B,C. From a direct computation we observe
that the matrix ∂G(x∗,x∗)

∂x is the lower triangular block matrix of H with an additional λI on
the diagonal blocks and the matrix ∂G(x∗,x∗)

∂y is the strictly upper block matrix of H minus
λI, where I is the identity matrix in Rr(I+J+K)×r(I+J+K). The structure is given in the
following formulas:

H =


∂2f(x∗)
∂xA∂xA

∂2f(x∗)
∂xB∂xA

∂2f(x∗)
∂xC∂xA

∂2f(x∗)
∂xA∂xB

∂2f(x∗)
∂xB∂xB

∂2f(x∗)
∂xC∂xB

∂2f(x∗)
∂xA∂xC

∂2f(x∗)
∂xB∂xC

∂2f(x∗)
∂xC∂xC

 ,
∂G(x∗,x∗)

∂x
=


∂2f(x∗)
∂xA∂xA

+ λIA 0 0
∂2f(x∗)
∂xA∂xB

∂2f(x∗)
∂xB∂xB

+ λIB 0
∂2f(x∗)
∂xA∂xC

∂2f(x∗)
∂xB∂xC

∂2f(x∗)
∂xC∂xC

+ λIC

 ,
∂G(x∗,x∗)

∂y
=

−λIA
∂2f(x∗)
∂xB∂xA

∂2f(x∗)
∂xC∂xA

0 −λIB ∂2f(x∗)
∂xC∂xB

0 0 −λIC

 ,
where IA, IB , IC are identity matrices in RrI×rI ,RrJ×rJ ,RrK×rK , respectively.

The matrix ∂G(x∗,x∗)
∂x is nonsingular since all the three diagonal blocks of H are positive

semidefinite. The Hessian matrix H can be rewritten into D− L−U, where D is a diagonal
block matrix, −L is a strictly lower block matrix and −U is a strictly upper block matrix of
H. Thus we have that

−∂G(x∗,x∗)

∂x

−1
∂G(x∗,x∗)

∂y
= (λI + D− L)−1(λI + U)

= I − (λI + D− L)−1(D− L−U).

Let M = λI+D−L. From[15, Theorem 3.2 ], since M+MT −H is positive definite,
it follows that ‖I−M−1H‖H = max

‖x‖H 6=0

‖(I−M−1H)x‖H
‖x‖H < 1, where ‖y‖H = (yTHy)

1
2 is

a seminorm on y. If we further assume that H is a positive definite matrix, ‖y‖H is a norm of
y and ‖I−M−1H‖H is a matrix norm of I−M−1H.

Since x∗ is a local minimum point of f , we have that x∗ is a fixed-point of S from
Theorem A.1. Furthermore, it follows that G(x∗,x∗) = 0 by the equations in (5.2). Then
from the implicit function theorem, there is a neighborhood U of x∗ such that x = S(y) when
y ∈ U and S′(x∗) = I −M−1H. Since S′(x∗) = I −M−1H and ‖S′(x∗)‖H < q < 1,
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there exists a small enough neighborhood V of x∗ such that ‖S′(y)‖H < q for y ∈ V . So,
there exists a sufficiently small neighborhood W of x∗ such that

S(y) ∈W, ‖S′(y)‖H < q, and ‖S(y)− S(x∗)‖H < q‖y − x∗‖H for y ∈W.

Hence, if x(n) ∈W for some n ∈ N, then

x(n+1) ∈W, ‖x(n+1) − x∗‖H < q‖x(n) − x∗‖H, and lim
n→∞

x(n) = x∗.

Furthermore, if x(0) ∈W , then we obtain that

lim sup
n→∞

‖x(n) − x∗‖ 1
n ≤ q, and lim sup

n→∞
‖f(x(n))− f(x∗)‖ 1

n ≤ q

from the equivalence of norms in the finite-dimensional space. So we obtain that the RALS
algorithm has a linear local convergence rate when xn is enough close to a local minimum
point x∗ and the Hessian matrix ∂2f(x∗)

∂x∂x of f at x∗ is positive definite.
THEOREM A.2. Let {x(n)}n∈N be the sequence generated by the RALS algorithm. As-

sume that x∗ is a local minimum point of f and the Hessian matrix H = ∂2f(x∗)
∂x∂x is positive

definite. There exist a neighborhood W of x∗ and a positive constant q < 1 such that:

1. If x(n) ∈W for some n ∈ N, then x(n+1) ∈W , ‖x(n+1)−x∗‖H < q‖x(n)−x∗‖H
and lim

n→∞
x(n) = x∗.

2. If x(0) ∈W , then lim sup
n→∞

‖x(n)−x∗‖ 1
n ≤ q and lim sup

n→∞
‖f(x(n))− f(x∗)‖ 1

n ≤ q.

In the work of Uschmajew [26], a similar result was provided for the ALS algorithm with
the objective functional gλ(A,B,C) = f(A,B,C) + λ(‖A‖2 + ‖B‖2 + ‖C‖2). Naturally,
a large enough λ yields positive definiteness of ∂

2gλ(x
∗)

∂x∂x which guarantees a linear convergent
rate.
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